

CapSim 4 – An Innovative Model for Remedial Design of Contaminated Sediments

Reible Research Group

Sediment Remediation

Sediment contamination

- Porous media/high carbon content
- From sink to source
- Large volume (10% of total)

Remediation approach

- Dredging
- Monitored natural recovery
- Capping and in-situ treatment

Model for Remedial Design

- In-situ remedial design model prediction
- 1-D multi-layered porous media model
 - Porewater/Solid matrix/Dissolved organic carbon (DOC)
 - Sorption/Diffusion/Dispersion/Advection/Reaction
 - Bioturbation/Consolidation/Deposition/Erosion/Hyporheic exchange

1-D Fate and Transport Model

Key transport process in diagenetic model

Numerical Solution

Finite difference method with nonlinear solver

- 1-D mass conservation at boundaries
- Implicit upwind scheme
- Global implicit calculation
- Newton's method

Optimization in CapSim 4

- Process all calculations in 1-D vector form
- Reshape 1-D vectors to 2-D matrices

Sum of 100×100 identity matrix

```
for i in range(100):

A[i,i] += B[i,i]  A = A + B

t_1 \longrightarrow t_2
```

[1	0	0	• • •	0]
0	1	0	•••	0
0	0	1	• • •	0
:	:	:	۰.	:
•	•	•	•	•
0	0	0		1

identity matrix

CapSim – Graphic User Interface

Kinetic option ksorp = 365 yr**

> Equilibrium Equilibrium

Equilibrium Equilibrium

Equilibrium

					CapSim 4/	0			
ase pro	wide the foll	lowing chemical prope	rties:						
		Chemical name	Formula	Molecular Weight	Phase	Diffusivity in water	OC partition coefficient	DOC partition coefficient	Reference
						cm²/s	log(L/kg)	log(L/kg)	
Edit	Delete	DDx		331	Solute	5.19e-6	5.71	5.13	CapSimAvg
Edit	Delete	Dieldrin		381	Solute	6.01e-6	6.67	5.11	ATSDR
Edit	Delete	HPAHs		245	Solute	6.54e-6	5.49	5.44	CapSimAvg
Edit	Delete	LPAHs		157	Solute	7.58e-6	3.56	3.15	CapSimAvg
Edit	Delete	PCBs		326	Solute	5.23e-6	5.44	4.02	CapSimAvg
Edit	Delete	TCDD		322	Solute	6.76e-6	6.81	5.71	MDEQ2015
					Add new chem	icals			
					Import from data	ibase			
					Import from fi	les			
					OK				

Chemical

rting v	vith the lay	er nearest the ove	rlying water, please pro	wide the following informat	ion for each lay	er:	
		Name	Material	Tortuosity Correction	Thickness	Hydrodynamic Dispersivity	Dissolved organic matter concentration
					cm	cm	mg/L
Edit	Delete	Deposition	Sediment	Boudreau	0.59/yr	1.0	43.0
Edit	Delete	Layer 1	Sand	Millington & Quirk	15.24	1.0	43.0
Edit	Delete	Layer 2	SED-10%GAC	Boudreau	15.24	1.5	43.0
Edit	Delete	Layer 3	SED 0.5-2.5	Boudreau	60.96	6.1	43.0
				Add layers			
				OK			

Layers

		Matrix	Porosity	Bulk density g/cmª	Particle size mm	Organic carbon fractio
Edit	Delete	Activated Carbon	0.6	0.4	0.5	1.0
Edit	Delete	Sand	0.5	1.25	0.2	0.001
Edit	Delete	Sediment	0.69	0.797	0.06	0.051
Edit	Delete	SED 0-0.5	0.59	1.128	0.06	0.0352
Edit	Delete	SED 0.5-2.5	0.59	1.128	0.06	0.0396
Edit	Delete	SED-10%GAC	0.592	0.9543	0.165	0.1317
			Load	materials		
			Load comm	nercial products		
			Add	materials		
			Creat	e mixtures		
				OK		

rease provide the intermation of the loso	wing system properties.	
Upwelling groundwater flow	Steady flow	-
Darcy velocity:	60.0	cm/yr
Modeling hypotheic exchange	None	
Modeling erosion	None	
Modeling bioturbation	Uniform	
Bioturbation depth:	15.0	cm
Particle biodiffusion coefficient:	10.0	cm²/yr
Pore water biodiffusion coefficient:	100.0	cm ² /yr
Modeling consolidation	Consolidation	
Maximum consolidation depth:	6.0	cm
Time to 90% consolidation:	0.3	ут
Modeling ionic activity	None	_
Biotic reaction model:	Threshold concentration	•
	or I	

