A lattice-based cell model for calculating thermal capacity and expansion of single wall carbon nanotubes

Xianwu Ling and S.N. Atluri

Abstract: In this paper, a lattice-based cell model is proposed for single wall carbon nanotubes (SWNTs). The finite temperature effect is accounted for via the local harmonic approach. The equilibrium SWNT configurations are obtained by minimizing the Helmholtz free energy with respect to seven primary coordinate variables that are subjected to a chirality constraint. The calculated specific heats agree well with the experimental data, and at low temperature depend on the tube radii with small tubes having much lower values. Our calculated coefficients of thermal expansion (CTEs) are universally positive for all the radial, axial and circumferential directions, and increase with increasing temperature. The armchair tubes see very large circumferential CTEs, while the zigzag tubes see very large axial CTEs. The tube chirality affects mostly the axial and the circumferential CTEs, but not the radial CTEs.

1 Introduction

Carbon nanotubes (CNTs) possess high stiffness and strength and low aspect ratio and density. These extraordinary mechanical properties arouse tremendous interests in CNTs-based nanocomposites [Srivastava & Atluri (2002), Chung & Namburu (2004), Shen & Atluri (2004), Nasdala, Ernst & Lengnick (2005), Gao & Gao (2005)]. Thermal conductance and expansion of the CNTs are two key properties influencing the mechanical behaviors of the nanocomposites in manufacturing and operation. Electrically, a single wall carbon nanotube (SWNT) can be either metallic or semi-conducting depending on its chirality, leading to the possibility to create CNT-based nanoscale electronic device components [Maiti (2002)]. The observation that conductance of a metallic CNT changes by orders in magnitude when strained also opens the door to the potential application of strain-tuned nanoscale electronic transducer, transistor and switcher [Yang, Han & Anantram (2002)]. The thermal properties of CNTs also play critical roles in controlling the performance and stability of these nanoscale electronic components [Liew, Wong & He (2005)].

Many research efforts have been made to determine the specific heat of CNTs, both theoretically and experimentally. Yi, Lu, Zhang, Pan & Xie (1999) experimentally indicated that over the temperature range of 10 – 300°K, the specific heat of multiwall carbon nanotubes (MWNTs) follows a linear temperature dependence, which they attributed to the constant phonon spectrum. Their results indicated that the out-of-plane acoustic mode (as in a graphene sheet) dominated the heat capacity. Mizel, Benedict & Cohen (1999) measured the specific heat for MWNTs in the temperature range 1 < T < 200°K and found a quadratic temperature dependence of the specific heat at low temperature (< 50°K) and a linear temperature dependence above that. Hone, Batlogg, Benes & Johnson (2000) and Popov (2002) made similar observations as Mizel, Benedict & Cohen (1999). Cao, Yan & Xiao (2003) calculated the specific heat using a two-atom unit cell model and the lattice dynamics. The specific heat was found to be proportional to the tubule diameter at low temperatures and inversely proportional to the square of the diameter at high temperatures. Zhang, Xia & Zhao (2003) used a continuum based model to calculate the phonon dispersion relations for SWNTs, based on which they found that the axial lattice wave propagations contributed the most to the specific heat. Li & Chou (2005) calculated the specific heat of SWNTs using molecular structural mechanics and showed that the specific heat increased with increasing tube diameter within the temperature range of 25 – 350°K.

Studies on the thermal expansion of CNTs are very limited. Due to the difficulty in nanoscale experiments, most of the experiments focused on CNT bundles and ropes. Ruoff & Lorents (1995) suggested that the radial coefficient of thermal expansion (CTE) of MWNTs be essentially identical to the axial CTE. The radial CTE
of MWNTs was found to increase with temperature, nearly identical to that of the c-axis thermal expansion of graphite [Bandow (1997)]. The average tube diameter was observed to increase with increasing growth temperature [Bandow & Asaka (1998)]. Maniwa, Fujiwara, Kira & Tou (2000) reported a radial CTE range of $1.6 \times 10^{-5} - 2.6 \times 10^{-5}/K$ for the MWNTs. The X-ray studies by Yosida (2000) and Maniwa, Fujiwara & Kira (2001) on SWNT bundles suggested negative radial CTE at low temperatures and positive radial CTE at high temperatures. Although the CTE of SWNT is of fundamental importance to both the nanoelectronics and nanocomposites, experimental data are not available on the CTE for individual SWNT. Theoretical investigations of the thermal expansion of SWNTs are also lacking, and sometimes with contradicting results. Raravikar, Keblinski & Rao (2002) performed MD simulations on $(5, 5)$ and $(10, 10)$ nanotubes and reported temperature independent positive values for both the radial and axial CTEs. The MD simulations by Kwon, Berber & Tománek (2004) indicated negative CTEs for SWNTs up to 900$^\circ$K. Jiang & Liu (2004) showed that both the radial and axial CTEs of SWNTs are negative at low temperature but positive at high temperature, but they did not consider the multibody interactions in deriving the atom vibrating frequencies. Lately, the molecular structural approach by Li & Chou (2005) indicated that both the axial and radial CTEs were positive and increase with increasing temperature.

