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Abstract—The empirical assessment of test techniques plays an important role in software testing research. One common practice is
to seed faults in subject software, either manually or by using a program that generates all possible mutants based on a set of mutation

operators. The latter allows the systematic, repeatable seeding of large numbers of faults, thus facilitating the statistical analysis of
fault detection effectiveness of test suites; however, we do not know whether empirical results obtained this way lead to valid,

representative conclusions. Focusing on four common control and data flow criteria (Block, Decision, C-Use, and P-Use), this paper
investigates this important issue based on a middle size industrial program with a comprehensive pool of test cases and known faults.

Based on the data available thus far, the results are very consistent across the investigated criteria as they show that the use of
mutation operators is yielding trustworthy results: Generated mutants can be used to predict the detection effectiveness of real faults.

Applying such a mutation analysis, we then investigate the relative cost and effectiveness of the above-mentioned criteria by revisiting
fundamental questions regarding the relationships between fault detection, test suite size, and control/data flow coverage. Although

such questions have been partially investigated in previous studies, we can use a large number of mutants, which helps decrease the
impact of random variation in our analysis and allows us to use a different analysis approach. Our results are then compared with

published studies, plausible reasons for the differences are provided, and the research leads us to suggest a way to tune the mutation
analysis process to possible differences in fault detection probabilities in a specific environment.

Index Terms—Testing and debugging, testing strategies, test coverage of code, experimental design.

Ç

1 INTRODUCTION

EXPERIMENTATION is an essential part of research in
software testing. Typically, experiments are used to

determine which of two or more methods is superior for
performing some testing-related activity. For instance, one
may be interested in comparing the fault detection effec-
tiveness of several testing criteria used to derive test cases
and one resorts to experiments to that aim. Testing
experiments often require a set of subject programs with
known faults. These subject programs should be big enough
to be realistic, but not so big as to make experimentation
infeasible. As for the faults, the ability of a technique to deal
with the given faults should be an accurate predictor of the
performance of the technique on real faults.

One problem in the design of testing experiments is that
real programs of appropriate size with real faults are hard
to find and hard to prepare appropriately (for instance, by
preparing correct and faulty versions). Even when actual
programs with actual faults are available, often these faults
are not numerous enough to allow the experimental results

to achieve statistical significance. Many researchers there-
fore have taken the approach of introducing faults into
correct programs to produce faulty versions.

These faults can be introduced by hand (the experimen-
ter can, for instance, ask experienced engineers to do that)
or by automatically generating variants of the code.
Generally, we view an automatically generated variant as
the result of applying an operator to the code. The operators
used in this way are called mutation operators, the resulting
faulty versions are called mutants, and the general technique
is called mutation or mutant generation. The process of
analyzing when mutants fail and which test suites trigger
such failures is referred to as mutation analysis.

The main potential advantage of mutant generation is
that the mutation operators can be described precisely and
thus provide a well-defined fault-seeding process. This
transparency helps researchers replicate others’ experi-
ments, a necessary condition for good experimental science.
While hand-introduced faults can be argued to be more
realistic, ultimately it is a subjective judgment whether a
given fault is realistic or not. Another important advantage
of mutant generation is that a potentially large number of
mutants can be generated, increasing the statistical sig-
nificance of results obtained.

However, an important question remains. How do we
know whether the ability to detect (or “kill”) mutants is an
accurate predictor of actual performance, that is, what is the
external validity of mutants in assessing the fault detection
effectiveness of testing techniques? An answer to this
question would have important consequences on how we
perform testing experiments and, therefore, on the validity
of experimental results.
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In [1], we studied this question by comparing the fault
detection ability of randomly selected test suites on hand-
seeded, automatically generated, and real-world faults. Our
subject programs were a widely used set of programs with
hand-seeded faults and a widely used program with real
faults. We generated mutants from the subject programs
using a set of standard mutation operators from the
literature on mutation testing. Our results suggested that
the generated mutants are similar to the real faults but
different from the hand-seeded faults and that the hand-
seeded faults are harder to detect than the real faults.
However, since the test suites we used were randomly
selected, questions remained as to whether the results
would extend to more realistic testing scenarios, such as
when a test engineer selects test suites in order to achieve
given coverage criteria.

In this paper, we extend our previous work by similarly
comparing the behavior of test suites on mutants and real
faults, but this time with test suites selected in order to
achieve given levels of one of four standard test coverage
criteria: Block, Decision, C-Use, and P-Use coverage [27]. We
show that our previous results do extend to these testing
scenarios, i.e., that the behavior of these new test suites on the
mutants closely resembles their behavior on the real faults.
Based on this result, we then investigate the relative cost and
effectiveness of the criteria by revisiting fundamental ques-
tions regarding the relationships between fault detection, test
suite size, and control/data flow coverage [11], [13], [17].
Given the practical importance of structural coverage criteria
[3], it is surprising thatwe still knowvery little regarding their
cost-effectiveness. Although such questions have been
partially investigated in previous studies [11], [13], [17],
we can use a large number of mutant programs, which
helps decrease the impact of random variation in our
analysis and allows us to use a different analysis approach.
Our analysis procedure is precisely presented and justified
so as to allow replication in future studies. We compare our
results with published studies and provide plausible
reasons for differences between them. This process leads
us to suggesting a way to tune the mutation analysis
process to a specific environment’s fault detection pattern,
e.g., detection probabilities. For instance, in an environment
where coverage-based test suite construction is applied only
after extensive code reviews have been conducted, we
would expect only harder faults to remain in the code. We
can tune the mutation analysis to this pattern by selecting
only an appropriate subset of the hardest mutants.

The paper is structured as follows: Section 2 presents the
related work that is directly relevant to our research
questions. Section 3 describes all the important aspects of
our experiment, including a precise definition of research
questions. Section 4 presents the analysis results for each
research question. Section 5 concludes the paper by
summarizing the main results and presenting future work
directions.

2 RELATED WORK

This section is separated into two parts. The first one
focuses on the use of mutation analysis in testing research.
The second one summarizes the main experimental results
regarding the cost and effectiveness of control and data
flow coverage criteria.

2.1 Mutation Analysis
The idea of usingmutants tomeasure test suite adequacywas
originally proposed byDeMillo et al. [8] andHamlet [15], and
explored extensively by Offutt and Untch [25]. Offutt [22]
showed empirical support for one of the basic premises of
mutation testing, that a test data set that detects simple faults
(such as those introduced by mutation) will detect complex
faults, i.e., the combination of several simple faults.

Experiments using faulty variants of programs have
been carried out by Frankl and Weiss [12], Thévenod-Fosse
et al. [30], and Hutchins et al. [17], and, since then, by many
researchers. Frankl and Weiss used nine Pascal programs
with one existing fault each, whereas Hutchins et al. hand-
seeded 130 faults over the seven programs used. Thévenod-
Fosse et al. automatically seeded faults in four small
C programs using mutation operators. Generally, these
experiments follow the pattern of generating a large “test
pool” of test cases, running all the faulty versions on all the
test cases in the test pool, observing which test cases
detected which faults, and using that data to deduce the
fault detection abilities of given test suites drawn from the
pool (e.g., test suites that satisfy specific coverage criteria).

Although mutant generation was originally proposed as
part of a testing strategy, note that Thévenod-Fosse et al.
used it instead as a method for generating faulty versions
for experiments. Other researchers who have done this
include Kim et al. [18], Memon et al. [21], Andrews and
Zhang [2], and Briand et al. [4].

Finally, Chen et al. [7] used both hand-seeded faults and
generated mutants in their experiments. They point out that
the hand-seeded faults are only a subset of the possible
faults and raise the issue of whether the faults were
representative, but, as this was not the focus of their
research, they do not explore it further.

