Kinetic Study for Comprehensive Understanding of Solid-State Polymorphic Transitions of Nicotinamide/Pimelic Acid Cocrystals

Yong Joon Lee,†‡ Olga Pahom,† and Brandon L. Weeks*†

†Department of Chemical Engineering and ‡Department of Classical and Modern Languages and Literatures, Texas Tech University, Lubbock, Texas 79409, United States

Supporting Information

ABSTRACT: Solid-state polymorphic transition (SSPT) has been regarded as an interesting research subject for a long time, but kinetics and the mechanism of these phase transitions are still not fully understood. Particularly, kinetic studies on the SSPT process of cocrystals are not widely reported even though extensive novel cocrystal polymorphs have been discovered over the recent decades. Herein we presented a comprehensive kinetic study of the enantiotropic polymorphic system of 1:1 nicotinamide (NA)—pimelic acid (PA) cocrystals with the combination of various analytical methods. Bulk kinetic studies conducted with powder X-ray diffraction and differential scanning calorimetry indicated that both directions of SSPT (form 1 ↔ form 2) occur by a nucleation and growth mechanism. In addition, large activation energy barriers of form 1 ↔ form 2 with a wide range (337.1–514.2 kJ mol⁻¹) and variations in the onset transition temperature were observed, depending on the crystal conditions. In situ atomic force microscopy analysis was also carried out to monitor the surface morphology change at the nanoscale to supplement the bulk kinetics.

1. INTRODUCTION

Crystal engineering and supramolecular chemistry involve the design of appropriate molecular solid forms to obtain desired properties.¹⁻⁰ In the pharmaceutical industry, various crystal solid-state forms such as polymorphs, salts, cocrystals, hydrates, and solvates have been studied for the enhancement of biocompatibility, solubility, dissolution rate, and mechanical properties of active pharmaceutical ingredients.¹³⁻¹⁶ A key characteristic of crystalline materials that is relevant to these research areas is polymorphism. Polymorphism is defined as phenomena observed in compounds that have more than one crystal structure arising from a different arrangement of molecules in the crystal structure.¹ It is estimated that more than half of pharmaceuticals have at least two polymorphic forms which may have different biological effects.¹¹⁻¹⁵

Polymorphic systems are governed by both thermodynamics and kinetics. The system ultimately moves to the most thermodynamically stable state under given conditions (temperature and pressure), while the rate and the pathway to the final state of the polymorph are determined by kinetics. In order to selectively produce polymorphic forms of materials with desired properties and to avoid product failure caused by unexpected solid-state polymorphic transitions (SSPT), researchers have sought to develop effective polymorph screening methods and to investigate the thermodynamic stability of these polymorphs.¹³⁻¹⁰ In terms of the kinetics, only limited studies have been reported.²¹⁻³¹ This might be due to the long time scales required for SSPT experiments, derived from relatively high energy barriers. The factors that determine the kinetics are still not fully understood, and there is ongoing debate centered on two proposed kinetic mechanisms,³²⁻³⁴ “nucleation and growth theory”²¹,²²,³⁵ and “displacive or cooperative motion.”³⁶⁻³⁷

It was once misunderstood that cocrystallization can be used to prevent the undesired polymorphic form.³⁸ In recent years, however, numerous cocrystal polymorphs have been reported as the demands to enhance drug performance and protect intellectual property have increased.³⁹⁻⁴³ According to surveys conducted by Aitipamula and co-workers, the percentage of cocrystals which have polymorphs is almost the same as that of single component crystals.³⁸ Most studies have focused on identifying their new polymorphs and revealing their crystal structure changes upon polymorphic transition. However, a comprehensive understanding of kinetics of polymorphic transition is essential not only for fundamental reasons but also for the successful application of novel pharmaceutical cocrystals.

In this work, 1:1 nicotinamide (NA)/pimelic acid (PA) cocrystal was used as a model system to reveal the SSPT mechanism and to determine whether traditional kinetic models can be applied to cocrystals during solid–solid phase transitions. NA and PA are widely used as cocrystal formers for cocrystallization of active pharmaceutical ingredients.²⁴ It has been reported that the 1:1 NA/PA cocrystal has two enantiotropically related polymorphic forms.²⁴ Form 1, triclinic, is thermodynamically stable at room temperature.²⁴ Form 2, orthorhombic, is stable above ∼94.9°C.²⁴ In crystallography, polymorphs of NA/PA cocrystal can be

Received: October 2, 2018
Revised: December 21, 2018
Published: January 9, 2019
classified as conformational polymorphs where the crystal structure of the two forms is different with respect to molecular conformation of both NA and PA molecules in the crystal lattice. One of the reasons we used NA/PA cocrystal as a model system is precisely because most known cocrystal polymorphs are categorized as conformational polymorphs.38 Another reason for choosing the NA/PA cocrystal in this study is that the time scale of the SSPT process of a NA/PA cocrystal is appropriate for experimental kinetic studies.

