Large Deformation Analyses of Space-Frame Structures, Using Explicit Tangent Stiffness Matrices, Based on the Reissner variational principle and a von Karman Type Nonlinear Theory in Rotated Reference Frames

Yongchang Cai1,2, J.K. Paik3 and Satya N. Atluri3

Abstract: This paper presents a simple finite element method, based on assumed moments and rotations, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A von Karman type nonlinear theory of deformation is employed in the updated Lagrangian co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. The Reissner variational principle is used in the updated Lagrangian co-rotational reference frame, to derive an explicit expression for the (12×12) symmetric tangent stiffness matrix of the beam element in the co-rotational reference frame. The explicit expression for the finite rotation of the axes of the co-rotational reference frame, from the global Cartesian reference frame is derived from the finite displacement vectors of the 2 nodes of each finite element. Thus, the explicit expressions for the tangent stiffness matrix of each finite element of the beam, in the global Cartesian frame, can be seen to be derived as text-book examples of nonlinear analyses. When compared to the primal (displacement) approach wherein \(C^1\) continuous trial functions (for transverse displacements) over each element are necessary, in the current approach the trial functions for the transverse bending moments and rotations are very simple, and can be assumed to be linear within each element. The present (12×12) symmetric tangent stiffness matrices of the beam, based on the Reissner variational principle and the von Karman type simplified rod theory, are much simpler than those of many others in the literature. The present approach does not involve such numerical procedures as selective reduced integration or suppression of attendant Kinematic modes. The present methodolo-
gies can be extended to study the very large deformations of plates and shells as well. Metal plasticity may also be included, through the method of plastic hinges, etc. This paper is a tribute to the collective genius of Theodore von Karman (1881-1963) and Eric Reissner (1913-1996).

Keywords: Large deformation, Unsymmetrical cross-section, Explicit tangent stiffness, Updated Lagrangian formulation, Rod, Space frames, Reissner variational principle

1 Introduction

In the past decades, large deformation analyses of space frames have attracted much attention due to their significance in diverse engineering applications. Many different methods were developed by numerous researchers for the geometrically nonlinear analyses of 3D frame structures. Bathe and Bolourchi (1979) employed the total Lagrangian and updated Lagrangian approaches to formulate fully nonlinear 3D continuum beam elements. Punch and Atluri (1984) examined the performance of linear and quadratic Serendipity hybrid-stress 2D and 3D beam elements. Based on geometric considerations, Lo (1992) developed a general 3D nonlinear beam element, which can remove the restriction of small nodal rotations between two successive load increments. Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri (1987), Shi and Atluri (1988) presented the derivations of explicit expressions of the tangent stiffness matrix, without employing either numerical or symbolic integration. Zhou and Chan (2004a, 2004b) developed a precise element capable of modeling elastoplastic buckling of a column by using a single element per member for large deflection analysis. Izzuddin (2001) clarified some of the conceptual issues which are related to the geometrically nonlinear analysis of 3D framed structures. Simo (1985), Mata, Oller and Barbat (2007, 2008), Auricchio, Carotenuto and Reali (2008) considered the nonlinear constitutive behavior in the geometrically nonlinear formulation for beams. Iura and Atluri (1988), Chan (1994), Xue and Meek (2001), Wu, Tsai and Lee (2009) studied the nonlinear dynamic response of the 3D frames. Lee, Lin, Lee, Lu and Liu (2008), Lee, Lu, Liu and Huang (2008), Lee and Wu (2009) gave the exact large deflection solutions of the beams for some special cases. Gendy and Saleeb (1992); Atluri, Iura, and Vasudevan (2001) had brief discussions of arbitrary cross sections. Dinis, Jorge and Belinha (2009), Han, Rajendran and Atluri (2005), Lee and Chen (2009), Rabczuk and Areias (2006), Shaw and Roy (2007), Wen and Hon (2007) applied meshless methods to the analyses of nonlinear problems with large deformations or rotations. Large rotations in beams, plates and shells, and attendant variational principles involving the rotation tensor as a direct variable, were studied extensively by Atluri and his co-workers.
This paper presents a simple finite element method, based on assumed moments and rotations, for geometrically nonlinear large rotation analyses of space frames consisting of members of arbitrary cross-section. A Von Karman type nonlinear theory of deformation is employed in the updated Lagrangian co-rotational reference frame of each beam element, to account for bending, stretching, and torsion of each element. The Reissner variational principle (1953) [see also Atluri and Reissner (1989)] is used in the updated Lagrangian co-rotational reference frame, to derive an explicit expression for the (12x12) symmetric tangent stiffness matrix of the beam element in the co-rotational reference frame. The explicit expression for the finite rotation of the axes of the co-rotational reference frame, from the global Cartesian reference frame is derived from the finite displacement vectors of the 2 nodes of each finite element. Thus, the explicit expressions for the tangent stiffness matrix of each finite element of the beam, in the global Cartesian frame, can be seen to be derived as text-book examples of nonlinear analyses. When compared to the primal (displacement) approach wherein \(C^1 \) continuous trial functions (for transverse displacements) over each element are necessary, in the current approach the trial functions for the transverse bending moments and rotations are very simple, and can be assumed to be linear within each element. The present (12x12) symmetric tangent stiffness matrices of the beam, based on the Reissner variational principle and the von Karman type simplified rod theory, are much simpler than those of many others in the literature, such as, Simo (1985), Bathe and Bolourchi (1979), Kondon, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri (1988). The present approach does not involve such numerical procedures as selective reduced integration or suppression of attendant Kinematic modes. The present methodologies can be extended to study the very large deformations of plates and shells as well. Metal plasticity may also be included, through the method of plastic hinges, etc. Furthermore, Unlike in the formulations of Simo(1985), Crisfield (1990) [and many others who followed them], which lead to the currently popular myth that the stiffness matrices of finitely rotated structural members should be unsymmetric, the (12x12) stiffness matrix of the beam element in the present paper is enormously simple, and remains symmetric throughout the finite rotational deformation. This paper is a tribute to the collective genius of Theodore von Karman (1881-1963) and Eric Reissner (1913-1996).

2 Von-Karman type nonlinear theory for a rod with large deformations

We consider a fixed global reference frame with axes \(\bar{x}_i \) \((i = 1, 2, 3)\) and base vectors \(\bar{e}_i \). An initially straight rod of an arbitrary cross-section and base vectors \(\bar{e}_i \), in its undeformed state, with local coordinates \(\tilde{x}_i \) \((i = 1, 2, 3)\), is located arbitrarily in
space, as shown in Fig. 1. The current configuration of the rod, after arbitrarily large
deformations (but small strains) is also shown in Fig. 1.

The local coordinates in the reference frame in the current configuration are \(x_i \) and
the base vectors are \(e_i \) (\(i = 1, 2, 3 \)). The nodes 1 and 2 of the rod (or an element
of the rod) are supposed to undergo arbitrarily large displacements, and the rotations
between the \(\tilde{e}_i \) (\(i = 1, 2, 3 \)) and the \(e_k \) (\(k = 1, 2, 3 \)) base vectors are assumed to be
arbitrarily finite. In the continuing deformation from the current configuration, the
local displacements in the \(x_i \) coordinate system are assumed to be moderate,
and the local gradient \(\frac{\partial u_{10}}{\partial x_1} \) is assumed to be small compared to the transverse
rotations \(\frac{\partial u_{\alpha 0}}{\partial x_1} \) (\(\alpha = 2, 3 \)). Thus, in essence, a von-Karman type deformation
is assumed for the continued deformation from the current configuration, in the co-
rotational frame of reference \(e_i \) (\(i = 1, 2, 3 \)) in the local coordinates \(x_i \) (\(i = 1, 2, 3 \)).