To conclude, except for our previous study [1], there has
been no empirical study that has directly assessed the use of
mutants by comparing them with results obtained on real
faults. Mutation analysis is, however, commonly used
throughout experimental testing research.

2.2 Experimental Results on Control and Data Flow
Coverage Criteria

Frankl and Weiss [12] performed the first empirical study
where the All-uses and Decision (All-edges) criteria are
compared to each other and to the null criterion (random test
suites). This is performedonnine very small programswhose
size ranges from 33 to 60 LOCs for which the authors had
access to real faults (one fault per program was used).
Comparisons are done using hypothesis testing using the
proportion of adequate test suites that expose a specific fault
as a dependent variable. In order to determine whether the
differences in the effectiveness of criteria were mostly due to
differences in the sizesof adequate test suites, theyperformed
their analysis in two different ways: 1) performing the
analysis on all adequate test suites and 2) grouping test suites
according to their size (intervals) andperforming the analysis
on each group. Test suites were generated based on a large
test pool developed for each subject program. Then, logistic
regression was used to model the relationship between the
probability of finding a fault and two covariates: coverage
level and test suite size. Results showed that All-useswas not
always more effective than Decision and the null criterion,
but that, when it was more effective, it usually was much

ANDREWS ET AL.: USING MUTATION ANALYSIS FOR ASSESSING AND COMPARING TESTING COVERAGE CRITERIA 609



more so. For Decision, when more effective than the null
criterion, the difference was much smaller. In other words,
results varied according to the program and fault analyzed.
Logistic regression also showed varied results as there was
only a “clear dependence” of fault detection effectiveness on
coverage level for three and four of the programs for All-uses
and Decision, respectively.

Hutchins et al. [17] reported that fault detection for both
DU (Def-Use), a variant of All Uses [27], and Decision
coverage [27] increased exponentially with the coverage
level. The gain in fault detection is particularly impressive
in the last 10-20 percent coverage. DU coverage performs
better than Decision coverage, but is also significantly more
expensive as measured by test suite sizes (i.e., number of
test cases). Their results are based on seven small programs
(141 to 512 LOCs) in which 10 experienced programmers
manually seeded faults (130 overall) and for which test
pools (of sizes 1,067 to 5,548) were generated to ensure each
exercisable coverage unit was covered by at least 30 test
cases. Faults that were deemed too easy or too hard to
detect (in terms of detection probability) by their test pool
were left out of the analysis. Test suites were generated in
such a way as to ensure that all coverage and size intervals
would be covered by enough randomly generated test
suites (e.g., at least 30 test suites per 2 percent coverage
interval). Fault detection effectiveness was measured as the
proportion of test suites, within each 2 percent coverage
interval or two size units, detecting the fault of a faulty
program version. The results regarding the relationships
between coverage, test suite size, and fault detection
effectiveness are not reported in detail as only a couple of
graphs are shown for one example program. The paper,
however, suggests that this graph is representative of their
overall results.

Frankl and Iakounenko [11] also reported very sharp
increases in fault detection in the last 10 percent coverage
range for All-uses and Decision coverage. The subject
program used is the same as in our study and is much
larger than the programs used in Hutchins et al. [17] and
Frankl and Weiss [13] (> 5,000 NLOC, noncommented
lines of code). They reused a randomly generated test pool
(10,000 test cases) [26] and based their analysis on 33 actual
faults. Out of 33 faulty versions of the program, they only
selected those showing, based on the test pool, a failure rate
below 0.015, the rationale being that such coverage criteria
should be applied after the software has undergone “a fair
amount of testing and debugging.” Only 11 faulty versions
were retained for analysis and, in order to avoid a
confounding effect of test suite size, the authors decided,
for each version, to generate test suites of fixed sizes (from
20 to 200, depending on the version). Fault detection
effectiveness was measured as the percentage of test suites
detecting the fault across coverage levels. Large numbers of
test suites (105 to 106) were randomly generated and the
authors reported that the number of test suites at higher
levels of coverage were, however, fairly small.

To conclude, very few studies report precise experimental
results on the cost and effectiveness of control and data flow
criteria. Results suggest that whether or not criteria are cost-
effective depends on the program and faults. However, all
results report that high coverage levels should be used to
achieve a high likelihood of fault detection. These results are
mostly based on small programs or small numbers of faults,

whichmay in part explain their inconsistency. Results are, in
many studies, difficult to interpret because either the effect of
test suite sizes is confounded by the effect of coverage levels
on fault detection or the size of test suites is fixed in some
artificial manner.

Amore general issue is related to the creation of test pools.
In general, a test pool, also called universe in [11], [12], [13],
must beadequate for each considered coverage criterion. This
implies that test cases in the pool 1) cover all (most) of what
can be covered and 2) form a sample that is representative of
the entire input domain to enable the generation of a large
variety of adequate test sets. However, for practical reasons,
experiments are also typically limited in terms of the size of
the test pool they can consider: Each test case must be
executed on each faulty version of the subject program and
coverage information must be measured.

3 EXPERIMENTAL DESCRIPTION

3.1 Definition of the Experiment
Based on the motivations stated in the introduction, we
investigate in this paper seven research questions in the
order specified below. Our results must also be compared to
existing, reported results and plausible reasons for differ-
ences must be investigated. The practical motivations
justifying such investigations are also carefully reported.

Q1: Are mutation scores, i.e., proportions of killed mutants,
good predictors of actual fault detection ratios? This is
important asmutation analysiswould allowus togenerate
large numbers of seeded faults and thus facilitate the
statistical analysis of fault detection ratios by decreasing
the impact of random variation across test suites.

Q2: What is the cost of achieving given levels of the
investigated coverage criteria and how do the criteria
compare to each other in this respect? Though we expect
P-Use to be more expensive than Decision coverage,
which, in turn, should be more expensive than Block
coverage, we want to investigate the magnitude of the
difference and how the cost of increasing coverage
changes along the coverage range.

Q3: Based on mutation analysis, can we determine what
levels of coverage, for each criteria, should be achieved
to obtain reasonable levels of fault detection effective-
ness? Are the last 10-20 coverage percent points
important to significantly improving fault detection?
This is a question of practical importance as one needs to
decide which level of coverage is necessary to achieve
predetermined quality criteria.

Q4: Based on mutation analysis, what is the relative cost-
effectiveness of the investigated control and data flow
coverage criteria? Effectiveness in this context is defined
in terms of the fault detection ability of the resulting test
suites. There is currently little empirical evidence
regarding this matter. This work presents a precise
procedure for collecting and analyzing data on this
question and reports precise empirical results based on a
real system.

Q5: Based on mutation analysis, what is the gain of using
coverage criteria compared to random test suites? Given
that control and data flow criteria require code analysis
that entails significant overhead, are they doing
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significantly better than random testing? This question
is important as practitioners need to determine whether
the difference justifies the overhead and there is scant
evidence that this is the case.

Q6: Based on mutation analysis, given a coverage criterion,
do we still find a statistically significant relationship
between coverage level and fault detection effectiveness
when we account for test suite size? It could be that test
suites that achieve higher coverage are more effective
simply because they are bigger. Can we find any
evidence for or against this theory? This question is
related to Q4 since random test suites should capture the
effect of test suite sizes.

Q7: Based on mutation analysis, how is the cost-benefit
analysis of coverage criteria affected by variations in fault
detection difficulty? For instance, if only very hard-to-find
faults are expected to remain in the software under test,
how would this affect our assessment of the benefits
obtainable by higher coverage levels? Canwe calibrate the
mutant generationprocess inorder to simulate the effect of
different fault detection difficulties? How should such
calibration take place? As discussed in Section 4.7, this
question was originally motivated by the comparison of
our results with the ones of Hutchins et al. [17] as we
thought that differences in the overall fault detection
probabilities might explain the observed variations.