The combination of three analytical techniques were used in this work: powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and atomic force microscopy (AFM). PXRD and DSC have been used as conventional tools for bulk kinetics of phase transitions. PXRD was used for investigating the SSPT mechanism of NA–PA cocrystals by fitting the experimental data to several kinetic models which have been previously appreciated in the solid-state reaction kinetics study.43 Thermal analysis using DSC was used to obtain kinetic parameters and insight into the dependence of the crystal sizes and crystal forms (powders and polycrystalline) on the kinetics and energy barrier of transitions.

In phase transition studies, AFM is very useful because it can trace the morphology change in real time at the nanometer scale without additional sample preparation which can induce unwanted changes. There have been several reports that used AFM to attain some kinetic parameters and to study the phase transition mechanism.46–53 These studies were mostly related to solid-state surface reactions which are governed by the interaction of the solid surface with its environment, such as the hydration, solvation, dehydroxylation, and desolvation process. We employed an in situ AFM technique to supplement the bulk kinetic analysis with PXRD and DSC and to observe the surface morphology change during the solid-state polymorphic transitions.

2. EXPERIMENTAL SECTION

2.1. Materials. A 1:1 stoichiometric ratio of form 1 of NA/PA cocrystal was prepared by dissolving 200 mg (1.64 mmol) of NA (Alfa Aesar) and 262.4 mg (1.64 mmol) of PA (Alfa Aesar) in a 1 mL of methanol without further purification.44 A 1:1 stoichiometric ratio of form 2 of NA/PA cocrystal was prepared by dissolving a 200 mg (1.64 mmol) of NA (Alfa Aesar) and 262.4 mg (1.64 mmol) of PA (Alfa Aesar) in a 1 mL of methanol without further purification.45

In DSC experiments, a TA Instruments model Q20 was used. A total of 3–5 mg of each polycrystalline samples was heated in a crimped aluminum pan in the range of 2–115 °C at a constant heating rate of 1 K min⁻¹ under a nitrogen environment (50 mL min⁻¹). Before running, indium standards were used for calibration purposes. For the data analysis, TA universal analysis 2000 software was used. The DSC curves of the two forms correspond to those reported in the previous literature44 (see Supporting Information, Figure S2). In the DSC curve for form 1, a small endotherm peak for form 1 → form 2 transition was observed at 94.6 ± 0.2 °C, followed by the appearance of an endotherm peak of fusion at 109.8 ± 0.1 °C. The calculated enthalpy change of polymorphic transition was 9.1 ± 0.3 kJ mol⁻¹. In the DSC curve for form 2, only an endotherm peak of fusion appeared at 109.8 ± 0.1 °C.

2.2. Powder X-ray Diffraction (PXRD). Kinetic transition experiments for form 1 → form 2 at 94 ± 1 °C were investigated with PXRD analysis. Form 1 powders (≤100 μm) were mounted on a sample holder and kept in a conversion oven at a temperature of 94 ± 1 °C. Samples were taken out from the oven every 30 min and scanned by PXRD. Because the transition rate of the reverse transition (form 2 → form 1) is very slow, the impact of the reverse transition during scanning was assumed to be negligible. PXRD experiments for SSPT of form 2 → form 1 at room temperature (20 °C) and 40 °C were also conducted in the same conditions at prearranged time intervals. Powders of form 2 (≤100 μm) were prepared by heating form 1 in the oven at 96 °C for 16 h. Each run was repeated two times.