If \(H \) is the characteristic dimension of the cross-section of the rod, the precise
assumptions governing the continued deformations from the current configuration
are
\[
\frac{u_{10}}{H} \ll 1; \quad \frac{H}{L} \ll 1
\]
\[
\frac{u_{\alpha 0}}{H} \approx O(1) \quad (\alpha = 2, 3)
\]
\[
\frac{\partial u_{10}}{\partial x_1} \ll \frac{\partial u_{\alpha 0}}{\partial x_1} \quad (\alpha = 2, 3)
\]
and \(\left(\frac{\partial u_{\alpha 0}}{\partial x_1} \right)^2 \) (\(\alpha = 2, 3 \)) are not negligible.

As shown in Fig. 2, we consider the large deformations of a cylindrical rod, subject-
ted to bending (in two directions), and torsion around \(x_1 \). The cross-section is
unsymmetrical around \(x_2 \) and \(x_3 \) axes, and is constant along \(x_1 \).

As shown in Fig. 2, the warping displacement due to the torque \(T \) around \(x_1 \) axis is
\(u_{1T} (x_2, x_3) \) and does not depend on \(x_1 \), the axial displacement at the origin (\(x_2 = x_3 = 0 \)) is \(u_{10} (x_1) \), and the bending displacement at \(x_2 = x_3 = 0 \) along the axis \(x_1 \)
are \(u_{20} (x_1) \) (along \(x_2 \)) and \(u_{30} (x_1) \) (along \(x_3 \)).

We consider only loading situations when the generally 3-dimensional displacement
state in the \(e_i \) system, donated as
\[
u_i = u_i (x_k) \quad i = 1, 2, 3; \quad k = 1, 2, 3
\]
is simplified to be of the type:
\[
u_1 = u_{1T} (x_2, x_3) + u_{10} (x_1) - x_2 \frac{\partial u_{20}}{\partial x_1} - x_3 \frac{\partial u_{30}}{\partial x_1}
\]
\[
u_2 = u_{20} (x_1) - \hat{\theta} x_3
\]
\[
u_3 = u_{30} (x_1) + \hat{\theta} x_2
\]
where \(\hat{\theta} \) is the total torsion of the rod at \(x_1 \) due to the torque \(T \).

2.1 Strain-displacement relations

Considering only von Karman type nonlinearities in the rotated reference frame \(e_i(x_i) \), we can write the Green-Lagrange strain-displacement relations in the updated Lagrangian co-rotational frame \(e_i \) in Fig.1 as:

![Figure 1: Kinematics of deformation of a space framed member](image-url)
Figure 2: Large deformation analysis model of a cylindrical rod

\[
\begin{align*}
\varepsilon_{11} &= \frac{\partial u_1}{\partial x_1} + \frac{1}{2} \left(\frac{\partial u_2}{\partial x_1} \right)^2 + \frac{1}{2} \left(\frac{\partial u_3}{\partial x_1} \right)^2 \\
&= \frac{\partial u_{10}}{\partial x_1} + \frac{1}{2} \left(\frac{\partial u_{20}}{\partial x_1} \right)^2 + \frac{1}{2} \left(\frac{\partial u_{30}}{\partial x_1} \right)^2 - x_2 \frac{\partial^2 u_{20}}{\partial x_1^2} - x_3 \frac{\partial^2 u_{30}}{\partial x_1^2} \\
\varepsilon_{12} &= \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} + \frac{\partial u_2}{\partial x_1} \right) \\
&= \frac{1}{2} \left(\frac{\partial u_{1T}}{\partial x_2} - \frac{\partial u_{20}}{\partial x_1} + \frac{\partial u_{20}}{\partial x_1} - \frac{\partial \hat{\theta}}{\partial x_1} x_3 \right) = \frac{1}{2} \left(\frac{\partial u_{1T}}{\partial x_2} - \theta x_3 \right) \\
\varepsilon_{13} &= \frac{1}{2} \left(\frac{\partial u_1}{\partial x_3} + \frac{\partial u_3}{\partial x_1} \right) \\
&= \frac{1}{2} \left(\frac{\partial u_{1T}}{\partial x_3} - \frac{\partial u_{30}}{\partial x_1} + \frac{\partial u_{30}}{\partial x_1} + \theta x_2 \right) = \frac{1}{2} \left(\frac{\partial u_{1T}}{\partial x_3} + \theta x_2 \right) \\
\varepsilon_{22} &= \frac{\partial u_2}{\partial x_2} + \frac{1}{2} \left(\frac{\partial u_1}{\partial x_2} \right)^2 + \frac{1}{2} \left(\frac{\partial u_2}{\partial x_2} \right)^2 + \frac{1}{2} \left(\frac{\partial u_3}{\partial x_2} \right)^2 \\
&\approx 0 + \frac{1}{2} \left(\frac{\partial u_{20}}{\partial x_1} \right)^2 + 0 \approx 0 \\
\varepsilon_{23} &\approx 0 \\
\varepsilon_{33} &\approx 0
\end{align*}
\]
where $\theta = d\hat{\theta}/dx_1$.

By letting

$$X_{22} = -u_{20,11}$$
$$X_{33} = -u_{30,11}$$

the strain-displacement relations can be rewritten as

$$\varepsilon_{11} = \varepsilon_{11}^{0} + x_{2}X_{22} + x_{3}X_{33}$$
$$\varepsilon_{12} = \frac{1}{2} (u_{1T,2} - \theta x_{3})$$
$$\varepsilon_{13} = \frac{1}{2} (u_{1T,3} + \theta x_{2})$$
$$\varepsilon_{22} = \varepsilon_{33} = \varepsilon_{23} = 0$$

where $, i$ denotes a differentiation with respect to x_i.

The matrix form of the Eq.(4) is

$$\varepsilon = \varepsilon^L + \varepsilon^N$$

where

$$\varepsilon^L = \begin{bmatrix} \varepsilon_{11}^L \\ \varepsilon_{12}^L \\ \varepsilon_{13}^L \end{bmatrix} = \begin{bmatrix} u_{10,1} + x_{2}X_{22} + x_{3}X_{33} \\ \frac{1}{2} (u_{1T,2} - \theta x_{3}) \\ \frac{1}{2} (u_{1T,3} + \theta x_{2}) \end{bmatrix}$$

$$\varepsilon^N = \begin{bmatrix} \varepsilon_{11}^N \\ \varepsilon_{12}^N \\ \varepsilon_{13}^N \end{bmatrix} = \begin{bmatrix} \frac{1}{2} (u_{20,1})^2 + \frac{1}{2} (u_{30,1})^2 \\ 0 \\ 0 \end{bmatrix}$$

2.2 Stress-Strain relations

Taking the material to be linear elastic, we assume that the additional second Piola-Kirchhoff stress, denoted by tensor S^1 in the updated Lagrangian co-rotational reference frame e_i of Fig.1 (in addition to the pre-existing Cauchy stress due to prior deformation, denoted by τ^0), is given by:

$$S_{11}^1 = E\varepsilon_{11}$$
$$S_{12}^1 = 2\mu\varepsilon_{12}$$
$$S_{13}^1 = 2\mu\varepsilon_{13}$$
$$S_{22}^1 = S_{33}^1 = S_{23}^1 \approx 0$$
where $\mu = \frac{E}{2(1+\nu)}$; E is the elastic modulus; ν is the Poisson ratio.

