
INVESTIGATING AND EXTENDING P-LOG

by

Evgenii Balai, Dipl.-Ing

A Dissertation

in

COMPUTER SCIENCE

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Michael Gelfond
Chair of Committee

Yuanlin Zhang
Co-Chair of Committee

Nelson Rushton

Richard Watson

Mark Sheridan
Dean of the Graduate School

December 2017

© 2017 Evgenii Balai

Texas Tech University, Evgenii Balai, December 2017

ACKNOWLEDGMENTS

I would like to express my sincere appreciation and acknowledgment to my advi-

sor, Dr. Michael Gelfond, for all the help, the encouragement and the patience shown

by him at all the stages of working on this dissertation. His deep knowledge, expe-

rience and professionalism helped me greatly to continue and complete this work. I

also thank the members of Michael Gelfond’s family: Larisa Gelfond, Greg Gelfond,

Patrick Kahl, and Yulia Kahl for their attention, support and active participation in

my life here in Lubbock.

I am grateful to all the members of my committee for teaching me very important

classes, collaborating with me on various research projects and contributing towards

my development as a scientist, an engineer and a person.

I would especially like to thank the co-chair of this dissertation committee, Dr.

Yuanlin Zhang. His hard work, persistence and dedication helped greatly in moving

this work forward and were constant sources of motivation.

I am glad I had an opportunity to work with Dr. Nelson Rushton and Dr. Richard

Watson, who made valuable suggestions to improve this dissertation and helped me

to know and to better understand the life and the culture of such a great and an

interesting country as the United States of America.

Finally, I am thankful to all the students I had a chance to work with and to teach

classes for. It has been a very valuable experience.

Evgenii Balai

October 25, 2017

Department of Computer Science

Texas Tech University

Lubbock, TX, USA

ii

Texas Tech University, Evgenii Balai, December 2017

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

ABSTRACT . v

LIST OF TABLES . vi

LIST OF FIGURES . vii

I INTRODUCTION . 1

II SYNTAX AND SEMANTICS OF P-LOG 12

2.1 Syntax of P-log . 12

2.1.1 Sorted Signatures of P-log 12

2.1.2 P-log Programs . 15

2.1.3 P-log Declarations . 18

2.2 Semantics of P-log . 20

2.2.1 Interpretations . 20

2.2.2 Possible Worlds . 21

2.2.3 Probabilities . 25

2.3 A Note on Activity Records in the Bodies of Rules 29

III DYNAMICALLY CAUSALLY ORDERED P-LOG PROGRAMS . . 31

3.1 Causally Ordered Programs . 31

3.2 Dynamically Causally Ordered Programs 34

3.3 Examples . 40

3.3.1 Die . 40

3.3.2 Random Tree . 44

3.3.3 Blood Type Problem . 50

3.3.4 Not Dynamically Causally Ordered 59

IV COHERENCY RESULT . 67

4.1 Coherent Programs . 67

4.2 Unitary Programs . 69

iii

Texas Tech University, Evgenii Balai, December 2017

4.3 Coherency Theorem . 71

V ALGORITHMS . 77

5.1 Introduction . 77

5.2 Transformation γ . 80

5.3 Definitions . 82

5.3.1 E-interpretations . 82

5.3.2 Random Attributes Ready in an E-interpretation 85

5.3.3 AI-trees . 88

5.3.4 Detecting Incompatible Nodes Efficiently 91

5.3.5 Computing Node Measures Efficiently 93

5.3.6 Efficient Solutions . 98

5.3.7 Consequence Functions . 99

5.4 Algorithm Description and Implementation 115

VI CONCLUSION AND FUTURE WORK 122

BIBLIOGRAPHY . 124

APPENDIX: PROOFS . 125

iv

Texas Tech University, Evgenii Balai, December 2017

ABSTRACT

This dissertation focuses on the investigation and improvement of knowledge rep-

resentation language P-log that allows for both logical and probabilistic reasoning.

In particular, we extend P-log with new constructs to increase its expressive power

and usability, clarify its semantics, define a new class of coherent (i.e., logically and

probabilistically consistent) P-log programs and develop an inference algorithm for

the programs from the new class. We also present the performance results of the pre-

liminary implementation of the new algorithm. The results demonstrate that the new

algorithm can substantially increase the performance of P-log inference on a number

of important examples.

v

Texas Tech University, Evgenii Balai, December 2017

LIST OF TABLES

2.1 The rules of Π4 and its reduct with respect to I 25

3.1 ABO blood group system . 50

5.1 Performance on squirrel example . 119

5.2 Performance on block map problem example 120

5.3 Performance on components failure example 120

5.4 Performance on system failure example 121

vi

Texas Tech University, Evgenii Balai, December 2017

LIST OF FIGURES

5.1 A tree for Π10 . 78

5.2 f1-solution of Π14 w.r.t to query h (and q) 113

5.3 f2-solution of Π14 w.r.t. h . 113

5.4 f2-solution of Π14 w.r.t. q . 114

5.5 f3-solution of Π15 w.r.t. f . 114

A.1 Unitary tree T . 159

A.2 T2: The tree corresponding to the dice P-log program Π16 163

vii

Texas Tech University, Evgenii Balai, December 2017

CHAPTER I

INTRODUCTION

The language P-log, introduced in [Baral et al., 2004, Baral et al., 2009], is capa-

ble of combining non-monotonic logical reasoning about agents’ beliefs in the style

of Answer Set Prolog (ASP) [Gelfond & Lifschitz, 1991a] and probabilistic reasoning

with Causal Bayesian Networks [Pearl, 2009]. The main goal of this dissertation is to

improve P-log in the following directions.

1. Improve and expand the syntax and semantics of P-log by:

• introducing additional means for describing sorts of a P-log program,

• clarifying the original semantics of partial functions and activity records,

and

• allowing statements used to record activities of a reasoner to occur in the

bodies of rules.

2. Define a new class of coherent (i.e, probabilistically and logically consistent)

P-log programs which includes a number of classical examples not included in

the classes defined in [Baral et al., 2009] and [Zhu, 2012].

3. Design and implement a reasonably efficient inference algorithm for the pro-

grams from the new class.

Sorts: In the original P-log sorts are described by statements of the form s =

{t1, . . . , tn}, where s is a sort name and t1, . . . , tn are ground terms1, or by a pro-

gram which has an unique answer set. This is inconvenient to describe large hier-

archies of sorts which may be defined using string concatenations, conditions, set

operators, etc. We extend the syntax for defining sorts by using the framework from

[Balai et al., 2013]. Sorts there are defined by statements of the form:

1For the precise definition of ground term see Section 2.1.1

1

Texas Tech University, Evgenii Balai, December 2017

sort name = sort expression

where sort name is a unique identifier preceded by the symbol # and sort expression

can be in one of the following forms:2

• {t1, ..., tn}

• f(sort name1, . . . , sort namen)

• sort name1 ⊕ · · · ⊕ sort namen

where n > 0, each ti is a ground term, f is a function symbol, and ⊕ denotes a

set operator (union, intersection, or difference) where the set operations result in a

non-empty set. More details and examples can be found in [Balai et al., 2013].

Elimination of negative literals in the heads: One of the oversights made in the

design of the original P-log was allowing negative literals of the form f(x̄) 6= y in a

head of a rule. If f is a total function then the decision does not cause any problems.

If, however, f is partial, it leads to a discrepancy between intuitive meaning of the

program and its formal semantics. To see that let us consider a program P consisting

of rules:

f : boolean

f 6= false

Intuitively, f 6= false means that f is defined, i.e. has a value and this value is

different from false. The intuition agrees with some other extensions of ASP with

functional symbols, e.g. [Balduccini, 2012]. Together with declaration f : boolean

this should imply that the value of f is true. However, the program P has one

possible world consisting of a literal f 6= false and hence P does not entail f = true.

To remedy the problem one probably should define f as random which will force f to

take a value. The new program will clearly entail f = true. But, if f is random, then

f 6= false should be replaced by a more appropriate obs(f 6= false) which would

2the actual syntax is slightly different, we simplify it here to shorten the description

2

Texas Tech University, Evgenii Balai, December 2017

allow us to produce the same result. This observation suggests that allowing negative

literals in the head is redundant. Moreover, disallowing this syntactic feature leads

to a substantial simplification of the formal semantics of P-log. Instead of defining

possible worlds as sets of literals we can view them simply as (partial) interpretations

of the attribute terms from the program’s signature (in other words, a collection of

atoms). So far we were not able to find any adverse effect of our restriction on the

original syntax.

P-log observations: Another problem with the original P-log is related to the intu-

itive meaning of P-log observations. According to [Baral et al., 2009] such observa-

tions are used “to record the outcomes of random events, i.e., random attributes, and

attributes dependent on them”. However, axioms 10 – 13 from the original paper do

not faithfully reflect this intuition. Axiom (12), for instance, does not prohibit obser-

vations of non-random events. Instead it simply views obs(f(x̄) = y) as a shorthand

for the constraint

← not f(x̄) = y

where f is an arbitrary attribute. The new observation simply eliminates some of

the possible worlds of the program, which reflects understanding of observations in

classical probability theory. This view is also compatible with the treatment of ob-

servations in action languages. So if we limit ourselves to the syntax of traditional

P-log there are no adverse consequences of expanding the observability of attribute

values to a non-random case. Later we will discuss some of its benefits.

P-log intervening actions: Let us now attempt to clarify the P-log meaning of

the do statement. The original paper states: “the statement do(f(x̄) = y) indicates

that f(x̄) = y is made true as a result of a deliberate (non-random) action”. Note,

that here, f(x̄) is not required to be declared as random, i.e. its value does not

have to be normally defined by a random experiment. This is not wrong. Even

though the original intervening action do of Pearl only applies to random attributes

(no other types are available in Bayesian Nets) nothing prohibits us from expanding

3

Texas Tech University, Evgenii Balai, December 2017

the domain of do to non-random ones. After all this is exactly what we did with

observations. But in the case of intervening actions, such an extension seems to be

unwarranted. It is easy to see that for non-random f(x̄), do(f(x̄) = y) is (modulo

do) equivalent to f(x̄) = y, which undermines the utility of such statements. In

addition, it violates an important principle of language design frequently advocated

by N. Wirth and others: Whenever possible, make sure that each important type of

informal statements you want expressible in your formal language corresponds to one

language construct. Moreover, applying do to interfere with a random experiment with

a dynamic domain p causes an ambiguity of an interpretation: should the deliberately

assigned value belong to the dynamic domain or arbitrary value of a proper sort must

be allowed? The formal semantics from [Baral et al., 2009] corresponds to the second

option, but, according to the best recollection of the authors of [Baral et al., 2009],

this is accidental. The decision was not deliberate.

We may avoid this redundancy and ambiguity by slightly modifying the definition

of the set R of general axioms of program Π with signature Σ.