In this paper, we endeavor to analyze the specific heats and the thermal expansion based on a lattice-based cell model. In Section 2, the framework of the cell model for calculating the specific heat and the thermal expansion coefficient is presented. In Section 3, we present results and analysis of the calculated specific heats and CTEs versus temperature and tube radii for different tube chiralities. Section 4 summarizes the work.

2 Cell model for SWNT using the local harmonic approach

The cell model for SWNT is illustrated in Figure 1. In Figure 1, the representative atom A is surrounded by three nearest neighbor atoms B, C and D, forming a lattice cell that can be taken as the basic element of the tube. The second nearest neighbor atoms $B1$, $B2$, $C1$, $C2$, $D1$, $D2$ interact with A through multibody atomistic potentials (e.g., the Tersoff-Brenner potential in below). Now we introduce a polar coordinate system such that $x_A = r$, $y_A = z_A = 0$, where r is the radius of the tube. The polar coordinates of atom B are given by (r, φ_B, z_B), where $\varphi_B = \cos^{-1}x_B/r$. The positions of atoms C, D are similarly given. The second nearest neighbor atoms are located using the nearest neighbor atom coordinates. For instance, the equivalence of bond $BB1$ and CA yields

$$\varphi_{B1} = \varphi_B + (\varphi_A - \varphi_C) = \varphi_B - \varphi_C; \quad (1)$$

$$z_{B1} = z_B + (z_A - z_C) = z_B - z_C. \quad (2)$$

Similarly, the positions of $B2$, $C1$, $C2$, $D1$, $D2$ can be derived.

![Figure 1](image.png)
to the tangent plane at A. In the planar graphene, we set a
2D Cartesian coordinate system such that \(x_A = 0, y_A = 0 \).
Then, the positions of the nearest neighbor atoms in the
2D Cartesian system are given by \((r_0, z_i)\), where
\(i = B, C, D \). The graphene basis vectors \(\mathbf{a}_1 \) and \(\mathbf{a}_2 \) are
now given by
\[
\mathbf{a}_1 = B\mathbf{D} = [r(\varphi_D - \varphi_B), z_D - z_B],
\]
\[
\mathbf{a}_2 = C\mathbf{D} = [r(\varphi_D - \varphi_C), z_D - z_C].
\]
In carbon nanotubes (CNTs), the graphene is rolled up in
such a way that a graphene lattice vector \(\mathbf{c} = m\mathbf{a}_1 + n\mathbf{a}_2 \)
becomes the circumstance of the tube, where the chirality
\((n, m)\) uniquely determines the tube. Utilizing the equations
(3) and (4), the circumstance of the tube is now given by
\[
|\mathbf{c}| = \sqrt{\mathbf{c} \cdot \mathbf{c}}
= \sqrt{\left(r^2 [n(\varphi_D - \varphi_B) + m(\varphi_D - \varphi_C)]^2
+ [n(z_D - z_B) + m(z_D - z_C)]^2\right)}.
\]
Meanwhile,
\[
|\mathbf{c}| = 2\pi r.
\]
Equations (5) and (6) yield
\[
g = r^2\left([n(\varphi_D - \varphi_B) + m(\varphi_D - \varphi_C)]^2 - 4\pi^2 \right)
+ [n(z_D - z_B) + m(z_D - z_C)]^2 \equiv 0,
\]
where \(g \) is a geometric constraint that connects the tube
chirality to the coordinate variables.

