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Statistical analysis; hypothesis testing.
Basic probability, Bayes’ rule.
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Session 2: Bayesian Classification

9.00–10.30:
Introduction.
Statistical analysis; hypothesis testing.
Basic probability, Bayes’ rule.

11.00–12.30:
Bayesian classification.
Bayesian regression.
Bayesian inference.

14.00–15.30:
Information theory.
Stochastic sampling.

16.00–17.30:
Markov decision processes.
Partially observable Markov decision processes.
Discussion.
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Classification Basics

Broad categories: supervised (labeled samples);
unsupervised (no labeled samples).
Group data based on similarity measures.
Several sophisticated techniques exist:

Supervised: decision trees, support vector machines, naive
Bayes.
Unsupervised: nearest neighbors, clustering.

Choice of classifier based on data and application.
Probabilistic methods explicitly model the noise in input
data!
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Clustering Data Samples

K-Means clustering of input data samples.
Data grouped into three clusters.
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Bayesian Classification

Bayes’ rule (once again):

p(x , y) = p(x |y) · p(y) = p(y |x) · p(x) (1)

p(x |y) =
p(y |x) · p(x)

p(y)
=

likelihood . prior
normalizer

Classify based on Bayes decision rule:
p(w1|x) > p(w2|x) =⇒ choose w1; else choose w2 (2)

Decision rule extends to multiple classes:
p(wi |x) > p(wj |x) ∀j 6= i =⇒ choose wi (3)
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Illustrative Example 1

C1 : fault ; C2 : ¬fault ; x : data.
p(C1) = p(C2) = 0.5; p(x |C1) = 0.6; p(x |C2) = 0.3
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Multi-Class Extension

Model likelihoods and priors based on training samples.
Update belief incrementally based on evidence.
Use multi-class Decision rule:

p(wi |x) > p(wj |x) ∀j 6= i =⇒ choose wi (4)

Question: what representation to use to model the
likelihoods?
Answer: Typically, functions with well-understood
properties are used – e.g. Gaussians.
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Question: what representation to use to model the
likelihoods?
Answer: Typically, functions with well-understood
properties are used – e.g. Gaussians.

Mohan Sridharan, Akbar Namin ICSE-2010 Tutorial



Bayesian Classification
Bayesian Regression

Bayesian Inference

Introduction
Bayesian Classification
Summary

Illustrative Example 2

Four-class problem; ten training data samples per class.
Model individual class likelihoods as Gaussians.
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Illustrative Example 2: Modeling

Compute Gaussian means and covariances:
µ1 = [2.16,2.49]; µ2 = [3.95,−0.84] (5)
µ3 = [−1.57,3.5]; µ4 = [−6,−6.14]

Σ1 =

(
9.32 10.12

10.12 11.85

)
Σ2 =

(
8.36 8.87
8.87 13.02

)
Σ3 =

(
7.63 2.98
2.98 9.78

)
Σ4 =

(
8.62 −5.71
−5.71 9.26

)
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Illustrative Example 2: Classification

Decision boundaries for all four classes:
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Summary

Elegant belief update and decision rule for classification.
Bayes error: minimum classification error that cannot be
eliminated.
Little or no tuning of arbitrary thresholds.
Challenge 1: what functional form and parameters to use
for modeling likelihoods and priors?
Challenge 2: how to obtain enough data to model the
likelihoods and priors?
Demo: Matlab-based comparison with other classifiers.
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For more information

C. Bishop. Pattern Recognition and Machine Learning.
Springer publishing house, 2007.

D. Stork and E. Yom-Tov. Computer Manual in MATLAB to
accompany Pattern Classification. Wiley-Interscience,
2004.

R. Duda and P. Hart and D. Stork. Pattern Classification.
Wiley-Interscience, 2000.

Weka 3: Data Mining Software in Java, 2010.
http://www.cs.waikato.ac.nz/ml/weka/.

Matlab Statistics Toolbox 7.3, 2010. http:
//www.mathworks.com/products/statistics/
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Session 2: Bayesian Regression

9.00–10.30:
Introduction.
Statistical analysis; hypothesis testing.
Basic probability, Bayes’ rule.

11.00–12.30:
Bayesian classification.
Bayesian regression.
Bayesian inference.

14.00–15.30:
Information theory.
Stochastic sampling.