As presented in Section 4, the main results regarding the
above research questions can be summarized as follows:

. In our case study, mutation scores appear to be
representative of actual faults found during system
testing and operational use (Question Q1). However,
as discussed below, such a result is likely to vary
across environments and we propose a way to tune
the mutation process.

. Results confirm that achieving higher levels of
coverage is increasingly more expensive for all
criteria (Question Q2). As expected, the cost of
achieving a certain coverage level across criteria
varies significantly. When criteria are sorted in order
of increasing cost, we obtain: Block, C-Use, Decision,
P-Use.

. For all criteria, achieving coverage levels close to
100 percent seems to be effective in terms of fault
detection (Question Q3). A significant increase in
fault detection is still visible in the higher part of the
coverage range as relationships between fault detec-
tion and coverage appear to be mildly exponential.

. The cost-effectiveness of the investigated coverage
criteria appear to be similar (Question Q4). In other
words, for a similar test suite size, they seem to
detect a similar percentage of faults.

. In terms of cost-effectiveness, there seems to be a
practically significant difference between test suites
that have been built to achieve coverage objectives
and random test suites (Question Q5). The differ-
ence in fault detection percentage increases as test
suite size increases to converge towards a maximum
of 30 percent.

. For all criteria, the fault detection effectiveness of a test
suite is not only driven by its size, but also by its
coverage (QuestionQ6). Beyondensuring aminimum

amount of testing, this result confirms that coverage
criteria help develop more effective test suites.

. Not only the relationships among fault detection
effectiveness, test suite size, and coverage level are
affected by fault detection “difficulty,” but, in some
cases, the shape of the relationship changes sig-
nificantly (Question Q7). For example, the harder the
faults are to detect, the more exponential the
relationship between fault detection and coverage
level is. In other words, for faults that are highly
difficult to detect, achieving very high levels of
coverage is even more important. These results are
useful in two ways. First, as further discussed in
Section 4, they help explain differences between our
study and previous ones. Second, they suggest the
need to tailor the mutant selection process to the
specific difficulty level observed in every develop-
ment environment.

3.2 Subject Programs
In this paper, we focus exclusively on space.c, the only
subject program from our first study [1] that had real faults.
This program was originally developed by the European
Space Agency, first used in a software engineering study by
Pasquini et al. [26], and used subsequently in other
experiments. space.c allows the user to describe the
configuration of an array of antennas using a specific array
definition language (ADL). It reads a text file containing
ADL statements, checks its conformance to the ADL
grammar as well as specific consistency rules, and performs
other computations. It is a 5,905-NLOC C program made of
three subsystems (parser, computation, and formatting).
(See [33] for further details.) During “testing and opera-
tional use” of the program, 33 faults were identified and
eliminated and the details of the fault-fixing changes were
preserved so that the faults could be selectively re-
introduced. Vokolos and Frankl [31] used the program for
a study in which they compared the effectiveness of
regression test selection strategies. For that study, they
generated 10,000 test cases using a randomized input
generation tool. These 10,000 test cases formed their
experimental “test pool.” Rothermel et al. [28] later added
enough test cases to ensure that each executable Decision
was covered by at least 30 test cases in each direction; this
procedure added 3,585 test cases to the pool. The resulting
test pool covers 90, 85, 85, and 80 percent of all Blocks,
Decisions, C-Uses, and P-Uses present in the program,
respectively.1 The total number of Blocks, Decisions,
C-Uses, and P-Uses are 2,995, 1,191, 3,733, and 1,707,
respectively.

During the course of their research, Rothermel et al. [28]
identified and eliminated five more faults, bringing the total
number of versions of the program to 38; however, they
found that three of the original versions did not exhibit
faulty behaviour, reducing the number of nonequivalent
versions to 35. We obtained the program, faulty versions
and test pool from the Galileo Research Group Subject
Infrastructure Repository at the University of Nebraska -
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Lincoln. We compiled and ran the correct (oracle) version
and all 38 available versions, recording which test cases
caused failures on which faulty versions. After being
compiled on our platform (a SunOS 5.8 machine with
version 5.8 of the gcc C compiler), we confirmed that three
of the original versions did not exhibit any failure for us
either. However, one of the versions added by Rothermel
et al. also did not exhibit faulty behavior for us. This
lowered the number of faulty versions to 34.

3.3 Mutant Generation
To generate mutants of the subject program, we used a
mutant generation program first used by Andrews and
Zhang [2] to generate mutants for code written in C. To
generate mutants from a source file, each line of code was
considered in sequence and each of four classes of
“mutation operators” was applied whenever possible.
Every valid application of a mutation operator to a line of
code resulted in another mutant being generated. The four
classes of mutation operators were:

. Replace an integer constant C by 0, 1, !1, ððCÞ þ 1Þ,
or ððCÞ ! 1Þ.

. Replace an arithmetic, relational, logical, bitwise
logical, increment/decrement, or arithmetic-assign-
ment operator by another operator from the same
class.

. Negate the decision in an if or while statement.

. Delete a statement.

The first three operator classes were taken fromOffutt et al.’s
research [23] on identifying a set of “sufficient” mutation
operators, i.e., a set S of operators such that test suites that kill
mutants formed by S tend to kill mutants formed by a very
broad class of operators. They were adapted so that they
would work on C programs rather than the Fortran of the
original research. The fourth operator, which also appears in
[23], was added because the subject program contains a large
number of pointer-manipulation and field-assignment state-
ments that would not be vulnerable to any of the sufficient
mutation operators.

Some of the resulting mutants did not compile. How-
ever, there were so many mutants generated and compiled
(11,379) that it was infeasible to run them all on the test
pool. We therefore ran the test pool on every 10th mutant
generated. Because the number of mutants generated per
line did not follow any pattern that would interact with the
selection of every 10th mutant (it depends on the constructs
on the line only), this constituted a practical procedure for
randomly selecting 10 percent of the mutants, taken from a
uniform distribution over all the possible mutants. Addi-
tionally, this ensured that the whole source code was
seeded with faults (and not simply a few functions).

All mutants that were not killed by any test case were
deemed to be equivalent to the original program. Though
this may not be the case for every mutant, it was thought to
be a good enough approximation and it is, in any case, the
only option when dealing with large numbers of mutants
since automatically identifying equivalent mutants is an
undecidable problem [5], [24]. In the end, 736 of these
mutants actually exhibited faulty behavior and, so, were
used as the analogues of the 34 faulty versions.

3.4 Experimental Design and Analysis
We provide in this section a brief description and
justification of the analysis procedure that we used.
Additional details will be presented in the next section as
we report on the results. We will also compare our
experimental design with that of previous work to provide
plausible explanations for differences in results.

3.4.1 Experimental Design
We generated a number of random test suites for various
coverage criteria and levels, with the aim of obtaining a
spread of test suites that span all coverage levels in a
balanced manner. These test suites were intended to
represent the population of suites that might be built by a
test engineer having a specific coverage level goal in mind.
Coverage level was measured using the ATAC coverage
tool [20].

The algorithm that we used to generate a test suite that
achieves at least T percent coverage of a criterion is shown
in Fig. 1. Note that a test engineer trying to achieve higher
coverage would intelligently select new test cases that target
uncovered code and that we simulate this by randomly
choosing test cases and discarding them until we find one
that covers uncovered code. If we had not discarded test
cases that fail to achieve additional coverage, we would
have ended up with larger final test suites. These test suites
would likely have forced more failures since every addi-
tional test case has a chance of forcing a failure, whether or
not it covers new code. However, we do not consider that
this would simulate a realistic test selection procedure.

