CURRENT APPROACHES TO SEDIMENT ASSESSMENT AND REMEDIATION

Danny Reible, University of Texas
Research supported by
EPA, DOD-ESTCP/SERDP, NIH & Industrial Sources

Danny Reible - Bio

- PhD Chemical Engineering Caltech
 - Long range transport of atmospheric pollutants

Sediment Processes

Should We Estimate Exposure-Risk from Whole Sediment Concentration?

Or Based on Porewater Concentration?

Bioconcentration Factor Applicable to Deposit Feeders In-Situ?

SPME and Body Burden San Diego Bay

PAHs – B(b)F, B(k)F, BaP in *Muscalista*

Single correlation with porewater concentrations works well for all three compounds

Implications & Measuring Porewater

- Bulk sediment concentration is less useful as indicator of exposure-risk
- Porewater concentration is better indicator (even for active benthic uptake by ingestion)
- Growing ability to measure porewater with solid phase micro extraction (SPME) and other passive approaches

How to Measure Porewater?

- Extraction/centrifugation stability? accuracy?
- Direct in-situ measurement (PE, POM, SPME)
- Solid phase microextraction (SPME)
 - Sorbent polymer PDMS (poly-dimethylsiloxane)
 - 30 μm fiber on 110 μm core (13.6 μL PDMS/m of fiber)
 - 10 μm on 230 μm core (7 μL /m)
 - 30 µm on 1 mm core (94 µL /m)
- ng/L detection with 1 cm resolution
- Profiling field deployable system
- May require 7-30 days to equilibrate

Comparison of Porewater Concentrations – Hunter's Point

PCB Congener	SPME (UT) pg/L	POM (EERC) pg/L	PE** (MIT) pg/L	Air Bridge (MIT) pg/L	Extracted Porewater Raw pg/L	Extracted Porewater TOC corr. pg/L***	Predicted Porewater Kd=Kocfoc pg/L
101	902	<915	230	602	5260	2400	6480
87	125	124	NR	NR	NR	NR	788
110	320	492	410	433	2850	1800	2340
95	880*	1460	330	667	3300	1900	8400
151	303	101	130	365	4820	670	568o
153	347	416	NR	NR	NR	NR	5440
141	134	133	NR	NR	NR	NR	1670
138	352	<2090	79	626	16300	5200	4910
149	750*	650	130	1180	15600	6200	9470
132	350*	408	720	866	20000	6100	12100

Why Field Deployable SPME?

- Avoids concerns about contaminant dynamics associated with porewater extraction
- Provides in-situ profile with up to 1 cm vertical resolution depending on detection limits
 - Profiles provide rate/mechanism information
- Disadvantages
 - Deployment time
 - Analytical requirements
 - Complexity
 - Volatile Losses

Managing Risks What are the Options?

- Monitored Natural Recovery
 - Part of all remedies
 - May be an integral part of active remediation
- Dredging
 - Need to recognize impacts and limitations
 - Triggers a variety of onshore activities
- Capping
 - Clean sediment/sand layer over contaminated sediment
 - Can be rapidly implemented with minimal impact
 - Need to assess long-term protectiveness

Sediment In-situ Capping

- Reduce risk by:
 - Stabilizing sediments
 - Physically isolating sediment contaminants
 - Reducing contaminant flux to benthos and water column
- Sand surprisingly effective for strongly solid associated contaminants
- "Active caps" for other situations

Metals and Capping

- Metals often effectively contained by a conventional cap
- AVS vs. SEM- Capping will enhance reducing conditions

Metals will not be toxic

$$M^{2+} + FeS_{(s)} \rightarrow MS_{(s)} + Fe^{2+}$$

Divalent metals may be toxic

14

Conceptual Model

Organics and Capping

- Mobility and toxicity generally not redox sensitive
- Degradation is redox sensitive
 - Hydrocarbon degradation facilitated aerobically
 - Chlorinated organics reductively dechlorinate but many sediment contaminants refractory
- Dynamics controlled by sorption in cap and groundwater upwelling
 - Substantial groundwater upwelling of organics or potentially mobile NAPL most common reasons to consider active caps

Goals of Active Capping

- Permeability Control
 - Discourage upwelling through contaminated sediment by diverting groundwater flow
- Contaminant Migration Control
 - Slow contaminant migration, typically through sorption related retardation
- Contaminant Degradation Aid
 - Less well developed, contaminant specific but designed to encourage contaminant fate processes

Organic Retardation

- NAPL present Organoclays
 - Capacity of O(1 g NAPL/g organoclay)
 - Placement within a laminated mat for residual NAPL or to allow replacement if capacity exceeded
 - Placement in bulk for significant NAPL volumes
 - Multiple organoclay layers or organoclay/activated carbon layer for both NAPL and dissolved contaminant control
- Dissolved contaminants only Activated carbon
 - Placement in mat may be necessary to allow easy placement
 - Placement as amendment also possible
 - Activated carbon more subject to fouling than organoclay

Sorbents for Sequestration and Bioavailability Reduction

- Expect bioavailability reduction proportional to porewater concentration (inversely proportional to partition coefficient, K_d)
- Equivalent sand cap thickness diffusion/dispersion dominated (u<<1 cm/day)

Conclusions for Sediment Management

- It's about risk, not whether a contaminant is present
- Benthic community is critical indicator of risk and transport
- Porewater may be better indicator than bulk sediment
- There are risks associated with both action and inaction
- As with other media, containment can be effective
 - Inorganic contaminants often "self-contained"
 - Organic contaminant containment can be enhanced with sorbents
 - Organoclay NAPL, fouling environments
 - Activated Carbon Dissolved organic contaminants