LeSar, Najafabadi & Srolovitz (1989) proposed the local
harmonic (LH) approach to calculate the Helmholtz free
energy for a finite-temperature equilibrium atomic solid.
At the heart of the LH approach is the local description
of the atomic vibrations, i.e.,
\[
\omega_{ik}^2 \mathbf{I}_{3 \times 3} - \frac{1}{m_{C}} \frac{\partial^2 U_{tot}}{\partial \xi_i \partial \xi_j} = 0, \quad i = 1, 2, \ldots N,
\]
where \(m_{C} \) is the carbon atom mass, \(U_{tot} \) is the total poten-
tial energy of the system, and \(\omega_{i} \) is the vibrating frequencies
of atom \(i \) (varying from 1 to \(N \) – the total number of atoms) in the \(\kappa = 1, 2, 3 \) direction determined with the
rest atoms fixed at their equilibrium positions (as implied
by the partial derivatives). The LH model neglects the
vibration coupling among different atoms, thus providing
an computationally efficient and conceptually simple
method to calculate the free energy of a system.

In order to calculate the total potential \(U_{tot} \), the inter-
atomic potential is introduced herein. For carbon atoms,
we employ the Tersoff-Brenner potential [Brenner
(1990)], which is expressed as
\[
V_{ij} = V_R(r_{ij}) - \overrightarrow{B}_{ij} V_A(r_{ij}),
\]
for atoms \(i \) and \(j \), where \(r_{ij} \) is the distance between them.
The repulsive and attractive terms are given by
\[
V_R(r) = \frac{D^{(e)}}{S - 1} e^{-\sqrt{2} |\mathbf{r} - \mathbf{R}^{(e)}|} f_{c}(r),
\]
\[
V_A(r) = \frac{D^{(e)} S}{S - 1} e^{-\sqrt{2} |\mathbf{r} - \mathbf{R}^{(e)}|} f_{c}(r),
\]
where the function \(f_{c} \) is a smooth function used to limit
the range of the potential to the nearest neighbor atoms,
i.e., \(f_{c}(r) = 1, \frac{1}{2} \left(1 + \cos \left[\pi \left(r - R^{(1)} \right) / \left(R^{(2)} - R^{(1)} \right) \right] \right) \), \(0 \)
for \(r < R^{(1)} \), \(R^{(1)} < r < R^{(2)} \), \(r > R^{(2)} \), respectively. The
parameter \(\overrightarrow{B}_{ij} \) takes account of the multibody interaction
through the bond angles formed at atom \(i \), and is given
by
\[
\overrightarrow{B}_{ij} = \frac{1}{2} (\mathcal{B}_{ij} + \mathcal{B}_{ji}),
\]
where
\[
\mathcal{B}_{ij} = \left[1 + \sum_{k \neq i,j} G(\theta_{ijk}) f_{c}(r_{ik}) \right]^{-\delta},
\]
\[
G(\theta) = a_0 \left[1 + \frac{c_{0}^2}{d_{0}^2} \left\{ \frac{\pi}{2} \right\}^2 \right],
\]
and where \(\cos \theta_{ijk} = r_{ij}^2 + r_{ik}^2 - r_{jk}^2 / 2r_{ij}r_{ik} \) defines the angle
subtended by the adjoint carbon bonds \(i - j \) and \(i - k \).
The material parameters employed in this paper are given
in the Appendix.

The Helmholtz free energy using the local harmonic
model is now given as [LeSar, Najafabadi & Srolovitz
(1989), Foiles (1994)]:
\[
H = U_{tot} + k_{B} T \sum_{i=1}^{N} \sum_{\kappa=1}^{3} \ln \left[2 \sinh \left(\frac{\hbar \omega_{i\kappa}}{4 k_{B} T} \right) \right],
\]
where \(k_B\) and \(h\) are the Boltzmann and the Planck’s constants, respectively. The total potential \(U_{tot}\) directly influenced by a change of atom A’s position is reflected in those bonds of the first closest layers, i.e., \(AB, AC, AD\), and through the bond angles in those of the second closest layers, i.e., \(BB1, BB2, CC1, CC2, DD1, DD2\). Therefore, the total energy can be expressed as

\[
U_{tot} = V_{AB} + V_{AC} + V_{AD} + V_{BB1} + V_{BB2} + V_{CC1} + V_{CC2} + V_{DD1} + V_{DD2} + \text{bond energies independent of atom } A. \tag{16}
\]

Jiang & Liu (2004) erroneously neglected the multibody energy contributions represented by the second line on the right-hand side of equation (16), as the second nearest neighbor atoms \((B1, B2, C1, C2, D1, D2)\) could not be characterized in their model.