Firstly, we keep the rules of the form

random(f(x̄) : {X : p(X)})← body.

unchanged. Since the axioms need to satisfy ASP syntax, we identify the P-log atom

random(f(x̄) : {X : p(X)}) with a simpler atom random(f(x̄), p). After this new

interpretation, random(f(x̄) : {X : p(X)}) says that f(x̄) may take the value from

{X : p(X)} as the result of a random experiment, whose outcome could possibly be

manipulated. To separate a deliberate interference from a truly random assignment

we introduce a new special attribute term truly random.

For every attribute term random(f(x̄), {X : p(X)}) from Σ such that range(f(x̄))

= {y1, . . . , yk}, R contains rules

f(x̄) = y1 or . . . or f(x̄) = yk ← random(f(x̄) : {X : p(X)}) (1.1)

4

Texas Tech University, Evgenii Balai, December 2017

truly random(f(x̄)) ← random(f(x̄) : {X : p(X)}),

not do(f(x̄), y1), . . . , not do(f(x̄), yk)
(1.2)

← f(x̄) = Y, not p(Y), random(f(x̄) : {X : p(X)}). (1.3)

← not f(X̄) = Y,

do(f(X̄), Y).
(1.4)

← not random(f(X̄) : {X : p(X)}),

do(f(X̄), Y).
(1.5)

Intuitively, axioms (1.1) and (1.3) guarantee that if random(f(x̄) : {X : p(X)})

is true, f(x̄) is assigned a value satisfying condition p, axiom (1.2) guarantees that

truly random(f(x̄)) is true iff the value of f(x̄) is assigned as the result of a genuine

random experiment (that is, an experiment which was not interfered with), (1.4)

guarantees that the atoms made true by interventions are indeed true, and (1.5)

makes sure that an attempt to apply do to a non-random f(X̄) leads to inconsistency.

Actions and observations in the bodies of rules: Another important modi-

fication of the language is allowing literals formed by do and obs (i.e, actions and

observations) to occur in the bodies of P-log rules. We have already mentioned that

the addition of an observation to a program in the original P-log language may only

eliminate some of its possible worlds but cannot create a new one. Allowing obser-

vations to occur in the bodies of P-log rules changes the situation. Addition of an

observation obs(a, true) to a program

Q =

 ¬a ← not a.

a ← obs(a, true).

creates a possible world which did not exist according to the original program. This

extension of the language does not significantly complicate the mathematical seman-

tics of the language but seems to add substantially to its expressive power.

5

Texas Tech University, Evgenii Balai, December 2017

To further illustrate this phenomena let us assume that we would like to use P-log

to formalize knowledge relevant to the following problem.

Suppose that an experienced diagnostician was able to determine that a certain

patient’s symptom s has two possible causes c1 and c2. The purely qualitative infor-

mation available to the diagnostician can be expressed in P-log by a program P1:

P1 =



¬c1 ← not obs(s)

¬c2 ← not obs(s)

s ← c1

s ← c2

¬s ← not s

The first two rules say that the causes are not true in case of the absence of an

observation of the symptom – a natural default we use in our actions before becoming

aware of a problem by experiencing its symptoms. The next three rules give the

complete list of possible causes for s. According to this program the probabilities

of s, c1 and c2 are 0. It is important to note that an update of P1 by observation

of the truth of any attribute of P1 leads to inconsistency. This is not necessarily

an unwelcome outcome for the observations of causes – after all causes are normally

not directly observable and need to be derived from the observations of symptoms

and the background knowledge. This shall not however happen for the observation

of the symptom s. The following informal argument is possible in this case: Since

we are given a complete list of possible causes of s and s is observed to be true we

cannot continue to use closed world assumptions for causes. Instead we should think

of them as random attributes which may or may not be true. Accordingly, the program

describing the agent’s knowledge should have possible worlds W1 = {c1,¬c2, s}, W2 =

{¬c1, c2, s}, and W3 = {c1, c2, s}.

The missing knowledge used by the reasoner to go from observations of a symptom

6

Texas Tech University, Evgenii Balai, December 2017

to its causes can be represented by expanding P1 by the rules:

R =

 random(c1)← obs(s)

random(c2)← obs(s)

which have observations in their bodies. It is easy to check that program

P2 = P1 ∪R ∪ {obs(s)}

is consistent and has three possible worlds W1, W2, and W3 described above. The

program assigns probabilities 2/3 to c1 and c2 and probability 1 to s.

It may be tempting to replace P2 by program P ′2, obtained from P2 by replacing

R with collection of rules:

R′ =

 random(c1)← s

random(c2)← s

This, however, will not work, since the resulting program will be inconsistent. This

is not surprising, since there is a substantial difference between s and obs(s). The

first is a fact and can be used by a reasoner to justify his belief in s. The second is a

constraint which cannot be used for this purpose. As the result, allowing observations

in the bodies of rules is essential for the type of reasoning discussed in this example.

Let us now assume that, by checking some available statistics, the diagnostician

acquire knowledge about probabilities of c1 and c2. These probabilities can be added

to the program by the set PA of causal probability atoms:

PA =

 pr(c1) = 0.05

pr(c2) = 0.01

7

Texas Tech University, Evgenii Balai, December 2017

The probabilities assigned to c1 and c2 by the new program,

P3 = P2 ∪ PA

are now approximately 0.8 and 0.2. So c1 is the most likely cause of the symptom.

Finally, let us consider the case when after some direct or indirect observation the

diagnostician establishes that c2 is true. The probabilities assigned to c1 and c2 by

program

P4 = P3 ∪ {obs(c2)}

are now 0.05 and 1 respectively. The latter observation is an example of a probabilis-

tic phenomena called “explaining away” [Wellman & Henrion, 1993]: when you have

competing possible causes for some event, and the chances of one of those causes in-

creases, the chances of the other causes must decline since they are being “explained

away” by the first explanation.

The example shows a fairly seamless combination of logical and probabilistic rea-

soning in search of causal explanations of a symptom. An author of the original P-log

was not able to express this type of reasoning in the original P-log based on ASP. We

could, however, do it in CR-Prolog [Balduccini & Gelfond, 2003] – extension of ASP

by so called consistency-restoring rules. Consider program P ′3 obtained from P3 by

replacing R with the rules:

R2 =

 random(c1)← include causes

random(c2)← include causes

adding a consistency-restoring rule:

include causes
+←

8

Texas Tech University, Evgenii Balai, December 2017

and replacing each of the defaults

¬c1 ← not obs(s)

¬c2 ← not obs(s)

with classical closed worlds assumptions for c1 and c2:

¬c1 ← not c1

¬c2 ← not c2

It is easy to check that P ′3 is logically and probabilistically equivalent to P3. Similarly,

we can obtain a CR-Prolog program equivalent to P4.

This, however, requires the programmer to learn the semantics of CR-Prolog.

Moreover, currently there is no reasoning system that implements P-log with consis-

tency-restoring rules, and the task of developing and efficiently implementing such a

system seems to be non-trivial. In contrast, implementing P-log with rules containing

actions and observations in their bodies seems to be less daunting.

There are other possible uses of observations in the body of rules. In our previous

example we have already encountered unobservable attributes. In fact, in the original

interpretation of obs, if x̄ does not belong to the domain of f , i.e., no value is assigned

to f(x̄) by the program, then f(x̄) is unobservable. Sometimes, however, f(x̄) is

undefined simply because the reasoner does not know the value of f(x̄). In some of

such cases this value can be obtained by a direct observations. (We refer to such f(x̄)

as directly observable.) In P-log this property can be expressed by the rule:

f(x̄) = y ← obs(f(x̄), y).

Note that, for a directly observable value of an attribute f(x̄), expanding a program by

obs(f(x̄), y) is (modulo atoms formed by obs) equivalent to expanding it by f(x̄) = y.

9

Texas Tech University, Evgenii Balai, December 2017

Impossibility of observing f(x̄) can be expressed as:

← obs(f(x̄), Y).

The ability to use observations in the bodies of rules allows for one more pos-

sible extension of P-log. We may relax the restrictions requiring our observations

to be always accurate. To avoid the change of the existing meaning of the ob-

servations, the language can be extended by a new activity record of the form

imprecise measure(f(x̄), y) which can be translated into:

random(f(x̄))← obs(f(x̄), Y), imprecise measure(f(x̄))

and a probabilistic information of the accuracy of the measurement.

New Subclass of Coherent Programs and Inference Algorithm. A naive

inference in P-log requires the computation of all possible worlds of the program. An

algorithm which uses the naive approach is described in Section 3.1 of [Zhu, 2012]. In

order to compute the possible worlds, a P-log program Π is translated into an ASP

program τ(Π). An ASP solver is used to obtain the answer sets of τ(Π), that are

later mapped into the possible worlds of Π and their probabilities.

A more efficient algorithm for a class S of programs, called strongly causally

ordered unitary (scou) programs, is defined in Sections 3.2 - 3.3 of [Zhu, 2012]. It

is shown that, under certain conditions, the computation of all possible worlds can

be avoided by computing partial interpretations each of which may correspond to

several possible worlds. The probability of the query is computed, possibly using the

pr-atoms of the program, from the collection of the computed partial interpretations

whose size is typically smaller than the number of all the possible worlds.

Unfortunately, there are interesting and important programs which do not belong

to S (for details, see Examples 1-3 from Section 3). Moreover, the description and

implementation of the algorithm contain some ambiguities and typos which make it

10

Texas Tech University, Evgenii Balai, December 2017

difficult to fully understand its properties.

In order to address these problems, in this dissertation we:

• introduce a new class, B, of P-log programs containing all programs from S

considered in [Zhu, 2012] and a number of useful programs not belonging to S

and show the coherency of programs from this class,

• define and implement a new query answering algorithm for P-log, and

• show that the algorithm is sound and complete for programs from B.

11

Texas Tech University, Evgenii Balai, December 2017

CHAPTER II

SYNTAX AND SEMANTICS OF P-LOG

A P-log program will be defined as a pair consisting of a sorted signature and a

collection of P-log rules and causal probability atoms. The program will define the

collection of possible worlds corresponding to beliefs of a rational reasoner associated

with the programs as well as the probability function on the sets of these worlds

describing degrees of the reasoner’s beliefs.

2.1 Syntax of P-log

We start with an accurate definition of sorted signatures and their interpretations

which will be used throughout the text and then define the syntax of P-log programs.

2.1.1 Sorted Signatures of P-log

A sorted signature Σ is a tuple 〈S,O, F 〉 where S is a finite non-empty set of

sort names, O is a finite set of object constants, and F is a finite non-empty set of

functional symbols.

• Every sort name s ∈ S is assigned the sort denoted by it - a collection of object

constants from O. We say that an object o from this collection belongs to (or

is an instance of) sort s and write o ∈ s. We also assume that Σ contains sorts

N and Q of natural and rational numbers which are mapped into standard

representations of these numbers viewed as elements of O. Whenever it is clear

from the context, we will abuse the notation and use the same letter to refer to

the sort name and the sort denoted by it.

• Every function symbol from F has sort names assigned to its parameters and its

range. In what follows we use standard mathematical notation f : s1, . . . , sn →

s to describe these assignments.

