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ABSTRACT
Multi-core technology is an emerging hardware trend that
provides significant capabilities for computationally expen-
sive applications. However, it also demands a paradigm shift
in the software industry, Software developers need to think
about the best distribution of software components across
the available CPUs, and trade-off the computational effi-
ciency against the cost of re-structuring the standard se-
quential execution of software. The relationship between
the measured performance and the corresponding parame-
ters such as the number of threads and CPUs remains an
interesting open problem, especially since it is a challenge
to conduct controlled experiments.

This paper reports a case study on the use of Solaris con-
tainers to control the assignment of threads to the available
CPUs in a set of applications. We model the performance
as a function of the number of threads, the number of CPUs
and the type of program. We use two different modeling
strategies: linear regression and Neural Networks, which are
applied to the well-established Java Grande benchmark. We
observe that there is a nonlinear relationship between these
parameters and the associated performance. In addition,
neural network models are observed to be consistently bet-
ter at estimating the performance over a range of parameter
values. The results reported in this paper can therefore be
used to suitably re-structure software programs to fully uti-
lize the available resources.

Categories and Subject Descriptors
D.2 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Measurement

Keywords
Multi-Core Performance, Solaris Containers, Regression, Neu-
ral Networks.
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1. INTRODUCTION
In recent times, there has been a radical shift in the com-

puter hardware industry towards the use of multi-core chips.
In addition to enhancing the computing performance dra-
matically, multi-core processors are increasingly having a
significant impact on our daily life as a result of their deploy-
ment in several critical applications. There is a widely held
belief that the full potential of the multi-core systems can
only be exploited through the development of new languages
and computing practices. Though multi-core architectures
are capable of providing a much-needed performance boost
to applications involving computationally intensive opera-
tions, they also require a major change in the established
ways of writing code. The standard sequential execution of
code will need a complete makeover in order to fully utilize
the potential of the multi-core chips.

Parallel programming has traditionally been under the ex-
clusive purview of the extreme programmers, especially of
the associated daunting challenges that are not faced by the
programmers who write sequential code. Parallel program-
ming requires that the programmers effectively identify, ex-
pose and express parallelisms without introducing any log-
ical (or other) errors in the underlying system. Race con-
ditions, deadlocks and starvation are some of the possible
errors that are specific to parallel programs.

A key requirement for the widespread utilization of the
the multi-core technology is the development of proper tech-
niques for creating an optimum number of threads and al-
locating these threads to an optimal number of CPUs. Re-
searchers have explored this problem space extensively by
designing suitable static and dynamic models. However, the
allocation of threads to CPUs is typically handled by the
resource manager of the underlying operating system. It is
a challenge to conduct controlled experiments where a spe-
cific number of threads are executed on a specific number of
CPUs. A recent related development has been that of So-
laris containers, which is an implementation of an operating
system-level virtualization technology that provides system
resource controls. Each Solaris container can act as a totally
isolated virtual server that controls the allocation of specific
threads to specific CPUs.

This paper uses Solaris containers to investigate the effect
of the two key parameters that influence the performance of
a multi-core architecture: the number of threads that need
to be executed; and the number of CPUs available for exe-
cuting these threads. We model the measured performance
as a function of these underlying parameters using linear re-



gression and neural networks [1]. The chief contributions of
this paper are hence as follows:

1. We conduct controlled experiments on effect of the
associated parameters on the performance of multi-core
architectures, using Solaris containers.
2. We model the performance as a function of the num-
ber of threads and CPUs, thereby estimating the opti-
mal allocation of threads to CPUs.

The proposed models were evaluated on two machines with
different multi-core architectures, using the Java Grande
benchmark [11]. The results show a nonlinear relationship
between the performance and the associated parameters. In
addition, the neural network model performs consistently
better than the linear regression models. Furthermore, we
identify points where the addition of a single thread can
result in severe degradation of performance.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly summarizes related work on multi-core tech-
nology and benchmarks. Section 3 describes the experimen-
tal setup of the containers and the machines. Section 4
analyzes the measured data to build linear regression and
neural network models. Section 5 discuses the ramifications
of the results obtained, followed by the threats to validity
(Section 6) and the conclusions (Section 7).