The vibrating frequencies at atom A can now be derived by substituting the total energy \(U_{tot}\) (16) into equation (8). In doing so, we point out the seven primary variables (namely, unknowns) in our model, i.e., \((\varphi_B, z_B), (\varphi_C, z_C), (\varphi_D, z_D)\) and \(r\). The second nearest atoms are specified using the bond equivalence as represented by equations (1) and (2). It can be readily proved for a SWNT of a homogenous temperature \(T\), the frequencies \(\omega_k\) are independent of the atom \(i\) and can be taken the same as those of the representative atom \(A\). However, we need to mention that although the global diagonalization from the quasiharmonic to the local harmonic approaches decouples the vibrating among atoms, the directional coupling within the local harmonic model cannot be readily taken as null. Hence, the off-diagonal component in the local dynamic matrix cannot be neglected as did in Jiang & Huang (2005).

Now the Helmhotz free energy of the system at finite temperature can be obtained as

\[
H = U_{tot} + k_B T N \sum_{k=1}^{3} \ln \left[2 \sinh \left(\frac{\hbar \omega_{Ak}}{4k_BT} \right) \right], \tag{17}
\]

where \(\omega_{Ak}\) is also a function of the primary variables. The total potential energy \(U_{tot}\) for the Tersoff-Brenner formalism can be written as

\[
U_{tot} = \frac{1}{2} \sum_i \sum_{j \neq i} V_{ij}. \tag{18}
\]

Using the bond equivalence, it can be shown that

\[
U_{tot} = NU_a. \tag{19}
\]

where

\[
U_a = \frac{1}{2} (V_{AB} + V_{AC} + V_{AD}) \tag{20}
\]

is the potential energy per atom. Therefore, the Helmholtz free energy per atom \(H_a\) for the LH approach can be expressed as

\[
H_a = U_a + k_B T \sum_{k=1}^{3} \ln \left[2 \sinh \left(\frac{\hbar \omega_{Ak}}{4k_BT} \right) \right]. \tag{21}
\]

The equilibrium atom positions for SWNTs at homogenous finite temperature \(T\) can be obtained by solving for the minimum of \(H_a\), i.e.:

\[
\frac{\partial H_a}{\partial \varphi_i} = 0, \quad \frac{\partial H_a}{\partial z_i} = 0, \quad \text{and} \quad \frac{\partial H_a}{\partial r} = 0, \tag{22}
\]

where \(i = B, C, D\). Note that the minimization is subjected to the nonlinear chirality constraint \(g \equiv 0\).

Once the equilibrium configuration is solved, the specific heat per mass is given by [Jiang & Huang (2005)]

\[
C_v = \frac{k_B}{m_C} \sum_{k=1}^{3} \left(\frac{1}{\sinh^2 (\omega_{Ak})} \right) \overline{\omega}_{Ak}^2, \tag{23}
\]

where

\[
\omega_{Ak} = \frac{\hbar \omega_{Ak}}{4\pi k_BT}. \tag{24}
\]

is the dimensionless frequency. For numerical convenience, (23) is approximated using a backward difference scheme.

The thermal expansion is characterized by the coefficient of thermal expansion, defined as

\[
\alpha_i = \frac{1}{l_i} \frac{dl_i}{dT}, \tag{25}
\]

where \(l_i\) is the instantaneous length given by

\[
l_c = \max (z_B - z_C, z_D - z_C), \quad l_r = r, \quad l_c = r \max (\varphi_D - \varphi_B, \varphi_D - \varphi_C),
\]

where \(z, r, c\) represent respectively the axial, radial and circumferential directions. In our numerical implementations, a central finite difference scheme is employed to approximate (25), i.e.,

\[
\alpha_i = \frac{1}{l_i^2} \frac{l_i^2 + \Delta T - l_i^2 - \Delta T}{2\Delta T}. \tag{26}
\]
3 Results and discussions

Figure 2 shows the calculated C_v for the armchair (n, n) SWNTs. In Figure 2(a), for comparison purpose, the specific heats for graphite and diamond are also shown. In Figure 2(b), the calculated C_v’s are shown for the low temperature range of $2 - 300^\circ K$, together with Hone et al. [Hone, Batlogg, Benes, et al. (2000)] measured data for SWNT ropes. Over a wide range of temperature simulated, especially for high temperature above $100^\circ K$, the present analysis agrees well with the experimental data. The results indicate that the specific heats do not depend on the radius of the nanotubes, except at temperature range of $2 - 300^\circ K$. This high temperature independence of the specific heat was attributed to the phonon states of the constituent graphene sheet [Hone, Laguno & Biercuk (2002)]. The calculated high temperature specific heats approach the theoretical limit value of $2078\, mJ/g - K$, regardless of the the chirality and radius of the tube.