PXRD measurements were analyzed with MDI Jade 9 software to proceed isothermal kinetic modeling study. Relative peak intensity changes at three points (11.0 ≤ θ ≤ 11.4, 12.1 ≤ θ ≤ 12.5, 19.4 ≤ θ ≤ 20.0) were collected to obtain the fractional conversion (α) at each measured time. The two peaks at 11.0 ≤ θ ≤ 11.4 and 19.4 ≤ θ ≤ 20.0 represent the existence of form 2, while the peak at 12.1 ≤ θ ≤ 12.5 depicts the existence of form 1. Thus, the conversion of form 1 at the measured time (α_{form1→form2,t}) during form 1 → form 2 at 94 °C was calculated by

\[α_{form1→form2,t} = \frac{l_{12.2}α_{12.2} + l_{12.5}α_{12.5} + l_{12.3}α_{12.3}}{3} \]

where \(l_{12.2} \), \(l_{12.3} \), and \(l_{12.5} \) are integrated PXRD peak areas at approximately 11.0 ≤ θ ≤ 11.4, 12.1 ≤ θ ≤ 12.5, and 19.4 ≤ θ ≤ 20.0 at measured time (t) respectively, \(l_{12.2}α_{12.2} \), \(l_{12.3}α_{12.3} \), and \(l_{12.5}α_{12.5} \) are integrated PXRD peak areas at initial time. In the same manner, the fractional conversions of form 2 at the measured time (α_{form2→form1,t}) during the reverse transition at 20 and 40 °C were calculated as

\[α_{form2→form1,t} = \frac{l_{12.4}α_{12.4} + l_{12.5}α_{12.5} + l_{12.3}α_{12.3}}{3} \]

2.3. Differential Scanning Calorimetry (DSC). Thermal analysis with DSC was conducted with a Q20 RSC90 (TA Instruments) for the calculation of activation energy of form 1 → form 2 transition using powder (≤100 μm) and polycrystalline samples (100–500 μm); for the comparison between powders and polycrystalline of kinetics of form 2 → form 1 transition at isothermal conditions (20 °C); and for the observation of DSC pattern changes for form 1 → form 2 transition of initial polycrystalline upon several heating/cooling cycles. Non-isothermal kinetic runs at different constant heating rates (0.1, 0.5, 1, 2, and 3 K min⁻¹) on both powder and polycrystalline of form 1 were carried out for kinetic analysis of form 1 → form 2 transitions. Each run was repeated 3–5 times, and 2–4 mg of powder and polycrystalline were used. Before each run, indium standards were used for calibration purposes. In the experiments, samples grown from the same batch were used to minimize sample variations (crystal size and impurities). Kinetic data
collection and analysis were performed, based on the ICTAC kinetics committee recommendations.54,55

2.4. Scanning Electron Microscopy (SEM). The surface morphology of polycrystalline and powder of NA/PA cocrystals was observed with a Hitachi 3400 scanning electron microscope, and the size of the crystals of two types of samples was measured (Supporting Information, Figure S3). To obtain high resolution images, all samples were precoated by a thin layer of gold (∼5 nm) before imaging.

2.5. Atomic Force Microscopy (AFM). Atomic force microscopy (Bruker Multimode 8 with a heating stage) measurements were conducted in situ by increasing the temperature gradually from room temperature to 94 °C for observation of surface morphology change during form 1 → form 2 transition. Polycrystalline form 1 was fixed on an AFM sample stage with double-sided adhesive tape. Subsequently, each image was scanned in contact mode at the scan rate of 2 Hz as the temperature of the sample stage was controlled. Scan size was 10 μm × 10 μm. Collected images were analyzed with Nanoscope Analysis 1.7.

3. RESULTS AND DISCUSSION

3.1. Kinetic Transition Experiment with PXRD. Figure 1a shows the change of PXRD patterns from form 1 to form 2 with the time when the temperature is held isothermally at 94 °C. The transition temperature of 94 °C was selected based on the DSC experiment (at heating rate: 1 K min\(^{-1}\)), where the endothermal peak for the forward transition (form 1 → form 2) was observed. The change of PXRD patterns during the reverse transition (form 2 → form 1) at 20 and 40 °C is also shown in Figure 1b,c. In both experiments, in the forward and reverse transitions, no phase separation of individual component was observed. In the forward transition at 94 °C, it took 8–10 h for form 1 to be completely converted into form 2, and the transition rate increased sharply with rising temperature. On the other hand, the reverse transition was not observable at experimental time scales when the temperature was close to 94 °C. The transition from form 2 → form 1 was experimentally observed when the temperature decreased to 40 °C. However, it was still very slow; it took 70–80 days for form 2 to be completely converted to form 1. The transition rate from form 2 → form 1 gradually tended to increase when the temperature decreased toward room temperature.