2. RELATED WORK
In this section, we first review some representative Java

benchmarks for performance evaluation. Next, we discuss
some related work on performance measurements in parallel
applications.

2.1 Java Benchmarks
Bull et al. [3, 4, 5] introduced a set of benchmarks to

assess the performance of execution environment while run-
ning sequential programs. The suite, known as Java Grande
Benchmark, is divided into three sections comprising low
level operations, kernels computation, and large scale appli-
cations. Each section contains various inputs representing
the size of the input data. The suite is a framework for
testing various performance aspects of Java execution envi-
ronments while running the Java Grande programs.

Smith et al. [10, 11] added parallel and multi-threaded
versions of the sequential benchmarks in the Java Grande
Benchmark to assess the execution in parallel environments.
The parallel versions replace low level benchmarking with
threads, Barrier, fork join, and synchronization. Fur-
thermore, synchronization and scheduling based on JOMP
(Java OpenMP library) were added. As a precursor of par-
allel versions, multi-threaded versions were developed by re-
placing Barrier, forkjoin, and synchronization while the
rest of the benchmarks remained untouched. As reported
in [10] the sequential versions outperformed the concurrent
versions in most cases.

The DaCapo benchmark [2] is a Java benchmark contain-
ing a set of real world applications with extensive memory
loads. Several benchmarks such as parsers, optimizers and
XML transformers have been added to the DaCapo frame-
work. The benchmarks are accompanied by three inputs
(small, default, and large). There are several other Java
benchmarks such as The Tak Benchmark, Java Generic Li-
brary (JGL), RMI Benchmark Suite and JavaWorld bench-
mark: see [3] for a complete description.

2.2 Auto-Tuning Performance
Several existing papers have discussed the automatic opti-

mization of performance for specific programs, based on the
dynamic allocation of threads and CPUs. In [15], the au-
thors focus on identifying the near optimum configuration of
tuning parameters from a search space. They evaluate the
ability of different number of processors to maximize the
performance in terms of criteria such as speed, efficiency,
and cost-benefit ratio.

In [8, 9], the authors handle large search spaces of possi-
ble tuning parameters by reducing the search space using the
characteristic information of parametrized parallel patterns.
Schaefer [8] focuses on the problem of large search space
for all possible configurations of tuning parameters: number
of threads, load per worker, number of worker threads etc.
Instead of testing all possible configurations of these param-
eters, this method uses the characteristics of parametrized
parallel patterns, master-worker model and pipelines for lim-
iting the search space of possible values of tuning parame-
ters. Schaefer et al. [9] provide constructs to specify tunable
variables in the source code and add meta-information.

Hall et al. [7] propose a dynamic approach of increasing
and decreasing the number of threads depending on the
performance. They use it to change the degree of paral-
lelism in compiler parallelized code depending on the per-
formance. The work also proposes a method for adaptive
thread management that computes the number of threads
to use. Sondag et al. [12, 13] discuss assignment of threads
on heterogeneous multi core processors by clustering instruc-
tion blocks into similar types and mapping the cluster types
to cores which can fulfill the requirements of these blocks.

A methodology for creating tools which dynamically mon-
itor execution and address performance drawbacks through
optimization techniques that adjust tuning parameters was
proposed by Cesar et al. [6]. Dynamic monitoring and op-
timization is necessary since an application may behave dif-
ferently in each execution, thus making a static approach
inefficient. This method consists of measure points (param-
eters used for model evaluation), performance functions that
identify drawbacks from various measure points, and a tun-
ing tool that addresses these drawbacks through actions such
as modification of tuning parameters.