Our goal was to find an even spread of test suites from
50 percent coverage to high coverage. Preliminary studies
indicated that, for low coverage percentages, the algorithm
rarely hit its percentage target precisely, but frequently
overshot by one or more percentage points. Therefore, for
each of the four coverage criteria, we used this algorithm to
randomly generate 10 test suites from the test pool that
achieved at least 45 percent (feasible) coverage,2 at least
46 percent coverage, and so on up to 95 percent coverage.
This procedure yielded at least five test suites that achieved
between 50.00 percent and 50.99 percent coverage, between
51.00 percent and 51.99 percent coverage, and so on up to
95.00-95.99 percent coverage. We randomly selected five
test suites corresponding to each of these intervals (e.g., five
that achieved between 50.00 percent and 50.99 percent
coverage). We therefore ended up with 230 test suites for
each coverage criterion, five for each coverage percentage
from 50.00-50.99 to 95.00-95.99. We refer to these test suites
as the CS (Coverage Suite) test suites. We did not attempt to
generate test suites achieving over 95 percent coverage
because it was too difficult to do so for the C-Use and P-Use
coverage criteria and would have made our experiment
computationally prohibitive.

In order to study research question Q5, we also generated
1,700 random test suites, from the same pool, with each size
from one test case to 150 test cases (the size of the largest test
suite in theCS).Werefer to theseas theRS (RandomSuite) test
suites; they are intended to represent a baseline for compar-
ison to the CS test suites. Indeed, these test suites represent
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what can be achieved by chance without any specific
consideration for coverage. For each of the CS and RS test
suites, we then determined which mutants and faults were
detected by each test suite and we computed the mutant and
fault detection ratios of all test suites.

For each test suite S, the procedure yielded two pieces of
summary data: Dm(S), the number of mutants detected by
S, and Df(S), the number of faults detected by S. Given the
number Nm of nonequivalent mutants and Nf of
nonequivalent faults3 of the subject program, we calculated
the mutation detection ratio Am(S) of each test suite S as
Dm(S)/Nm and the fault detection ratio Af(S) as Df(S)/Nf.

3.4.2 Experimental Analysis
To address our first research question (Q1), we need to
determine whether Af and Am differ for various coverage
levels and coverage criteria. We will not only look at their
difference but also at the Magnitude of Relative Error (MRE)
[10], defined as jAf !Amj=Af. MRE is a commonmeasure for
evaluating the accuracy of predictive systems and our
researchquestion canbe reexpressedasapredictionproblem:
Can we accurately predict Af based on Am? A positive
answer would require the MRE to be small enough to be
negligible from a practical standpoint. From a statistical
standpoint, we will also test whether the difference between
Af and Am is statistically significant, but it is important to
realize here that our goal is to assess whether such a
difference, whether statistically significant or not, would be
of practical significance4 [19]: Would that affect any decision
regarding the application of any of the investigated coverage
criteria? We will also look at how MRE varies according to
coverage levels inorder todeterminewhetherwecanprovide
a consistent answer regardless of the targeted level of
coverage. In addition, we will determine whether a linear
regressionmodel canbeused topredictAf fromAmandwhat
error intervals we can expect.

We investigate question Q2 by analyzing and modeling
the relationships between the coverage level of all four
criteria and test suite size for the CS test suites, using
appropriate nonlinear regression analysis.5 It is assumed
that the effort associated with a coverage level is propor-
tional to test suite size, that is, the number of test cases
drawn from the test pool.

Question Q3 can be addressed by analyzing the relation-
ships between Am and coverage level, focusing on
assessing the significance of change in Am for the higher
part of the coverage level range.

To address research question Q4, we analyze and model
the relationships of Am with test suite size for the CS test
suites, once again using nonlinear regression analysis. Am
is a measure of the benefit of achieving a certain level of
coverage, whereas test suite size is our measure of cost.
Using and comparing the modeled Am/Test suite Size
relationships, we can then compare the cost-benefit or cost-
effectiveness of using various coverage criteria at different
coverage levels.

To investigate question Q5, we model and fit the
relationship between Am and test suite size for the RS test
suites and compare this relationship with the fitted criteria
relationships based on the CS suites. Indeed, we can assume
that, for all coverage criteria and random test suites, test
suite size is proportional to the cost of running and
verifying test cases. However, the cost of generating
random test cases is clearly much less than that of test
cases based on control and data flow criteria. Therefore, for
a given test suite size, only a significant difference in fault
detection would warrant the use of control and data flow
criteria. How much of a difference is required is, of course,
context-dependent (e.g., analysis tools, testers’ expertise).

Q6 is addressed by simply performing bivariate regres-
sion considering both test suite size and coverage level as
covariates to explain variations in Am. If both covariates
turn out to be statistically significant, we can then conclude
that they both contribute to drive fault detection and that
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Fig. 1. Algorithm to generate test suites.

3. Similar to the notion of nonequivalent mutant, a nonequivalent fault is
a fault that can be detected by at least one test case in the test pool.

4. Statistical significance is concerned with whether a research result is
due to chance or sampling variability; practical significance is concerned
with whether the result is useful in the real world.

5. We actually linearize the relationships between the dependent and
independent variables through appropriate transformations. This allows us
to use linear least-square regression and facilitates the analysis and the
interpretation of results.



the effect of test suites on fault detection is not just the result
of their size.

We address question Q7 by modeling and comparing the
relationships between Am, test suite size, and coverage
level for subsets of seeded mutants that are relatively more
difficult to detect given our test pool. In order to compare
our results with existing work, we focus on two subsets of
mutants that are detected by less than 5 percent and
1.5 percent of test cases in the test pool, respectively. These
percentages are comparable to those reported in existing
studies and we then try to explain the differences between
our results and those reported based on the impact of
variations in fault detection probabilities on the relation-
ships between Am, test suites size, and coverage level. The
practical implications of our results on the calibration of the
mutation analysis process is then considered.

4 ANALYSIS RESULTS

In this section, we present the results of our analysis,
addressing each research question in turn.

4.1 Are Mutation Scores Good Predictors of Actual
Fault Detection Rates?

This analysis addresses research question Q1, the question
concerning whether the effectiveness of a coverage-goal test
suite on mutants was a good predictor of its effectiveness on
faults. To study this question on a per-test-suite level, we
calculated the difference ðAf !AmÞ for each test suite.
Descriptive statistics for ðAf !AmÞ are presented in Table 1.
First, we can observe from the mean (positive but close to

zero) and the quantiles (min, max, 2.5 percent, 97.5 percent)
that we have rather symmetric and unbiased distributions
for all coverage criteria. When performing a matched pairs
t-test of the difference between Af and Am for Block
coverage, it is actually significant ðp ¼ 0:0003Þ, but the mean
difference (Mean) is not of practical significance as a
difference slightly above 1 percent will not likely have a
practical impact. Given that similar results were obtained
on the other three coverage criteria (statistically significant
differences—p < 0:001—of little practical significance), we
can therefore conclude that Am will not significantly and
systematically underestimate or overestimate Af.

Fig. 2 shows another interesting angle on the results. It is a
scatterplot of all the observations showing the relationship
between Am and Af, respectively, and the Block coverage
level (%Coverage). We can see that Am and Af have a very
similar relationship with %Coverage, but the variance for Af
observations is much larger (i.e., they are more spread out).
This is to be expected asAm is a ratio basedon a large number
of mutants, whereas Af is based on 34 faults only and is
therefore muchmore subject to random variations due to the
random selection of test cases across test suites. We obtained
similar results for the other three criteria, thus confirming this
observation is not specific to Block coverage.

