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Information Content

Measure information gained by specific observations of a
random variable X .

Occurrence of a highly improbable event provides more
information than the occurrence of a very likely event.

The measure of information content therefore depends on
probability distribution p(x).

Need a monotonic function of probability p(x) that
expresses the information content of the variable.
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Requirements

For two unrelated events x , y information gained by
observing both of them is the sum of information gained by
observing each event separately:

h(x , y) = h(x) + h(y) (1)

If two events x , y are statistically independent:

p(x , y) = p(x) · p(y) (2)

h(x) is therefore a logarithmic function of p(x):

h(x) = − log p(x) (3)

Negative sign ensures information gain is ≥ 0. Logarithm
to base 2 implies the units of h(x) are bits.
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Definition

Entropy of the random variable is the expectation of h(x)
with respect to p(x):

H[X ] = −
∑

i

p(xi) log p(xi) (4)

limp→0 p log(p) = 0 i.e. if p(x) = 0 then p(x) log p(x) = 0.
Extension to continuous random variables:

H[X ] = −
∫

p(x) log p(x) dx (5)
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Illustrative Example

Uniform distribution: high entropy; distribution with sharp
peaks: low entropy.
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Encoding Information

Entropy of a random variable X with eight possible states
that are equally likely:

H[X ] =
8∑

i=1

1
8

log2
1
8

= −8× 1
8

log2
1
8

= 3(bits). (6)

Compute lower bound on number of bits needed to
represent state of a random variable.

Used in Shannon’s noiseless coding theorem.
Measures degree of disorder in the system.
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Relative Entropy

Relative entropy or Kullback-Leibler Divergence of
probability distributions p(x),q(x):

KL(p‖q) = −
∫

p(x) log
q(x)

p(x)
dx (7)

Measure divergence between the unknown distribution:
p(x) and the approximate estimate: q(x).

Not symmetrical: KL(p‖q) 6= KL(q‖p).
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Mutual Information

Given joint distribution p(x , y) between variables X ,Y ,
Mutual Information is defined as:

I[X ,Y ] = KL(p(x , y)‖p(x)p(y)) (8)

= −
∫ ∫

p(x , y) log
p(x)p(y)

p(x , y)
dx dy

Related to conditional entropy—reduction in uncertainty
about X as a result of knowledge about Y :

I[X ,Y ] = H[X ]− H[X |Y ] = H[Y ]− H[Y |X ] (9)
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Convexity

Function f (x) is convex if every chord is on or above the
function.

If f (x) is convex, −f (x) is concave.
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Further Reading

Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. Second Edition, Wiley-Interscience,
2005.

C. Bishop. Pattern Recognition and Machine Learning.
Springer publishing house, 2007.
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Session 3: Stochastic Sampling

9.00–10.30:
Introduction.
Statistical analysis; hypothesis testing.
Basic probability, Bayes’ rule.

11.00–12.30:
Bayesian classification.
Bayesian regression.
Bayesian inference.

14.00–15.30:
Information theory.
Stochastic sampling.

16.00–17.30:
Markov decision processes.
Partially observable Markov decision processes.
Discussion.
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Introduction

Applicable in domains where multiple hypotheses need to
be tracked.

The functional form of the true underlying distribution is
unknown.

Probabilistic representation for each hypothesis.

Iteratively identify the most likely hypotheses, i.e., direct
focus towards the more important hypotheses.
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Sampling Methods

Standard sampling algorithms: adaptive rejection
sampling, importance sampling, sampling importance
resampling.
Advanced sampling algorithms: Markov Chain Monte Carlo
(MCMC), Gibbs sampling, slice sampling, hybrid approach.
Several applications:

Tracking multiple humans in image sequences.
Finding most likely robot location, i.e., robot localization.
Finding likely locations of celestial objects, i.e., in
astronomy.
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Mathematical Formulation

Bayes filter:

∀xt :bel(xt) =

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1 (10)

bel(xt) = η p(zt |xt) bel(xt)

Need to model target distribution f (x) that cannot be
observed directly.

Use a proposal distribution g(x) to estimate f (x).

Function f corresponds to bel(xt) while g corresponds to
bel(xt).
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Target Distribution

Need to generate samples from a target distribution:

E [f ] =
1
L

L∑
l=1

f (z l) (11)
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Proposal Distribution

Generate samples from a proposal distribution.
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Re-weighting Samples

Re-weight samples based on how well they represent the
target distribution.
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Importance Sampling Formulation

Assign probability to each hypothesis.
Generate initial set of samples of each hypothesis based
on the corresponding probabilities.