By using Eq.(5), Eq.(8) can also be written as

$$S^1 = \tilde{D} (\epsilon^L + \epsilon^N) = S^{1L} + S^{1N}$$

where

$$\tilde{D} = \begin{bmatrix} E & 0 & 0 \\ 0 & 2\mu & 0 \\ 0 & 0 & 2\mu \end{bmatrix}$$

From Eq.(4) and Eq.(8), the generalized nodal forces of the rod element in Fig.2 can be written as

$$N_{11} = \int_A S_{11}^1 dA = E \left(A\epsilon_{11}^0 + \chi_{22} \int_A x_2 dA + \chi_{33} \int_A x_3 dA \right)$$

$$= E \left(A\epsilon_{11}^0 + I_2 \chi_{22} + I_3 \chi_{33} \right)$$

$$M_{33} = \int_A S_{11}^1 x_3 dA = E \int_A (A\epsilon_{11}^0 + x_2 \chi_{22} + x_3 \chi_{33}) x_3 dA$$

$$= E \left(I_3 \epsilon_{11}^0 + I_{23} \chi_{22} + I_{33} \chi_{33} \right)$$

$$M_{22} = \int_A S_{11}^1 x_2 dA = E \int_A (A\epsilon_{11}^0 + x_2 \chi_{22} + x_3 \chi_{33}) x_2 dA$$

$$= E \left(I_2 \epsilon_{11}^0 + I_{22} \chi_{22} + I_{23} \chi_{33} \right)$$

$$T = \int_A S_{13}^1 x_2 - S_{12}^1 x_3 dA = 2\mu \int_A (x_2 \epsilon_{13}^0 + x_3 \epsilon_{12}^0) x_2 dA$$

$$= \frac{2\mu}{2} \int_A [(u_{1T,3} + \theta x_2) x_2 - (u_{1T,2} - \theta x_3)] dA$$

$$= \mu \int_A \theta \left(x_2^2 + x_3^2 \right) dA + \mu \int_A (u_{1T,3} x_2 - u_{1T,2} x_3) dA$$

$$= \mu I_{rr} \theta + \mu \int_S (u_{1T} n_3 x_2 - u_{1T} n_2 x_3) dS$$

$$= \mu I_{rr} \theta$$

where n_j is the outward norm, $I_2 = \int_A x_2 dA$, $I_3 = \int_A x_3 dA$, $I_{22} = \int_A x_2^2 dA$, $I_{33} = \int_A x_3^2 dA$, $I_{23} = \int_A x_2 x_3 dA$, and $I_{rr} = \int_A (x_2^2 + x_3^2) dA$.

The matrix form of the above equations is

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \sigma_4 \end{bmatrix} = \begin{bmatrix} N_{11} & M_{22} & M_{33} & T \end{bmatrix} \begin{bmatrix} EA & EI_2 & EI_3 & 0 \\ EI_2 & EI_{22} & EI_{23} & 0 \\ EI_3 & EI_{23} & EI_{33} & 0 \\ 0 & 0 & 0 & \mu I_{rr} \end{bmatrix} \begin{bmatrix} \epsilon_{11}^0 \\ \chi_{22} \\ \chi_{33} \\ \theta \end{bmatrix}$$

(12)
It can be denoted as

$$\mathbf{\sigma} = \mathbf{D}\mathbf{E}$$ \hspace{1cm} (13)

where

$$\begin{bmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
\sigma_4
\end{bmatrix} =
\begin{bmatrix}
N_{11} \\
M_{22} \\
M_{33} \\
T
\end{bmatrix} = \text{element generalized stresses}$$ \hspace{1cm} (14)

$$\mathbf{D} =
\begin{bmatrix}
EA & EI_2 & EI_3 & 0 \\
EI_2 & EI_{22} & EI_{23} & 0 \\
EI_3 & EI_{23} & EI_{33} & 0 \\
0 & 0 & 0 & \mu I_{rr}
\end{bmatrix}$$ \hspace{1cm} (15)

$$\mathbf{E} = \mathbf{E}^L + \mathbf{E}^N =
\begin{bmatrix}
E_1 \\
E_2 \\
E_3 \\
E_4
\end{bmatrix} =
\begin{bmatrix}
\varepsilon_{11}^0 \\
\chi_{22} \\
\chi_{33} \\
\theta
\end{bmatrix} = \text{element generalized strains}$$ \hspace{1cm} (16)

where

$$\mathbf{E}^L =
\begin{bmatrix}
u_{10,1} & -u_{20,11} & -u_{30,11} & \hat{\theta}_{,1}
\end{bmatrix}^T$$ \hspace{1cm} (17)

$$\mathbf{E}^N =
\begin{bmatrix}
\frac{1}{2} \left(u_{20,1}^2 + u_{30,1}^2 \right) & 0 & 0
\end{bmatrix}^T$$ \hspace{1cm} (18)

3 Updated Lagrangian formulation in the co-rotational reference frame \mathbf{e}_i

3.1 The use of the Reissner variational principle in the co-rotational updated Lagrangian reference frame

If τ_{ij}^0 are the initial Cauchy stresses in the updated Lagrangian co-rotational frame \mathbf{e}_i of Fig.1, S_{ij}^1 are the additional (incremental) second Piola-Kirchhoff stresses in the same updated Lagrangian co-rotational frame with axes \mathbf{e}_i, $S_{ij} = S_{ij}^1 + \tau_{ij}^0$ are the total stresses, and u_i are the incremental displacements in the co-rotational updated-Lagrangian reference frame, the functional of the Reissner variational principle (Reissner 1953) [see also Atluri and Reissner (1989)] for the incremental S_{ij}^1 and u_i in the co-rotational updated Lagrangian reference frame is given by [Atluri 1979, 1980]

$$\Pi_R = \int_V \left\{ -B \left(S_{ij}^1 \right) + \frac{1}{2} \tau_{ij}^0 u_{k,i} u_{k,j} + \frac{1}{2} S_{ij} (u_{i,j} + u_{j,i}) - \rho b_i u_i \right\} dV - \int_{\hat{S}_{\sigma}} \mathbf{T}_i u_i dS$$ \hspace{1cm} (19)
Where \(V \) is the volume in the current co-rotational reference state, \(S_σ \) is the surface where tractions are prescribed, \(b_i = b_i^0 + b_i^1 \) are the body forces per unit volume in the current reference state, and \(\vec{T}_i = \vec{T}_i^0 + \vec{T}_i^1 \) are the given boundary tractions.

The conditions of stationarity of \(\Pi_R \), with respect to variations \(\delta S_{ij}^1 \) and \(\delta \mathbf{u}_i \) lead to the following incremental equations in the co-rotational updated- Lagrangian reference frame.

\[
\frac{\partial B}{\partial S_{ij}^1} = \frac{1}{2} [u_{i,j} + u_{j,i}] \tag{20}
\]

\[
[S_{ij}^1 + \tau_{ik}^0 u_{j,k}]_{,j} + \rho b_i^1 = - (\tau_{ij}^0)_{,j} - \rho b_i^0 \tag{21}
\]

\[
 n_j [S_{ij}^1 + \tau_{ik}^0 u_{j,k}] - \vec{T}_i^1 = - n_j \tau_{ij}^0 + \vec{T}_i^0 \text{ at } S_σ \tag{22}
\]

In Eq.(19), the displacement boundary conditions,

\[
 u_i = \bar{u}_i \text{ at } S_u \tag{23}
\]

are assumed to be satisfied a priori, at the external boundary, \(S_u \). Eq.(21) leads to equilibrium correction iterations.