More importantly, we should now look at the MRE
distribution, which normalizes jAf !Amj by Af and thus
expresses prediction errors as a percentage of the actual
value to predict. Table 2 shows the descriptive statistics for
the distribution of MRE values across all test suites, for all
four coverage criteria. We can see that the average MRE
ranges from 0.083 to 0.098, that is, a relative error under
10 percent. We also see that, in 95 percent of the cases, MRE
can be expected to be under 31 percent for Block and
25 percent for the others.

If we now look at the relationship between MRE and the
achieved coverage level, we see that, for all coverage
criteria, the average MRE tends to decrease as the
percentage of coverage increases. A representative example
is shown in Fig. 3, where a smoothing spline6 [9] of the
average MRE is drawn for Block coverage. We can clearly
see the downward trend by looking at the spline and the
decrease in variance of the observations along the Y-axis as
the percentage of coverage increases. For coverage levels
above 85 percent, the MRE will in nearly all cases be below
15 percent. From a practical perspective, it is difficult to
imagine how such a low MRE could practically affect
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TABLE 1
Descriptive Statistics for Af-Am

6. The smoothing spline is an excellent way to get an idea of the shape of
the expected value of the distribution of MRE across the percentage of
coverage achieved. The cubic spline method uses a set of third-degree
polynomials spliced together such that the resulting curve is continuous
and smooth at the splices (knot points).Fig. 2. Observations for Am/Af ratios versus Block coverage.



decision making regarding the selection of a coverage
criterion or a coverage level; a testing decision based on an
experiment with mutants would be unlikely to be cast into
doubt over such a low MRE. This is an important result as,
in practice, the objective will be to achieve high coverage
levels and, as a result, MRE will be even lower and show
less variability across test suites, thus making the prediction
of Af based on Am more accurate.

Another way to look at the association between Af and
Am is to perform a linear regression between the two. Fig. 4
shows the computed regression line for Block coverage and
the 95 percent confidence intervals for the predictions. It has
a R2 of 0.908 and a slope close to 1 (0.967), as we would
expect if Am were a good, unbiased predictor of Af. Based
on such a linear regression model, we can therefore see that
an unbiased and accurate prediction of Af based on Am is
possible. Other coverage criteria show nearly identical
results, with a R2 ranging from 0.83 to 0.90.

We conclude that the effectiveness of the CS test suites in
finding real faults in the space.c program can be accurately
predicted by the effectiveness of those suites in finding
mutants generated from space.c. This finding is consistent
with the results of [1], which found that the same predicted
relationship holds for test suites of given sizes chosen
randomly from the same entire test pool.

Because the above section showed that Am is a good
predictor of Af, we use the large number of mutants at our
disposal to facilitate the analysis addressing questions Q2 to
Q7: The subsequent subsections use Am as a measure of
fault detection effectiveness. Using the large number of
mutants will lead to a reduced random variation in the fault
detection effectiveness evaluation of test suites (as visible in
Fig. 2 for example) and will therefore facilitate the analysis
of relationships between fault detection, coverage, and test
suite size.

4.2 Comparing the Cost of Coverage Criteria
We address question Q2 in this section. When looking at the
relationships between coverage level and size, we can
observe that achieving higher levels of coverage becomes
increasingly expensive. This data can be accurately fitted
with an exponential regression model: Coverage ¼ a Sizeb,
where a and b are coefficients to be estimated through
linear regression.7 This model is intuitive as we expect size
to be zero when there is no coverage and coverage might
not increase proportionally to size. Fig. 5 shows an example
of fitted curve for Block coverage. The relationships among

coverage criteria differ significantly, as illustrated by the
variations among coefficients given in Table 3. We also
provide the coefficients’ 95 percent confidence intervals (CI)
—to make it clear that the differences are not due to
chance—and the overall fit of the model ðR2Þ.8 The varying
cost of achieving a certain level of coverage across criteria is
clearly visible when displaying the relationships of cover-
age percentage to test suite size: The fitted curves are shown
for all four coverage criteria in Fig. 6. Following the
recommendation in [16], we also compute the surface areas
under the curves (in the size interval 0-100). This provides a
way to quantify the differences among curves (i.e., the cost
of achieving coverage) in a way which is independent from
any particular size value. Table 3 reports both the absolute
surface areas and the relative surface areas (in parentheses)
when normalized by the smallest area (P-Use). We see that
P-Use does not differ much from Decision but the
differences with Block and C-Use are, however, significant.

As expected, a given level of coverage is easier to achieve
for Block and then C-Use, Decision, and P-Use, in that
order. Since C-Use has no subsumption relationship with
Decision or P-Use, it depends entirely on the program
whether the test suites are larger for a given coverage level.
However, P-Use coverage subsumes Decision coverage and
should therefore be at least as difficult to achieve, though a
clear difference is only visible toward higher size values.

The small difference between the P-Uses and Decision
curves may be due to the test pool we use. Recall that,
though Rothermel et al. [28] ensured that feasible Decisions
were exhaustively covered, we have no guarantee that the
test pool is covering all feasible P-Uses. We know that
80 percent and 85 percent of the P-Uses and C-Uses are
covered, respectively, but is that close to the actual
percentage of feasible coverage? In comparison, 85 percent
of Decisions are covered by the same test pool and perhaps
this is an indication that the actual percentage of feasible
P-Uses is higher but that the test pool falls short of
achieving maximum coverage. Though the difference is
not large, if the test pool had covered a higher percentage of
P-Uses, we might observe a more pronounced difference
between Decision and P-Use. If we assume that the actual
feasible P-Use coverage is comparable to Decision or C-Use,
that is 85 percent, we would then obtain the curves in Fig. 7
with the same test suites. Note that the P-Use curves
conform better to the relationship we would expect between
Decision and P-Use: A specific level of coverage is more
expensive to achieve for P-Use than Decision. The surface
area under the new P-Use curve is 7,012, which is
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TABLE 2
Descriptive Statistics for MRE

7. The model is linearized as lnðCoverageÞ ¼ lnðaÞ þ b lnðSizeÞ. In our
fitted coverage regression models, b is less than 1 as achieving higher levels
of coverage is increasingly more expensive. Note that such a model is
flexible as it can fit a decreasing ðb < 1Þ or increasing ðb > 1Þ slope for
Coverage as test suite size increases.

8. Though our objective in this paper is not to build prediction models,
we show coefficients of determination ðR2Þ to demonstrate that the curves
and their underlying models closely fit our data. We can thus compare these
curves knowing they are really representative of the data.



significantly lower than the previous value (7,450) and that
of Decision (7,455).

4.3 Are There Minimal, Required Levels of
Coverage?

In the previous section, we studied the cost of coverage
criteria with research question Q2. In this section, we focus
on the effectiveness with research question Q3. Fig. 8 shows
the observations, fitted relationship, and 95 percent con-
fidence intervals between Am and the coverage level for
Block coverage ðR2 ¼ 0:98Þ. Similar analyses were per-
formed for the other three criteria where a similar form of
relationship and R2 were obtained. All regression lines are
displayed in Fig. 9 and show what we expect: A given level
of coverage kills more mutants for P-Use and Decision (they
show no significant difference), C-Use, and Block, in that
order. We can see that curves range from being nearly linear
(Decision) to mildly exponential (Block).

As discussed in Section 4.2, the small difference between
P-Use and Decision may be due to the fact that the current
test pool covers a lower percentage of feasible P-Uses than
Decisions. If the actual feasible coverage percentage for
P-Use were 85 percent (as for C-Use and Decision), then we
would obtain the models and curves in Fig. 10 with the
same test suites. As for the analysis in Section 4.2, the
difference between Decision and P-Use then becomes
visible and, as we would expect given the subsumption
relationship between the two criteria, at a given coverage
level, P-Use detects more faults than Decision. Though we
cannot be absolutely sure, this new result for P-Use is more

plausible. The construction of the test pool and its impact on
the results will be further discussed in Section 4.8.