Process

Solid matrix

Please edit the initial con	centration profiles:				
Chemical	Layer		Solid matrix	Porewater concentration µg/L	Solid concentration µg/kg
	Layer 1	Edit	Armer-SED	0	0
DDx	Layer 2	Edit	Sand-1%GAC	0	0

Sorption

CapSim 4.0

Kd = 3.55e+4 L/kg

Kd = 3.8e+5 L/kg

Kd = 1.1e+4 L/kg ОК

3.39e+6 L/kg

Sorption Isotherm

Edit Linear--Kd specified Kd = 1.02e+5 L/kg

DDx

CapSir	CapSim 4.0						
Please specify the simulation options for							
Simulation duration (yr):	250.0						
Steps in output files:	250						
Usage of CPU cores (Max 3):	1						
Time step options:	ime step options: Implicit						
Mass balance options:	balance options: Track						
Discretization options:	Specify manually	_					
Number of grid points:	60						
Time step (yr):	1.0						
Steps in deposition grid	1						
OK	:						

BC & IC

Solver

CapSim - Database

**						CapSim 4.0					×
Please pro	wide the fo	ollowing fu	ndamental properties for the	chemicals:							
			Chemical name	Formula	Туре	Temperature	Diffusivity in water	OC partition	DOC partition	Reference	
						°C	cm²/s	log(L/kg)	log(L/kg)		
Add	Edit	Delete	Acenaphthene	C12H10	Solute	20.0	7.69e-6	3.75	3.34	LookChem/TCEQ/F300	-
Add	Edit	Delete	Acenaphthylene	C ₁₂ H ₈	Solute	20.0	7.06e-6	3.54	3.09	LookChem/TCEQ/F300	
Add	Edit	Delete	Anthracene	C14H10	Solute	20.0	7.74e-6	3.93	3.56	LookChem/TCEQ/F300	
Add	Edit	Delete	Benzo(a)anthracene	C18H12	Solute	20.0	9e-6	5.09	4.95	LookChem/TCEQ	
Add	Edit	Delete	Benzo(a)pyrene	C20H12	Solute	20.0	9e-6	5.67	5.65	LookChem/TCEQ/F300	
Add	Edit	Delete	Benzo(b)fluoranthene	C20H12	Solute	20.0	5.56e-6	5.67	5.65	LookChem/TCEQ/F300	_
Add	Edit	Delete	Benzo(e)pyrene	C20H12	Solute	20.0	5.49e-6	6.25	6.35	LookChem/TCEQ	
Add	Edit	Delete	Benzo(g,h,i)perylene	C22H12	Solute	20.0	5.65e-6	6.25	6.35	LookChem/TCEQ/F300	
Add	Edit	Delete	Benzo(j)fluoranthene	CapHia	Solute	20.0	5.48e-6	5.67	5.65	LookChem/TCEQ	
Add	Edit	Delete	Benzo(k)fluoranthene	CapHia	Solute	20.0	5.56e-6	5.67	5.65	LookChem/TCEQ/F300	
Add	Edit	Delete	CO3	COa2-	Solute	0.0	1e-5	0.0	0.0		
Add	Edit	Delete	Ca	Ca2*	Solute	0.0	1e-5	0.0	0.0		
Add	Edit	Delete	Chrysene	C10H12	Solute	20.0	6.21e-6	5.09	4.95	LookChem/TCEQ	
Add	Edit	Delete	Dibenzo(a,e)pyrene	C2eH1e	Solute	20.0	5.06e-6	7.37	7.7	LookChem/TCEQ	
Add	Edit	Delete	Dibenzo(a,h)anthracene	C22H14	Solute	20.0	5.18e-6	6.25	6.35	LookChem/TCEQ/F300	
Add	Edit	Delete	Dibenzo(a,h)pyrene	CaeHie	Solute	20.0	5.07e-6	7.33	7.66	LookChem/TCEQ	
Add	Edit	Delete	Dibenzo(a,i)pyrene	C2eH1e	Solute	20.0	5.07e-6	7.33	7.66	LookChem/TCEQ	
Add	Edit	Delete	Fe(OH)	Fe(OH)*	Solute	0.0	1.15e-9	0.0	0.0		-
											-
					Ad	ld new chemicals					
					Im	port database file					
						Save					
						Cancel					