In nucleation and growth theory, the phase transition involves two kinetic steps, nucleation and phase propagation. Overall, the transition rate is limited by the nucleation process, and the nucleation rate strongly depends on the nucleation kinetic barrier. The Gibbs free energy change for kinetic nucleation barrier (ΔG\(_N^*\)) is expressed as

$$\Delta G_N^* = \frac{16\pi \gamma T^2}{3\Delta h^2(T_i - T)^2}$$

where γ is the surface free energy per unit area, Δh is the enthalpy change of the phase transition, \(T_i\) is the thermodynamic transition temperature, and T is the temperature.65−62 The formation of stable nuclei involves the transfer of one atom or molecule across the interface onto the embryo once the critical-sized embryo is formed. Therefore, the rate of postcritical nuclei formation (N) can be described as

$$N = N_0 \exp\left(-\frac{\Delta G_N^* + G^a}{RT}\right)$$

where \(N_0\) is the preexponential factor and \(G^a\) is the activation energy of phase propagation.57,60−62 The kinetics of phase transition is influenced by phase propagation steps once the stable nuclei are formed, and the rate of phase propagation (n) can be expressed as

$$n = n_0 \exp\left(\frac{-G^a}{RT}\right) \cdot \exp\left(-\frac{\Delta G}{RT}\right)$$

Figure 1. Change of PXRD patterns with time during polymorphic transition of (a) forward transition (form 1 → form 2) at 94 °C; (b) reverse transition (form 2 → form 1) at 20 °C; (c) reverse transition (form 2 → form 1) at 40 °C.
rates observed in the forward and reverse transitions could be
form 2 (see Supporting Information, Figure S4). In general, the existence
of a large thermal hysteresis was confirmed by the DSC result of three heating/cooling cycles at a constant
heating/cooling rate of 0.1 K min⁻¹ where the endothermic peak for form 1 → form 2 was only observed at the first
heating cycle, whereas no peaks were found at other cycles (see Supporting Information, Figure S4). In general, the existence
of a large thermal hysteresis indicates that the phase transition is first order where kinetics are controlled by a nucleation and
growth mechanism. It is also noted that a large thermal hysteresis, originated by the variance of nucleation barriers in
two opposite directions, is induced by the change of crystal quality such as mosaicity, defects, and surface damage during
the transition.

From eq 4 and 5, different temperature-dependent transition rates observed in the forward and reverse transitions could be
understood. In the forward transition region (T > Tᵣ), where the transition is induced by superheating, the transition rate
would rapidly increase when the temperature increases from Tᵣ due to the decrease in ΔG* in eq 4 and the increase in ΔG in
eq 5. On the other hand, in the reverse transition region (T < Tᵣ), where the transition is induced by supercooling, these
effects would be compensated by a decrease in temperature.

For bulk kinetic modeling, conversion-versus-time data were obtained using eqs 1 and 2. As seen in Figure 2, the sigmoidal
shape of conversion-versus-time curves was commonly observed in both directions of the transitions. In solid-state
reactions, a sigmoidal shape is only shown in two isothermal kinetics models, Avrami-Erofeev and Prout-Tompkins, which
are nucleation and growth mechanisms. Thus, each set of conversion-versus-time curve was fit to these two kinetic
models by least-squares regression of integral forms of rate equations. The best fit model was determined by evaluating
three statistical parameters: the standard deviation of the slope (Sᵢ), the coefficient of determination of linear regression curve (Rᵢ²), and the coefficient of determination (R²) (see Supporting Information,
Table S1). Table 1 shows the best fit kinetic models and calculated temperature-dependent rate constants (k) at each
condition of transition. The Avrami models was a good fit to the data in both directions of transitions, but different Avrami
parameters (n) were obtained: n = 2 in the forward transition at 94 °C and reverse transition at 40 °C, and n = 4 in the

Table 1. Best Fit Kinetic Models and the Temperature-Dependent Rate Constants (k)

<table>
<thead>
<tr>
<th>best fit kinetic model</th>
<th>integral form of rate equation</th>
<th>rate constant (min⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form 1 → Form 2 @ 94 °C</td>
<td>[-ln(1 - α)]ⁿ/₂ = kt</td>
<td>(5.07 ± 0.11) × 10⁻³</td>
</tr>
<tr>
<td>Form 2 → Form 1 @ 20 °C</td>
<td>[-ln(1 - α)]¹/₄ = kt</td>
<td>(6.41 ± 0.11) × 10⁻⁵</td>
</tr>
<tr>
<td>Form 2 → Form 1 @ 40 °C</td>
<td>[-ln(1 - α)]¹/₂ = kt</td>
<td>(1.60 ± 0.05) × 10⁻⁵</td>
</tr>
</tbody>
</table>

where n₀ is the preexponential factor and ΔG is the difference of the free energy between two phases.