Several past studies investigated that issue with great
care. Hutchins et al. [17], based on their reported diagram,
found strong exponential relationships between fault
detection effectiveness and the coverage levels for Decision
and DU coverage where the last 10-20 coverage percents
detect an increasingly large percentage of faults. For
example, only a DU coverage above 90 percent can lead
to a fault detection effectiveness above 50 percent! Frankl
and Iakounenko [11] reported results along the same lines
but even more extreme, where, for all eight faulty versions
considered, the probability of fault detection is dismally low
and sharply increases after 90 percent for Decision and All-
Uses coverage.

The results obtained in our study are not nearly as
extreme as what was reported in the studies discussed
above. The curves show relationships that are at best mildly
exponential. However, what is consistent is that high levels
of coverage are required to achieve decent fault detection
rates. Attempting to achieve a coverage level close to
100 percent is definitely yielding significant additional fault
detection. The difference between our results and those
reported will be further discussed in Section 4.7.

4.4 Comparing the Cost-Effectiveness of Coverage
Criteria

Question Q4 is addressed in this section. Using the mutants
that we generated, we investigate the cost-effectiveness of
coverage criteria by analyzing the relationships between the
percentage of faults exposed (effectiveness) and the size of
test suites (our surrogate measure for cost). Fig. 11 shows
the observations (test suites) and modeled relationship
between Am and test suite size for the CS test suites using
Block coverage. We modeled the relationship as an
exponential relationship, as in the previous section. It fit
the data well ðR2 ¼ 0:976Þ and is a rather intuitive model:
An empty test suite should detect 0 percent of the faults and
faults get increasingly harder to detect as test cases are
added to the test suite ðb < 1Þ. As further discussed below,
the relationships for the other three coverage criteria are
very similar.

It is worthwhile noting two caveats here. First, size is an
imperfect measure of cost for coverage-oriented test suites;
some coverage measures involve expensive analyses and
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Fig. 3. Block average MRE as a function of coverage level.

Fig. 4. Block regression line between Af and Am.

Fig. 5. Relationship between Block coverage level (percent) and test

suite size.



the last few test cases added to achieve a given percentage
of coverage may be considerably more difficult for a tester
to find than the preceding ones. Second, in practical
settings, we are often concerned with three-way trade-offs
among size, coverage, and fault detection effectiveness
(represented here by Am), but, in order to simplify and

clarify the presentation, we present here only graphs

showing pairs of these three measures. Hence, in this

section and the next, we present graphs of test suite size

compared to Am, which must be interpreted in light of the

knowledge that the data points represent test suites

constructed with particular coverage goals in mind.

ANDREWS ET AL.: USING MUTATION ANALYSIS FOR ASSESSING AND COMPARING TESTING COVERAGE CRITERIA 617

Fig. 6. Comparing coverage level-test suite size relationships.

TABLE 3
Regression Coefficients, Their 95 Percent CI, and R2 for All Coverage (Percent)-Size Models

Fig. 7. The impact of an actual feasible P-use coverage of 85 percent. Fig. 8. Am-coverage level relationship for block.



Table 4 reports on all the regression coefficients and R2

values for all four coverage criteria (all coefficients are
significant at p < 0:0001). It also shows the surface areas
under the curves [16]. The regression coefficients, goodness
of fit, and surface areas of the models are all very similar.
What this implies is that none of the four criteria is more
cost-effective than the others. For a given test suite size, they
would all find a very similar number of faults. However,
the more demanding criteria would force the tester to
generate larger test suites to achieve a specific coverage
level. For example, the median test suite sizes for the last
coverage interval (95-95.99 percent) are 97, 109, 126, and 135
for Block, C-Use, Decision, and P-Use, respectively. To
summarize, the various coverage criteria entail a varying
testing intensity for a given coverage level, but none of them
is more cost-effective than the others at uncovering faults.

It is useful to compare these results to the ones ofHutchins
et al. [17]. Although they did not provide detailed data or
fitted models, from the graphics they report for one of the
faulty programs considered, we can tell that their Fault
detection-Size relationship looked mostly linear for Decision
(Edge) coverage and DU (All-Uses) coverage shows perhaps

a small plateau for the highest size intervals. Recall, however,
that their faults were manually seeded, filtered out when
detected by too few or too many test cases (below 3 or above
350), and were small in number (from 7 to 39 faults per
program). This difference will be further investigated in
Section 4.7 by controlling for fault detection probability
(relative to our test pool) and assessing its impact on the Am-
Test suite size relationship. Furthermore the programs
considered were substantially smaller and the measure of
fault detection effectiveness for each faulty version was
defined as the percentage of test suites in each size interval (of
width 2) that contained at least one test case detecting the
fault. None of the other reported studies focused on the
relationship between fault detection and test suite size as a
way to compare the cost-effectiveness of criteria.

4.5 Comparing Coverage Criteria to Random Test
Suites

This section addresses question Q5. Using coverage criteria
and, in particular, data flow criteria requires substantial
code analysis and the generation of test cases to achieve a
certain coverage level is not a fully automated activity [14].
In order for such criteria to be useful in practice, they
should perform much better than randomly generated test
suites of identical size, as discussed in Section 3.4.2. To
investigate differences between random test suites and
coverage criteria, we used the RS test suites described in
Section 3.4. We fitted the relationship between Am and test
suite size based on the available data as for the coverage
criteria Am curves, except that a smoothing spline was used
[9] to achieve better fit ðR2 ¼ 0:96Þ of the data as no simple
exponential or any other standard model would fit well
(Fig. 12). The fitted model therefore represents the cost-
effectiveness that can be achieved simply by chance and
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Fig. 9. Comparing Am-coverage level relationships across criteria.

Fig. 10. The effect of an actual 85 percent feasible coverage for P-use.

Fig. 11. Relationship between Am and test suite size for Block coverage.

TABLE 4
Regression Coefficients, R2, and Surfaces Areas

for All Am-Size Models



models the effect of having increasingly larger test suites on
fault detection.

Fig. 13 depicts the relationship between Am and test suite
size for both the CS and RS test suites. We can clearly see that
the random curve is below the coverage criteria curves, with
an increasing difference when test suite size increases.
Thoughnodifferencewas identifiedamong the four coverage
criteria, there is a clear difference with random test suites:
Coverage criteria test suites are clearly more cost-effective
and more so for higher coverage levels and larger test suites.
Such a result therefore suggests that control and dataflow
criteria can provide useful guidance and can perform
significantly better in terms of fault detection than generating
large numbers of random test cases. The question remains
whether the observed difference justifies the overhead of
using control or data flow criteria.

One issue that could be raised is whether the test pool we
use is suitable for generating random test suites. The reason
is that the original test pool generated by Vokolos and
Frankl [31] was completed by Rothermel et al. [28] to
achieve better decision coverage and has therefore not been
entirely randomly generated. This augmentation may
possibly bias the results by making the random test suites
look more effective than they actually are. To ensure that
the augmentation did not affect our conclusions, we reran
our analysis with the original test pool of 10,000 test cases.

The results were very similar in terms of the shapes of the
curves, except that the difference between random test
suites and the coverage criteria was indeed larger, as shown
in Fig. 14 for Block coverage. For example, for a test suite
size of 100, the Am differences for the Block and random
test suites are 0.13 and 0.20 for the augmented and original
test pools, respectively. Similar, larger differences were also
observed for the other three criteria. Such differences,
however, do not strongly affect our conclusions.

