Quantitative Analysis of N-Glycans in Human Blood Serum Derived from Patients with Moderate to Severe Traumatic Brain Injury using LC-MS/MS

Kaitlyn Donohoo1, Mona Goli1, Byeong Gwan Cho1, Alireza Banazadeh1, Firas Kobaissy2, Ryan Morgan1, Jingfu Zhao1, Endre Czeiter3,4,8, Kristzina Amrein3,4,5, András Bukí3,4,8, Sakshi Gautam1, Wenjing Peng1, Mondello Stefania6,7,1, Yehia Mechref1**

1Chemistry and Biochemistry Department, Texas Tech University, Lubbock, Texas; 2Department of Psychiatry and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL; 3Department of Neurosurgery, University of Pecs, Pecs, Hungary; 4János Szentágothai Research Centre, University of Pécs; 5MTA-PTE Clinical Neuroscience MR Research Group; 6Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy; 7Casi Research Institute-IRCCS, Troina, Italy.

Introduction

Traumatic Brain Injury (TBI) is a major and increasing global health challenge. It is estimated that approximately one third of injury related deaths are caused by TBI. The molecular mechanisms underlying TBI pathophysiology are both complex and varied and may include aberrant glycosylation of proteins. We hypothesized that alterations of N-glycan expressions could represent important contributors to the overall pathophysiology of the disease, and be potential biomarker candidates to assess the injury severity as well as novel therapeutic targets. With these aims in mind, and to acquire a better understanding of their pathogenetic role, we investigated the expression of N-glycans in human blood serum from patients with moderate to severe TBI.

Patients Clinical Information

Fifty patients with moderate to severe TBI (admission Glasgow Coma Score [GCS] 3-12) were included. Blood samples taken at the time of hospital admission and daily up to 10 days after injury and analyzed. Briefly, 10 μl of human blood serum was diluted with 90 μl of 50 mM ammonium bicarbonate buffer. After denaturation at 80 °C for 30 minutes, 1 μl of PNGase F (500 units/μl) enzyme was added to the sample and incubated at 37 °C for 18 hours. Proteins were then precipitated by adding 90% ethanol. The released glycans were dried and reduced by adding 10 μl of borane-ammonia complex, followed by solid-phase permethylation. Permethylated N-Glycans were analyzed using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS).

Method

Longitudinal Study of Glycan Expression Changes in TBI Patients

Significant Glycan Structures Among TBI Samples

Distribution of Different Glycan Types Among TBI Samples

Conclusion & Future Work

According to the initial results, glycan expression in TBI patients showed significant changes over the days past the initial injury, suggesting that TBI leads to changes in glycan expression.

A total of 55% out of all N-glycan structures were found to have significantly different expressions across multiple days. The majority of them demonstrated this differential expression between the early and late stages of TBI.

Interestingly, more than half of the significant structures were found to be sialylated and/or fucosylated. Although the result is not conclusive yet, it is reasonable to postulate that these significant differences in glycan expressions might help to better comprehend the prognosis of TBI.

Further investigation into the relationship between TBI pathophysiology and glycan expression should be conducted to determine the impact that glycan expression has on TBI and TBI patient recovery.

Acknowledgment

This work is supported by grants from National Institutes of Health (NIH) (1R01GM112490-06 & 1R01GM130991-02).