Equation 3 indicates that the nucleation process may not occur at the thermodynamic transition point (Tᵣ) where ΔG* becomes infinity. Superheating or supercooling must be involved in a nucleation event to overcome the nucleation energy barrier, and the nucleation barrier decreases with superheating or supercooling. This implies that an actual thermodynamic transition point exists between 40 and 94 °C. However, due to the presence of a large thermal hysteresis between form 1 ↔ form 2 transitions, the determination of Tᵣ was not straightforward in the PXRD experiment. The existence of a large thermal hysteresis was confirmed by the DSC result of three heating/cooling cycles at a constant heating/cooling rate of 0.1 K min⁻¹ where the endothermic peak for form 1 → form 2 was only observed at the first
heating cycle, whereas no peaks were found at other cycles (see Supporting Information, Figure S4). In general, the existence
of a large thermal hysteresis indicates that the phase transition is first order where kinetics are controlled by a nucleation and
growth mechanism. It is also noted that a large thermal hysteresis, originated by the variance of nucleation barriers in
two opposite directions, is induced by the change of crystal quality such as mosaicity, defects, and surface damage during
the transition.

From eq 4 and 5, different temperature-dependent transition rates observed in the forward and reverse transitions could be
understood. In the forward transition region (T > Tᵣ), where the transition is induced by superheating, the transition rate
would rapidly increase when the temperature increases from Tᵣ due to the decrease in ΔG* in eq 4 and the increase in ΔG in
eq 5. On the other hand, in the reverse transition region (T < Tᵣ), where the transition is induced by supercooling, these
effects would be compensated by a decrease in temperature.

For bulk kinetic modeling, conversion-versus-time data were obtained using eqs 1 and 2. As seen in Figure 2, the sigmoidal
shape of conversion-versus-time curves was commonly observed in both directions of the transitions. In solid-state
reactions, a sigmoidal shape is only shown in two isothermal kinetics models, Avrami-Erofeev and Prout-Tompkins, which
are nucleation and growth mechanisms. Thus, each set of conversion-versus-time curve was fit to these two kinetic
models by least-squares regression of integral forms of rate equations. The best fit model was determined by evaluating
three statistical parameters: the standard deviation of the slope (Sᵢ), the coefficient of determination of linear regression curve (Rᵢ²), and the coefficient of determination (R²) (see Supporting Information,
Table S1). Table 1 shows the best fit kinetic models and calculated temperature-dependent rate constants (k) at each
condition of transition. The Avrami models was a good fit to the data in both directions of transitions, but different Avrami
parameters (n) were obtained: n = 2 in the forward transition at 94 °C and reverse transition at 40 °C, and n = 4 in the
reverse transitions at 20 °C. It is generally understood that the Avrami parameter is related to the growth dimension and nucleation rates.45,63 However, the physical interpretation is elusive because the contribution of nucleation and growth to the SSPT process cannot be analyzed separately in bulk kinetics. Therefore, it can be assumed that the deviation in the shape of nucleus and the nucleation rates, owing to different reaction temperatures, might contribute to the difference in the observed values.

3.2. DSC. In the kinetics of solid-state reactions, the rate of reaction is typically expressed as a function of two variables, conversion (α) and temperature.45,54 When the reaction rate at a constant extent of conversion is assumed to be only dependent on temperature (isoconversional condition), a global activation energy barrier (E_a) of reaction can be obtained by various methods, including Arrhenius relations.45,54 In the case of kinetics in the SSPT process, isothermal analysis is often inappropriate for determining the activation energy due to limited measurable temperature ranges. Thus, non-isothermal kinetics was carried out with DSC to achieve the overall activation energy of form $1 \rightarrow 2$ phase transition. Note that the activation energy for the reverse transition, where the phase transition is induced by supercooling, is not measurable with standard Arrhenius kinetics since the reaction rate is not solely dependent on the temperature, as previously described in Sec. 3.1.

Figure 3 shows the DSC curves for form $1 \rightarrow 2$ transition of polycrystalline and powders of NA/PA cocrystals at a different constant heating rate (0.1, 0.5, 1, 2 K min$^{-1}$). In both types of samples, the onset and the maximum peak temperature trended to increase as the heating rate increased. The onset temperatures of two types of samples at the same heating rates were quite similar. However, peak widths for the transition of powder samples were much broader than those of polycrystalline samples, which means that further heating should be involved for complete conversion. This might be explained by nucleation and growth theory where nucleation of the new phase starts slowly at the onset temperature, followed by propagation at relatively higher rates. The transition process of powders inevitably involves more nucleation events than that of polycrystalline samples. This could result in larger peak widths and the appearance of several spikes that originated from the different nucleation points of separate crystalline powders. In the case of polycrystalline samples, once the nucleus is formed, the transition rate might be accelerated by faster phase propagation, which leads to relatively smooth and sharp DSC patterns.