In this paper, we report the result of a case study focus-
ing on thread-to-CPUs assignment using Solaris containers.
The experiment has been conducted on two machines capa-
ble of treating multi-threaded applications in different ways.
Though, the results obtained show consistency between ma-
chines, it demonstrates their deficiencies when the number
of threads exceeds the number of CPUs allocated for each
Solaris container.

3. EXPERIMENTAL SETUP
In this section, we describe the Solaris containers, the

multi-core machines and the experiments conducted.

3.1 Solaris Containers
Solaris container, first introduced in 2005 as part of Solaris

10, is a server virtualization implementation that provides
isolation between applications. Applications can be man-
aged independently and resources can be allocated to them
dynamically. One of the major goals of introducing the So-
laris containers was to manage workload resources and gain
control over their execution. The resource management in



Solaris containers makes it possible to: restrict access to spe-
cific resources, isolate workloads, and define security mech-
anisms to control their execution. Workloads are defined
using projects, which are used to create containers and allo-
cate resources such as CPUs. The Solaris command create

is used to create projects and containers.
During the creation of the containers, the maximum num-

ber of CPUs was set using pset.max, an argument to the
create pset command. By default, the minimum num-
ber of CPUs is set to 1. However, since a Solaris con-
tainer automatically changes the number of allocated CPUs
until the maximum number of CPUs is reached, we set
the minimum number of CPUs involved in each container
(pset.min) to be equal to the maximum number of CPUs,
i.e. pset.max = pset.min. This ensured the correctness of
the exact number of CPUs allocated for each container and
the validity of the experiments.

3.2 Machines Used
For our experiments, we used two Sun machines. The

first was a Sun Fire T1000 with a UltraSPARC T1 proces-
sor, which is a multi-threaded, multi-core CPU. This ma-
chine supports 32 concurrent hardware threads. Accord-
ing to Sun, this machine is well-suited for tightly coupled
multi-threaded applications [14]. It contains one 1.2 GHz
UltraSPARC T1 processor with 32 GB memory. In addi-
tion, it uses CoolThreads technology, thereby offering eight
cores with four threads per core. According to Sun, the goal
of designing this processor was to run as many concurrent
threads as possible [14].

The second machine was a Sun SPARC Enterprise M3000
system that supports eight concurrent hardware threads.
According to Sun, this machine is ideal for single-threaded
workloads. It is powered by a SPARC64 VII processor, with
64 GB memory and a 2.75 GHz quad-core processor with
two threads per core [14].

3.3 Benchmarks Used
The Java Grande Multi-threaded Benchmark was used for

the experiments reported in this paper. The benchmark con-
sists of three sections. Section one focuses on low level oper-
ators such as forking and joining threads ForkJoin, barrier
synchronization Barrier, and synchronization of blocks and
methods Sync. Section two concentrates on kernel processes
and contains several computationally expensive applications
such as Fourier coefficient analysis, LU factorization, succes-
sive over-relaxation, IDEA encryption, and sparse matrix
multiplication. Section three is a set of large scale appli-
cation such as molecular dynamic simulation, Monte Carlo
simulation, and 3D ray tracer. The benchmark is designed
in such a way that the number of threads created and used
can be specified as an argument. Further description of this
benchmark can be found in [10].

3.4 Setup
We used Solaris containers to create various combina-

tions of CPUs. For the T1000 machine, we created five
projects (i.e. containers) with one, two, four, eight, and six-
teen CPUs, which were called One-CPU, Two-CPU, Four-
CPU, Eight-CPU, and Sixteen-CPU respectively. For the
M3000 machine, we created three containers with one, two,
and four CPUs. The poolcfg command was used to create
processor sets, pools, and the required associations. Further-

more, the projadd command was used to create projects and
their associations to the pools created. The allocation of the
logical CPU units to each processor set was handled by the
Solaris container automatically. We ran each benchmark for
a set of threads ranging from 1 to 50 on each container on
each machine. We used the mpstat UNIX command to mon-
itor the utilization of CPUs and the correctness of assign-
ments. For our experiments with the Java Grande bench-
mark, performance was measured as the the number of op-
erations accomplished in a given time period. The measured
data was used for statistical analysis as described below.