	CapSim 4.	.0 – 🗆	×
Please selec	t the chemical you would like	to add to the database	
Search:			
	Original Name	Imported Name	-
9	Acenaphthene	Acenaphthene	
1	Acenaphthylene	Acenaphthylene	
1	Anthracene	Anthracene	
1	Benzo(a)anthracene	Benzo(a)anthracene	
1	Benzo(a)pyrene	Benzo(a)pyrene	
1	Benzo(b)fluoranthene	Benzo(b)fluoranthene	
1	Benzo(e)pyrene	Benzo(e)pyrene	
v	Benzo(g,h,i)perylene	Benzo(g,h,i)perylene	
1	Benzo(j)fluoranthene	Benzo(j)fluoranthene	
1	Benzo(k)fluoranthene	Benzo(k)fluoranthene	
2	Chrysene	Chrysene	
₹	Dibenzo(a,e)pyrene	Dibenzo(a,e)pyrene	
1	Dibenzo(a,h)anthracene	Dibenzo(a,h)anthracene	
1	Dibenzo(a,h)pyrene	Dibenzo(a,h)pyrene	
1	Dibenzo(a,i)pyrene	Dibenzo(a,i)pyrene	
1	Fluoranthene	Fluoranthene	
1	Fluorene	Fluorene	
1	Indeno(1,2,3-c,d)pyrene	Indeno(1,2,3-c,d)pyrene	
1	Naphthalene	Naphthalene	
1	Phenanthrene	Phenanthrene	
1	Pyrene	Pyrene	-
	Select All		
	Unselect A		
	Import		
	Cancel		

PAHs

PCBs

Pesticides

Heavy metals

CapSim – Input/Batch Function

Summary of system

.txt batch file

Monte Carlo simulation

50

CapSim – Solver

Batch multi-core processing

CapSim – Output

- 🗆 🛛

Team 🛆 🕜 🗖 🗊 🖾

Spatial profiles

Temporal profiles

📲 Insert + 27 弟 Pelete * Sort & Find & Filter * Select 📳 Format * 📿 * Temperat Dw [cm^2 log(Koc[L/log(Kdoc[IReference 5.71 MDEQ2015 100% 😑

.csv output file

Example 1 - Chemical & Solid Matrix

Design a capping layer for contaminated sediment

Chemical properties

CAP CapSim 4.0	_		\times
Please provide the following chen	nical properties	:	
Nama	DDv		
Name.	DUX		
Formula:	DDx		
Molecular weight:	330.8	5	
Reference:	AvgCap	Sim	
Type:	Solute	_	
Diffusivity in water:	5.19e-6	cm²/s	
OC partition coefficient:	6.2	log(L/kg)	
DOC partition coefficient:	5.12	log(L/kg)	
	. 1		
Edit for	mula		
OK			
Canc	el		

Solid matrix properties **Bioturbation** Hyporheic exchange CAP CapSim 4.0 X Please provides the following information about the mixture: Name Properties Porosity Bulk density Particle size Permeability Organic carbon q/cm^s mm cm² fraction Sand-1%GAC 0.408 1.544 0.2116 1e-7 0.01099 Linear sums Component Weight fraction Delete Activated Carbon 0.01 0.6 0.4 0.5 1e-7 1.0 Sand 0.99 0.4 1.59 0.2 1e-7 0.001 Delete Load components Add components OK Groundwater Cancel upwelling

Example 1 – Sorption & Layer

Sorption – partitioning of chemicals in matrices

CapSim 4.0	0	-	×
Please provide the following sorption properties:			
Matrix:	ULSediment		
Chemical:	DDx		
Sorption isotherm:	LinearKocfoc	_	
Sorption kinetics:	Equilibrium		
Isotherm equation:	q = K _{oc} f _{oc} C		
Organic carbon partition coefficient K_{oc}	6.2	log(L/kg)	
Organic carbon fraction f_{oc} :	0.043		
ОК	1		
Cancel			

Layer properties - tortuosity/dispersivity/DOC

_		\times
n about the layer propert	ies:	
Layer 2		
Sand-1%GAC		
Millington & Quirk	_	
Activated Carbon loadi	ng 🔟	
Length	_	
25.9	cm	
1.0	cm	
46.0	mg/L	
Loading (g/cm²)		
0.4		
39.6		
or		
Jancei		
	n about the layer propert Layer 2 Sand-1%GAC Millington & Quirk Activated Carbon loadi Length 25.9 1.0 46.0 Loading (g/cm²) 0.4 39.6 OK Cancel	n about the layer properties: Layer 2 Sand-1%GAC Millington & Quirk Activated Carbon loading Length 25.9 cm 25.9 cm 1.0 cm 46.0 mg/L Loading (g/cm²) 0.4 39.6 OK Cancel