12

Texas Tech University, Evgenii Balai, December 2017

• Set F is partitioned into two parts: attributes and arithmetic functions +, −,

etc. defined on natural or rational numbers.

A ground term, t, of Σ with value belonging to sort s (written as t ∈ s) is:

• a constant o such that o ∈ s,

• a string of the form f(t1, . . . , tn) where f : s1, . . . , sn → s and t1, . . . , tn are

ground terms with values from sorts s1, . . . , sn. If f is an arithmetic function

the term is called arithmetic1. Otherwise it is called an attribute term. The

sort s is referred to as the range of f(t1, . . . , tn).

Note that the value of a ground term may belong to more than one sort. In the rest

of this subsection we will use the word term to mean ground term.

Signatures of P-log program will always include special attribute terms listed

below. (We use f(x̄) to denote an attribute term and y to denote a variable or

constant which can serve as the value of f(x̄); p stands for a unary boolean attribute):

• do(f(x̄), y) , which reads as “a random experiment assigning value to f(x̄) is

deliberately interfered with and f(x̄) is assigned the value y”,

• obs(f(x̄), y, true), which reads as “the value of f(x̄) is observed to be y” and

obs(f(x̄), y, false), which reads as “the value of f(x̄) is observed to be different

from y”2,

• random(f(x̄), p), which says that “f(x̄) may take the value from {X : p(X)}

as the result of a genuine or a deliberately interfered with random experiment”,

and

• truly random(f(x̄)), which says that “f(x̄) takes value as the result of a genuine

random experiment (i.e., the one without any outside interference)”.

1As usual for arithmetic terms we use infix notation.
2To simplify the notation we sometimes write obs(f(x̄), y, true) and obs(f(x̄), y, false) as

obs(f(x̄), y) (or obs(f(x̄) = y)) and ¬obs(f(x̄), y) (or obs(f(x̄) 6= y)) respectively; if f is boolean
then obs(f(x̄), true, true) will be written as obs(f(x̄)).

13

Texas Tech University, Evgenii Balai, December 2017

The arguments of any of the special attribute terms cannot be formed by special

attribute terms. For the sake of compatibility with original P-log, we will sometimes

write random(a : {X : p(X)}) instead of random(a, p).

Note that in the first case the value of f(x̄) must belong to {Y : p(Y)}∩range(f);

the argument p can be omitted, in which case the value of f(x̄) is selected from the

range of f .

Each of the special attribute terms has a boolean range.

An atom of Σ is a statement of one of the forms:

1. t = y where t is an attribute term, y is an object constant such that y ∈ range(t);

2. t1 � t2 where t1 and t2 are arithmetic terms and � is one of the standard

arithmetic relations, =, 6=, >, etc. These atoms are called arithmetic

The statement t = y reads: “y is the value of t”. Its negation, ¬(t = y) or t 6= y is

read as “the value of t is different from y”. If t is boolean then t = true and t = false

will often be written as t and ¬t. An atom of the form t = y is called special if t a

special attribute term, otherwise it is called regular. If t is of the form obs(f(x̄), y, B)

or do(f(x̄), y), the atom is called an observation or an action correspondingly.

Atoms and their negations are referred to as positive literals and negative literals

of Σ correspondingly. A literal of Σ is either a positive literal of Σ or a negative literal

of Σ.

A literal, possibly preceded by the default negation not, is called an extended

literal or simply an e-literal of Σ. The e-literal not l reads as “l is not believed to be

true” (which is, of course, different from “l is believed to be false”).

Elements of a program such as terms and e-literals are called ground if they contain

no variables and no names of arithmetic functions.

In what follows, by signature we will mean P-log signature. For a signature Σ, by

at(Σ), lit(Σ), e-lit(Σ), attr(Σ) we will denote the sets of all ground atoms, ground

literals, ground extended literals and attribute terms respectively.

14

Texas Tech University, Evgenii Balai, December 2017

2.1.2 P-log Programs

A P-log rule over signature Σ is of the form:

l← body (2.1)

where l is an atom of Σ, also referred to as the head of the rule, and body is a collection

of e-literals of Σ, also referred to as the body of the rule. The head of the rule can

optionally be omitted, in which case the rule is of the form

← body (2.2)

and is called a constraint.

For a rule r, by head(r) and body(r) we will denote the head of r and the body

of r respectively.

If l is an observation or an action, we require the body to be empty and the rule

is called an activity record.

If l is of the form random(a : {X : p(X)}), the rule (2.1) is called a random

selection rule.

A rule which is not an activity record or a random selection rule is called a regular

rule.

By a P-log program we mean a pair consisting of

1. A signature Σ and

2. A collection R of P-log rules and causal probability statements (also called

pr-atoms) – expressions of the form

pr(f(x̄) = y | B) = v (2.3)

where f(x̄) is a regular attribute term such that y ∈ range(f(x̄)), B is a set of

e-literals of Σ and v ∈ [0, 1] is a rational number. The statement says that “if

15

Texas Tech University, Evgenii Balai, December 2017

the value of f(x̄) is generated randomly and B holds then the probability of the

selection of y for the value of f(x̄) is v. Moreover, there is a potential existence

of a direct causal relationship between B and the possible value of f(x̄).”

We will refer to f(x̄) = y as the head of the pr-atom and to B as the body of

the pr-atom. We will refer to v as the probability assigned by the pr-atom.

Unless otherwise stated, we will assume that R contains the following rules, also

referred to as general P-log axioms :

• For every attribute term f(x̄) of Σ which is not special, the rules:

← not f(x̄) = Y, obs(f(x̄), Y, true). (2.4)

← not f(x̄) 6= Y, obs(f(x̄), Y, false). (2.5)

Intuitively, the rules (often referred to as reality check axioms) prohibit obser-

vations of undefined attribute terms as well as observations which contradict

the agent’s beliefs.

• For every random atom random(f(x̄) : {X : p(X)}) of Σ such that range(f) =

{y1, . . . , yk}, the rules :

f(x̄) = y1 or . . . or f(x̄) = yk ← random(f(x̄) : {X : p(X)})3 (2.6)

truly random(f(x̄)) ← random(f(x̄) : {X : p(X)}),

not do(f(x̄), y1), . . . , not do(f(x̄), yk)
(2.7)

← f(x̄) = Y, not p(Y), random(f(x̄) : {X : p(X)}). (2.8)

3Disjunction here is a so called shifted disjunction [Dix et al., 1996], that is, the disjunctive rule
is viewed as a shorthand for the collection of rules:

f(x̄) = y1 ← random(f(x̄) : {X : p(X)}), not f(x̄) = y2, . . . , not f(x̄) = yk
. . .

f(x̄) = yk ← random(f(x̄) : {X : p(X)}), not f(x̄) = y1, . . . , not f(x̄) = yk−1.

16

Texas Tech University, Evgenii Balai, December 2017

← not f(X̄) = Y,

do(f(X̄), Y).
(2.9)

Intuitively, the rules (2.6) and (2.8) guarantee that if random(f(x̄) : {X :

p(X)}) is true, then f(x̄) is assigned the value satisfying condition p, rule (2.7)

makes sure that truly random(f(x̄)) is true iff the value of f(x̄) is assigned as

the result of a truly random experiment, i.e. an experiment without any inter-

vention, and rule (2.9) guarantees that the atoms made true by interventions

are indeed true.

• The rule

← not random(f(X̄) : {X : p1(X)}),

. . . ,

not random(f(X̄) : {X : pn(X)}),

do(f(X̄), Y).

(2.10)

where random(f(X̄) : {X : p1(X)}), . . . , random(f(X̄) : {X : pn(X)}) are all

special attribute terms of Σ formed by random with f(X̄) as the first argument.

Intuitively, the rule guarantees that an attempt to apply do to a non-random

f(X̄) leads to inconsistency.

In addition, for every rule r which is not a general axiom, we disallow literals

formed by truly random and random to occur in the body of r.

We will sometimes refer to axioms of the forms (2.4), (2.5) and (2.9) as value-

checking axioms. Also, we will refer to the rules of the program other than general

axioms as user-defined.

As usual, a rule with variables4 is understood as a shorthand for the collection of

rules obtained by replacing the variables with the properly-sorted ground terms of Σ.

In what follows we assume that, unless otherwise stated, programs and other

program elements we refer to are ground.

4A variable of P-log is an identifier starting with an upper case letter.

17

Texas Tech University, Evgenii Balai, December 2017

Note that our syntax differs from the syntax defined in [Baral et al., 2009] in the

following ways.

a) We explicitly allow partial attributes and clarify the meaning of a 6= y and

not a = y.

b) We allow special attribute terms to occur in rules’ bodies.

More details on the proposed changes and a more general definition of P-log syntax

can be found in [Balai & Gelfond, 2017].

2.1.3 P-log Declarations

We will use declarations to describe the signatures of P-log programs.

Sort declarations are used to define sorts and the assignments of sort names to

sorts. A sort declaration is of the form:

sort name = sort expression

where sort name is a unique identifier preceded by the symbol # and sort expression

denotes a sort. For example, the declaration

#block = [b][1..9]

defines sort #block consisting of elements b1..b9

The declaration

#fluent on = on(#block,#block)

defines sort #fluent on consisting of records of the form on(bi, bj), where bi, bj are

elements of the sort #block.

The declaration

#s = #s1 + #s2

18

Texas Tech University, Evgenii Balai, December 2017

defines a sort #s whose elements are the union of elements of previously defined sorts

#s1 and #s2.

For more details about the syntax and semantics of sort declarations, please refer

to [Balai et al., 2013].

A statement

f : s1, . . . , sn → s (2.11)

is a declaration of attribute f with parameters s1, . . . , sn and the range s. We will

refer to (2.11) as an attribute declaration.

In what follows, we will write each P-log program as a sequence of sort declara-

tions, followed by a sequence of attribute declarations, followed by a sequence of rules.

Every declaration and every rule will end with a dot. We will often omit P-log general

axioms from the rules, the declaration of the sort boolean #boolean assigned to the

set of object constants {true, false}, and the facts of the form p′(X) if the program

denotation contains a shorthand random(a) denoting random(a : {X : p′(X)}). We

will write comments as lines starting with a percent sign (%). For example:

% Sorts

#n = {1,2,3}.

% Attributes

f: #n -> #boolean.

a,b: #boolean.

% Rules

random(a:{X:f(X)}).

random(b).

f(1) :- a = 2.

f(2).

19

Texas Tech University, Evgenii Balai, December 2017

f(3).

2.2 Semantics of P-log

We start with defining possible worlds of a (ground) P-log program. As in ASP,

programs with variables will be viewed as shorthands for the sets of ground instan-

tiations of their rules (which, of course, should be faithful to the declarations of the

program). We introduce some basic terminology before defining the semantics.

2.2.1 Interpretations

An interpretation over signature Σ is a (possibly partial) mapping I from the

attribute terms of Σ into values from their corresponding ranges. We assume that on

arithmetic symbols I coincides with their standard interpretation.