16.00–17.30:
Markov decision processes.
Partially observable Markov decision processes.
Discussion.
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Regression Basics

Consider polynomial curve fitting of target variable t :

t = y(x ,w) = w0+w1x +w2x2+. . .+wMxM =
M∑

j=0

wjx j (6)

Consider data sampled from a sinusoidal waveform:

Can use polynomials of different degrees.
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Illustrative Example 1

Polynomial curve fitting of data: best performance for
degree = 3.

However over-fitting can lead to problems.
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Regularization

Regularization in sum-of-squares error function:

E(w) = ED(w) + λEw (w) (7)

=
1
2

N∑
n=1

{tn − y(xn,w)}2 +
λ

2
‖w‖2

λ is the regularization co-efficient. Models cost of
over-fitting.
Demo: Matlab-based curve-fitting toolbox.
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RMS Errors

Standard vs. regularized performance:
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Regularization Parameter Tuning

Polynomial co-efficients as a function of the regularization
parameter:

ln(λ) = −∞: no regularization.
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Basis Functions

Model curve fitting using basis functions:

t = y(x ,w) =
M−1∑
j=0

wjφj(x) = wT Φ(x) (8)

The φj(x) are the basis functions.

Normally φ0(x) = 1 i.e. w0 is the bias.
Polynomial functions: φd (x) = xd
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Basic Bayesian Approach

Assume a zero-mean Gaussian noise model:
t = y(x ,w) + ε (9)

p(t |x ,w , β) = N (t |y(x ,w),1/β)

Extension to data set with N samples: X = {x1, . . . , xN}
with target values: t1, . . . , tN :

p(t |X ,w , β) =
N∏

i=1

N (ti |wTφ(xi),
1
β

) (10)
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Maximum Likelihood Estimation

Compute the log likelihood:

ln p(t |w , β) =
N
2

ln(β)− N
2

ln(2π)− βED(w) (11)

ED(w) =
1
2

N∑
i=1

{ti −wTφ(xi)}2

Partial differentials of the log likelihood provides maximum
likelihood estimates of the parameters: wML, βML

Extends to multiple outputs, incremental updates and
regularized least squares.
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Bayesian vs. Frequentist

Consider curve-fitting with observed data D = {t1, . . . , tN}
and parameter values w .
Frequentist and Bayesian: estimate p(D|w).
Frequentist approach (MLE): w is chosen to maximize
p(D|w). Error bars obtained by considering distribution of
data sets D.
Bayesian approach: only one data set D available.
Uncertainty in parameters expressed using probability
distribution of w .

p(w |D) =
p(D|w) p(w)

p(D)
(12)

Avoids over-fitting, uses training data for model selection.
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References

C. Bishop. Pattern Recognition and Machine Learning.
Springer publishing house, 2007.
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Wiley-Interscience, 2000.

Matlab Statistics Toolbox 7.3, 2010. http:
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9.00–10.30:
Introduction.
Statistical analysis; hypothesis testing.
Basic probability, Bayes’ rule.

11.00–12.30:
Bayesian classification.
Bayesian regression.
Bayesian inference.

14.00–15.30:
Information theory.
Stochastic sampling.

16.00–17.30:
Markov decision processes.
Partially observable Markov decision processes.
Discussion.
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The Framework

Inputs:
Stream of observations z and actions u: {u1, z1, . . . ,ut , zt}
Sensor model: p(z|x)
Action model: p(x ′|u, x)
Prior probability of system state: p(x)

Outputs:
Estimate the state x of a dynamical system.
Posterior of state, called the belief:

bel(xt ) = p(xt |u1, z1, . . . ,ut , zt ) (13)
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Markov Assumption

First-order Markov assumption:
p(xt |x0, . . . , xt−1) = p(xt |xt−1) (14)

Bayesian filtering:
p(zt |x0:t , z1:t ,u1:t ) = p(zt |xt ) (15)

p(xt |x1:t−1, z1:t ,u1:t ) = p(xt |xt−1,ut )
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Bayes Filters 1

Bayes rule:

bel(xt ) = p(xt |u1:t , z1:t ) (16)
∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut )

Markov assumption:

bel(xt ) ∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut ) (17)
= p(zt |xt ) p(xt |u1, z1, . . . ,ut )
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Bayes Filters 1

Bayes rule:

bel(xt ) = p(xt |u1:t , z1:t ) (16)
∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut )

Markov assumption:

bel(xt ) ∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut ) (17)
= p(zt |xt ) p(xt |u1, z1, . . . ,ut )
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Bayes Filters 2