Example 1 – Solver Parameters

CAP Sim CapSim 4.0 X Multi-layered system Starting with the layer nearest the overlying water, please provide the following information for each layer: Name Material **Tortuosity Correction** Thickness Hydrodynamic Dissolved organic Dispersivity matter concentration cm mg/L cm Edit Delete Layer 1 Armor-SED Millington & Quirk 15.24 1.0 46.0 Delete Sand-1%GAC Millington & Quirk 7.62 1.0 46.0 Edit Layer 2 60.96 46.0 Delete Layer 3 ULSediment Boudreau 1.0 Edit Add layers OK

Discretization option

User-defin	ed		Total number of grids:	110
User-defin	ed 🔟		Time step size (yr):	0.1
Thickness cm	Number of grids	Grid size cm	Max Peclet number	CFL Time Step
15.24	20	0.762	0.72	0.576
7.62	10	0.762	0.72	35.721
60.96	80	0.762	0.71	1.64
	l	Jpdate	1	
			_	
	User-defin User-defin Thickness cm 15.24 7.62 60.96	User-defined User-defined Thickness Number of grids cm 15.24 20 7.62 10 60.96 80	User-defined User-defined Thickness Number of grids Grid size cm cm cm 15.24 20 0.762 7.62 10 0.762 60.96 80 0.762	User-defined Image: Second

e system:		
250.0		
250		
1		
Implicit		
Track	_	
pecify manually	_	
70		
0.1		
0.001		
	250.0 250 1 Implicit Track pecify manually 70 0.1	250.0 250 1 Implicit Track — pecify manually — 70 0.1 0.001

Example 1 – Auxiliary Conditions

Boundary conditions

Initial conditions

- Concentration/Flux/Mass transfer

CapSim ·	4.0				×
lease selec	t the benthic bound	ary condition typ	e:		
	Type:	Mass tr	ansfer	_	1
	Water DOC:	0.0	mg/L		_
Depositi	on settling velocity:	0.0	cm/yr		
	Chemical	Water	Mass	transfer	
		concentration µq/L	coe	mcient m/yr	
~	DDx	0.0	14	1600.0	
~	Dieldrin	0.0	17	400.0	
$\overline{\mathbf{v}}$	HPAH	0.0	12	2700.0	
	LPAH	N/A		N/A	
	PCB	N/A		N/A	
$\overline{\mathbf{v}}$	TCDD	0.0	18	3900.0	

Estimate coefficient
Select All
Unselect All
OK
Cancel

- Uniform/Depth-dependent

CapSim 4.0		—	×
Please input the initial informatio	n for the compound:		
Layer:	Layer 1		
Thickness(cm):	30.0		
Profile:	Linear		
Input option:	Equilibrium		

Initial concentrations of Benzo(a)pyrene in porewater (µg/L) and solid components (µg//kg)

Porewater Concentration Profiles

Porewater Concentration Profiles

Example 1 – Sediment Processes

CapSim 4.0		_	\times
Please provide the information of the fo	llowing system properties:		
Upwelling groundwater flo	ow Steady flow		
Darcy veloci	y 940	cm/yr	
Modeling hyporheic exchan	ge Depth-dependent		
Friction velocit	y: 0	m/s	
Modeling erosi	on Constant erosion rate		
Erosion rat	e: 0	cm/yr	
Modeling bioturbati	on Depth-dependent		
Particle size impa	:		
Gaussian model coefficient	nt: 0	cm	
Particle biodiffusion coefficient	nt: O	cm²/yr	
Pore water biodiffusion coefficient	nt: 0	cm²/yr	
Modeling consolidati	on Consolidation	-	
Maximum consolidation dep	h: 0	cm	
Time to 90% consolidation	n: 0	yr	
Modeling ionic activ	ty None	_	
Biotic reaction mod	el: Threshold concentration	_	
	ОК		

Groundwater upwelling

Darcy's Law

CAF	G				\sim
SIN	CapSim 4.0				~
С	alculate the Darcy velocity:				
	Darcy's law:	U = -κ Δh	g/v/(Z ₂	- Z1)	
	Darcy's velocity (U):	0.0	cm/yr		
	Kinomatic viscosity (u):	10.6	m2/c		
	Killelilatic viscosity (v).	16-0	111/3		
	Depth 1 (z ₁):	0.0	cm		
	Depth 2 (z ₂):	100.0	cm		
	Water head drop (Δ h):	0.0	cm		
	Layer	Permeability (к) Th	ickness	
		cm²		cm	
	Layer 1	1e-7		30.0	
	Layer 2	1e-7		15.0	
	Layer 3	1e-7		55.0	
	Ca	Iculate velocity	1		
		ок			
		Cancel			