4. DATA ANALYSIS
In this section, we first provide some plots visualizing the

measured performance data. Then, we describe the results
of modeling this data using regression and neural networks.

4.1 Visualization
Figure 1 depicts the performance over a range of threads

and CPUs. The x-axis shows the number of threads gen-
erated for the experiments reported in this paper, and the
y-axis represents the performance on a logarithmic scale in
order to provide a reasonable scaling mechanism for the mea-
sured performance.

Figure 1(b) shows the performance of each Solaris con-
tainer for a specific program: Section1-ForkJoinSimple.
As the number of threads increases, the performance dete-
riorates. In addition, though there are improvements when
additional CPUs are added to the container, the difference is
not significant when four more CPUs are added to the con-
tainer. The results may be interpreted as a suggestion that
for applications similar to the fork-join program, the most
effective option may be to employ up to four CPUs. On the
other hand, Figure 1(c) depicts data for a synchronization
program. The figure shows that the cost of synchronization
causes a loss in performance when the number of CPUs used
is more than one.

Figure 1(a) demonstrates the performance of each Solaris
container for: Section1-BarrierTournament. The figure
indicates that for an application similar to BarrierTourna-

ment, the performance is considerably high when each thread
is assigned a separate CPU. However, the performance drops
drastically when even one additional thread is added to a
Solaris container that has a one-to-one mapping between
threads and CPUs. Ideally, we would have expected to see
a smoother degradation in performance. Similar cases are
depicted in Figures 1(e), 1(f) and 1(g).

Figures 1(d), 1(h) and 1(i) show more ideal cases where in-
creasing threads actually improves the performance. These
benchmarks are typical instances of parallel applications.
For instance, matrix multiplication and Monte Carlo sam-
pling are cases where we may split the process into inde-
pendent sub-processes that are handled separately. We also
observe a significant improvement when using more CPUs.

4.2 Linear Regression Models
In many application domains, the measured (target) vari-

able is a function of one or more attributes. Researchers are
often interested in modeling and understanding the possible
inter-relationships between these attributes, and their effect
on the measured quantity. Though these attributes may be
correlated, it is often assumed (for ease of analysis) that they
are independent of each other. In addition, it is often also of
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Figure 1: Performance as a function of threads and CPUs for Solaris containers on Sun Fire T1000.

interest to measure the contribution of each such attribute
to the target variable. Linear regression is a well-known tool
to model and understand such relationships.

A linear regressions model fits a best possible line among
observed data such that the sum of squares of the residuals
is minimized. A linear model of data is a linear equation of
the form Y = C0.X1 + C1.X2 + · · · + Cn.Xn + ε, in which
the Xi variables correspond to attributes or parameters and
Y corresponds to an outcome variable. Regression is the
process of computing the values for the coefficients Ci : i ∈
[0, n] that best fit the actual data.

There are several possible ways to fit a line to points in
space of attributes, resulting in several different ways to con-
struct the desired models. Model checking is therefore re-
quired to identify the best possible model. The coefficient

of determination R2 and mean squared error (MSE) are two
popular measures of the precision of the constructed models.
The R2 measure can be used for interpreting the correlation
between two variables i.e. it measures how the change in one
variable affects the change in the other variable. A value of
R2 = 1 represents perfect correlation between two variables,
while R2 = 0 represents the lack of any correlation. The R2

measure can also be used to represent the quality of fit of a
model to the measured data.

Based on observed data in Figure 1, we hypothesized the
following relationship between the measured performance
and the associated attributes (number of threads and CPUs):

log(Performance) = C0 + C1 ∗ log(nCPU) (1)

+ C2 ∗ log(nThread)



where the target (i.e. response) variable Performance is a
linear function of the number of threads (nThread) and the
number of CPUs (nCPU) in the logarithmic (base 10) space.
As mentioned before, performance represents the number of
operations accomplished in a given time period.