Probability expansion:

bel(xt ) ∝ p(zt |xt ) p(xt |u1, z1, . . . ,ut ) (18)

= p(zt |xt )

∫
p(xt |u1:t , z1:t−1, xt−1)p(xt−1|u1:t , z1:t−1) dxt−1

Markov assumption:

bel(xt ) ∝ p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

(19)
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Bayes Filters 2

Probability expansion:

bel(xt ) ∝ p(zt |xt ) p(xt |u1, z1, . . . ,ut ) (18)

= p(zt |xt )

∫
p(xt |u1:t , z1:t−1, xt−1)p(xt−1|u1:t , z1:t−1) dxt−1

Markov assumption:

bel(xt ) ∝ p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

(19)
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Bayes Filters 3

Markov assumption:

bel(xt ) ∝ p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

(20)

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . , zt−1) dxt−1

Recursion:

bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1 (21)
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Bayes Filters 3

Markov assumption:

bel(xt ) ∝ p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

(20)

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . , zt−1) dxt−1

Recursion:

bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1 (21)
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Bayes Filters Summary

Recursive belief update based on Markov assumption:
bel(xt ) = p(xt |u1:t , z1:t ) (22)

∝ p(zt |xt ,u1, z1, . . . ,ut ) p(xt |u1, z1, . . . ,ut )

= p(zt |xt ) p(xt |u1, z1, . . . ,ut )

= p(zt |xt )

∫
p(xt |u1:t , z1:t−1, xt−1)p(xt−1|u1:t , z1:t−1) dxt−1

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . ,ut ) dxt−1

= p(zt |xt )

∫
p(xt |ut , xt−1) p(xt−1|u1, z1, . . . , zt−1) dxt−1

bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1
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Bayes Inference

Bayes prediction and correction:

∀xt : bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1

∀k : pk ,t = η p(zt |Xt = xk )
∑

i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1

Bayes filter:

∀xt :bel(xt ) =

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1 (23)

bel(xt ) = η p(zt |xt ) bel(xt )

Discrete Bayes filter:
∀k :pk ,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1 (24)

pk ,j = η p(zt |Xt = xk ) pk ,j
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Bayes Inference

Bayes prediction and correction:

∀xt : bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1

∀k : pk ,t = η p(zt |Xt = xk )
∑

i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1

Bayes filter:

∀xt :bel(xt ) =

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1 (23)

bel(xt ) = η p(zt |xt ) bel(xt )

Discrete Bayes filter:
∀k :pk ,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1 (24)

pk ,j = η p(zt |Xt = xk ) pk ,j
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Bayes Inference

Bayes prediction and correction:

∀xt : bel(xt ) = η p(zt |xt )

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1

∀k : pk ,t = η p(zt |Xt = xk )
∑

i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1

Bayes filter:

∀xt :bel(xt ) =

∫
p(xt |ut , xt−1) bel(xt−1) dxt−1 (23)

bel(xt ) = η p(zt |xt ) bel(xt )

Discrete Bayes filter:
∀k :pk ,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1 (24)

pk ,j = η p(zt |Xt = xk ) pk ,j
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Examples

Pictorial representation of discrete Bayes:
∀k :pk ,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1 (25)

pk ,j = η p(zt |Xt = xk ) pk ,j

Kalman filters, Particle filters, Bayesian Networks, Partially
Observable Markov Decision Processes (POMDPs),
Hidden Markov Models (HMMs) and many more!
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Examples

Pictorial representation of discrete Bayes:
∀k :pk ,j =

∑
i

p(Xt = xk |ut ,Xt−1 = xi) pi,t−1 (25)

pk ,j = η p(zt |Xt = xk ) pk ,j

Kalman filters, Particle filters, Bayesian Networks, Partially
Observable Markov Decision Processes (POMDPs),
Hidden Markov Models (HMMs) and many more!
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Summary 1

Pattern classification is a necessary task in several
application domains.

Bayesian formulation for classification results in
incremental probabilistic updates.

Regression is a widely-used predictive scheme in several
domains.

Bayesian formulation for regression better models the
prediction noise.
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Summary 2

Bayesian inference is a general framework for probabilistic
state estimation.

Markov assumption, though not always true, allows for
elegant belief updates.

Incorporates changes in system dynamics independent of
the observations of the system.

Applications: computer vision, robotics, adaptive testing,
fault localization.
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