Figure 3 shows the specific heats versus the radius of the nanotubes at three levels of temperature. The open symbols represent the data for the armchair tubes, while the the filled tubes represent those for the zigzag tubes $(5, 0), (10, 0), (20, 0), (30, 0)$. Figure 3 further confirms that the specific heats are radius independent at high temperature, and that at low temperature, the specific heats show a strong dependence on the tube radius for small tubes and a weak dependence on the tube radius for large tubes. No obvious differences are observed for the armchair and zigzag tubes. We also calculated the C_v for different tube chiralities $(25, m)$, where $m = 0, 3, 6, 9, 15, 20, 25$. Our results (not shown here) indicate that C_v is only very slightly dependent on the chiralities of the tubes and that C_v’s for the chirality tubes (with $m = 3, \ldots, 20$) are contained in those of the armchair and the zigzag tubes.

Our results deviates below the experimental data for temperature lower than $100^\circ K$. Figure 4 shows the contributions to the specific heat from the three atom vibrating modes for $(10, 10)$ tube. As observed by Yi, Lu & Zhang (1999), at low temperature, our results clearly show that the out-of-plane vibrating mode (the radial mode) dominates the specific heat of the SWNT. As the temperature increases, the contributions from the circumferential and then the axial vibrating modes gradually increase. Figure 5 gives the normalized atom vibrating frequencies $\bar{\omega}_k$ for the armchair tubes (n, n). It can be seen that $\bar{\omega}_k$ (expect $k = r$) is quite independent on the radius of the tubes. In Figure 5, we also plot the horizontal line of $\ln(2 \sinh \bar{\omega}) = 0$, namely, $\bar{\omega} = 0.48$. Above about $500^\circ K$, $\bar{\omega}$ turns to increase, instead of decreasing, the Helmholtz free energy. The radial mode is unique to the SWNTs [Ravavikar, Keblinski & Rao (2002)]. The discrepancy of the calculated C_v at low temperature is caused by the
Figure 3: Radius dependence of specific heats for SWNTs.

overestimated radial vibrating frequency, which should be much more constrained by the compressed out-of-plane π bonding orbitals. In the original formalism of Brenner’s potential [Brenner (2000)], the π bond is reflected in the multibody term \(\overline{B}_{ij} \) as

\[
\overline{B}_{ij} = \frac{1}{2} (B_{ij} + B_{ji}) + B_{ij}^{\pi},
\]

(27)

where

\[
B_{ij}^{\pi} = \Pi_{ij}^{BC} + B_{ij}^{DH},
\]

(28)

and where the first term \(\Pi_{ij}^{BC} \) represents the influence of radical energetics and π bond conjugation on the bond energies, and the second term \(B_{ij}^{DH} \) depends on the dihedral angle for carbon-carbon double bonds. We tried a constant \(B_{ij}^{\pi} = -0.0243 \) (taken from Brenner [Brenner (1990)] for graphite) in our calculations. The results overpredicted the low temperature specific heat (comparing to the experimental data) by nearly two times, but approached the experimental values at high temperature (starting at \(\sim 300^\circ K \)). Due to lack of \(B_{ij}^{\pi} \) data and their derivatives for SWNTs, we made no further attempt in enhancing the calculated low temperature specific heat.

Figure 4: Mode contributions to specific heats for (10, 10) tube.

Figure 5: Normalized atom vibrating frequencies for the armchair tubes.

with Li et al.’s [Li & Chou (2005)] calculations, our results indicate universal positive CTEs for the radial, axial and circumferential directions. As can be seen from 6(a), for the armchair \((n, n)\) tubes, the smaller tubes have slightly higher axial but lower radial CTEs than the larger tubes. The two large tubes \((20, 20)\) and \((25, 25)\) shows
almost the same CTEs, which means that the CTEs are radius independent for large tubes. To the best the author’s knowledge, the circumferential CTE is for the first time reported in the literature. Interestingly, for the armchair tubes, the radial and the circumferential CTEs do not follow the same path. For instance, the small tube \((5,5)\) has a lower \(\alpha_r\) but a much higher \(\alpha_c\) than those of \((10,10)\), although one might expect \(\alpha_c = \alpha_r\). This seemingly contradiction reflects the self-adjusting of the unit cell composed of atoms \(A, B, C, D\) in the minimization process of the Helmholtz free energy. For the small tubes, the paradox suggests more self-extension in the circumference.