Experimental data obtained from each non-isothermal DSC runs at different heating rates were used to obtain fractional conversion-versus-time curves. Then, the global activation energy barrier for form $1 \rightarrow 2$ transition of polycrystalline and powders was calculated based on the Starink’s isovolumetric method and the Kissinger approach. In Starink’s equation, the kinetics of SSPT is expressed as

$$\ln \frac{\beta}{T_a^{1/2}} = -1.0008 \frac{E_a}{RT_a} + \text{const}$$

where β is the constant heating rate and T_a is the temperature at specific fractional conversion (α).54 Figure 4a shows the activation energy barriers (E_a) of polycrystalline and powder samples at specific fractional conversion ($0.1 \leq \alpha \leq 0.9$) obtained by linear least-squares fit of eq 5. The mean values of activation energies of both samples were calculated to be 465.4 ± 48.8 kJ mol$^{-1}$ and 379.7 ± 42.6 kJ mol$^{-1}$ respectively. The decreasing trend of E_a with α is commonly observed in both type of samples. This result is reasonable because the kinetic energy barrier is expected to be reduced as the temperature increases with increasing conversion (eqs 3–5). The same trend was found in the previous result for the polymorphic transition of 4′-hydroxyacetophenone31 and for the melting of glucose and fructose.62

Kissinger’s approach is a well-known, simple, kinetic technique to determine the activation energy of solid-state conversion and is described as

$$\ln \frac{\beta}{T_a^{m,i}} = -\frac{E_a}{RT_{m,i}} + \text{const}$$

where $T_{m,i}$ is the temperature where maximum peak appeared in the DSC curve at the ith constant heating rate. The main assumption of the method is that the rate equation for the kinetic model is independent of the heating rates (β).54 It is known that the kinetic process controlled by Avrami–Erofeev model meets the assumption of the Kissinger equation.64 From the linear least-squares fit of eq 7, the mean value of activation energies for polycrystalline and powder were calculated to be 458.8 ± 45.2 kJ mol$^{-1}$ and 350.1 ± 23.8 kJ mol$^{-1}$ respectively, which were in agreement with those obtained by Starink’s method (Figure 4b).

On the basis of non-isothermal DSC thermal analysis, the result may be summarized as follows. First, a relatively large global activation energy (E_a) of form $1 \rightarrow 2$ transition in the range of $337.1–514.2$ kJ mol$^{-1}$ was observed depending on the sample types (powder and polycrystalline) and the extent of conversion (α). Calculated values were 3–5 times higher than the enthalpy measured during heating of form 1 (Δ_{m,H_m} = 104.0 ± 15.1 kJ mol$^{-1}$) obtained by TGA analysis (see Supporting Information, Figure S5). The large variation between these values was previously reported in other kinetic studies,31,64–69 but the relation between E_a and the enthalpy measured with the TGA remains unclear. Mnyukh suggested that molecular rearrangement (phase propagation) occurs at the solid–solid interface in the existence of effective gap by “stimulated sublimation” after nucleation of a new phase is
formed. According to Mnyukh’s one-by-one theory, the activation energy of phase propagation (E_s) is 0.7 times smaller than the enthalpy of sublimation when the effective gap between the phase is assumed to be 0.5 molecular layer. The global activation energy of SSPT is comprised of activation energies of elementary steps (nucleation and phase propagation). Our large value observed for the global activation energy might be reasonable if we consider that the activation energy for the nucleation step is typically expected to be much higher than the one for a phase propagation step. It is also noted that large activation energy in the phase transition was previously illustrated with another point of view. In recent work conducted by Farasat et al, the large activation energy of melting of glucose was interpreted as the result of a cooperative mechanism, and the number of molecules involved in a cooperative phase transition was determined based on the relation between activation energy and the heat of melting.

In addition, the result that the activation energy of form 1 \rightarrow form 2 transition obtained with polycrystalline samples was larger than that obtained with powders showed that a lower activation energy is not always a prerequisite for higher transition rates. We might conclude that the lower global activation energy barrier observed in powder samples might be due to the inclusion of more lattice defects during preparation of powders by grinding polycrystalline samples. Meanwhile, the lower transition rates observed in powder samples are likely associated with the generation of a large number of small crystallites during preparation of the samples by grinding, which requires more nucleation events.