We fit various linear regression models to predict the per-
formance as a function of the number of threads and the
number of CPUs. In order to estimate the individual contri-
bution of each of the attributes (nThread, nCPU), we gen-
erated linear regression models that predicted Performance
using: (a) nThread alone; (b) nCPU alone; and (c) both
nThread and nCPU . In addition, we also generated a lin-
ear regression model that does not operate in the logarithmic
space. The assessment of these models indicated that the re-
lationship hypothesized in Equation 1 results in the best fit
to the measured data. The quality of fit with such a model
was then measured using the R2 and MSE measures. Table 1
summarizes the results of applying this model on the Java
Grande benchmark dataset, on the two different machines
described in Section 3.2. The table presents the regression
coefficients that provide the best fit to the measured data,
and the values of the R2 and MSE measures.

Table 1 indicates that the R2 values for T1000 machine
varies from 0.499 to 0.944, whereas, the values of R2 for
M3000 machine change between 0.194 to 0.977. For most
benchmarks, using Equation 1 resulted in good models. The
model performed poorly (Section3: RayTracerInitSizeA) only
when the underlying data was very noisy.

An investigation of p-values associated with the coeffi-
cients of the regression models (i.e. C0, C1, C2) showed that
the variables nThread and nCPU have significant contribu-
tions to the measured Performance i.e. p-values computed
at 95% level of confidence were significantly less than 0.05.
In addition, we noticed that for the benchmarks programs
in Section-1, increasing number of CPUs increases the per-
formance significantly—positive values for C1. The synchro-
nization programs (e.g. Section1SyncMethod) were the only
exceptions—here C1 is negative. This is expected because
increasing the number of CPUs for these programs imposes
an extra cost of synchronizing the CPUs.

The values computed for C2 were mostly negative. This
indicates that increasing number of threads degrades the
performance. The only exceptions were Section2: SeriesKer-
nelSizeA, Section2: SpareMatmultKernelSizeA, Section3: Mon-
teCarloRunSizeA, Section3: MonteCarloTotalSizeA, and Sec-
tion3: RayTracerRunSizeA. These programs correspond to
applications that are suitable for parallelism. For instance,
matrix multiplication and Monte Carlo methods are known
to be suitable for parallel executions. The computed values
for C2 are hence reasonable. An important implication is
that not every application is suitable for parallelism, and
predictive models may be used to identify applications suit-
able for parallel execution.

Linear regression models are hence appropriate tools to
investigate the influence and contributions of the predictors
(nThread, nCPU) to the target variable (Performance).
The magnitudes and signs of regression coefficients reflect
the level of contribution of each variables used.

4.3 Neural Network
In addition to the linear regression model described above,

we also implemented a neural network model. Neural net-
works are a well-established machine learning technique for

classification and regression problems in several different ap-
plication domains [1]. Nodes in the network represent indi-
vidual variables (or hidden state abstractions), while the
connection between the nodes represent the relationships
between the variables. The basic neural network model
is similar to the linear regression model, but suitable bias
and transformation functions can be readily incorporated to
model complex relationships between the input attributes
and the target variable—see Figure 2.

In our trained neural network model, the target variable
(i.e. Performance) for each program in the benchmark (5, 5, 7
in each of the three sections) is still modeled as a function of
the number of CPUs and the number of threads in log-space,
as described in Equation 1. We used a two-layer neural net-
work with two inputs (log(nThread), log(nCPU)), one out-
put (log(Performance)) and one hidden layer with 15 nodes,
as shown in Figure 2.

Figure 2: Block diagram of the Neural Network
model used in the experiments.

In Figure 2, the terms W and B denote the matrices of
weights and bias values that can be tuned to improve the
quality of fit of the relationship between the inputs and the
output. In order to enable the use of such a model to pre-
dict the best distribution of the threads across the available
CPUs, we used the train-validate-test process that is typi-
cally used in the machine learning literature i.e. we created
a 60 − 20 − 20% split of the available data [1]. In other
words, 60% of the data (for each program on each machine,
over the range of CPUs and threads) was used to train the
parameters of a neural network, which were tuned further
(i.e. validated) using a separate 20% of the dataset. The
network with the tuned parameters was then tested on the
remaining 20% of the available data. This experiment was
repeated ten times and the results in Table 2 present the
average R2 value and MSE during these experiments.