If the variational principle embodied in Eq.(19) is applied to a group of finite elements, \(V_m, m = 1, 2, \cdots , N \), which comprise the volume \(V \), ie, \(V = \sum V_m \), then

\[
\Pi_R = \sum_m \left(\int_{V_m} \left\{ - B (S_{ij}^1) + \frac{1}{2} \tau_{ij}^0 u_{k,j} u_{k,j} + \frac{1}{2} S_{ij} (u_{i,j} + u_{j,i}) - \rho b_i u_i \right\} dV - \int_{S_{am}} \vec{T}_i u_i dS \right) \tag{24}
\]

Let \(\partial V_m \) be the boundary of \(V_m \), and \(\rho_m \) be the part of \(\partial V_m \) which is shared by the element with its neighbouring elements. If the trial function \(u_i \) and the test function \(\partial u_i \) in each \(V_m \) are such that the inter-element continuity condition,

\[
u_i^+ = u_i^- \text{ at } \rho_m \tag{25}\]

(where + and – refer to either side of the boundary \(\rho_m \)) is satisfied a priori, then it can be shown (Atluri 1975,1984; Atluri and Murakawa 1977; Atluri, Gallagher and Zienkiewicz 1983) that the conditions of stationarity of \(\Pi_R \) in Eq.(24) lead to:

\[
\frac{\partial B}{\partial S_{ij}^1} = \frac{1}{2} [u_{i,j} + u_{j,i}] \text{ in } V_m \tag{26}
\]
Large Deformation Analyses of Space-Frame Structures

\[
[S^1_{ij} + \tau^0_{ik} u_{j,k}]_{,i} + \rho b^1_i = -\tau^0_{ij} - \rho b^0_i \quad \text{in } V_m
\]

(27)

\[
[n_i (S^1_{ij} + \tau^0_{ik} u_{j,k})]^+ + [n_i (S^1_{ij} + \tau^0_{ik} u_{j,k})]^- = -[n_i \tau^0_{ij}]^+ - [n_i \tau^0_{ij}]^- \quad \text{at } \rho_m
\]

(28)

\[
n_j [S^1_{ij} + \tau^0_{ik} u_{j,k}] - \bar{T}^1_i = -n_j \tau^0_{ij} + \bar{T}^0_i \quad \text{at } S_{\sigma m}
\]

(29)

Eq.(28) is the condition of traction reciprocity at the inter-element boundary, \(\rho_m\). Eqs(27) and (28) lead to corrective iterations for equilibrium within each element, and traction reciprocity at the inter-element boundaries, respectively.

Carrying out the integration over the cross sectional area of each rod, and using Eqs.(4) and (12), Eq.(24) can be easily shown to reduce to:

\[
\Pi_R = \sum_{\text{elem}} \left\{ \int_l \left(-\frac{1}{2} \sigma^T D^{-1} \sigma \right) dl + \int_l N^0_{11} \frac{1}{2} (u^2_{20,1} + u^2_{30,1}) dl \right. \\
+ \left. \int_l (\ddot{N}_{11} \epsilon_{11}^0 + \ddot{M}_{22} \chi_{22} + \ddot{M}_{33} \chi_{33} + \ddot{T} \theta) dl - \bar{Q} q \right\}
\]

(30)

where \(D\) is given in Eq.(15), \(C = D^{-1}\), \(l\) is the length of the rod element, \(\sigma\) is given in Eq.(14), \(\sigma^0_{ij} = [N^0_{11} M^0_{22} M^0_{33} T^0]^T\) is the initial element-generalized- stress in the corotational reference coordinates \(e_i\), and \(\ddot{\sigma} = \sigma^0 + \sigma = [\ddot{N}_{11} \ddot{M}_{22} \ddot{M}_{33} \ddot{T}]^T\) is the total element generalized stresses in the corotational reference coordinates \(e_i\). \(\bar{Q}\) is the nodal external generalized force vector (consisting of force as well as moments) in the global Cartesian reference frame, and \(q\) is the incremental nodal generalized displacement vector (consisting of displacements as well as rotations) in the global Cartesian reference frame. It should be noted that while \(\Pi_R\) in Eq.(30) represents a sum over the elements, the relevant integrals are evaluated over each element in it’s own co-rotational updated Lagrangian reference frame.
By integrating by parts, the second item of the left side can be written as

\[
\int \hat{N}_{11} \epsilon^{0L}_{11} dl = \int \hat{N}_{11} u_{10,1} dl = - \int \hat{N}_{11,1} u_{10} dl + \hat{N}_{11} u_{10} \bigg|_0^l
\]
\[
\int \hat{M}_{22} \chi_{22} dl = - \int \hat{M}_{22} u_{20,11} dl
\]
\[
= - \int \hat{M}_{22,1} u_{20} dl + \hat{M}_{22,1} u_{20} \bigg|_0^l - \hat{M}_{22} u_{20} \bigg|_0^l
\]
\[
\int \hat{M}_{33} \chi_{33} dl = - \int \hat{M}_{33} u_{30,11} dl
\]
\[
= - \int \hat{M}_{33,1} u_{30} dl + \hat{M}_{33,1} u_{30} \bigg|_0^l - \hat{M}_{33} u_{30} \bigg|_0^l
\]
\[
\int \hat{T} \theta dl = \int \hat{T} \hat{\theta}_1 dl = - \int \hat{T}_1 \hat{\theta} dl + \hat{T} \hat{\theta} \bigg|_0^l
\]

The condition of stationarity of \(\Pi_R \) in Eq.(30) leads to:

\[
D^{-1} \sigma = E = \begin{bmatrix} u_{10,1} & -u_{20,11} & -u_{30,11} & \theta^T \\
\end{bmatrix}^T
\]
\(\hat{N}_{11,1} = 0 \) in each element
\(\hat{T}_1 = 0 \) in each element
\(\hat{M}_{22,1} + (N_{11}^0 u_{20,1})_1 = 0 \) in each element
\(\hat{M}_{33,1} + (N_{11}^0 u_{30,1})_1 = 0 \) in each element

and the nodal equilibrium equations, which arise out of the term:

\[
\sum_{elem} \left(\hat{N}_{11} \delta u_{10} \bigg|_0^l + \hat{M}_{22,1} \delta u_{20} \bigg|_0^l - \hat{M}_{22} \delta u_{20,1} \bigg|_0^l + \hat{M}_{33,1} \delta u_{30} \bigg|_0^l - \hat{M}_{33} \delta u_{30,1} \bigg|_0^l + \hat{T} \delta \hat{\theta} \bigg|_0^l + (N_{11}^0 u_{20,1}) \delta u_{20} \bigg|_0^l + (N_{11}^0 u_{30,1}) \delta u_{30} \bigg|_0^l - \bar{Q} \delta q \right) = 0
\]
3.2 Trial functions of the stresses and displacements in each element

We assume the trial functions for N_{11}, M_{22}, M_{33} and T, in each element, as

\[
N_{11} = n
\]
\[
M_{22} = -m_3 = -\left(1 - \frac{x_1}{l}\right) m_3 - \frac{x_1^2}{l} m_3
\]
\[
M_{33} = m_2 = \left(1 - \frac{x_1}{l}\right) m_2 + \frac{x_1^2}{l} m_2
\]
\[T = m_1\] (34)

The matrix form of the above equation is

\[
\sigma = P\beta
\] (35)

where

\[
P = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 + \frac{x_1}{l} & 0 & 0 & 0 & 0 \\
0 & 0 & -\frac{x_1}{l} & 0 & 0 & 1 \\
0 & 0 & 0 & 1 - \frac{x_1}{l} & \frac{x_1}{l} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\] (36)

\[
\beta = [n \quad m_3^2 \quad m_2^2 \quad m_1^2 \quad m_1^2]^T
\] (37)

