ASSESSING BIOAVAILABILITY OF PAHS AND PCBS WITH FIELD – DEPLOYABLE SPME

Danny Reible, X Lu, A Skwarski, B Drake and D Lampert University of Texas
Presented by Andrew Jackson, Texas Tech University
Research supported by
EPA, DOD-ESTCP/SERDP, NIH & Industrial Sources
Assessing Quality and Exposure (Risk of Contaminants)

- Traditional Indicator - Bulk sediment concentration
 - Relatively easy to measure
 - If equilibrium partitioning applies, bulk sediment measure also indicates porewater/mobile phase concentrations
 - Absent direct partitioning data:
 \[K_d = \frac{W_s}{C_{pw}} = K_{oc}f_{oc} \]
 - Reality: porewater concentration is typically << predicted by this equation, due to desorption-resistant phenomena
Implications: Usefulness of C_{pw}

- Bulk sediment concentration is less useful as indicator of exposure-risk
- **Porewater concentration** is better indicator *(even for active benthic uptake by ingestion)*
- Porewater is difficult to measure, but possible with solid phase micro extraction (SPME)

Field deployable SPME, capable of measuring porewater with vertical resolution
How to Measure Porewater?

- Direct in-situ measurement (PE, POM, SPME)
- Solid phase microextraction (SPME)
 - Sorbent polymer PDMS (poly-dimethylsiloxane)
 - 30 µm fiber on 110 µm core (13.6 µL PDMS/m of fiber)
 - 10 µm on 230 µm core (7 µL /m)
 - 30 µm on 1 mm core (94 µL /m)
- ng/L detection with 1 cm resolution
- Profiling field deployable system
- May require 7-30 days to equilibrate
Relationship between porewater and sorbed (fiber) mass

- Equilibrium K_f
 - PCB - factor of two
 - PAH +/- 45%
- Fiber Volume
 - 7-94 µL/m

![Graph showing the relationship between Log K_f and Log K_{ow} for PAHs/PCBs. The line of best fit has a R^2 value of 0.879.](image)
Kinetics

- External MT control
 - Key - Area / Volume
- PAHs relatively quick
 - 4-6 days
- High molecular weight PCBs much slower
 - 14-28 days
- Field Confirmation
 - Different exposure times
 - Different fiber thickness
 - Add tracers
TECHNICAL APPROACH

- Extraction and Analysis
 - PAHs - HPLC w/fluorescent detection
 - Extraction with 50-100 µL ACN directly in autosampling vials with inserts
 - PCBs – GC w/ECD
 - Extraction with 50-100 µL hexane directly in autosampling vials with inserts
 - Thermal desorption with splitless injection
 - Potential for co-elution of congeners

- Detection limits (1 cm 170/110 PDMS fiber)
 - 10 pg/L (High MW PCBs) to 10 ng/L (Low MW PAHs)
Bioaccumulation studies

* Ilyodilus (freshwater oligochaete)
 - Anacostia River sediments
 - New Bedford Harbor/Brown Lake sequentially diluted sediments (3, 6, 12, 25% NBH)
* Neanthes (marine polychaete)
 - Hunter’s Point sediments

Cross-comparison of direct porewater measurements (Hunter’s Point)

Thin Layer Capping (Anacostia River)
Bioconcentration Factor Applicable to Deposit Feeders In-Situ?

\[BCF = \frac{C_t}{f_{lipid} C_{pw}} \]

- Freshwater oligochaetes
- PAHs and PCBs
- Anacostia River sediments
- \(R^2 = 0.93 \)

In sediments and in deposit-feeding organism (porewater not route of exposure)
Bioconcentration Factor Applicable to Deposit Feeders In-Situ?

\[BCF = \frac{C_t}{f_{lipid} C_{pw}} \]

Freshwater oligochaetes
PAHs and PCBs
Sequential Dilution sediments
\[R^2 = 0.92 \]
Bioconcentration Factor Applicable to Deposit Feeders In-Situ?

\[BCF = \frac{C_t}{f_{lipid}C_{pw}} \]

- Marine polychaetes
- PCBs
- Hunter’s Point sediments
- \(R^2 = 0.81 \)
The bioconcentration factor (BCF) can be expressed as:

$$BCF = \frac{C_t}{f_{lipid} C_{pw}}$$

where C_t is the concentration of the compound in the tissue, f_{lipid} is the partition coefficient for lipid, and C_{pw} is the concentration in the water phase.