Table 2 shows that the neural network model consistently
provides a good fit to the measured data—the quality of fit
is better than the linear regression model. As mentioned
above, the weights and bias components, along with the
nodes in the hidden layer and the nonlinear transforma-
tion, enable the network to build a much more sophisticated
model than the standard linear regression technique. As
a result, the prediction capabilities are better than that of
the linear regression model, even in cases where there is a
lot of noise in the measured performance data. The neu-
ral network model’s performance is not good only in cases
where there is a large amount of noise in the measured per-
formance over the set of threads and CPUs. However, the
neural network model operates like a black-box—unlike the
linear regression models, it is difficult to thoroughly analyze
the effect of the individual parameters involved in the net-



Table 1: Summary of linear regression models of the form log(Performance) = C0 + C1 ∗ log(nCPU) + C2 ∗
log(nThread) fitted for two machines.

Benchmark T1000 M3000
Programs C0 C1 C2 R2 MSE C0 C1 C2 R2 MSE
Section1:BarrierSimple 11.460 0.149 -1.356 0.905 0.151 12.973 0.360 -1.366 0.900 0.164
Section1:BarrierTournament 11.457 1.554 -3.772 0.718 5.234 9.817 0.817 -3.071 0.651 4.024
Section1:ForkJoinSimple 9.958 0.519 -1.620 0.742 0.776 9.951 0.899 -1.212 0.977 0.026
Section1:SyncMethod 12.846 -0.036 -0.915 0.894 0.076 15.384 -0.489 -1.033 0.681 0.650
Section1:SyncObject 12.819 -0.040 -0.907 0.891 0.078 15.435 -0.450 -1.052 0.677 0.439
Section2:SeriesKernelSizeA 5.424 0.892 0.184 0.944 0.047 7.507 0.962 0.037 0.950 0.015
Section2:LUFactKernelSizeA 3.602 1.098 -2.331 0.753 1.763 3.454 0.595 -2.168 0.790 1.000
Section2:CryptKernelSizeA 7.483 0.787 -0.053 0.741 0.208 8.769 0.887 -0.023 0.713 0.101
Section2:SORKernelSizeA 2.179 0.799 -0.748 0.841 0.198 3.305 0.711 -1.062 0.866 0.160
Section2:SparseMatmultKernelSizeA 2.452 0.710 0.352 0.936 0.039 5.238 0.943 0.132 0.874 0.207
Section3:MolDynRunSizeA 11.758 0.735 -1.139 0.838 0.294 13.129 0.412 -1.451 0.907 0.172
Section3:MolDynTotalSizeA -2.317 0.735 -1.133 0.842 0.283 -0.930 0.414 -1.448 0.909 0.168
Section3:MonteCarloRunSizeA 5.112 0.828 0.153 0.938 0.044 7.184 0.944 0.064 0.938 0.019
Section3:MonteCarloTotalSizeA -4.08 0.742 0.131 0.936 0.036 -2.141 0.925 0.066 0.931 0.020
Section3:RayTracerInitSizeA 8.851 0.240 -0.809 0.499 0.561 9.865 0.187 -0.547 0.194 0.958
Section3:RayTracerRunSizeA 6.382 0.759 0.008 0.933 0.039 9.324 0.856 -0.445 0.847 0.070
Section3:RayTracerTotalSizeA -3.568 0.741 -0.027 0.931 0.039 -0.601 0.790 -0.516 0.861 0.065