In a same way, the initial stress σ^0 can be expressed as

\[
\sigma^0 = P\beta^0
\] (38)

where

\[
\beta^0 = [n^0 \quad m_3^0 \quad m_2^0 \quad m_1^0 \quad m_1^0]^T
\] (39)

The incremental internal nodal force vector β_n of node 1 and node 2 of a rod

\[
\beta_n = [1N \quad m_1^1 \quad m_2^1 \quad m_3^1 \quad 2N \quad m_1^2 \quad m_2^2 \quad m_3^2]^T
\]

can be expressed as

\[
\beta_n = R_n\beta
\] (40)
where
\[
R_n = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
\] (41)

In the functional in Eq.(30), only the squares of \((u_{20,1})\) and \((u_{30,1})\) occur within each element. Thus, \((u_{20,1})\) and \((u_{30,1})\) are assumed directly to be linear within each element, in terms of their respective nodal values. This will be enormously simple and advantageous in the case of plate and shell elements. This is in contrast to the primal (displacement) approach (Cai, Paik and Atluri 2010) wherein \(u_{20}\) and \(u_{30}\) were required to be \(C^1\) continuous over each element, and thus were assumed to be Hermitian polynomials over each element. In this paper, however, we assume:

\[
u_\theta = N_\theta a_\theta = \begin{bmatrix}
\phi_1 & 0 & \phi_2 & 0 \\
0 & \phi_1 & 0 & \phi_2
\end{bmatrix} \begin{bmatrix}
1 \theta_{20} \\
1 \theta_{30} \\
2 \theta_{20} \\
2 \theta_{30}
\end{bmatrix}
\] (42)

where
\[
\phi_1 = 1 - \xi \\
\phi_2 = \xi
\] (43)

Assuming that ‘\(a\)’ represents the vector of generalized displacements of the nodes of the rod element in the updated Lagrangian co-rotational frame \(e_i\) of Fig.1, the displacement vectors of node \(i\) are:

\[
\hat{a} = [i u_1 \quad i u_2 \quad i u_3 \quad i u_4 \quad i u_5 \quad i u_6]^T
\]
\[
= [i u_{10} \quad i u_{20} \quad i u_{30} \quad i \hat{\theta} \quad i \theta_{20} \quad i \theta_{30}]^T \quad (i = 1, 2)
\] (44)

The relation between \(a_\theta\) and \(a\) can be expressed as

\[
a_\theta = T_\theta a
\] (45)

where
\[
T_\theta = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\] (46)
3.3 **Explicit expressions of the tangent stiffness matrix for each element**

Because of the assumption of the trial functions of the stresses in Eqs.(35), the following items in Eq.(31) become

\[
\begin{align*}
\int \hat{N}_{11,1} u_{10} dl &= 0 \\
\int \hat{M}_{22,11} u_{20} dl &= 0 \\
\int \hat{M}_{33,11} u_{30} dl &= 0 \\
\int \hat{T},_1 \theta dl &= 0
\end{align*}
\]

(47)

Eq.(30) can be rewritten as

\[
\Pi_R = -\Pi_{R1} + \Pi_{R2} + \Pi_{R3} - \Pi_{R4}
\]

(48)

where

\[
\Pi_{R1} = \sum_{\text{elem}} \int \left(\frac{1}{2} \sigma^T D^{-1} \sigma \right) dl = \sum_{\text{elem}} \int \left(\frac{1}{2} \beta^T P^T C \beta \right) dl
\]

(49)

\[
\Pi_{R2} = \sum_{\text{elem}} \left\{ 2N^2 u_{10} - N^1 u_{10} + \frac{1}{l} \left(m_3^2 - m_3 \right) \left(u_{20} - u_{20} \right) + m_3^2 \theta_{30} - m_3^1 \theta_{30} \\
+ \frac{1}{l} \left(m_2^2 - m_2 \right) \left(u_{30} - u_{30} \right) + m_2^2 \theta_{20} - m_2^1 \theta_{20} + m_1^2 \theta - m_1^1 \theta \right\}
\]

\[
= \sum_{\text{elem}} \left\{ \langle \beta_n \rangle^T R_{\sigma} a \right\} = \sum_{\text{elem}} \left\{ \beta^T R_n^T R_{\sigma} a \right\}
\]

(50)

where

\[
R_{\sigma} = \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{l} & 0 & -1 & 0 & 0 & 0 & -\frac{1}{l} & 0 \\
0 & -\frac{1}{l} & 0 & 0 & -1 & 0 & \frac{1}{l} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & -\frac{1}{l} & 0 & 0 & 0 & 0 & \frac{1}{l} & 0 & 1 \\
0 & \frac{1}{l} & 0 & 0 & 0 & 0 & 0 & -\frac{1}{l} & 0 & 0 & 1
\end{bmatrix}
\]

(51)
\[\Pi_{R3} = \sum_{\text{elem}} \int_{l} N_{11}^0 \left[\frac{1}{2} (u_{20,1})^2 + \frac{1}{2} (u_{30,1})^2 \right] dl = \sum_{\text{elem}} \int_{l} \sigma_{11}^0 \left[\frac{1}{2} (\theta_{20})^2 + \frac{1}{2} (\theta_{30})^2 \right] dl \]
\[= \sum_{\text{elem}} \int_{l} \frac{\sigma_{11}^0}{2} u_\theta^T u_\theta dl = \sum_{\text{elem}} \int_{l} \frac{\sigma_{11}^0}{2} a^T T_\theta T N_\theta^T N_\theta T a dl \]

\[(52) \]

Letting \(A_{nn} = T_\theta^T N_\theta^T N_\theta T \), \(\Pi_{R3} \) can be rewritten as

\[\Pi_{R3} = \sum_{\text{elem}} \int_{l} \frac{\sigma_{11}^0}{2} a^T A_{nn} a dl \]

\[(53) \]

and

\[\Pi_{R4} = \sum_{\text{elem}} (a^T F - a^T R_\sigma^T R_n \beta^0) \]

\[(54) \]

By invoking \(\delta \Pi_R = 0 \), we can obtain

\[\delta \Pi_R = \sum_{\text{elem}} \delta \beta^T \left\{ - \int_{l} P^T C P \beta dl + R_n^T R_\sigma a \right\} + \sum_{\text{elem}} \delta a^T \left\{ R_\sigma^T R_n a + \sigma_{11}^0 \int_{l} A_{nn} a dl + R_\sigma^T R_n \beta^0 - F \right\} \]

\[(55) \]

Let

\[H = \int_{l} P^T C P dl, \quad G = R_n^T R_\sigma, \quad K_N = \sigma_{11}^0 \int_{l} A_{nn} dl, \quad F^0 = G^T \beta^0 \]

\[(56) \]

then

\[\delta \Pi_R = \sum_{\text{elem}} \delta \beta^T \left\{ - H \beta + G a \right\} - \sum_{\text{elem}} \delta a^T \left\{ G^T \beta + K_N a - F + F^0 \right\} = 0 \]

\[(57) \]

Since \(\delta \beta^T \) in Eq.(53) are independent and arbitrary in each element, one obtains

\[\beta = H^{-1} G a \]

\[(58) \]

and

\[\sum_{\text{elem}} \delta a^T \left\{ (K_L + K_N) a - F + F^0 \right\} = 0 \]

\[(59) \]
where

\[K_L = G^T H^{-1} G \]

(60)

\[K_N = \frac{\sigma_0^0}{l} \int_A \alpha_{nm} dl \]

(61)

The components of the element tangent stiffness matrix, \(K_L \) and \(K_N \), respectively, can be derived explicitly, after some simple algebra, as follows.