In what follows, a denotes a ground attribute term, l denotes a literal, el denotes

an extended literal, and B denotes a set of extended literals. The satisfiability relation

between I and an element O (atom, literal, extended literal or a rule) of Σ (denoted

by I |= O) is defined as follows:

1. I |= a = y if I(a) = y,

2. I |= ¬(a = y) if I(a) = y′ where y′ 6= y,

3. I |= not l if I 6|= l,

4. I |= B if for every el ∈ B, I |= el,

5. I |= l← B if I 6|= B ∨ I |= l, and

6. I |=← B if I 6|= B.

We say that an atom A of Σ is true in I if I |= A and false in I if I |= ¬A. If A is

neither true nor false in I then it is undefined in I.

20

Texas Tech University, Evgenii Balai, December 2017

We will often represent an interpretation I as the set of non-arithmetic atoms

satisfied by I. We will use standard mathematical notation I1 ⊆ I2 to denote that I1

is a subset of I2 and I1 (I2 to denote that I1 is a proper subset of I2.

Example 1. Consider a signature Σ with sort #s = {1, 2}, attributes a and b with

range #s, boolean attribute p defined on #s, and an interpretation

I = {a = 1, b = 1, p(1), random(a : {X : p(X)}), truly random(a)}

of Σ. Note that, while a = 2, b = 2, are false in I, p(2) is not: it is undefined in I.

Consequently, not p(2) and a rule

random(b : {X : p(X)})← a = 1, a 6= 2,not p(2)

are satisfied by I.

2

2.2.2 Possible Worlds

Next we will define the possible worlds of a P-log program. As expected, the

definition is very similar to the definition of answer sets for logic programs, and

consists of two parts.

Definition 1 (Possible world, part I).

Let Π be a ground P-log program not containing literals preceded by not. An inter-

pretation I of the signature Σ of Π is called a possible world of Π if it satisfies the

following conditions:

1. Every rule of Π is satisfied by I.

2. There is no interpretation I0 such that I0 (I and I0 satisfies every rule of Π.

2

21

Texas Tech University, Evgenii Balai, December 2017

To define the semantics of programs with default negation, we will need the stan-

dard definition of the reduct [Gelfond & Lifschitz, 1988]: for a program Π and inter-

pretation I the reduct of Π with respect to I (denoted by ΠI) is a P-log program

obtained from Π by

1. removing all rules whose bodies contain a literal of the form not l such that

I |= l, and

2. removing all other extended literals of the form not l from the program rules.

The second part of the definition of possible world deals with programs containing

default negation.

Definition 2 (Possible world, part II).

Let Π be an arbitrary ground P-log program. An interpretation I is a possible world

of Π if I is a possible world of ΠI . 2

Let us consider several examples. For attribute term a with range {y1, . . . , yn},

we will often use shorthand

random(a)← B

denoting a collection of rules

random(a : {X : p′(X)})← B

p′(y1)

. . .

p′(yn) (2.12)

where p′ is a boolean attribute term of Σ with a single parameter of the sort range(a).

We will only consider programs where p′ does not occur in the rules other than those

from (2.12) and the corresponding general axioms.

Example 2. Consider the program Π1:

22

Texas Tech University, Evgenii Balai, December 2017

a,b,c: #boolean.

random(a).

b :- c, -a.

do(a, false).

random(c).

It is not difficult to see that the program has two possible worlds W1 and W2:

W1 = {¬a, b, c, do(a, false), random(a), truly random(c), random(c)}

and

W2 = {¬a,¬c, do(a, false), random(a), truly random(c), random(c)}.

2

Example 3. Consider the program Π2:

a: #boolean.

obs(a=true).

Π2 has no possible worlds. Note that W = {obs(a = true)} is not a possible world,

because of the general reality check axiom

← not a = Y,

obs(a = Y).

Since a is undefined in W , not a is true, and hence W does not satisfy the axiom.

If we add the rule

random(a)

to Π2, it will have one possible world

W = ({obs(a = true), a, truly random(a), random(a)}),

23

Texas Tech University, Evgenii Balai, December 2017

where the observation obs(a = true) is consistent with the belief in a.

If however we were to replace random(a) by

¬a

Π2 would become inconsistent again, because any interpretation that satisfies both

rules ¬a and obs(a, true) will violate a reality check axiom.

2

Example 4. Consider the program Π3:

a: #boolean.

p: #boolean -> #boolean.

random(a:{X:p(X)}).

The program has no possible worlds. Note that W1 = {random(a, {X : p(X)}) =

true} is not a possible world of Π3, because the axiom

a or ¬a← random(a : {X : p(X)})

is not satisfied by W1.

Note that W2 = {random(a, {X : p(X)}) = true, a} is also not a possible world

of Π3, because the axiom

← a = Y, not p(Y), random(a : {X : p(X)}).

is not satisfied by W2. 2

Example 5. Consider the following program Π4:

a,q,r: #boolean.

random(a).

q :- not a.

r :- not -a.

24

Texas Tech University, Evgenii Balai, December 2017

and interpretation I = {random(a), truly random(a), a = true, r = true}. We show

that I is a possible world of Π. The user-defined rules of Π4 and the corresponding

rules of the reduct ΠI
4 are shown below.

Table 2.1: The rules of Π4 and its reduct with respect to I

Π4 ΠI
4

r1 random(a). random(a).

r2 q :- not a. (removed)
r3 r :- not ¬a. r.

It is easy to see that I is a possible world of ΠI
4, therefore it is also a possible world

of Π4. Similarly, we can show that the interpretation I = {random(a) = true, a =

false, q = true} is a possible world of Π4.

2

For a program Π, by Ω(Π) we will denote the collection of all possible worlds of

Π. It is easy to check that the following proposition is true:

Proposition 1. Every possible world W of a program Π satisfies every rule of Π.

2

We will also state and prove the set-inclusion minimality of possible worlds in

Proposition 13.

2.2.3 Probabilities

As in [Baral et al., 2009], we require a program Π to satisfy certain conditions.

Condition 1 (Unique selection rule). 5

If Π contains two rules r1 and r2, each of which is not an instance of a general axiom,

such that for some attribute term a
5Note that this condition is stronger than the original Condition 1 from [Baral et al., 2009]. The

original condition allows for a program with a possible world W to contain rules r1 : random(a)←
B1. and r2 : a = y ← B2. s.t. W satisfies both B1 and B2, while the new one prohibits such programs.
We believe that the new condition better captures the intuition of a unique value selection for random
attribute terms. Moreover, it is not clear whether or not a should be considered random in a possible
world which satisfies the bodies of both of the rules r1 and r2.

25

Texas Tech University, Evgenii Balai, December 2017

• head(r1) is of the form a = y or random(a, p), and

• head(r2) is of the form a = y or random(a, p),

then no possible world of Π satisfies body(r1) and body(r2).

2

Condition 2 (Unique probability assignment).

If Π contains a random selection rule

random(a(t) : {Y : p(Y)})← B

along with two different probability atoms

pr(a(t) | B1) = v1 and pr(a(t) | B2) = v2

then no possible world of Π satisfies B, B1, and B2. 2

Condition 3 (No probabilities assigned outside of dynamic range).

If Π contains a random selection rule

random(a(t) : {Y : p(Y)})← B1

along with probability atom

pr(a(t) = y| B2) = v

then no possible world of Π satisfies B1 and B2 but does not satisfy p(y). 2

Let Π be a P-log program with signature Σ, W be an interpretation of Σ, a be an

attribute term of Σ, and r be a random selection rule of the form

random(a : {X : p(X)})← B

26

Texas Tech University, Evgenii Balai, December 2017

such that W satisfies B. Let PO(W, r, a) be the set of terms defined as follows:

PO(W, r, a) = {y | W satisfies p(y) and y ∈ range(a)}.

We will refer to elements of the set PO(W, r, a) as possible outcomes of a in W via

rule r, and to every atom a = y s.t. y ∈ PO(W, r, a) as a possible atom in W via r.

Let Π be a P-log program and a be a random attribute term of the signature

of Π. For every possible world W of Π such that W |= truly random(a) and every

possible atom a = y in W via r, we will define the corresponding causal probability

P (W,a = y). Whenever possible, the probability of an atom a = y will be directly

assigned by pr-atoms of the program and denoted by PA(W,a = y). To define

probabilities of the remaining atoms we assume that by default, all values of a given

attribute which are not assigned a probability by pr-atoms are equally likely. Their

probabilities will be denoted by PD(W,a = y). (PA stands for assigned probability

and PD stands for default probability).

More precisely, for each atom a = y possible in W via some rule r or Π:

1. Assigned probability:

If Π contains pr(a = y | B) = v, W |= B, then

PA(W,a = y) = v

(note that condition 2 implies that the probability is uniquely defined).

2. Default probability:

Let

Aa(W) = {y | a = y is possible in W and PA(W,a = y) is defined},

Da(W) = {y | a = y is possible in W} \ Aa(W)

27

Texas Tech University, Evgenii Balai, December 2017

and αa(W) =
∑

y∈Aa(W) PA(W,a = y).

The default probability of a = y in W is defined as follows:

PD(W,a = y) =
1− αa(W)

|Da(W)|

3. Finally, the causal probability P (W,a = y) of a = y in W is defined by:

P (W,a = y) =

 PA(W,a = y) if y ∈ Aa(W)

PD(W, a = y) otherwise.

Definition 3 (Measure).

1. Let W be an interpretation of Π. The unnormalized probability, µ̂Π(W), of W

induced by Π is

µ̂Π(W) =
∏

W (a)=y

P (W,a = y)

where the product is taken over atoms for which P (W,a = y) is defined.

2. Suppose Π is a P-log program having at least one possible world with nonzero

unnormalized probability. The measure, µΠ(W), of a possible world W induced

by Π is the unnormalized probability of W divided by the sum of the unnor-

malized probabilities of all possible worlds of Π, i.e.,

µΠ(W) =
µ̂Π(W)∑

Wi∈Ω(Π) µ̂Π(Wi)

When the program Π is clear from the context we may simply write µ̂ and µ instead

of µ̂Π and µΠ respectively. 2

Definition 4 (Probability).

Suppose Π is a P-log program having at least one possible world with nonzero unnor-

28

Texas Tech University, Evgenii Balai, December 2017

malized probability. The probability, PΠ(E), of a set E of possible worlds of program

Π is the sum of the measures of the possible worlds from E, i.e.

PΠ(E) =
∑
W∈E

µΠ(W).

2

When Π is clear from the context we may simply write P instead of PΠ.

Definition 5 (Probability of a literal).

The probability with respect to program Π of a literal l of Π, PΠ(l), is the sum of the

measures of the possible worlds of Π in which l is true, i.e.

PΠ(l) =
∑
W |=l

µΠ(W).