Marine and freshwater PAHs and PCBs
$R^2 = 0.845$
Log BCF = 1.07 Log Kow
Comparison of Porewater Concentrations – Hunter’s Point

<table>
<thead>
<tr>
<th>PCB Congener</th>
<th>SPME (UT) pg/L</th>
<th>POM (EERC) pg/L</th>
<th>PE** (MIT) pg/L</th>
<th>Air Bridge (MIT) pg/L</th>
<th>Extracted Porewater Raw pg/L</th>
<th>Extracted Porewater TOC corr. pg/L***</th>
<th>Predicted Porewater Kd=Kocfoc pg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>902</td>
<td><915</td>
<td>230</td>
<td>602</td>
<td>5260</td>
<td>2400</td>
<td>6480</td>
</tr>
<tr>
<td>87</td>
<td>125</td>
<td>124</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>788</td>
</tr>
<tr>
<td>110</td>
<td>320</td>
<td>492</td>
<td>410</td>
<td>433</td>
<td>2850</td>
<td>1800</td>
<td>2340</td>
</tr>
<tr>
<td>95</td>
<td>880*</td>
<td>1460</td>
<td>330</td>
<td>667</td>
<td>3300</td>
<td>1900</td>
<td>8400</td>
</tr>
<tr>
<td>151</td>
<td>303</td>
<td>101</td>
<td>130</td>
<td>365</td>
<td>4820</td>
<td>670</td>
<td>5680</td>
</tr>
<tr>
<td>153</td>
<td>347</td>
<td>416</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>5440</td>
</tr>
<tr>
<td>141</td>
<td>134</td>
<td>133</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>1670</td>
</tr>
<tr>
<td>138</td>
<td>352</td>
<td><2090</td>
<td>79</td>
<td>626</td>
<td>16300</td>
<td>5200</td>
<td>4910</td>
</tr>
<tr>
<td>149</td>
<td>750*</td>
<td>650</td>
<td>130</td>
<td>1180</td>
<td>15600</td>
<td>6200</td>
<td>9470</td>
</tr>
<tr>
<td>132</td>
<td>350*</td>
<td>408</td>
<td>720</td>
<td>866</td>
<td>20000</td>
<td>6100</td>
<td>12100</td>
</tr>
</tbody>
</table>
Why Field Deployable SPME?

- Avoids concerns about contaminant dynamics associated with porewater extraction
- Provides in-situ profile with up to 1 cm vertical resolution depending on detection limits
 - Profiles provide rate/mechanism information
- Disadvantages
 - Deployment time
 - Analytical requirements
 - Complexity
Field Applications

- Cap Performance
 - Anacostia Active Capping Demonstration

- Benthic Accumulation – Field Studies
 - Anacostia Active Capping Demonstration
 - Preliminary measurements 6/07
 - Second Round (poor organism recovery) 10/07
 - San Diego Bay/Pensacola, FL
 - In cooperation with Sediment Ecosystem Assessment Protocol SERDP ER-1550
Effectiveness from Bulk Solids?

Percent Sediment and Phen C/C₀ versus Depth

Clean Sand Cap

Cap-sediment Intermixing Zone

Sediment

0% 50% 100% 150% C/C₀ and Percent Passing

0% 15 17 19 21 23 25 27 29 Depth (cm)
Profiling SPME to indicate cap performance

B[a]A Pore Water Concentrations

Pore Water Concentration (ng/L)

Depth (cm)

Overlying Water

- ACS
- 0cm
- 2cm
- 4cm
- 6cm
Correlation of Bioaccumulation with Profiling SPME Porewater Concentration

Unit slope is BCF estimated by K_{ow}
Porewater Concentration Profile
Pyrene

Pyrene Concentration /(ng/L)

Depth /cm

- Average in sediment
- Sand
- Coke Breeze
Field Deployment
Benthic Accumulation/Porewater
PAHs – B(b)F, B(k)F, BaP in *Muscalista*

Single correlation with porewater concentrations works well for all three compounds
Anacostia River Sampling Field Duplicates

- Total PAHs 28% deviation between Utexas and TestAmerica
Anacostia River Field Duplicates

- Most of 28% difference associated with pyrene
- Poorest duplicate correlation with low concentration, high molecular weight compounds like BaP
- All concentrations within factor of two
Conclusions

- Direct passive measurement of porewater concentrations provides good indication of potential bioaccumulation of PAHs and PCBs in benthic deposit feeders.
- Bulk solid and extracted porewater measurements are not as well correlated with bioaccumulation.
- In-situ profiling with SPME provides useful information on contaminant migration rates and mechanisms and can be used, e.g., to evaluate cap performance.