\[
K_N = \frac{l \sigma_0^0}{6}
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
sym. & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 2
\end{bmatrix}
\]

(62)

\[K_L = \frac{E}{lA}
\begin{bmatrix}
K_{L1} & K_{L12} \\
K_{L12}^T & K_{L2}
\end{bmatrix}
\]

(63)

where

\[
K_{L1} =
\begin{bmatrix}
A^2 & 0 & 0 & 0 & A I_3 & -A I_2 \\
\frac{12(A I_{22} - I_2^2)}{l^2} & 0 & -6(A I_{23} - I_2 I_3) & \frac{6(A I_{22} - I_2^2)}{l} \\
\frac{12(A I_{23} - I_2 I_3)}{l^2} & 0 & -6(A I_{33} - I_3^2) & \frac{6(A I_{23} - I_2 I_3)}{l} \\
\frac{A u}{E} I_{rr} & 0 & 0 & 4 A I_{33} - 3 I_3^2 & -4 A I_{23} + 3 I_2 I_3 \\
symmetric & 4 A I_{22} - 3 I_2^2 & 4 A I_{22} - 3 I_2^2
\end{bmatrix}
\]

(64)
polynomials in terms of the four nodal values.

It is clear from the above procedures, that the present (12 × 12) symmetric tangent stiffness matrices of the beam in the co-rotational reference frame, based on the Reissner variational principle and simplified rod theory, are much simpler than those of Kondon, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri (1988). Moreover, the explicit expressions for the tangent stiffness matrix of each rod can be seen to be derived as text-book examples of nonlinear analyses.

\[K_{L2} = \begin{bmatrix}
 A^2 & 0 & 0 & \frac{AI_3}{l} & -\frac{AI_2}{l} \\
 \frac{12(A_{l2} - l_3^2)}{l^2} & 0 & 6(Al_3 - l_3 I_3) & -6(Al_2 - l_3^2) \\
 \frac{12(A_{l3} - l_3^2)}{l^2} & 0 & -6(Al_3 - l_3 I_3) & -6(Al_2 - l_3^2) \\
 \frac{Al_3}{l} & 0 & 0 & 4AI_3 - 3I_3^2 \\
 \frac{Al_2}{l} & 0 & 0 & -4AI_2 + 3I_3 I_3 \\
\end{bmatrix} \quad (65) \]

\[K_{L12} = \begin{bmatrix}
 -A^2 & 0 & 0 & -AI_3 & AI_2 \\
 0 & -12(A_{l2} - l_3^2) & -12(A_{l3} - l_3 I_3) & 0 & -6(Al_3 - l_3 I_3) \frac{Al_2}{l} \\
 0 & -12(A_{l3} - l_3 I_3) & -12(A_{l3} - l_3 I_3) & 0 & -6(Al_3 - l_3 I_3) \frac{Al_2}{l} \\
 0 & 0 & 0 & -AI_3 & AI_2 \\
 -AI_3 & 0 & 0 & 2AI_3 - 3I_3^2 & -2AI_2 + 3I_3 I_3 \\
 AI_2 & 0 & 0 & -2AI_2 + 3I_3 I_3 & 2AI_2 - 3I_3^2 \\
\end{bmatrix} \quad (66) \]

Thus, \(K_L \) is the usual linear symmetric (12 × 12) stiffness matrix of the beam in the co-rotational reference frame, with the geometric parameters \(I_2, I_3, I_{l2}, I_{l3}, I_{l3} \) and \(I_{l3} \), and the current length \(l \).

It is clear from the above procedures, that the present (12 × 12) symmetric tangent stiffness matrices of the beam in the co-rotational reference frame, based on the Reissner variational principle and simplified rod theory, are much simpler than those of Kondon, Tanaka and Atluri (1986), Kondoh and Atluri (1987), and Shi and Atluri (1988). Moreover, the explicit expressions for the tangent stiffness matrix of each rod can be seen to be derived as text-book examples of nonlinear analyses.

3.4 Cubic trial functions of the displacements in the beam element, using the Reissner variational principle

When using the Reissner functional in Eq.(30), one may directly assume the rotation field \((u_{20,1})\) and \((u_{30,1})\) as linear functions in terms only of their respective nodal values, as in Eq.(42). Alternatively, \(u_{20} \) and \(u_{30} \) may be assumed as cubic polynomials in terms of the four nodal values \(1u_{20}, 2u_{20}, 1u_{20,1}, 2u_{20,1} (1u_{30}, 2u_{30}, 1u_{30,1}, 2u_{30,1} \) for \(u_{30} \), and derive the element fields for \(u_{20,1} \) (and \(u_{30,1} \)) from these cubic polynomials [even though the Reissner principle does not demand it]. This will be particularly advantageous for plate and shell elements which demand \(C^1 \)
continuity while using the potential energy approach, while C^1 continuity of the displacement field will not be demanded in the Reissner principle.

In general, we assume over each element:

\[u_{20} = \alpha_1 + \alpha_2 \xi + \alpha_3 \xi^2 + \alpha_4 \xi^3 \]
\[u_{30} = \gamma_1 + \gamma_2 \xi + \gamma_3 \xi^2 + \gamma_4 \xi^3 \] \(67\)

By letting

\[u_{20}|_{\xi = \xi_0} = u_{20}, \quad u_{20}|_{\xi = \xi_1} = 2u_{20}, \quad u_{30}|_{\xi = \xi_0} = 1\theta_{30}, \quad u_{30}|_{\xi = \xi_1} = 2\theta_{30} \]
\[u_{30}|_{\xi = \xi_0} = u_{30}, \quad -u_{30}|_{\xi = \xi_0} = 1\theta_{20}, \quad -u_{30}|_{\xi = \xi_1} = 2\theta_{20} \] \(68\)

we can approximate the displacement function in each rod element by

\[\mathbf{u}_c = \mathbf{N} \mathbf{a} = \begin{bmatrix} 1 \mathbf{N} & 2 \mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{1a} \\ \mathbf{2a} \end{bmatrix} \] \(69\)

where

\[\mathbf{u}_c = \begin{bmatrix} u_{10} & u_{20} & u_{30} & \hat{\theta} \end{bmatrix}^T \] \(70\)

\[1 \mathbf{N} = \begin{bmatrix} \phi_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_1 & 0 & 0 & N_2 & 0 \\ 0 & 0 & N_1 & 0 & -N_2 & 0 \\ 0 & 0 & 0 & \phi_1 & 0 & 0 \end{bmatrix} \] \(71\)

\[1 \mathbf{N} = \begin{bmatrix} \phi_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_3 & 0 & 0 & N_4 & 0 \\ 0 & 0 & N_3 & 0 & -N_4 & 0 \\ 0 & 0 & 0 & \phi_2 & 0 & 0 \end{bmatrix} \] \(72\)

\[N_1 = 1 - 3 \xi^2 + 2 \xi^3, \quad N_3 = 3 \xi^2 - 2 \xi^3 \]
\[N_2 = (\xi - 2 \xi^2 + \xi^3) l, \quad N_4 = (\xi^3 - \xi^2) l \] \(73\)

and ϕ_1, ϕ_2 are defined in Eq.(43).