Table 2: Result of modeling the performance with
Neural Networks.
Benchmark T1000 M3000
Programs R2 MSE R2 MSE
S1:BarrierSimple 0.991 0.051 0.908 0.003
S1:BarrierTournament 0.924 0.651 0.961 0.174
S1:ForkJoinSimple 0.996 0.034 0.995 0.004
S1:SyncMethod 0.992 0.002 0.963 0.043
S1:SyncObject 0.994 0.002 0.937 0.042
S2:SeriesKernelSizeA 0.931 0.101 0.851 0.087
S2:LUFactKernelSizeA 0.982 0.036 0.961 0.193
S2:CryptKernelSizeA 0.994 0.004 0.902 0.020
S2:SORKernelSizeA 0.984 0.002 0.963 0.011
S2:SparseMatmultKernel- 0.971 0.017 0.923 0.035
S3:MolDynRunSizeA 0.968 0.057 0.938 0.048
S3:MolDynTotalSizeA 0.967 0.052 0.935 0.034
S3:MonteCarloRunSizeA 0.990 0.003 0.978 0.013
S3:MonteCarloTotalSizeA 0.992 0.022 0.943 0.008
S3:RayTracerInitSizeA 0.612 0.385 0.595 0.496
S3:RayTracerRunSizeA 0.986 0.007 0.937 0.045
S3:RayTracerTotalSizeA 0.985 0.006 0.938 0.056

work. We therefore do not include the network parameter
values in Table 2.

Finally, Figures 3(a)–3(b) show the regression results of
the trained neural network on the test dataset correspond-
ing to the execution of a range of threads for two specific
programs on the available range of CPUs. Figure 3(a) cor-
responds to the execution on the T1000 machine, while Fig-
ure 3(b) corresponds to the execution on the M3000 ma-
chine. The figures show that the regression functions match
the true performance very well. They can hence be used to
predict the performance and decide on the best distribution
of threads across the available CPUs.

5. DISCUSSION
In this section, we discuss the ramifications of the exper-

imental results tabulated in the previous section.

5.1 A Comparison with Related Work
Smith et al. [11, 10] reported the results of experiments

conducted on JDK 1.2.1 04, JDK 1.3.1, JDK 1.3.0 run-

ning on HPC 18 400 MHz UltraSparc II processors with
Solaris 2.7, and SGI JDK 1.3.0 running on 128 400 Mhz
MIPS R12000 processors with IRIX 6.5. The results re-
ported in [10, 11] indicate that for benchmarks related to
threads, BarrierTournament showed best performance fol-
lowed by BarrierSimple, while ForkJoin had the worst per-
formance. Our experiments show different results: Barrier-
Tournamen performs worse than ForkJoin. Furthermore, we
obtained different results regarding the LUFactKernel, Mon-
teCarlo, and RayTracerRun. Though [11] reports increase of
speed for LUFactKernel, we observed that the performance
increases as long as the number of threads and CPUs are bal-
anced. Upon adding more threads, the performance drops
sharply—see Figure 1(e). We obtained results for Monte-

Carlo and RayTracerRun that match with those reported in
[11]. The reason for performance improvement while adding
more threads to the execution of these programs is their in-
herent nature that supports parallelism. In addition, the
results obtained for ForkJoin are consistent with those re-
ported in [11]. It is a well-known fact that performance
obtained using multi-core processors is a function of several
factors such as the chip architecture, memory bandwidth
and input programs. The goal in this paper is to analyze
the contribution of some key factors (threads, CPUs), and
advocate the use of strong statistical tools to model and
hence predict the performance for any given application.

5.2 M3000 vs. T1000
Though there was no intention initially to compare the

performance of M3000 (Java version 1.5) with T1000 (Java
version 1.6), we can report that the performance of M3000
was considerably better than T1000. There could be several
reasons for this observation. M3000 is basically a stronger
machine than T1000. However, according to technical speci-
fication of both machines, T1000 is supposed to work better
for multi-threaded application. Our results do not support
this statement. Java compiler versions may have had some
influence on the result.