In each of a finite set of iterations:
Adjust samples to account for dynamic changes in the
system: prediction step.
Use observations of the system to update probabilities of
the samples: correction step.
Resample, i.e., generate samples of each hypothesis
proportional to the updated probabilities.
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Importance Sampling

The typical importance sampling framework:
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Robot Localization

Some video examples:
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Illustrative Example: Mutation Testing

Mutation testing: fault-based testing technique.
Inject synthetic faults that are generated using well-defined
mathematical transformations i.e., mutation operators.

Mutants detected by test cases are considered dead, while
those left unexposed are considered alive.
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Mutation Testing Challenges

The test cases are adequate if they produce different
results on the original program and the faulty version, i.e.,
the mutant.
Typically, the test suites are augmented to address
mutants that remain unexposed.
Cannot examine all possible mutants of all mutation
operators.
Reliable operation requires the exposure of all mutants.
Focus attention on the important mutation operators whose
mutants are more difficult to expose with the existing test
suites.
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Sampling-based Formulation

Probability for each mutation operator: pi for µi ∀i ∈ [1,N].

Select initial (small) set of mutant samples of each
operator, choosing uniformly or proportional to operator
probabilities:

numMutantSamps0
i '

{
c uniform
∝ Nmi

NM proportional
(12)

Mohan Sridharan, Akbar Namin ICSE-2010 Tutorial



Information Theory
Stochastic Sampling

Summary

Stochastic Sampling
Mutation Testing
Sampling-based Mutation Testing

Sampling-based Formulation

Probability for each mutation operator: pi for µi ∀i ∈ [1,N].

Select initial (small) set of mutant samples of each
operator, choosing uniformly or proportional to operator
probabilities:

numMutantSamps0
i '

{
c uniform
∝ Nmi

NM proportional
(12)

Mohan Sridharan, Akbar Namin ICSE-2010 Tutorial



Information Theory
Stochastic Sampling

Summary

Stochastic Sampling
Mutation Testing
Sampling-based Mutation Testing

Sampling Iterations

Iterate:
Examine the ability of existing test suites to expose
selected mutants.
Increase probabilities of operators whose mutants are
unexposed.

pt
i = pt−1

i +
δpt

i
totalMutantSampst (13)

δpt
i = −1.0 + 2.0

numAlivet
i

numMutantSampst
i

: ∈ [−1.0,1.0]

totalMutantSampst =
N−1∑
i=0

numMutantSampst
i

Generate samples of each operator proportional to
probabilities.
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Probability Updates

Over a few iterations, sampling converges on operators whose
mutants are difficult to expose: MATLAB results!
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Innovations

Sample without replacement: system is stationary.
Adapt number of samples based on current uncertainty:

N t+1 =
1
2ε
χ2

qt−1,1−δ (14)

' qt − 1
2ε

{
1− 2

9(qt − 1)
+

√
2

9(qt − 1)
z1−δ

}3

Entropy in operator probability distribution:

E t = −
N−1∑
j=0

pt
j · ln(pt

j ) (15)

Terminate when reduction in entropy is small:
E t − E t−1 ≤ threshold
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Samples Examined

Entropy-based termination and adaptive sampling enables
system to focus on important operators, while examining a
small set of samples.
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Summary

Information theoretic measures an elegant way to encode
information.
Stochastic sampling ideal for tracking multiple hypotheses.

Mutation testing used as the illustrative example.
Adaptive sampling and information theoretic measures
enable reliable and efficient program testing.

Sampling is well-suited for many other software testing
applications.
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Other Sampling Methods

First-order Markov chain: series of random variables
x (1), . . . ,x (M) that satisfy the first-order Markov property.

p(x (m+1)|x (1), . . . ,x (m)) = p(x (m+1)|x (m)) (16)

Markov Chain Monte Carlo (MCMC) sampling.
Gibbs sampling: MCMC algorithm that is a special case of
the Metropolis-Hastings algorithm.
Gibbs sampling updates random variables in a particular
order: WinBUGS demo!
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Further Reading

C. Bishop. Pattern Recognition and Machine Learning.
Springer publishing house, 2007.

S. Thrun and W. Burgard and D. Fox. Probabilistic
Robotics. MIT Press, 2005.

Thomas M. Cover and Joy A. Thomas. Elements of
Information Theory. Second Edition, Wiley-Interscience,
2005.
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