The dependence of crystal forms (powders and polycrystalline) on the transition rate and DSC measurements of the reverse transition under isothermal conditions (20 °C) was also studied by the following procedures: (i) the enthalpies for the forward transition (form 1 \rightarrow form 2) of multiple samples were first obtained by nonisothermal DSC runs ($\beta = 1$ K min$^{-1}$); (ii) each sample (which was completely converted to form 2 by previous DSC runs) was kept at room temperature (20 °C) with various incubation times; (iii) the enthalpy of form 1 \rightarrow form 2 transition of samples was subsequently remeasured by non-isothermal DSC runs ($\beta = 1$ K min$^{-1}$); (iv) fractional conversions of each sample for the reverse transition (form 2 \rightarrow form 1) with time at the 20 °C were obtained by comparing the enthalpies calculated from (i) and (iii).

Figure 5 shows the fractional conversion (α)-versus-time curves of the reverse transition at 20 °C using polycrystalline (Figure 5a) and powders (Figure 5b). The onset temperature of each sample measured in subsequent DSC runs (iii) were also described in the right y-axis, along with extent of conversion (α). The conversion rates of powders were much slower compared to polycrystalline as previously shown in the forward transition. The temperature-dependent rate constants (k) of two forms were determined by linear Avrami-Erofeev ($n = 4$) model fitting.

Figure 4. (a) The activation energy barrier (E_a) at specific fractional conversions ($0.1 \leq \alpha \leq 0.9$) for form 1 \rightarrow form 2 transition of polycrystalline (red) and powder (black) of NA/PA cocrystals, obtained by linear least-squares fits of Starink’s eq (eq 6); (b) plots of ln(β/T_m^2) versus reciprocal of the maximum DSC peak temperature ($1/T_m$) for polycrystalline (red) and powder (black) of NA/PA cocrystals. Activation energy barriers of both forms were attained by linear least-squares fits of the Kissinger equation (eq 7).
values calculated by powder X-ray analysis \((k = (6.41 \pm 0.11) \times 10^{-5} \text{ min}^{-1})\). It is interesting to note that the onset temperature measured in the second cycle of DSC runs (form 1 \(\rightarrow\) form 2) tended to change in accordance with the extent of conversion. This could also illustrate the SSPT mechanism of NA/PA cocrystal being dominated by a nucleation and growth mechanism. When form 2 is not completely converted to form 1 before the resumption of form 1 \(\rightarrow\) form 2 transition, a small degree of superheating (the lower onset temperature) might be sufficient for the phase transition since it is mainly operated by phase propagation. In contrast, a large degree of superheating (higher onset temperature), which is enough to overcome the nucleation energy barrier, might be required for the forward transition in the absence of form 2 phase.

The effects of crystal forms and defect inclusions on the kinetics of the SSPT process were also investigated in another DSC experiment. Figure 6 shows the change of non-isothermal DSC patterns for the forward transition using polycrystalline samples as the number of transition cycles increases. Before repeating each cycle of DSC run, samples were held at room temperature for 7 days such that form 2 would be completely converted to form 1. The enthalpy of transition for each run was \(9.6 \pm 0.7 \text{ kJ mol}^{-1}\) at \(\beta = 0.5 \text{ K min}^{-1}\) and \(9.2 \pm 0.4 \text{ kJ mol}^{-1}\) at \(\beta = 1 \text{ K min}^{-1}\). In the successive heating of form 1 \(\rightarrow\) form 2 transitions, sharp DSC pattern, initially observed, tended to become broader, as observed in DSC patterns of powders shown in Figure 3. SEM images show that the large number of small crystals or grains were formed on the polycrystalline surface during transitions (see Supporting Information, Figure S6). The observed transition points also changed upon the successive repeating cycles. In the second heating run, the transition point was shifted to the left, toward a lower temperature, which showed that transition becomes more favorable. This is probably the result of the release of

Figure 6. Change of non-isothermal DSC patterns for form 1 \(\rightarrow\) form 2 transition using polycrystalline according to repeated transition cycles: (a) at \(\beta = 0.5 \text{ K min}^{-1}\) (b) at \(\beta = 1 \text{ K min}^{-1}\).

Figure 7. Evolution of AFM height images for the surface of form 1 polycrystalline during heating in the temperature range of 20–70 °C. All images are 10 μm × 10 μm.
strain within the crystallites during heating associated with nucleation of different crystal structures of the new phase (form 2). In the subsequent repeating cycles, however, the transition curve shifted to the right, toward higher temperatures, as the samples became degraded upon the successive heating/cooling cycles.