From architectural point of view all cores in the Ultra-
SPARC T1 machine share a single floating point unit, while
each core in the SPARC64 machine has one floating point
unit. As a matter of fact, the chip architecture has signifi-



(a) Program Section2:SORKernelSizeA on T1000. (b) Program Section1:SyncObject on M3000.

Figure 3: Plots showing the regression performance for two specific programs, over all combinations of CPUs
and threads using neural networks.

cant impact on performance. In addition, for highly parallel
applications where there is little or no sharing or synchro-
nization between threads, the performance is expected to
be better on a 2.75GHz than on a 1.2Ghz machine. Fur-
thermore, other factors (in addition to number of CPUs and
threads) may affect the measured performance.

Figure 4 compares the performance of two machines for
one of the benchmarks.

6. THREATS TO VALIDITY
The subject programs used in the study were middle-size

Java programs. The models learned for these benchmarks
may or may not perform well on other programs. Hence,
we cannot draw any general conclusion that the results can
be applicable to other programs written in other languages.
Moreover, the architecture of other machines may influence
the precision of models developed. However, the proposed
schemes can be easily used to generate suitable models based
on the data obtained for other specific applications.

The Solaris projects were defined according to the Solaris
containers created. However, the executions of benchmarks
for all Solaris projects were performed with significant over-
lap. Specifically, we ran each benchmark 50 times, which
reflects the number of threads created each time. These
tests were conducted simultaneously for the five projects de-
fined on T1000 i.e. One-CPU, Two-CPU, Four-CPU, Eight-
CPU, and Sixteen-CPU. Similarly, we ran the benchmarks
for the three projects defined on M3000, i.e. One-CPU, Two-
CPU, and Four-CPU, simultaneously. Since the exact num-
ber of physical processors in each machine is one, there is a
cost overhead associated with creating Solaris containers and
running the applications allocated to them simultaneously.
This simultaneous execution of benchmarks assigned to each
container may introduce some construct threats. However,
the performance degradation due to simultaneous execution
is proportional to the number of CPUs allocated to each
Solaris container and has little or no effect on the results.

We had Java 1.5 and 1.6 installed on T1000 and M3000
respectively. There has been some research work empha-

sizing the role of Java compiler on performance. For in-
stance [4] concludes that difference in best and worst overall
performance being less than a factor of two is due to the
improvements in Java compiler technology. Furthermore, it
has been reported in [5] that the difference in effectiveness of
optimization in different compilers leads to major differences
in the performance, as in case of Sun JDK 1.2.1. Though
the Java compiler version might affect the result while com-
paring two machines, it does not affect the result when the
experiments are run independently on the machines. We
constructed some models and observed the true behavior of
each program on each machine independently, and confirmed
that the constructed models hold true for both machines.

7. CONCLUSION AND FUTURE WORK
In this paper, we have reported the result of a case study

conducted on two machines. We used Solaris containers in
order to have a valid assignment of CPUs to each multi-
threaded application in the Java Grande benchmark. Us-
ing regression models, we showed that the measured per-
formance is a linear function of the number of CPUs and
the number of threads in the logarithmic space. Results
show that both parameters (number of CPUs and threads)
make significant contributions to the measured performance.
We also observed that a more sophisticated neural network
model provides better prediction capabilities than the stan-
dard linear regression models. Overall, we observed that
the performance increases as long as there is a on-to-one
mapping between the number of threads and the number
of CPUs in each Solaris container. However, the perfor-
mance deteriorated drastically when the number of threads
exceeded the number of CPUs allocated to a container.

This work is part of a research project concerning auto-
tuning of parallel applications. The project intends to pro-
vide an online mechanism for allocating threads to CPUs
while running applications. Though Solaris containers allow
resource allocation, they lack automated mechanisms for dy-
namic assignment of threads to CPUs. In addition, we would
like to compare the performance of sequential programs to
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Figure 4: A comparison of performance for M3000
and T1000.

their multi-threaded versions, in order to understand when
parallelism really improves the performance. In the long-
term, we aim to investigate the adaptive testing of multi-
threaded applications running on multi-core systems.
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