By using the cubic trial functions of Eq.(69) and deriving the equations in a same way as the section 3.3, we obtain the respective discrete equations, as follows.

\[\sum_{elem} \delta \mathbf{a}^T \{ (\mathbf{K}_L + \mathbf{K}_N) \mathbf{a} - \mathbf{F} + \mathbf{F}^0 \} = 0 \] \(74\)
where K_L, F and F^0 are the same as Eq.(59), and the nonlinear stiffness matrix K_N^c is explicitly expressed as

$$(12 \times 12 \text{ symmetric matrix})$$

$$K_N^c = \begin{bmatrix}
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1.2 & 0 & 0 & 0 & 0.1l & 0 & -1.2 & 0 & 0 & 0 & 0 & 0 \\
 1.2 & 0 & -0.1l & 0 & 0 & 0 & -1.2 & 0 & -0.1l & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \frac{2l^2}{15} & 0 & 0 & 0 & 0.1l & 0 & \frac{-l^2}{30} & 0 & 0 & 0 & 0 & 0 \\
 \frac{2l^2}{15} & 0 & -0.1l & 0 & 0 & 0 & \frac{-l^2}{30} & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \frac{2l^2}{15} & 0 & -0.1l & 0 & 0 & 0 & \frac{-l^2}{30} & 0 & 0 & 0 & 0 & 0 \\
 \frac{2l^2}{15} & 0 & 0 & 0 & 0 & 0 & \frac{2l^2}{15} & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}$$

(75)

4 Transformation between deformation dependent co-rotational local $[e_i]$, and the global $[\tilde{e}_i]$ frames of reference

As shown in Fig.1, \tilde{x}_i ($i = 1, 2, 3$) are the global coordinates with unit basis vectors \tilde{e}_i. \tilde{x}_i and \tilde{e}_i are the local coordinates for the rod element at the undeformed element. The basis vector \tilde{e}_i are initially chosen such that (Shi and Atluri 1988, Cai, Paik and Atluri 2010)

$$\tilde{e}_1 = (\Delta \tilde{x}_1 \tilde{e}_1 + \Delta \tilde{x}_2 \tilde{e}_2 + \Delta \tilde{x}_3 \tilde{e}_3)/L$$

$$\tilde{e}_2 = (\tilde{e}_3 \times \tilde{e}_1)/|\tilde{e}_3 \times \tilde{e}_1|$$

$$\tilde{e}_3 = \tilde{e}_1 \times \tilde{e}_2$$

(76)

where $\Delta \tilde{x}_i = \tilde{x}_i^2 - \tilde{x}_i^1, L = (\Delta \tilde{x}_1^2 + \Delta \tilde{x}_2^2 + \Delta \tilde{x}_3^2)^{\frac{1}{2}}$.

Then \tilde{e}_i and \tilde{e}_j have the following relations:

$$\begin{bmatrix}
 \tilde{e}_1 \\
 \tilde{e}_2 \\
 \tilde{e}_3
\end{bmatrix} = \begin{bmatrix}
 \Delta \tilde{x}_1/L & \Delta \tilde{x}_2/L & \Delta \tilde{x}_3/L \\
 -\Delta \tilde{x}_2/S & \Delta \tilde{x}_1/S & 0 \\
 -\Delta \tilde{x}_1 \Delta \tilde{x}_3/(SL) & -\Delta \tilde{x}_2 \Delta \tilde{x}_3/(SL) & s/L
\end{bmatrix}\begin{bmatrix}
 \tilde{e}_1 \\
 \tilde{e}_2 \\
 \tilde{e}_3
\end{bmatrix}$$

(77)

where $S = (\Delta \tilde{x}_1^2 + \Delta \tilde{x}_2^2)^{\frac{1}{2}}$.
Thus we can define a transformation matrix $\tilde{\lambda}_0$ between \bar{e}_i and \bar{e}_i as

$$
\tilde{\lambda}_0 = \begin{bmatrix}
\frac{\Delta \bar{x}_1}{L} & \frac{\Delta \bar{x}_2}{L} & \frac{\Delta \bar{x}_3}{L} \\
-\Delta \bar{x}_2 / S & \Delta \bar{x}_1 / S & 0 \\
-\Delta \bar{x}_1 \Delta \bar{x}_3 / (SL) & -\Delta \bar{x}_2 \Delta \bar{x}_3 / (SL) & S / L
\end{bmatrix} \tag{78}
$$

When the element is parallel to the \bar{x}_3 axis, $S = \left[\Delta \bar{x}_1^2 + \Delta \bar{x}_2^2\right]^{\frac{1}{2}} = 0$ and Eq.(64) is not valid. In this case, the local coordinates is determined by

$$
\bar{e}_1 = \bar{e}_3, \bar{e}_2 = \bar{e}_2, \bar{e}_3 = -\bar{e}_1 \tag{79}
$$

Let x_i and e_i be the co-rotational reference coordinates for the deformed rod element. In order to continuously define the local coordinates of the same rod element during the whole range of large deformation, the basis vectors e_i are chosen such that

$$
e_1 = (\Delta x_1 \bar{e}_1 + \Delta x_2 \bar{e}_2 + \Delta x_3 \bar{e}_3) / l = a_1 \bar{e}_1 + a_2 \bar{e}_2 + a_3 \bar{e}_3$$
$$e_2 = (\bar{e}_3 \times e_1) / |\bar{e}_3 \times e_1|$$
$$e_3 = e_1 \times e_2 \tag{80}
$$

where $\Delta x_i = x_i^2 - x_i^1, l = (\Delta x_1^2 + \Delta x_2^2 + \Delta x_3^2)^{\frac{1}{2}}$.

We denote \bar{e}_3 in Eq.(77) as

$$
\bar{e}_3 = c_1 \bar{e}_1 + c_2 \bar{e}_2 + c_3 \bar{e}_3 \tag{81}
$$

Then e_i and \bar{e}_i have the following relations:

$$
\begin{bmatrix}
e_1 \\
e_2 \\
e_3
\end{bmatrix} = \begin{bmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
a_2 b_3 - a_3 b_2 & a_3 b_1 - a_1 b_3 & a_1 b_2 - a_2 b_1
\end{bmatrix}
\begin{bmatrix}
\bar{e}_1 \\
\bar{e}_2 \\
\bar{e}_3
\end{bmatrix} = \lambda_0 \bar{e}_i \tag{82}
$$

where

$$
b_1 = (c_2 a_3 - c_3 a_2) / l_{31}$$
$$b_2 = (c_3 a_1 - c_1 a_3) / l_{31}$$
$$b_3 = (c_1 a_2 - c_2 a_1) / l_{31} \tag{83}
$$

$$
l_{31} = \left[(c_2 a_3 - c_3 a_2)^2 + (c_3 a_1 - c_1 a_3)^2 + (c_1 a_2 - c_2 a_1)^2 \right]^{\frac{1}{2}} \tag{84}
$$
and

\[
\lambda_0 = \begin{bmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
a_2b_3 - a_3b_2 & a_3b_1 - a_1b_3 & a_1b_2 - a_2b_1 \\
\end{bmatrix}
\tag{85}
\]

Thus, the transformation matrix \(\lambda \), between the 12 generalized coordinates in the co-rotational reference frame, and the corresponding 12 coordinates in the global Cartesian reference frame, is given by

\[
\lambda = \begin{bmatrix}
\lambda_0 & \lambda_0 & \lambda_0 \\
\lambda_0 & \lambda_0 & \lambda_0 \\
\lambda_0 & \lambda_0 & \lambda_0 \\
\end{bmatrix}
\tag{86}
\]

Letting \(x_i \) and \(e_i \) be the reference coordinates, and repeating the above steps [Eq.(70) – Eq.(86)], the transformation matrix of each incremental step can be obtained in a same way.

Then the element matrices are transformed to the global coordinate system using

\[
\bar{a} = \lambda^T a
\tag{87}
\]
\[
\bar{K} = \lambda^T K \lambda
\tag{88}
\]
\[
\bar{F} = \lambda^T F
\tag{89}
\]

where \(\bar{a}, \bar{K}, \bar{F} \) are respectively the generalized nodal displacements, element tangent stiffness matrix and generalized nodal forces, in the global coordinates system.