Table 5 reports the areas below the Am-Size curves for all
four criteria, normalized by the random test suite areas
obtained with the Vokolos and Frankl test pool (10,000) and
the complete test pool (13,585), respectively. We can clearly
see, in quantitative terms, that the random test suites are
significantly less cost-effective than CS test suites based on
the former, but the difference decreases significantly on the
latter, thus confirming, for all criteria, what is visible in
Fig. 14 for Block.

As mentioned above (Section 2.2), the work by Frankl
and Weiss [13] reported inconsistent results in terms of the
difference between the Decision and All-Uses coverage
criteria and random test suites (null criterion). This
difference with our results may be due to the much smaller
size of their programs or the fact that they based their
results on a single fault per program, but it is difficult to tell
for certain. Hutchins et al. [17] reported much stronger
results in terms of the superiority of DU coverage and
Decision coverage versus random test suites of the same
size in the upper coverage level range (> 91 percent). On
average, DU coverage showed an increase in fault detection
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Fig. 12. Am-size relationship for random testing.

Fig. 13. Comparing coverage criteria cost-effectiveness with random

testing.

TABLE 5
Criteria Areas Normalized by Random Testing Areas

Fig. 14. Am for random test suites with the Vokolos and Frankl test pool

for Block.



between 1 percent and 68 percent, depending on the
coverage level considered. Within the same coverage level
range, Decision showed an increase ranging from 40 percent
to 75 percent compared to random test suites of the same
size. From Fig. 13, we can see that, as in Hutchins et al. [17],
the gain of using coverage criteria grows as test suite size
increases (for higher coverage levels). However, the
absolute percentage of increase in mutant detection grows
to a maximum of approximately 20 percent for the higher
coverage levels.

4.6 Is the Effect of Coverage Simply a Size Effect?

This section addresses research question Q6. It is in many
ways related to question Q5 since, if differences in fault
detection effectiveness were only due to test suite size,
random test suites would perform as well as coverage
criteria test suites. Recall that the study performed by
Frankl and Weiss [12] on small programs showed that the
difference between the fault detection effectiveness of All-
Uses and Decision versus random test suites was not
always significant. Similarly to their logistic regression
analysis, we can perform here a multivariate regression
analysis using both test suite size and coverage level (all
four criteria) as model covariates. Because of the form of the
relationships between Am and these two variables, we will
run the regression analysis on their log-transformed
versions. As visible from the univariate regressions for
C-Use coverage in Fig. 15, we obtain (nearly) linear
relationships.

When running a regression analysis using these two
variables as covariates, both turn out to be statistically
significant ðp < 0:0001Þ and show a positive regression
coefficient, thus both contributing to increasing Am as they

increase. The regression model shows a R2 ¼ 0:984 and
details about parameter estimates are shown in Table 6.

The fit in the nontransformed space shows an R2 ¼ 0:99
and Fig. 16 shows the relationship between Am and the
predictions we obtain using the model in Table 6. It is
therefore clear that, when taking into account test suite size
and C-Use coverage, we explain most of the variance in
Am. This suggests that both size and coverage play a
complementary role in explaining fault detection, despite
their strong correlation (R2 ¼ 0:93 for C-Use).9 In other
words, C-Use coverage seems to have an impact on fault
detection that extends beyond just a size effect. As
summarized in Table 7, we obtained similar results for the
other three coverage criteria where both size and coverage
are significant with p < 0:0001. In addition to regression
coefficients, Table 7 also reports the standard errors of
coefficient estimates and the R2 in the log-transformed
space and the original space.

4.7 Impact of Fault Detection Probabilities

This section investigates question Q7. We have seen in
Section 4.4 that Am can be accurately modeled as having an
exponential relationship with test suite size, showing an
increasing difficulty in detecting more faults as size
increases (exponent coefficient b < 1). However, how is
that relationship affected by the detection difficulty of
faults? Answering this question is useful in two ways: 1) It
may help explain some of the differences with other studies
and 2) it may have practical implications in terms of
calibrating mutation analysis to real faults in a specific
context.

To investigate this question, we focus on two subsets of
mutants: “hard” and “very hard” mutants that are detected
by less than 5 percent and 1.5 percent of the test cases in the
test pool, respectively. We then calculate Am only with
respect to the number of mutants in each of these categories.
Fig. 17 shows three sets of observations for the Block
coverage test suites, corresponding to the two subsets of
mutants plus the entire set. Note that observations are
connected by line segments to better render the shape of the
relationships in the figure. We can see that both subsets
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9. We verified, by looking at the Variance Inflation Factor (VIF) [29], that
collinearity between the two covariates was not an issue for the parameter
estimates.

Fig. 15. Univariate regression for Am versus (a) C-use coverage level and (b) test suite size.

TABLE 6
Multiple Regression Results for C-Use Coverage (%Cov) and

Test Suite Size



show a nearly linear relationship, which sharply differs
from what was observed in Section 4.4 (based on all
observations). Similar relationships can be observed for the
remaining three coverage criteria. Interestingly, Hutchins
et al. [17] also reported nearly linear relationships between
fault detection and test suite size and we have seen in
Section 4.4 that our result was visibly different. They
reported that 113 seeded faults were removed from their
analysis because they were deemed too easy to detect (a
minimum of 350 test cases, between 6 percent and
33 percent of the pool test cases would find them). The
average detection probability across our 736 nonequivalent
mutants is 16 percent and many of our mutants would have
been discarded if we had followed the procedure by
Hutchins et al. Therefore, this new analysis suggests that
the difference between Hutchins et al. [17] and our results is
due to the fact that the faults they had seeded were more
difficult to detect.

If we now turn our attention to the Am-Coverage
relationship, Hutchins et al. [17] had reported an exponen-
tial relationship showing an increasing fault detection rate
as the achieved coverage percentage was increasing
ðb > 1Þ. Frankl and Iakounenko [11] showed even more
extreme results with sharp increases in fault detection in
the last 10-20 percent coverage level range (Decision, All-
Uses). Again, as visible in Fig. 18, if we analyze “hard” and
“very hard” mutants, we obtain sharply different relation-
ships for Block Coverage than those observed in Section 4.3
(based on all observations). (Similar results were obtained
for other criteria.) For “hard” and “very hard” mutants, the

relationship looks very much like the ones reported in
[11], [17], respectively. Recall that, as mentioned above,
Hutchins et al. discarded the faulty versions they consid-
ered too easy to detect. A similar procedure, but even more
extreme, was adopted in [11], where only faulty versions
showing a failure rate (based on the test pool) of less than
1.5 percent were considered. We therefore get a quite
consistent picture where we obtain exponential relation-
ships between fault detection rates and coverage level, with
sharp increases in the highest 10-20 percent coverage levels,
when only faults with low detection probabilities are
considered. However, recall that we have shown in
Section 4.1 that our set of mutants is representative of
actual faults. We therefore believe that the cost-effectiveness
results we report in Section 4.4 are more realistic than the
data for the “hard” and “very hard” curves in Fig. 18.

What the above analysis also tells us is that the
relationships we have modeled between Am and test suite
size (Size) or achieved coverage level (%Coverage) are very
sensitive to the detection difficulty of the faults considered,
as captured by the detection probability by the pool of all
test cases. In practice, the detection difficulty of faults
depends on characteristics of the system under test and the
development process that was used. In order to use
mutation analysis (in the sense of Offutt [25]) to assess
whether a test suite is effective in a specific context (system
and organization), it may be necessary to filter out a subset
of “easy” mutants among all generated mutants, so as to

ANDREWS ET AL.: USING MUTATION ANALYSIS FOR ASSESSING AND COMPARING TESTING COVERAGE CRITERIA 621

Fig. 16. Prediction of Am (PredAm) using the model in Table 6.

Fig. 17. Am-size observations for all, “hard,” and “very hard” mutants

(Block).