Example 1 – Baseline Results

3-layer system – DDx contaminated sediment remediated by 1% GAC

Hyporheic Exchange

I-D Hyporheic exchange

 $F_{hyp,n} = -D_{hyp} \frac{\partial (C_n + \rho_{DOC,i}q_{DOC,n})}{\partial z}$

$$D_{hyp} = 1.19 * 10^{-6} d_g^{2.22} u_*^{3.11} e^{-55y}$$

y: Depth [m] d_g : Particle size [m]

u_{*}: Friction velocity [m/s]

(Liu, 2019)

Mixing particles and porewater

$$F_{bio,n} = -D_{bio,p} \sum_{m} \rho_{b,m} \frac{\partial \phi_m q_{m,n}}{\partial z} - D_{bio,pw} \frac{\partial (C_n + \rho_{DOC,i} q_{DOC,n})}{\partial z}$$

Factors on biodiffusion coefficient

– Depth from benthic surface (z)

$$D_{bio,p} = D_{bio,p,0} * exp\left(-\frac{z^2}{2\sigma^2}\right)$$

– Particle size (r_p)

$$D_{bio,p,0} = 1 \ cm^2/yr$$
 $\sigma = 10 \ cm$

AC fraction Profil

0.0 yr

200.0 yr 500.0 yr

0.01 0.02 0.03

Volumetric fraction

0

10 20

30

60

70

80

0.00

Depth (cm) 05 05 5

Bioturbation

Deposition and Erosion

I-D mass conservation at benthic boundary

0.04 cm/yr erosion

ULSediment

Commercial Sorbents

	r/
Ч	F ¹
Ľ	5

Matrix	Porosity	Bulk density	Particle size	Permeability	Organic carbon	
		g/cm³	mm	cm²	fraction	
Aquagate®	0.526	1.031	0.2773	1e-7	0.1009	
RCM®-AC	0.538	0.7692	12.5	2.241e-7	0.2	
RCM®-OC	0.5	1.0	13.82	2.639e-7	0.062	
Sedimite®	0.576	0.6061	0.4273	1e-7	0.5005	
Tektoseal®-AC	0.549	0.7042	10.39	1.839e-7	0.28	
Tektoseal®-OC	0.5	1.0	12.22	2.217e-7	0.078	
Tektoseal®-Mat	0.5	1.0	18.01	5.263e-7	0.001	

Tektoseal[®] Active Mattress

Mat-like sorbents are not impacted by bioturbation and erosion

Example 2 – Naphthalene NAPL

Non-aqueous phase liquid (NAPL)

- Immobile stock of organic contaminants
- Modeled using precipitation/dissolution
- Keep pw concentration at solubility until the depletion of NAPL

CapSir	m 4.0								- 🗆 ×					
Please pr	ovide the fol	llowing chemical prop	perties:											
		Chemical name	Formula	Molecular Weight	r Phase	Diffusivity in water	OC partition coefficient	DOC partition coefficient	Reference					
						cm²/s	log(L/kg)	log(L/kg)						
Edit	Delete	Naphthalene	Nap	128	Solute	7.5e-6	2.79	2.18	LookChem/TCEQ/F300					
Edit	Delete	Nap_NAPL	Nap_NAPL	128	Solid	Not applicable	Not applicable	Not applicable						
					Add new chemi	cals								
				_	Import from data	base								
					Import from fil	es								
				Ī	OK						Loa	molar S	olubilit	V
											3			J
CAP SIM Ca	pSim 4.0									CapSim 4.0				- 🗆
Please	input the	kinetic processe	s in the system:							Please input the models	and coefficient	s of each chemical	in the reaction	
		Number	Name		Туре	Chemica	l equation	Rate e	quation		Rate equation:	$r = \lambda(C_{Nap}/K-1)$		
E	dit D	elete 1	Nap_precipitat	tion	Precipitation	Nap ==>	Nap_NAPL	$r_1 = \lambda_1 (C_{Nap}/K)$	1)		Log K:	-0.993		
E	dit D	elete 2	NAPL_dissolut	tion	Dissolution	Nap_NAP	L ==> Nap	$r_2 = \lambda_2 C_{Nap_NAP}$	L(1-C _{Nap} /K)	Chemical	Formula	Model	Rate index	Equi index
										Naphthalene	Nap	Power -	0.0	1.0
										Nap NAPL	Nap NAPL	Excluded -	-	
					Add reactions						-			
					OK							OK	1	
					100 March 100 Ma									