2

Note that, given that conditions 1-3 are satisfied, the function PΠ is defined iff

∑
Wi∈Ω(Π)

µ̂Π(Wi) 6= 0

2.3 A Note on Activity Records in the Bodies of Rules

As we discussed in the introduction, the new version of P-log allows programs

where observations and actions may occur in the bodies of user-defined program

rules. However, as we will see in this section, they can always be eliminated. More

precisely, let U be the set of activity records of a program Π. A simplification of Π,

denoted by ΠU is obtained from Π by:

1. removing all user-defined rules whose bodies include an e-literal formed by do

or obs which is not satisfied by U (viewed as a collection of atoms), and

29

Texas Tech University, Evgenii Balai, December 2017

2. removing all remaining extended literals formed by do and obs from the bodies

of user-defined rules.

As stated by the following proposition, a program Π is equivalent to its simplification:

Proposition 2. Let Π be a P-log program and U be the set of activity records of Π.

There exists a bijection ψ : ΩΠ → ΩΠU
such that for every possible world W of Π

1. W = ψ(W), and

2. µΠ(W) = µΠU
(W)

2

To simplify the future discussion, we will only consider programs not containing

observations and actions in user-defined rules.

30

Texas Tech University, Evgenii Balai, December 2017

CHAPTER III

DYNAMICALLY CAUSALLY ORDERED P-LOG PROGRAMS

Causally ordered programs were first introduced in [Baral et al., 2009] where they

were used to prove the coherency of P-log programs. Later, a query answering al-

gorithm developed in [Zhu, 2012] was shown to be sound for programs from a broad

subset of this class. We start this section by restating the original definition of

causally ordered programs from [Baral et al., 2009], adapted to the new syntax and

semantics. We also correct several errors confirmed by at least one of the authors

of [Baral et al., 2009]. We then define a new class of programs, called dynamically

causally ordered (dco), and show some interesting examples of programs in this class

that are not causally ordered. In the next sections, we will prove the coherency of

dco unitary programs and describe a query answering algorithm for them.

Let Π be a (ground) P-log program with signature Σ.

3.1 Causally Ordered Programs

We start this section by restating the original definition of causally ordered pro-

grams from [Baral et al., 2009], adapted to the new syntax and semantics. We also

correct several errors confirmed by at least one of the authors of [Baral et al., 2009].

We will use these definitions in examples given in Section 3.3.

As in [Baral et al., 2009], for a random selection rule

random(a : {X : p(X)})← B (3.1)

we will say that every atom of the form a = y occurs in the head of (3.1), and that

any ground instance of p(X) and literals occurring in B occur in the body of (3.1).

We will also say that atom random(a : {X : p(X)}) occurs in the head of (3.1). Also,

we will say that an atom a = y occurs in an observation obs(a = y), literal a 6= y

occurs in observation obs(a 6= y), and that atom a = y occurs in action do(a, y). We

31

Texas Tech University, Evgenii Balai, December 2017

will use these notions of occurrence throughout this dissertation.

Definition 6 (Dependency relations).

Let l1 and l2 be literals of Σ. We say that

1. l1 is immediately dependent on l2, written as l1 ≤i l2, if there is a rule r of Π

such that l1 occurs in the head of r and l2 occurs in the body of r;

2. l1 depends on l2, written as l1 ≤ l2, if the pair 〈l1, l2〉 belongs to the reflexive

transitive closure of relation ≤i;

3. An attribute term a1(t1) depends on an attribute term a2(t2) if there are literals

l1 and l2 formed by a1(t1) and a2(t2) respectively such that l1 depends on l2. 2

2

Definition 7 (Leveling function).

A leveling function, | |, of Π maps the attribute terms of Σ onto a set {0..n} of natural

numbers. It is extended to other syntactic entities over Σ as follows:

|a(t) = y| = |a(t) 6= y| = |not a(t) = y| = |not a(t) 6= y| = |a(t)|

We’ll often refer to |e| as the level of e. Finally, if B is a set of expressions then

|B| = max({|e| : e ∈ B}).

2

Definition 8 (Random attribute term).

A attribute term a(t̄) of Σ is called random if Π contains a rule of the form:

random(a, p)← B

2

32

Texas Tech University, Evgenii Balai, December 2017

Definition 9 (Strict probabilistic leveling and reasonable programs).

A leveling function | | of Π is called strict probabilistic if

1. no two random attribute terms of Σ have the same level under | |,

2. for every random selection rule [r] random(a(t) : {Y : p(Y)}) ← B of Π we

have |a(t)| > |{p(y) : y ∈ range(a)} ∪B|,

3. for every probability atom prr(a(t) = y | B) of Π we have |a(t)| > |B|,

4. if a1(t1) is a random attribute term, a2(t2) is a non-random attribute term, and

a2(t2) depends on a1(t1) then |a2(t2)| ≥ |a1(t1)|, and

5. if a1(t1) and a2(t2) are random attribute terms of Π such that a1(t)1 depends

on a2(t2), then |a1(t1)| > |a2(t2)|.

A P-log program Π which has a strict probabilistic leveling function is called reason-

able.

2

Let Π be a reasonable program with signature Σ and leveling | |, and let a1(t1), . . . ,

an(tn) be an ordering of its random attribute terms induced by | |. By Li for 0 ≤ i ≤ n

we denote the set of literals of Σ which do not depend on literals formed by aj(tj)

where i < j. Πi for 0 ≤ i ≤ n consists of all declarations of Π, along with the regular

rules, random selection rules, actions, and observations of Π such that every literal

occurring in them belongs to Li. We’ll often refer to Π0, . . . ,Πn as a | |-induced

structure of Π.

Before proceeding we introduce some terminology.

Definition 10. (Random Attribute Term Active in a Possible World of Π)

Let a be a random attribute term of Π and W an interpretation of Σ. Term a(t) is

active in W with respect to Π if there is y such that a(t) = y is possible in W via

some rule of Π.

2

33

Texas Tech University, Evgenii Balai, December 2017

Definition 11 (Causally ordered program).

Let Π be a P-log program not containing activity records with a strict probabilistic

leveling | | and let ai be the ith random attribute of Π with respect to | |. Let

Π0, . . . ,Πn be the | |-induced structure of Π. We say that Π is causally ordered if

1. Π0 has exactly one possible world,

2. if W is a possible world of Πi−1 and atom ai(ti) = y0 is possible in W with

respect to Πi then the program W ∪ Πi ∪ {← not ai(ti) = y0} has exactly one

possible world, and

3. if W is a possible world of Πi−1 and ai(ti) is not active in W with respect to Πi

then the program W ∪ Πi has exactly one possible world.

2

For the examples of causally ordered programs, please refer to [Baral et al., 2009].

3.2 Dynamically Causally Ordered Programs

In this section we introduce dynamically causally ordered programs. We start with

a few auxiliary definitions. We first introduce a new notion of dependency. Unlike in

the previous definition (Def. 6), pr-atom pr(a = y | B) introduces dependencies of

a = y on the literals in B.

Definition 12 (Dependency relations #2).

Let Π be a P-log program and l1 and l2 be literals of the signature of Π. We say that

1. l1 is immediately dependent on l2 in Π, written as depiΠ(l1, l2), if one of the

following two conditions hold: there is a rule or pr-atom r of Π such that l1

occurs in the head of r and l2 occurs in the body of r

2. l1 depends on l2 in Π, written as depΠ(l1, l2), if the pair 〈l1, l2〉 belongs to the

reflexive transitive closure of relation depiΠ, and

34

Texas Tech University, Evgenii Balai, December 2017

3. Attribute term a1 depends on attribute term a2 in Π, written as depΠ(a1, a2) if

there are literals l1 and l2 formed by a1 and a2 respectively such that depΠ(l1, l2).

2

In what follows, unless otherwise specified, we will assume that the new notion of

dependency is used.

Definition 13 (Probabilistic leveling for random attribute terms).

A probabilistic leveling of a program Π is an ordering a1, . . . , ak of random attribute

terms of Π. 2

Given a probabilistic leveling a1, . . . , ak, attribute term ai (where 1 ≤ i ≤ k) has

level i.

We will next define a total leveling of Π which assigns levels to non-random at-

tribute terms of Π as well. We will need some auxiliary definitions.

Definition 14 (Program base).

Let Π be a program. Let Σbase be the signature consisting of attribute terms which

do not depend on any random attribute terms of Π, and let Rbase be the collection of

rules of Π s.t. every literal occurring in Rbase is a literal of Σbase. We will refer to the

program with signature Σbase and rules Rbase as the base of Π.

2

Definition 15 (Useless rules elimination).

Let Π be a program such that the base of Π has a unique possible world Wbase. By

red(Π) we will denote the program obtained from Π by removing all pr-atoms and

rules whose bodies contain an e-literal from Σbase not satisfied by Wbase. 2

Example 6. Consider the program Π5

a,b,c,d:boolean

a.

35

Texas Tech University, Evgenii Balai, December 2017

random(b) :- not a.

random(c) :- a,b.

pr(c|b,d) = 0.5

pr(c|-b,a) = 0.5

Attribute terms a and d do not depend on b and c. The base of Π5 consists of the

fact a. Therefore, it has a unique possible world Wbase = {a}.

red(Π5) is:

a,b,c,d:boolean

a.

random(c) :- a,b.

pr(c|-b,a) = 0.5

The pr-atom pr(c | b, d) = 0.5 was removed because d has level 0 in Π5, and Wbase

does not satisfy d.

2

Now we are ready to define total leveling:

Definition 16 (Total leveling).

Let Π be a program such that red(Π) is defined. A probabilistic leveling a1, . . . , ak

is expanded as follows into total leveling of Π, | |, which also assigns levels to all

non-random attribute terms of Π. If a is a non-random attribute term of Π of the

form random(b, p), then |random(b, p)| = |b|. Otherwise:

1. |a| = 0 iff a does not depend on any random attribute term of Π in red(Π).

2. |a| = i iff i is the level of the random attribute ai such that

(a) a depends on ai in red(Π) and

(b) there is no random attribute aj with level j such that a depends on aj in

red(Π) and j > i.

36

Texas Tech University, Evgenii Balai, December 2017

We will say that the total leveling | | is determined by probabilistic leveling a1, . . . , ak.

2

Unless otherwise stated, in what follows, by leveling of a program Π we will mean

total leveling of Π.

Similarly to the leveling function from Definition 7, total levelings are extended

to the e-literals of Σ as follows:

|not a = y| = |not a 6= y| = |a = y| = |a 6= y| = |a|

Definition 17 (Dynamic structure).

Let Π be a program such that red(Π) is defined and L = a1, . . . , ak be a probabilistic

leveling of Π. We say that Π has a dynamic structure Π0, . . . ,Πk induced by a1, . . . , ak

if Πi (0 ≤ i ≤ k) is the program such that

1. the signature Σi of Πi consists of all attribute terms of Π whose levels are i or

less in the total leveling of Π determined by a1, . . . , ak,

2. if r is a rule or a pr-atom of Π, then Πi contains r iff all the literals occurring

in r are of Σi.

2

Example 7. For example, consider the program Π:

f: #boolean.

f :- not -f.

-f :- not f.

Π0 contains all rules of Π and, therefore, has two possible worlds {f} and {¬f}.

Thus, condition 1 of definition 17 is violated and Π has no dynamic structure.

2

37

Texas Tech University, Evgenii Balai, December 2017

Definition 18 (Falsified set of e-literals).