The CTE variations for the zigzag tubes are shown in Figure 6(b). For the zigzag tubes, the tube radius has a more pronounced effect on the thermal expansion. The large tube \((30,0)\) has a radial CTE that is nearly two to three times larger than that of the small tube \((5,0)\). But the axial CTE for \((30,0)\) is about two to three times lower than that for the small tube \((5,0)\). Very high axial CTEs are observed for the small zigzag tube. Note that the axial direction for the zigzag tubes is the circumferential direction for the armchair tubes. Hence, this observation of high axial CTEs for the zigzag tubes is in accordance with the above observation of high circumferential CTEs for the armchair tubes. The explanation for this preference of thermal expansion is simple. Take the armchair tube \((10,10)\) for instance. Table 1 gives the atom positions in the 2D Cartesian system for \(T = 300, 1000^oK\). It is seen that atom \(B\) moves slightly away from atom \(A\) (at \(x_A = y_A = 0\)) nearly along the circumference, and that \(C\) moves slightly away from \(A\) nearly along the axial direction. But atom \(D\) is also seen to move slightly away along the circumference. Bond \(AD\)’s circumferential extension, together with bond \(AB\) circumferential extension and counterclockwise rotations, causes the large circumferential CTE for the armchair tubes. For the zigzag tubes, no paradox is seen for the circumferential CTEs, which now follows nearly identical paths as the radial CTEs.

Figure 6(c) shows the effect of the chirality on the thermal expansion. Opposite temperature effects are seen for the axial and the radial CTEs. Comparing the armchair and the zigzag tubes, the zigzag tube \((25,0)\) has a much larger axial CTE and a relatively lower radial CTE. And as seen above, the armchair tube has a high circumferential CTE. We need to mention that small local oscillations
Table 1: Equilibrium atom positions for (10, 10). The length unit is 10^{-2} nm.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>(-7.294, 12.597)</td>
<td>(-7.267, -12.635)</td>
<td>(14.603, 0)</td>
</tr>
<tr>
<td>1000</td>
<td>(-7.330, 12.600)</td>
<td>(-7.264, -12.688)</td>
<td>(14.640, 0)</td>
</tr>
</tbody>
</table>

are seen on the calculated CTEs. This small local oscillations are introduced by the built-in convergence criteria of the IMSL optimization package we used. Small and artificial, they are smoothed out by a polynomial fitting.

4 Summary

In summary, we develop a lattice-based cell model to calculate the specific heats and the coefficients of thermal expansion of single wall carbon nanotubes. The cell model consists of seven primary coordinate variables while subjecting to a chirality constraint.

The specific heat and thermal expansion of the SWNTs are studied. The calculated specific heats are in good agreement with experimental data and for a large range of temperatures, very close to those of graphite and diamond. The chirality dependence of the specific heat is seen only up to a few hundred Kelvins. Small tubes have much lower values at low temperature. Positive thermal expansions are observed for all the radial, axial and circumferential directions. The coefficients of thermal expansion (CTEs) increase with increasing temperatures. For the armchair tubes, both the radial and axial CTEs are only slightly influenced by the tube radii. But the armchair tubes are seen to have large values for the circumferential CTEs. The zigzag tubes have small radial and circumferential CTEs, which also weakly depend on the tube radii. But the zigzag tubes see very large axial CTEs, which also strongly depend on the tube radii. The axial and circumferential CTEs, but not the radial ones, are much influenced by the tube chiralities.

Acknowledgement: This work is supported by the Army Research Laboratory. The first author would also like to thank Dr. Brenner for providing his nanotube code that generates the zero temperature (n,m) carbon nanotubes.

Appendix

The parameters for Brenner’s potentials [Brenner (1990)]:

\[
D^{(e)} = 6.0 eV, \quad S = 1.22, \quad \beta = 21 \text{nm}^{-1}, \quad R^{(1)} = 0.17 \text{nm}, \quad R^{(2)} = 0.27 \text{nm}, \quad R^{(e)} = 0.139 \text{nm},
\]

\[
a_0 = 0.00020813, \quad c_0 = 330, \quad d_0 = 3.5.
\]

The carbon bond length for the zero temperature graphene sheet is set to 0.14507 nm. The other constants are given as: $m_e = 1.9926 \times 10^{-26}$ Kg. The Planck’s constant $h = 6.626068 \times 10^{-34}$ Js. And the Boltzmann constant $k_B = 1.3806503 \times 10^{-23}$ JK$^{-1}$.

References

Cell model for calculating thermal capacity & expansion of SWNT