Example 2 – Naphthalene NAPL

Layer			Reaction	Chemical equation	Rate equation	Coefficient
Layer 1	Edit Edit	Delete Delete	Nap_precipitation	$C_{10}H_8 \implies$ Chem 1 Chem 1 ==> $C_{10}H_8$	$\label{eq:r_1,1} \begin{split} r_{1,1} &= \lambda_{1,1} \\ r_{2,1} &= \lambda_{2,1} C_{\text{Chern 1}} \end{split}$	$\lambda_{1,1} = 1e+4 \text{ (mmol/L)yr}^{-1}$ $\lambda_{2,1} = 1e+4 \text{ yr}^{-1}$

Local equilibrium by fast precipitation/dissolution

Solubility of Naphthalene: 13 mg/L

Example 3 – Hg Methylation

- Methylmercury (MeHg)
 - Toxic species of Hg
 - Byproduct of sulfate reduction/iron reduction
 - Primarily produced in anaerobic zones

Redox Profile in Sediment

Sediment profile imaging (SPI)

Conceptual model

Biogeochemical Reaction Network

Secondary and Equilibrium Reactions

$$\frac{\partial q_{n,i}}{\partial t} = -\frac{\partial F_{n,i}}{\partial z} + \sum_{l} a_{l,n} r x n_{l,i}$$

Reactions $\sum_{l} \alpha_{l,n} r x n_{l,i}$

Secondary redox reactions

Kinetic model

- Equilibrium reactions
- Water chemistry/Complexation
- Precipitation/Dissolution

Precipitation/Dissolution	Reaction rate
$FeS + H^+ \rightarrow Fe^{2+} + HS^-$	$r = k_{\text{FeSd}} C_{\text{FeS}} (1 - (C_{\text{Fe}^{2+}} C_{\text{H}^+}) / (K_{\text{FeS}} C_{\text{FeS}}))$
$Fe^{2+} + HS^{-} \rightarrow FeS + H^{+}$	$r = k_{FeSp} \left((C_{Fe^{2+}}C_{H^+}) / (K_{FeS}C_{FeS}) - 1 \right)$

i : Layer number
n: Chemical number
m: Solid matrix number
l : Reaction number

Second redox reaction	Reaction rate
$\mathrm{Mn^{2+}} + 0.5\mathrm{O_2} + \mathrm{H_2O} \rightarrow \mathrm{MnO_2(s)} + 2\mathrm{H^+}$	$r = \mathbf{k}_{MnO} \mathbf{C}_{\mathbf{Mn}^{2+}} \mathbf{C}_{\mathbf{O}_2}$
$Fe^{2+} + 0.25O_2 + 2.5H_2O \rightarrow Fe(OH)_3 (s) + 2H^+$	$r = \mathbf{k}_{FeO} \mathbf{C}_{\mathrm{Fe}^{2+}} \mathbf{C}_{\mathrm{O}_{2}}$
$\mathrm{HS}^{-} + \mathrm{2O}_2 \longrightarrow \mathrm{H}^{+} + \mathrm{SO_4}^{2-}$	$r = k_{SO}C_{HS}-C_{O_2}$
$MnO_2 + 2Fe^{2+} \rightarrow Mn^{2+} + 2Fe(OH)_3 (s) + 2H^+$	$r = k_{\rm SO} C_{\rm HS} - C_{\rm O_2}$

Complexation reaction	$\text{Log } \text{K}_{\text{L}}$
${Fe^{2+}} + {OH^{-}} = {Fe(OH)^{+}}$	4.5
${Fe2+} + 2{OH-} = {Fe(OH)2}$	7.4
${Fe 2+} + 3{OH-} = {Fe(OH)3-}$	11.0
${Fe 2+} + {SO42-} = {Fe(SO4)}$	2.2

Biotic Reactions

Biotic reaction model

– Threshold concentration $(T_{EA,l})$

$$if C_{EA,l-1} > T_{EA,l-1}: R_l = 0$$

if
$$C_{EA,l-1} \leq T_{EA,l-1}$$
: $R_l = \lambda_l \frac{C_{OM}}{C_{OM} + K_{OM}} \frac{C_{EA,l}}{C_{EA,l} + K_{EA,l}}$

- Inhibition constant

$$R_{L} = \lambda_{L} C_{OM} \frac{C_{EA,L}}{C_{EA,L} + K_{EA,L}} \prod_{l=1}^{L-1} \frac{K_{in,l}}{C_{in,l} + K_{in,l}} \qquad r_{IR} = \lambda_{OM} C_{OM} \frac{C_{Fe(OH)_{3}}}{K_{m,S} + C_{Fe(OH)_{3}}} \frac{K_{in,O_{2}}}{K_{in,O_{2}} + C_{O_{2}}} \frac{K_{in,NO_{3}}}{K_{in,NO_{3}} + C_{NO_{3}}}$$