We will say that a set B of e-literals of signature Σ is falsified by an interpretation I

of signature Σ′ if B contains a member of signature Σ′ that is not satisfied by I.

2

Definition 19 (Active random selection rule).

A random selection rule

random(a : {X : p(X))← B

is active with respect to an interpretation W of a signature Σ′ (which may be different

from Σ) if

1. W satisfies B,

2. all atoms of the form p(y) where y is in the range of a are atoms of Σ′, and

3. W satisfies an atom p(y) for some y from the range of a.

2

Now we are ready to give the definition of a dynamically causally ordered (dco)

program. The definition will consist of three parts. We will first define dco programs

via a given probabilistic leveling. We next define dco programs not containing activity

records. Finally, we will define arbitrary dco programs.

Definition 20 (Program dynamically causally ordered via a probabilistic leveling).

Let Π be a program not containing activity records. Π is dynamically causally ordered

(dco) via a probabilistic leveling a1, . . . , ak of Π if there exists a dynamic structure

Π0, . . . ,Πk induced by a1, . . . , ak such that Π0 has a unique possible world and for

every i ∈ {1..k}, if Wi−1 is a possible world of Πi−1, then

38

Texas Tech University, Evgenii Balai, December 2017

1. if r is a rule or a pr-atom of Π with ai in the head, and r is not a ground instance

of a general axiom of Π, then the body of r is either falsified or satisfied by Wi−1.

Moreover, if r is of the form

random(ai : {X : p(X)})← B (3.2)

and Wi−1 satisfies B, then r is active in Wi−1,

2. if Πi contains a rule of the form (3.2) such that Wi−1 satisfies B, then for every

y ∈ range(ai) s.t. Wi−1 satisfies p(y), the program Wi−1 ∪Πi ∪ {← not ai = y}

has exactly one possible world, and

3. if for every rule of Π of the form (3.2), Wi−1 falsifies B, then Wi−1 ∪ Πi has

exactly one possible world.

2

Definition 21 (Dynamically causally ordered program - I).

Let Π be a program not containing activity records. Π is dynamically causally ordered

if Π is dynamically causally ordered via some probabilistic leveling of Π.

2

Definition 22 (Dynamically causally ordered program - II).

Let Π be an arbitrary program, and Π′ be the program obtained from Π by removing

all activity records. Π is dynamically causally ordered via probabilistic leveling A of

Π if Π′ is dynamically causally ordered via A (by definition 20). Π is dynamically

causally ordered iff Π is dynamically causally ordered via some probabilistic leveling

of Π. We will also say that A is a dynamic causal probabilistic leveling of Π iff Π is

dynamically causally ordered via A.

2

In the next section we will give examples of some interesting dco programs that

are not causally ordered.

39

Texas Tech University, Evgenii Balai, December 2017

3.3 Examples

In this section we give examples of dynamically causally ordered programs that

do not belong to S (the class mentioned in the introduction (Chapter I)). For each

of such programs, we will prove a stronger claim that it does not belong to neither

S nor to the class of causally ordered programs defined in [Baral et al., 2009]. Not

that, since S is a subclass of causally ordered programs, it is sufficient to show that

each program does not belong to causally ordered class.

When discussing the examples, we will often use the following definition:

Definition 23 (Possible outcomes of a random attribute in an interpretation).

Let random selection

random(a : {X : p(X))← B

of Π be active with respect to an interpretation W of a signature Σ′. We will say

that every member of {X | W satisfies p(X)} is a possible outcome of a in W .

2

3.3.1 Die

We throw a die until we get outcome 1 or make 5 throws. What’s the probability

that we will make 5 throws?

A P-log representation of the story, the program Πd, is given below:

% Sorts

#outcome = 1..6.

#step = 1..5.

% Attributes

throw : #step -> #outcome.

made_5th_throw: #boolean.

40

Texas Tech University, Evgenii Balai, December 2017

% Rules

% the outcome of the die at step 1 is random

random(throw(1)).

% if the value of the die at the previous step, T2, was not 1,

% then the outcome of the die at current step, T, is random

random(throw(T)) :- throw(T2) != 1, T = T2+1.

% the fifth throw was made if the die takes some value, X, at step 5

made_5th_throw :- throw(5) = X.

Claim 1. Πd is not causally ordered.

Proof. We will prove a stronger claim:

there does not exists a strict probabilistic leveling (Def. 9) of Πd (3.3)

For the sake of contradiction, suppose there exists a strict probabilistic | | of Πd. From

the rule

random(throw(T))← throw(T2) 6= 1, T = T2 + 1 (3.4)

and condition 2 of definition 9 it follows:

∀T, T2 ∈ #step : |throw(T)| > |throw(T2)| (3.5)

in particular, from (3.5) we have |throw(1)| > |throw(2)| and |throw(2)| < |throw(1)|.

Contradiction. 2

Claim 2. Πd is dynamically causally ordered.

41

Texas Tech University, Evgenii Balai, December 2017

Proof. Consider the following probabilistic leveling of Πd:

L = throw(1), throw(2), throw(3), throw(4), throw(5), throw(6)

By | | we will denote the total leveling of Πd determined by L. Recall that the rule

random(throw(X))

is a shorthand for random(throw(X), p) for a fresh boolean attribute term p s.t.

p(1), . . . , p(6) are facts of Π . The base of Πd, Πd
base has no random attribute in its

signature, and its rules consist of general axioms, facts {p(i) | i ∈ {1..6}}, and general

axioms constructed from attribute terms of Π of level 0.

Clearly, Πd
base has a unique possible world. Let us call it W0. Therefore, there

exists a dynamic structure Π0, . . . ,Π6 induced by L. For every i > 0, the rules of Πi

consist of

1. the rules of Πi−1

2. if i = 1, the rule random(throw(1))

3. if i > 1, the rule

random(throw(i))← throw(i− 1) 6= 1, i = i− 1 + 1 (3.6)

and for every k ∈ {0..i− 2} ∪ {i}, the rules:

random(throw(i))← throw(k) 6= 1, i = k + 1 (3.7)

4. if i = 6, the rule

made 6th throw ← throw(6) = X (3.8)

5. general axioms for throw(1), . . . throw(i) and, if i = 6, for made 6h throw

42

Texas Tech University, Evgenii Balai, December 2017

We will prove conditions 1-3 of definition 20 hold for every i ≥ 1 for every possible

world Wi−1 of Πi−1.

1. We prove condition 1.

(a) i = 1. Clearly, random(throw(1)) is active in W0. The bodies of other

rules of Π contain an arithmetic e-literal (and arithmetic literals belongs

to every P-log sorted signature) not satisfied by W0.

(b) i ∈ {2..5}. By construction of Πi−1, we have that the signature of every

possible world Wi−1 contains throw(i− 1).

We consider two cases:

i. Wi−1 assigns 1 to throw(i−1), or does not assign a value to throw(i−

1). In this case it is easy to see that the body of every random selection

rule for throw(i) contains an e-literal throw(i−1) 6= 1 of the signature

of Wi−1 which is not satisfied by Wi−1. Thus, condition 1 is satisfied.

ii. Wi−1 assigns a value different from 1 to throw(i − 1). In this case it

is easy to see that the rule

random(throw(i))← throw(i− 1) 6= 1, i = i− 1 + 1

is active in Wi−1, and all other random selection rule for throw(i)

contain an arithmetic e-literal not satisfied by Wi−1.

2. To prove condition 2, suppose the rule

random(throw(i))← throw(i− 1) 6= 1, next(i− 1, i).

is active in Wi−1. The possible outcomes of throw(i) with respect to Wi−1

are {1, 2, 3, 4, 5, 6}. For each v ∈ {1, 2, 3, 4, 5, 6}, the program Wi−1 ∪ Πi ∪ {←

not throw(i) = v} has exactly one possible world Wi−1 ∪ {throw(i) = v}.

43

Texas Tech University, Evgenii Balai, December 2017

3. Finally, we prove condition 3. Suppose the rule

random(throw(i))← throw(i− 1) 6= 1, next(i− 1, i).

is not active with respect to Wi−1. In that case the program Πi ∪ Wi−1 has

exactly one possible world which coincides with Wi−1.

2

3.3.2 Random Tree

Consider a tree defined by a collection of facts of the form arc(X,Y) (arc(X,Y) =

true when there is a directed arc from node X to node Y of the tree). Each node of the

tree is assigned a value. If a node is a leaf, a value is selected (uniformly) at random

from {1, 2, 3, 4, 5, 6}. If a node is not a leaf, its value is selected randomly from the

values of the node’s children.

The corresponding program Πt is:

% Sorts

#node = {1,2,3,4,5}.

#value = {1,2,3,4,5,6}.

% Attributes

arc: #node, #node -> #boolean.

value_of : #node -> #value.

possible_value: #value, #node -> #boolean.

% Rules

% Tree arcs. arc(i,j) means there is an arc from i to j

arc(4,5).

44

Texas Tech University, Evgenii Balai, December 2017

arc(3,5).

arc(2,4).

arc(1,4).

% Tree definitions:

% Node X not a leaf if there is a directed arc with the end in X

leaf(X) = false :- arc(Y,X).

% Node X is a leaf if there is no reason to believe that it is not

leaf(X) = true :- not leaf(X) = false.

% Random selections:

% Every leaf node takes a value at random

random(value_of(N)) :- leaf(N).

% Every non-leaf node X takes a value from the set of possible

% values {X:possible_value(X,N)}

random(value_of(N):{X:possible_value(X,N)}) :- -leaf(N).

% Value N is possible in Node X if it a value of its child

possible_value(X,N) :- arc(N1,N), value_of(N1) = X.

Claim 3. The program Πt is not causally ordered.

Proof. We will prove a stronger claim:

there does not exists a strict probabilistic leveling (Def. 9) of Πt (3.9)

45

Texas Tech University, Evgenii Balai, December 2017

For the sake of contradiction, suppose there exists a strict probabilistic | | of Πt. From

the rule

possible value(X,N)← arc(N1, N), value of(N1) = X (3.10)

and condition 4 of definition 9 it follows:

∀N,N1 ∈ #step : ∀X ∈ #value : |possible value(X,N)| ≥ |value of(N1)| (3.11)

In in particular, from (3.11) we have

|possible value(1, 1)| ≥ |value of(1)| (3.12)

On the other hand, from the rule

random(value of(N) : {X : possible value(X,N)})← ¬leaf(N) (3.13)

and condition 2 of definition 9 we have:

∀N ∈ #step : ∀X ∈ #value : |value of(N)| > |possible value(X,N)| (3.14)

In particular, from (3.14) we have:

value of(1) > possible value(1, 1) (3.15)

From (3.15) and (3.12) we have a contradiction. Therefore, (3.9) holds.

2

Claim 4. The program Πt is dynamically causally ordered.