3.3. In Situ AFM. AFM analysis was conducted to monitor the surface morphology change upon the polymorphic transition. In an attempt to visualize this phenomena, nucleation, and growth of the new phase, hot stage microscopy is often used in SSPT studies.31,42,44,70 Compared to hot stage microscopy, in situ AFM is beneficial in the ease of sample preparation and detection of the morphological change with high spatial resolution at very early times. Figure 7 shows the evolution of the surface change of form 1 polycrystalline with time and temperature. The temperature ramping rate was set to 1 K min−1 to reduce the thermal drift and to identify the temperature where the morphology started to change. No change of crystal surface was observed up to 60 °C (images 1–3, Figure 7). However, the surface morphology started to change when the temperature increased from 60 to 70 °C (image 4, Figure 7). The appearance of new structures was observed (images 5–12, Figure 7) when the sample was constantly heated at 70 °C. The direction of formation and the growth of new structures were in random orientations (image 11, Figure 7). Above 70 °C, it was no longer possible to image the surface evolution due to the fast rate of growth and damage to the AFM tip. These experiments were repeated with two other polycrystalline, and the initiation of surface change was also observed close to 70 °C.

As observed in Figure 7, the formation and growth of new structures were observed during heating of form 1 in the AFM. Interestingly, the onset temperature (∼70 °C) where the surface modification was initiated was lower than that from the DSC analysis. In a recent study on the solid-state polymorphic transition of Irganox 1076, AFM was used to unveil a hidden solid phase transition which was not detected with classical tools, FT-IR and DSC.53 In this study, the formation and disappearance of the structures were observed on the crystal surface during the transition. Saunier et al. suggested that the AFM tip might cause a high local pressure on the crystal surface inducing the phase transition locally in the AFM at mild temperatures.54 The effect of the AFM tip on the kinetic process of other solid-state reactions was also observed in the crystallization of amorphous droplets of organic molecules where crystallization was induced by tip/surface interaction during AFM scanning.71,72 In this sense, it might be possible that the AFM tip can act as a secondary nucleation medium and accelerate the kinetic process of SSPT process in the very local areas. Or, impurities, such as individual molecules forming the cocrystal, could be reasons that we see surface morphology changes in the AFM at such low temperatures. However, there is no evidence that the formation of new structures is associated with a polymorphic transition because the two different phases of structures are not distinguishable in AFM. In addition, the onset temperature of the surface morphology change observed in the AFM (70 °C) is much lower than the transition point obtained by slurry tests conducted by Aitipamula et al. (85–90 °C).44 Further investigation and the development of AFM to distinguish polymorphs are needed for AFM to be utilized as an alternative tool to detect polymorphic transitions.

4. CONCLUSION

In this work, the kinetics of enantiotropic solid-state polymorphic transitions between form 1 and form 2 of 1:1 nicotinamide (NA)/pimelic acid (PA) cocrystals were investigated. Bulk kinetic studies conducted with PXRD and DSC indicated that solid-state polymorphic transition of NA/PA cocrystals occurs by a nucleation and growth mechanism where superheating or supercooling is essential for the initiation of the transition process. In the kinetic transition PXRD experiment, both directions of transition behavior of form 1 → form 2 were well described by the Avrami-Erofeev model. In the DSC analysis with two crystal forms (polycrystalline and powders), large activation energies were observed with a wide range (337.1–514.2 kJ mol−1). Also, the change of transition points for form 1 → form 2 with the number of transition cycling was observed in polycrystalline samples of form 1, which might be attributed to the defect inclusions and the degradation of polycrystalline samples during the transition process. We also observed the surface morphology changes of form 1 during the transitions through the in situ AFM while we increased the temperature. Interestingly, the temperature where the formation of new structures on the surface initiates was observed with AFM (possibly related to polymorphic transition) was much lower than the observed transition temperature, as measured by bulk kinetic methods. We failed to find evidence that the surface morphology change is related to transition of two polymorphs. However, this finding should not exclude a possible AFM tip effect on the kinetics of polymorphic transitions.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.cgd.8b01488.

PXRD patterns, SEM images, and thermal analysis data (PDF)

AUTHOR INFORMATION

Corresponding Author
*Address: Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA. E-mail: brandon.weeks@ttu.edu.

ORCID

Yong Joon Lee: 0000-0002-5308-9120

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Daniel Unruh (Senior Research Associate, Department of Chemistry, Texas Tech University) for assistance in the collection of PXRD data.

REFERENCES