Biotic Reactions

Reaction editor

CapSim 4.0 CapSim 4.0 X X Please input the following information for the added kinetic process: Please input the following information Mn(IV) reduction Rate equation: $r = \lambda C_{OC} C_{MnO_2} / (K_{MnO_2} + C_{MnO_2}) \Pi(f_{in})$ Name: Kinetic model: Biotic Electron donor: OC MnO2 Electron acceptor: _ Reactants Products K_{in,Mn(OH)₂} Favorable after: 02 Stoichiometric Stoichiometric Chemical Formula Chemical Formula coefficient coefficient Inhibition constant K: 1e-8 mol/L Delete 1.0 OC Delete 1.0 HCO3-HCO3 OC 11 Rate equation: $r = \lambda C_{OC}C_{MnO_2}/(K_{MnO_2}+C_{MnO_2})f_{O_2}$ Mn2+ Delete 1.0 MnO2 Delete 2.0 Mn MnO₂ 3.0 Delete OH-OH-Chemical Formula Model Coefficient Unit OC OC Power 1.0 Add reactant Add product MnO2 MnO₂ Monod 0.016 mol/L OK K_{Mn(OH)₂} Cancel OK

 $CH_2O + 2MnO_2(s) + H_2O \rightarrow 2Mn^{2+} + HCO_3^- + 3OH^-$

$$r = \lambda_{OM} C_{OM} \frac{C_{Mn(OH)_2}}{K_{Mn(OH)_2} + C_{Mn(OH)_2}} \frac{K_{in,O_2}}{K_{in,O_2} + C_{O_2}}$$

Biotic model

Example 3 – Hg Methylation

$$\mathbf{r} = (\mathbf{k}_{SR,meth}\mathbf{r}_{SR} + \mathbf{k}_{IR,meth}\mathbf{r}_{IR})\mathbf{C}_{THg}$$

 $r_{IR} = k_{OM} C_{CH_2O} \frac{C_{Fe(OH)_3}}{K_{m,Fe} + C_{Fe(OH)_3}} \frac{K_{in,O_2}}{K_{in,O_2} + C_{O_2}} \frac{K_{in,Mn}}{K_{in,Mn} + C_{MnO_2}}$

 $r_{SR} = k_{OM}C_{CH_2O} \frac{C_{SO_4}}{K_{m,S} + C_{SO_4}} \frac{K_{in,O_2}}{K_{in,O_2} + C_{O_2}} \frac{K_{in,Mn}}{K_{in,Mn} + C_{MnO_2}} \frac{K_{in,Fe}}{K_{in,Fe} + C_{Fe(OH)_3}}$