Proof. Consider the following probabilistic leveling of Πt:

46

Texas Tech University, Evgenii Balai, December 2017

L = value of(1), value of(2), value of(3), value of(4), value of(5)

By | | we will denote the total leveling of Πt induced by L. Recall that the rule

random(value of(N))← leaf(N)

is a shorthand for

random(value of(N) : {X : p(X)})← leaf(N)

s.t. p(1), . . . , p(6) are facts of Πt .

Πt
base consists of facts of the form p(i) for i ∈ {1..6}, the rules defining the tree:

arc(4, 5)

arc(3, 5)

arc(2, 4)

arc(1, 4)

leaf(X) = false← arc(Y,X)

leaf(X) = true← not leaf(X) = true

and the general axioms constructed from the attribute terms of level 0. Clearly, the

base has exactly one possible world

W0 = {arc(4, 5), arc(3, 5), arc(2, 4), arc(1, 4),leaf(2), leaf(1),

leaf(3),¬leaf(4),¬leaf(5)}.

Therefore, there exists a dynamic structure Π0, . . . ,Π6 induced by L, where Π0 =

Πt
base. We next construct Π1, . . .Π6 By rv1 − rv5 we denote ground rules (3.16) -

47

Texas Tech University, Evgenii Balai, December 2017

(3.20) of Πt below:

random(value of(1))← leaf(1). (3.16)

random(value of(2))← leaf(2). (3.17)

random(value of(3))← leaf(3). (3.18)

random(value of(4) : {X : possible value(X, 4)})← ¬leaf(4). (3.19)

random(value of(5) : {X : possible value(X, 5)})← ¬leaf(5). (3.20)

By rp1..rp4 we denote the rules 3.21 - 3.24 below:

possible value(X, 4)← arc(1, 4), value of(1) = X. (3.21)

possible value(X, 4)← arc(2, 4), value of(2) = X. (3.22)

possible value(X, 5)← arc(3, 5), value of(3) = X. (3.23)

possible value(X, 5)← arc(4, 5), value of(4) = X. (3.24)

For 1 ≤ i ≤ 5, the program Πi is the union of:

1. the rules from Π0,

2. the rules rv1, . . . , rvi,

3. the rules rp1 and rp2, if i ≥ 2,

4. the rules rp3 and rp4, if i ≥ 4,

5. other rules of Πd whose bodies are falsified by W0,

6. general axioms involving attribute terms of the signature of Πi.

We will prove conditions 1-3 of definition 20 hold for every i ≥ 1 and for every possible

world Wi−1 of Πi−1. Clearly, W0 ⊆ Wi−1, and Wi−1 does not contains atoms of level

48

Texas Tech University, Evgenii Balai, December 2017

0 other than those in W0
1.

1. We prove condition 1.

(a) i ≤ 3. It is easy to see that the rule

random(value of(i))← leaf(i) (3.25)

is active in Wi−1, and the second random selection rule with value of(i)

in the head contains a literal ¬leaf(i) falsified by W0 (and, therefore, by

Wi−1).

(b) i > 3. It can be shown that the rule:

random(value of(i) : {X : possible value(X, i)})← ¬leaf(i)

is active in Wi−1. Indeed, the atoms possible value(X, i) depend on only

on attribute terms value(1), value(2) in red(Π), and, therefore, belong to

the signature of Wi−1. possible value(X, i) is true for at least one X.

Indeed, it is easy to show that

• if i = 4, then for each of the rules rp1, rp2, there is a ground instance

whose body is satisfied by Wi−1, and,

• if i = 5, then for each of the rules rp3, rp4, there is a ground instance

whose body is satisfied by Wi−1.

2. We prove condition 2.

(a) i ≤ 3. The rule (3.25) is active in Wi−1. The possible outcomes of value(i)

with respect to Wi−1 are {1, . . . , 6}. Πi ∪ {Wi−1} ∪ {← not value(i) = v}

has a unique possible world Wi−1 ∪ {value(i) = v}.
1We will generalize and prove this result in Lemma 12.

49

Texas Tech University, Evgenii Balai, December 2017

(b) i > 3. The possible outcomes of value(i) with respect to Wi−1 are 1, . . . , 6.

Πi∪{Wi−1}∪{← not value(i) = v} has a unique possible world containing

Wi−1 ∪ {value(6− i) = v} and atoms formed by attribute possible value.

3. Condition 3 is vacuously satisfied, since, as we have shown, there exists a random

selection with value of(i) in the head active in Wi−1.

2

3.3.3 Blood Type Problem

The problem description is based on section 4.1.3 in [Zhu, 2012].

The ABO blood group system distinguishes four types of bloods: A, B, AB and

O. The type of blood of each individual is determined by two genes inherited from

his/her parents (one gene is inherited from each parent). The pair of genes is also

called a genotype. There are three types of genes: a, b and o, and 6 correspond-

ing genotypes: ao,bo,ab,aa,bb,oo. The genotypes ao, bo, ab, aa, bb, oo are

distributed in generation 1 with probabilities 0.24, 0.24, 0.18, 0.09, 0.09, 0.16 corre-

spondingly. The corresponding blood type of a person for each combination of inherited

genes (which determines his/her genotype) is given in Table 3.1.

Table 3.1: ABO blood group system

hhhhhhhhhhhhhhhhhhMother’s gene
Father’s gene

a b o

a A AB A
b AB B B
o A B O

If an individual A has genes of types X and Y, and an individual B has genes of

types F and H, their child will have one of the pairs of genes (X,F), (Y,F), (X,H),

(Y,H); where each pair is inherited with probability 0.25.

P-log program Πb represents the story:

50

Texas Tech University, Evgenii Balai, December 2017

%% Blood Type Problem

%% Sorts

#person={mary, todd, john}.

#gene ={g_a,g_b,g_o}.

#genotype = g(gene(X), gene(Y)) : X<=Y.

#bloodtype={b_a,b_b,b_o,b_ab}.

#generation = {1,2}.

%% Attributes

genotype_of: #person -> #genotype.

bloodtype_of: #person -> #bloodtype.

mother_of: #person -> #person.

father_of: #person -> #person.

generation_of: #person -> #generation.

possible_combination: #genotype, #genotype, #genotype -> #boolean.

belongs_to: #gene, #genotype -> #boolean.

%% Rules

% generations

generation_of(john) = 2.

generation_of(mary) = 1.

generation_of(todd) = 1.

% family tree

mother_of(john)=mary.

father_of(john)=todd.

51

Texas Tech University, Evgenii Balai, December 2017

% blood_type(X)=G : the blood type of person X

% determined by the genes he or she inherits from parents

% as described in table 1

bloodtype_of(X)=b_a :- genotype_of(X) = g(g_a,Y), Y!=g_b.

bloodtype_of(X)=b_b :- genotype_of(X) = g(g_b,Y), Y!=g_a.

bloodtype_of(X)=b_ab :- genotype_of(X) = g(g_a,g_b).

bloodtype_of(X)=b_o :- genotype_of(X) = g(g_o,g_o).

% the genotypes of the parents of a person X in the old generation are

% distributed as it is given in the problem statement

random(genotype_of(P)):- generation(P) = 1.

pr(genotype_of(X) = g(g_a,g_o)|generation(X) = 1) = 24/100.

pr(genotype_of(X) = g(g_b,g_o)|generation(X) = 1) = 24/100.

pr(genotype_of(X) = g(g_a,g_b)|generation(X) = 1) = 18/100.

pr(genotype_of(X) = g(g_a,g_a)|generation(X) = 1) = 9/100.

pr(genotype_of(X) = g(g_b,g_b)|generation(X) = 1) = 9/100

pr(genotype_of(X) = g(g_b,g_b)|generation(X) = 1) = 16/100.

% the genotypes of a person in the new generation are randomly

% inherited from his/her parents

random(genotype_of(P):{G:possible_genotype(P,G)}) :-

generation_of(P) = 2.

possible_genotype(P,G) :- father(P,F),

52

Texas Tech University, Evgenii Balai, December 2017

mother(P,M),

genotype_of(F) = U,

genotype_of(M) = V,

possible_combination(G,U,V).

% possible_combination(G,U,V) is true if G can be the genotype of a

% child whose parents have genotypes U and V

possible_combination(g(G1,G2),U,V) :- belongs_to(G1,U),

belongs_to(G2,V).

possible_combination(g(G1,G2),U,V) :- belongs_to(G2,U),

belongs_to(G1,V).

% belongs_to(G,GT) is true if gene G belongs to the pair of genes in

% genotype GT

belongs_to(G,g(G,X)).

belongs_to(G,g(X,G)).

Claim 5. Πb is not causally ordered.

Proof. We will prove, by contradiction, a stronger claim:

there does not exists a strict probabilistic leveling (Def. 9) of Πb. (3.26)

Suppose there exists a strict probabilistic | | of Πb. From the rule:

random(genotype of(P) : {G : possible genotype(P,G)})← generation of(P) = 2

53

Texas Tech University, Evgenii Balai, December 2017

By condition 2 of definition 9, for all p ∈ #person, g ∈ #genotype, we have that

|genotype of(p)| > |possible genotype(p, g)|. (3.27)

On the other hand, from the

possible genotype(P,G)←father(P, F),

mother(P,M),

genotype of(F) = U,

genotype of(M) = V,

possible combination(G,U, V)

by condition 4 of definition 9 we obtain that for all p ∈ #person, g ∈ #genotype, f ∈

#person

|possible genotype(p, g)| ≥ |genotype of(f)| (3.28)

By replacing p and f in equations (3.27) and (3.28) with the same element of the

sort #person, and g with some element of the sort #genotype we get a contradiction

to (3.26). Therefore, strict probabilistic leveling does not exist for Πb and it is not

causally ordered.

2

Claim 6. The program Πb is dynamically causally ordered.

Proof. Recall that the rule

random(genotype of(P))← generation of(P) = 1

is a shorthand for

random(genotype of(P) : {X : p(X)})← generation of(P) = 1

54

Texas Tech University, Evgenii Balai, December 2017

s.t.

{p(G) | G ∈ #genotype} (3.29)

are facts of Πb. Πb
base consists of facts (3.29), the rules:

generation of(john) = 2

generation of(mary) = 1

generation of(todd) = 1

mother of(john) = mary

father of(john) = todd

possible combination(g(G1, G2), U, V)← belongs to(G1, U), belongs to(G2, V)

possible combination(g(G1, G2), U, V)← belongs to(G2, U), belongs to(G1, V)

belongs to(G, g(G,X))

belongs to(G, g(X,G))

and the general axioms for each of the attribute terms occurring in them. Clearly,

Πb
base has a unique possible world. Let us refer to the possible world as W0. Therefore,

there exists a dynamic structure Π0, . . . ,Π3 of Πb induced by the leveling

L = genotype of(mary), genotype of(todd), genotype of(john)

where, as it can be shown, Π0 = Πb
base.

We next construct Π1, . . . ,Π3. The rules of Π1 are the union of the rules of Π0,

the rule

random(genotype of(mary))← generation of(mary) = 1, (3.30)

some rules whose bodies are falsified by W0, and and the general axioms for attribute

55

Texas Tech University, Evgenii Balai, December 2017

term genotype of(mary).