TABLE 7
Summary of Multiple Regression Results with the Four Coverage Criteria



obtain Am-Size relationships that are representative of real
faults. The question is then what probability threshold to
use in a specific context? A practical approach would be to
take a sample of faults on a completed project, like the
Space program, and perform an analysis similar to ours to
determine what threshold allows Am to predict Af in the
most accurate way possible. Such a calibration process
would allow the determination of an optimal threshold,
where generated mutants would systematically be dis-
carded from the detection effectiveness analysis when more
than a certain percentage of test cases in a project test suite
would kill them. The assumption underlying this calibra-
tion process is that such a threshold would be stable within
an application domain and when a stable development
process is used so that it could be determined on a project
and used on future projects during the testing phase.

4.8 Threats to Validity

No data is perfect and no analysis yields 100 percent
trustable results. It is, however, important to identify the
threats to validity of an experiment and carefully assess the
likelihood of such threats and their potential consequences.
This section discusses different types of threats to the
validity of our experiments: internal, external, and construct
validity [6], [32].

One issue related to internal validity is due to the fact
that we reused, without any modification, a program that
has been widely used in previous experiments. The
program, test pool, and faults we are using were not
selected based on any particular criteria, except that they
were well-prepared and historically important. However,
the randomly generated test pool is two orders of
magnitude larger than our test suites and should be large
enough to generate realistic, random variation in the
construction of test suites and cover a large proportion of
feasible Decisions and Def-Use pairs.

After an initial random generation of 10,000 test cases,
the test pool that we used was completed (with 3,585 test
cases) with the intent of covering all executable Decisions,
as reported in Section 3.2, but no attempt was made to
explicitly cover all C-Uses and P-Uses. This augmentation
may have resulted in artificially inflating the coverage

levels observed for these two criteria, which are computed
using what can be considered feasible coverage based on
the test pool. Indeed, the test pool coverage for P-Uses and
C-Uses can be different from the actual feasible coverage,
thus affecting our comparisons of the cost of coverage
criteria as well as their relative fault detection effectiveness.
However, the test pool is rather large and covers a large
proportion of C-Uses (85 percent) and P-Uses (80 percent) in
the program, proportions which are not very different from
the proportions of Blocks (90 percent) and Decisions
(85 percent) covered.

It is expected that the results of our study would vary
depending on the mutation operators selected; the ones we
used, as discussed in Section 3.3, were selected based on the
literature available so as to be a minimal but sufficient set.
The selection of every 10th mutant may also represent a
threat to internal validity; we mitigated this threat by
confirming that this selection did not interact with any
pattern of mutation operation application and is thus a
practical and valid way to randomly select mutants.

Another issue is related to the way the test suites are
built. Would a human tester generate more cost-effective
structural test suites? Would this result in a larger
difference between random test suites and the ones based
on structural criteria? It is, of course, only possible to
answer such a question by running experiments involving
human subjects. Such experiments, however, present a
number of challenges as, for example, it is difficult to
imagine how large numbers of test suites could be
generated within a reasonable period of time. But, it is
probably the case that the difference we observe in our
study between random and criteria-based test suites is close
to what a human tester would observe.

External validity relates to our ability to generalize the
results of the experiment to industrial practice. Since only
one program with real faults was used (albeit a program
that has been studied extensively in the past), it will be very
important to replicate this study on other subject programs
where real faults have been identified. Though the program
is small by the usual industrial standards, it is much larger
than many of the small programs used in previous, related
empirical studies. Ideally, for running experiments such as
the one in this paper, one would want to use the largest test
pool possible, but doing so leads to prohibitive execution
times when executing a large number of mutants on a large
number of program versions while collecting control and
data flow information. It is also expected that results would
probably vary, depending on the specific development
process, as it would determine the fault characteristics
(detectability, type) to be expected at different verification
and validation phases. We have seen, for example, that
results are very sensitive to the detection probability of
faults and a procedure to tune the mutation analysis process
to a set of representative faults was proposed to address this
issue. However, even in situations where Am would not be
a good predictor of Af, the important question is whether
the relative ranking of the effectiveness of two test methods
using Am would be a good predictor of their relative
ranking using Af. If it is, it would lead to the conclusion that
it is a safe experimental practice to automatically generate
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Fig. 18. Am-coverage (percent) observations for all, “hard,” and “very

hard” mutants (Block).



mutants from source code and to compare the effectiveness
of test methods by comparing how many mutants the test
methods kill. More analyses such as the one presented in
this paper are required to answer this question with a high
level of confidence.

Construct validity concerns the way we defined our
measurement and whether it measures the properties we
really intend to capture: the fault detection effectiveness of
test sets, the detectability of faults, and the cost of testing.
Our justifications for detection effectiveness and detect-
ability were given at length above when discussing the size
of test sets and their construction. We model testing cost by
the size of test suites; this measure may fail to capture all
dimensions of testing cost when considering different
coverage criteria since it may be more difficult to find test
cases that achieve some coverage criteria than others. For
example, data flow criteria might be more difficult to use as
they involve data flow analysis. This entails that they
should only be used if they make a practically significant
difference justifying the additional cost.

5 CONCLUSION

This paper reports on an empirical study performed on one
industrial program with known system testing faults. We
investigate the feasibility of using mutation analysis to
assess the cost-effectiveness of common control and data
flow criteria. Our results show that mutation analysis is
potentially useful to assess and compare test suites and
criteria in terms of their cost-effectiveness. In other words,
in our context, it has been shown to yield results that are
similar to what would be obtained with actual faults. If this
result is confirmed, it suggests that mutation analysis can be
used in a research context to compare and assess new
testing techniques. But, it is also applicable in a more
practical context where a development organization must
empirically determine what levels of coverage to achieve to
attain acceptable detection rates.

Among the control and data flow criteria studied here,
none is more cost-effective than the other, though more
demanding criteria (e.g., C-Use and P-Use) entail larger test
suites that detect more faults. In other words, their
relationships between fault detection and test suite size
are similar. However, as expected, their cost (in terms of test
suite size) varies significantly for a given coverage level.

There is a sizable difference between the cost-effective-
ness of random test suites and that of coverage criteria, thus
justifying the use of the latter. But, it is unclear whether the
observed differences always justify the additional overhead
related to control and data flow analysis and the identifica-
tion of covering test cases. Further data analysis also shows
that the impact of coverage criteria on fault detection
effectiveness is not only due to an increase in test suite size,
thus explaining the cost-effectiveness difference between
random test suites and coverage criteria.

The probability of detection of faults given a test pool
(also referred to as a test universe) strongly affects the shape
of relationships between fault detection, coverage levels,
and test suite sizes. This fact seems to explain the
differences across existing studies and this one. Since we
have shown that the seeded mutants were representative of

real faults on our subject program, whereas the faults
considered in other studies were much harder to detect, our
results seem to be more realistic. However, should such
fault detection probabilities differ widely across develop-
ment environments, it would have a strong impact on the
testing requirements in terms of coverage levels in order to
attain acceptable fault detection rates.

Because empirical studies of control and data flow
criteria are still rare, there are still numerous open
questions to investigate. For example, it is very important
for practitioners to figure out ways to decide on
appropriate coverage levels given a required fault detec-
tion rate. Techniques for them to perform trade-offs are
required. We cannot converge toward adequate solutions
to these problems if we do not gain a better under-
standing of the cost-effectiveness of control and data flow
criteria and the factors that affect their applicability. As
for mutation analysis, we need to devise procedures to
tailor it to a specific environment. This paper proposes an
initial strategy based on discarding mutants using their
detection probability by a test suite, but this approach
needs to be further investigated and evaluated from a
practical standpoint.
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