The Newton-Raphson method, modified Newton-Raphson method or the artificial time integration method (Liu 2007a, 2007b; Liu and Atluri 2008) can be employed to solve Eqs.(59) and (74). In this implementation, the Newton-Raphson algorithm is used. In all examples, the assumptions of linear trial functions of the rotations were employed, except where stated otherwise.

5 Numerical examples

5.1 Buckling of a beam

The \((12 \times 12)\) tangent stiffness matrix for a beam in space should be capable of predicting buckling under compressive axial loads, when such an axial load interacts with the transverse displacement in the beam. We consider a simply supported beam subject to an axial force as shown in Fig.3 and assume that \(EI = 1 \) and \(L = 1 \).
The buckling loads of the beam obtained by the present method using different numbers of elements are shown in Tab.1. It is seen that the buckling load predicted by the present method agrees well with the analytical solution (buckling load is π^2).

![Figure 3: A simply supported beam subject to an axial force](image)

Table 1: Buckling load of the simply supported beam

<table>
<thead>
<tr>
<th>Present method(Number of elements)</th>
<th>Analytical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.005</td>
</tr>
<tr>
<td>2</td>
<td>12.005</td>
</tr>
<tr>
<td>3</td>
<td>10.799</td>
</tr>
<tr>
<td>4</td>
<td>10.384</td>
</tr>
<tr>
<td>10</td>
<td>9.950</td>
</tr>
<tr>
<td></td>
<td>9.870</td>
</tr>
</tbody>
</table>

When the beam is fixed at $x_1 = 0$, while at the other end it is free and under a compressive load P, the buckling load of the beam obtained by the present method using different number of elements is shown in Tab.2 (the analytical solution is $\frac{\pi^2EI}{4L^2}$).

Table 2: Buckling load of the beam fixed at $x_1 = 0$

<table>
<thead>
<tr>
<th>Present method(Number of elements)</th>
<th>Analytical solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.0003</td>
</tr>
<tr>
<td>2</td>
<td>2.5967</td>
</tr>
<tr>
<td>3</td>
<td>2.5240</td>
</tr>
<tr>
<td>4</td>
<td>2.4994</td>
</tr>
<tr>
<td>10</td>
<td>2.4722</td>
</tr>
<tr>
<td></td>
<td>2.4674</td>
</tr>
</tbody>
</table>

5.2 Large deformation analysis of a cantilever beam with a symmetric cross section

A large deflection and moderate rotation analysis of a cantilever beam subject to a transverse load at the tip, as shown in Fig. 5, is considered. The cross section of the beam is a square with $h = 1$. The Poisson’s ration is $\nu = 0.3$. Fig.5 shows the results obtained in the analysis of the cantilever problem. It is seen that the present results using 10 elements agree well with those of Bathe and Bolourchi (1979).
Figure 4: A cantilever beam subject to a transverse load at the tip

Figure 5: Deflections of a cantilever under a concentrated load
5.3 Large rotations of a cantilever subject to an end-moment and a transverse load

An initially-straight cantilever subject to an end moment \(M^* = \frac{ML^2}{2EI} \) (Crisfield 1990) as shown in Fig.6, is considered. The beam is divided into 10 equal elements. When \(M^* = 1 \), the beam is curled into a complete circle as shown in Fig.6.

If a non-conservative, follower-type transverse load \(P^* = \frac{PL^2}{2EI} \) is applied at the tip, instead of \(M^* \), the initial and deformed geometries of the cantilever are shown in Fig.7.

5.4 Large deformation analysis of a cantilever beam with an asymmetric cross section

We consider the large deflection of a cantilever beam with an asymmetric cross section, as shown in Fig.8. The Poisson’s ratio is \(\nu = 0.3 \). The areas of the symmetric and asymmetric cross section in Fig.8 are all equal to 1.

Fig.9 shows the comparison of the deflections in \(x_3 \) direction, between the cases of symmetric and asymmetric cross sections. Fig.10 shows the deflection in \(x_2 \) direction for the cantilever beam with an asymmetric cross section. However, the deflections in \(x_2 \) direction are zero in the case of a symmetric cross section.

5.5 Large displacement analysis of a 45-degree space bend

The large displacement response of a 45-degree bend subject to a concentrated end load [Bathe and Bolourchi (1979)] is calculated as shown in Fig.11. The radius of the bend is 100, the cross section area is 1 and lies in the \(x_1 - x_2 \) plane. The concentrated is applied in the \(x_3 \) direction.

8 equal straight elements and 140 equal load steps are used in the analysis of the problem. Fig.12 shows the tip deflection predicted by the present method and Bathe and Bolourchi (1979). It can be seen that the results of the present method agree excellently with the results of Bathe and Bolourchi (1979).

5.6 A framed dome

A framed dome shown in Fig.13 is considered (Shi and Atluri 1988). A concentrated vertical load \(P \) is applied at the crown point. Each member of the dome is modeled by 4 elements.

The linear approaches of the displacements in Eq.(42) are robust for most cases in the large deformation analysis of the space frames. However, the solution was found to diverge when \(\lambda > 0.59 \) by using the linear interpolations for rotations.
Figure 6: Initial and deformed geometries for cantilever subject to an end-moment

Figure 7: Initial and deformed geometries for cantilever subject to a transverse load
for this example. Thus, the nonlinear stiffness matrix in Eq.(75), which is derived from cubic trial functions of the displacements, was used, and the converged results shown in Fig.14 were obtained.

6 Conclusions

Based on the Reissner variational principle and a von Karman type nonlinear theory in a rotated reference frame, a simplified finite deformation theory of a cylindrical rod subjected to bending and torsion has been developed. The present \((12 \times 12)\) symmetric explicit tangent stiffness matrices of the beam are much simpler than those of many others based on the primal approach or potential energy approach.
The explicit expressions for the tangent stiffness matrix of each element can be seen to be derived as text-book examples of nonlinear analyses. The proposed method is capable of handling large rotation geometrically nonlinear analysis of frames with arbitrary cross sections, which haven’t been considered by a majority of previous studies. Numerical examples demonstrate that the present method is just as competitive as the existing methods in terms of accuracy and efficiency.
Large Deformation Analyses of Space-Frame Structures

Figure 11: Model of a 45-degree circular bend

\[\frac{u_3}{R} = \frac{u_2}{R} - \frac{u_1}{R} \]

Linear solution

\[k = \frac{PR^2}{EI} \]

Figure 12: Three-dimensional large deformation of a 45-degree circular bend
The present method can be extended to consider the formation of plastic hinges in each beam of the frame; and also to consider large-rotations of plates and shells, by implementing only a von Karman type nonlinear theory in the co-rotational reference frame of each beam/plate element. It is noted that the present approach does not involve any reduced integration, or suppression of Kinematic modes.

Acknowledgement: The authors gratefully acknowledge the support of the Nature Science Foundation of China (NSFC, 10972161). This research was also supported by the World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (Grant no.: R33-10049). The second author is also pleased to acknowledge the support of the Lloyd’s Register Educational Trust (LRET) which is an independent charity working to achieve advances in transportation, science, engi-
neering and technology education, training and research worldwide for the benefit of all.

References

Han, Z.D.; Rajendran, A.M.; Atluri, S.N. (2005): Meshless Local Petrov- Galerkin (MLPG) approaches for solving nonlinear problems with large deformations and
rotations. *CMES: Computer Modeling in Engineering & Sciences*, vol.10, pp. 1-12