Number	Name	Туре	Chemical equation	Rate equation
1	Aerobic respiration	Biotic	$O_2 + OC \implies H^* + HCO_3^-$	$r_1 = \lambda_1 C_{O_2} / (K_{O_2} + C_{O_2}) C_{OC} \Pi(f_{in})$
2	Mn(IV) reduction	Biotic	OC + MnO ₂ ==> HCO ₃ ⁻ + 2Mn ²⁺ + 3OH ⁻	$r_2 = \lambda_2 C_{OC} C_{MnO_2} / (K_{MnO_2} + C_{MnO_2}) \Pi(f_{in})$
3	IR_methylation	Biotic	$OFe(OH)_3 + OOC + IR + Hg^{2+} \implies HgCH_3$	$r_3 = \lambda_3 C_{Fe(OH)_5} / (K_{Fe(OH)_5} + C_{Fe(OH)_5}) C_{OC} C_{Hg^{2*}} \Pi(f_{in}$
4	Fe(III) reduction	Biotic	$OC + 4Fe(OH)_3 \implies 4Fe^{2+} + HCO_3^- + 7OH^-$	$r_4 = \lambda_4 C_{\text{OC}} C_{\text{Fe}(\text{OH})_5} / (K_{\text{Fe}(\text{OH})_5} + C_{\text{Fe}(\text{OH})_5}) \Pi(f_{\text{in}})$
5	SR_methylation	Biotic	$0SO_4^{2-} + 0OC + SR + Hg^{2+} \implies HgCH_3$	$r_5 = \lambda_5 C_{SO_4^{2+}} / (K_{SO_4^{2+}} + C_{SO_4^{2+}}) C_{OC} C_{Hg^{2+}} \Pi(f_{in})$
6	S reduction	Biotic	OC + 0.5SO4 ²⁻ ==> 0.5H ⁺ + HCO ₃ ⁻ + 0.5HS ⁻	$r_{6} = \lambda_{6}C_{OC}C_{SO_{4}^{2-}}/(K_{SO_{4}^{2-}}+C_{SO_{4}^{2-}})\Pi(f_{in})$
7	Mn oxidation	User-defined	Mn ²⁺ + 0.5O ₂ ==> 2H ⁺ + MnO ₂	$r_7 = \lambda_7 C_{Mn^{24}} C_{O_2}$
8	Fe oxidation	User-defined	$Fe^{2+} + 0.25O_2 \implies 2H^+ + Fe(OH)_3$	$r_8 = \lambda_8 C_{Fe^{2*}} C_{O_2}$
9	HS oxidation	User-defined	HS ⁻ + 2O ₂ ==> H ⁺ + SO ₄ ²⁻	$r_9 = \lambda_9 C_{HS} - C_{O_2}$
10	S_Fe(III)_oxidation	User-defined	HS ⁻ + 2Fe(OH) ₃ ==> 2Fe ²⁺ + SO ₄ ²⁻ + 5OH ⁻	$r_{10} = \lambda_{10}C_{HS} \cdot C_{Fe(OH)_S}$
11	FeS precipitation	Precipitation	$Fe^{2+} + HS^- \implies H^+ + FeS$	$r_{11} = \lambda_{11}(C_{Fe^{2*}}C_{HS^{-}}/C_{H^{*}}^2/K^{-1})$
12	FeS dissolution	Dissolution	$H^+ + FeS \implies Fe^{2+} + HS^-$	$r_{12} = \lambda_{12}C_{FeS}(1-C_{Fe^{2*}}C_{HS^{-}}/{C_{H^{*}}}^2/K)$
13	Fe_Mn_oxidation	User-defined	$2Fe^{2*} + MnO_2 \implies Mn^{2*} + 2Fe(OH)_3 + 2H^*$	$r_{13} = \lambda_{13}C_{Fe^{2*}}C_{MnO_2}$
14	Demethylation	Fundamental	HgCH ₃ ==> Hg ²⁺	$r_{14} = \lambda_{14}C_{\text{HgCH}_{5}}$

BCs

 $O_2 = 0.025 \text{mM}$ $SO_4 = 0.028 \text{M}$

Deposition $CH_2O = 0.04M$ $MnO_2 = 0.01mM$ $Fe(OH)_3 = 0.1M$

Initial sediment

 $CH_2O = 0.04M$ $MnO_2 = 0.01M$ $Fe(OH)_3 = 0.1M$

Example 3 – CapSim Results

Original benthic surface

Updated benthic surface

Example 3 – Hg Baseline

 $k_{SR,meth} \sim k_{IR,meth}$

Example 3 – Trenching Remediation

Summary

CapSim 4

- -Biogeochemical model for redox-sensitive contaminants
- -Linked equilibrium and kinetic reactions
- -Erosion and deposition
- -Hyporheic exchange and bioturbation
- -Commercial sorbents and materials
- -Arbitrary initial profile specification in solids or porewater
- -Improved simulation speed

Reference

Chandler, I., Guymer, I., Pearson, J., & Van Egmond, R. (2016). Vertical variation of mixing within porous sediment beds below turbulent flows. *Water resources research*, *52*(5), 3493-3509.

Couture, R.-M., Shafei, B., Van Cappellen, P., Tessier, A., & Gobeil, C. (2010). Non-steady state modeling of arsenic diagenesis in lake sediments. *Environmental science & technology, 44*(1), 197-203.

Gelhar, L. W., Welty, C., & Rehfeldt, K. R. (1992). A critical review of data on field-scale dispersion in aquifers. *Water resources research, 28*(7), 1955-1974.

Lin, D., Cho, Y.-M., Werner, D., & Luthy, R. G. (2014). Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon. *Environmental science* & *technology, 48*(2), 1175-1183.

Liu, Y., Reible, D., Hussain, F., & Fang, H. (2019). Role of Bioroughness, Bioirrigation, and Turbulence on Oxygen Dynamics at the Sediment-Water Interface. *Water Resources Research*, *55*(10), 8061-8075.

Mohan, R., Doody, J. P., Patmont, C., Gardner, R., & Shellenberger, A. (2016). Review of environmental dredging in North America: current practice and lessons learned. *Journal of Dredging*, *15*(2), 29.

Perelo, L. W. (2010). Review: in situ and bioremediation of organic pollutants in aquatic sediments. *Journal of Hazardous materials*, *177*(1), 81-89.

Wheatcroft, R. A. (1992). Experimental tests for particle size-dependent bioturbation in the deep ocean. *Limnology and Oceanography*, *37*(1), 90-104.

Thank you !