The rules of Π2 are the union of the rules of Π1 and the rule

random(genotype of(todd))← generation of(todd) = 1 (3.31)

some rules whose bodies are falsified by W0, and the general axioms for attribute

term genotype of(todd).

Finally,Π3 contains all the rules of Π, where the only rule with genotype of(john)

in the head whose body is not falsified by W0 is

random(genotype of(john) : {G : possible genotype(john,G)})←

generation of(john) = 2
(3.32)

We will prove conditions 1-3 of definition hold 20 for every 1 ≤ i ≤ 3 for every

possible world Wi−1 of Πi−1. We will use the facts that 2.

W0 ⊆ Wi−1 (3.33)

and

Wi−1 does not contains atoms of level 0 other than those in W0 (3.34)

1. We prove condition 1.

(a) i ≤ 2. Let parent be mary if i = 1, and todd if i = 2. It is easy to see that

the rule

random(genotype of(parent))← generation of(parent) = 1 (3.35)

2We will generalize and prove this result in 12.

56

Texas Tech University, Evgenii Balai, December 2017

is active in Wi−1, and the body of the second random selection rule that

has genotype of(parent) in the head has literal generation of(parent) = 2

falsified by W0 (and, therefore, as it follows from (3.33), by Wi−1).

(b) i = 3. It can be shown that the rule (3.32) is active in Wi−1. Indeed,

generation of(john) = 2 ∈ W0 ⊆ Wi−1,

so the body of the rule is satisfied. The attribute terms of the form

possible genotype(john,G)

depend on only on attribute terms genotype of(mary), genotype of(todd)

in red(Π), and, therefore, belong to the signature of Wi−1. We next show

that

possible genotype(john,G) is true in W2 for at least one G (3.36)

Since W0 ⊆ W2, we have that

W2 satisfies the bodies of rules (3.30) and (3.31) (3.37)

Since both (3.30) and (3.31) belong to Π2 by construction, and W2 is a

possible world of Π2, we have that

W2 assigns values to both genotype of(mary) and genotype of(todd)

(3.38)

Let m and t be the values of genotype of(mary) and genotype of(todd)

in W2 respectively. That is,

57

Texas Tech University, Evgenii Balai, December 2017

genotype of(mary) = m ∈ W2 (3.39)

and

genotype of(todd) = t ∈ W2 (3.40)

From the rules of Π0 and the fact that W0 ⊆ W2, we have that there exists

at least one constant g s.t.

possible combination(g, t,m) ∈ W2 (3.41)

Since the rule r′

possible genotype(john, g)←father(john, todd),

mother(john,mary),

genotype of(todd) = t,

genotype of(mary) = m,

possible combination(g, t,m)

belongs to Π2. W2 is a possible world of Π2,

{father(john, todd),mother(john,mary)} ⊆ W0 ⊆ W2,

and, by (3.39) and (3.40), and (3.41), W2 satisfies the body of r′. Therefore,

W2 satisfies the head possible genotype(john, g) of r′, and

possible genotype(john, g) ∈ W2.

Therefore, (3.36) holds.

58

Texas Tech University, Evgenii Balai, December 2017

2. We prove condition 2.

(a) i ≤ 2. Let parent be mary if i = 1, and todd if i = 2. It is easy

to see that the rule (3.35) is active in Wi−1. The possible outcomes of

genotype of(parent) with respect to Wi−1 are all elements of #genotype.

For each v ∈ #genotype, the program has a unique possible world W ,

where

i. if i = 2, then W = Wi−1 ∪ {genotype of(parent) = v}

ii. if i = 3, then W = Wi−1 ∪ {genotype of(parent) = v}∪

{possible genotype(john,X) | ∃U, V : genotype of(todd) = U,

genotype of(mary) = V, possible combination(X,U, V) ∈ W0}

(b) i = 3. Rule (3.32) is active in W2. The possible outcomes of attribute

term genotype of(john) are

{Y | possible genotype(john, Y) ∈ W2}

For each value y ∈ {Y | possible genotype(john, Y)}, the program Πi ∪

{Wi−1} ∪ {← not value(i) = v} has a unique possible world Wi−1 ∪

{genotype of(parent) = v}.

3. Condition 3 is vacuously satisfied, because the rules (3.30), (3.31) and (3.32)

are active for i = 1, 2 and 3 respectively.

2

3.3.4 Not Dynamically Causally Ordered

In this subsection we show an example of a program which is causally ordered,

but not dynamically causally ordered. Consider the program Π6:

a,b,h,x,y:#boolean.

59

Texas Tech University, Evgenii Balai, December 2017

p: #boolean -> #boolean

h. p(true). p(false).

random(x:{X:p(X)}).

random(y:{X:p(X)}) :- x.

a:- not b, x.

b:- not a, x.

a :- not h, y.

:- a,y.

:- a,-y.

Claim 7. Π6 is causally ordered.

Proof. Let Σ6 be the signature of Π6. Consider the leveling | | which maps attributes

to natural numbers as follows:

• |p(true)| = 0, |p(false)| = 0, |x| = 1, |y| = 2, |a| = |2|, |b| = 2, |random(x, p)| =

1,

|truly random(x)| = 1, |truly random(y)| = 2, |random(y, p)| = 2, |h| = 0

• for every attribute term z of Π6 and boolean z, |obs(z) = y| = 0, |do(z, y)| = 0

It is easy to check that | | is strict probabilistic (Def 9).

We now construct the structure Π′0, . . . ,Π
′
2 of Π6 induced by | |. L0 consists of

literals formed by:

{h, p(true), p(false), random(x, p)}

∪ {obs(z, y1, y2)|z ∈ attr(Σ6)), y1, y2 ∈ {true, false}}

∪ {do(z, y)|z ∈ attr(Σ6)), y ∈ {true, false}}

60

Texas Tech University, Evgenii Balai, December 2017

L1 is the union of L0 and the literals formed by

{x, random(y, p), truly random(x)} (3.42)

L2 consists of all literals of Σ6. Π′0 consists of rules

h.

p(true).

p(false).

and the general axioms of Π with all literals occurring in them being from L0. Π′1

consists of the union of the rules of Π′0 and the general axioms of Π6 with all literals

occurring in them being from L1.

Π′2 = Π6.

We now check the condition of causally ordered program (Def. 11).

1. Condition 1 is true. Π′0 has a unique possible world {h, p(true), p(false)}3

2. We check condition 2. We do it separately for i = 1 and i = 2.

(a) i = 1. The atoms x = true and x = false are possible in W0 w.r.t Π′1.

The program Π′1 ∪W0 ∪ {← not x = true} has a unique possible world:

W1 = {x, h, p(true), p(false)}.

The program Π′1 ∪W0 ∪ {← not x = false} has a unique possible world:

W ′
2 = {¬x, h, p(true), p(false)}

3as before, special atoms are omitted

61

Texas Tech University, Evgenii Balai, December 2017

(b) i = 2. The program Π′1 has two possible worlds: W1 and W2. We check

the condition for each of them separately.

i. W1. The atoms y = true and y = false are possible in W1 w.r.t Π′2.

The program Π′2 ∪W1 ∪ {← not y} has a unique possible world:

{x, h, p(true), p(false), y, b}.

The program Π′2 ∪ W1 ∪ {← not y = false} has a unique possible

world:

{x, h, p(true), p(false),¬y, b}

ii. W2. The attribute term y is not active in W2 w.r.t Π′2, thus this

condition is trivially satisfied.

3. We check condition 3. We do it separately for i = 1 and i = 2.

(a) i = 1. Since a is active in W0 w.r.t Π1, this condition is trivially satisfied.

(b) i = 2. The program Π′1 has two possible worlds: W1 and W2. We check

the condition for each of them separately.

i. W1. Since x is active in W1 w.r.t Π′2, this condition is trivially satisfied.

ii. W2. The program Π′2 ∪W2 has a unique possible world:

{¬x, h, p(true), p(false)}

2

Claim 8. Π6 is not dynamically causally ordered.

Proof. Suppose

Π6 is dco (3.43)

62

Texas Tech University, Evgenii Balai, December 2017

The signature of the base Πbase, Σbase, consists of attribute terms:

{h, p(true), p(false)}

∪ {obs(z, y1, y2)|z ∈ attr(Σ6)), y1, y2 ∈ {true, false}}

∪ {do(z, y)|z ∈ attr(Σ6)), y ∈ {true, false}}

The rules of Π0 consist of

h.

p(true).

p(false).

and the general axioms of Π with all literals occurring in them being from Σ0. Clearly,

Πbase has a unique possible world:

W0 = {h, p(true), p(false)}

The program red(Π6) consists of rules:

63

Texas Tech University, Evgenii Balai, December 2017

h.

p(true).

p(false).

random(x : {X : p(X)}.

random(y : {X : p(X)} ← x

a← not b, x

b← not a, x

← a, y

← a,¬y

truly random(x)← random(x, p), not do(x, true), not do(x, false)

truly random(y)← random(y, p), not do(y, true), not do(y, false)

In 1 (2) we show that Π6 is not dynamically causally ordered via x, y (via y, x).

Since x, y and y, x are the only two probabilistic levelings of Π6, this will imply that

Π6 is not dco.

1. We consider probabilistic leveling L1 = x, y. The total probabilistic leveling | |1
induced by L1 is defined as follows:

• |p(true)|1 = 0, |p(false)|1 = 0, |x|1 = 1, |y|1 = 2, |a|1 = 1, |b|1 = 1,

|random(x, p)|1 = 1, |truly random(x)|1 = 1, |truly random(y)|1 = 2,

|random(y, p)|1 = 2, |h|1 = 0

• for every attribute term z of Π6 and boolean z, |obs(z) = y|2 = 0,

|do(z, y)|2 = 0

Since Πbase has a unique possible world, there exists a dynamic structure Π1
0,Π

1
1,

Π1
2 induced by L1, where Π1

0 = Πbase.

64

Texas Tech University, Evgenii Balai, December 2017

The signature Σ1
1 of Π1

1 consists of the union of the set of attribute terms in Σ0

and

{a, b, x, random(x, p)}

and the rules of Π1
1 consist of:

h

p(true)

p(false)

random(x : {X : p(X)}

a← not b, x

b← not a, x

and the general axioms of Π with all literals occurring in them being from Σ1
1.

We will show that condition 2 of definition 21 is violated for i = 1, thus deriving

a contradiction to (3.43). Clearly, the rule

random(x : {X : p(X)})

is active w.r.t W0 since x is possible in W0 w.r.t Π1
1. However, the program

Π1
1 ∪W0 ∪ {← not x} has two possible worlds:

W0 ∪ {a, x}

and

W0 ∪ {b, x}

which is contradiction to condition 2 of definition 21.

65

Texas Tech University, Evgenii Balai, December 2017

2. We consider probabilistic leveling L2 = y, x.

We will show that condition 1 of definition 21 is violated for i = 1. W0 is a

possible world of Π1
0, Π6 contains a rule

random(y)← x

however, {x} is neither satisfied nor falsified by W0, since x does not belong to

Σbase.

2

66

Texas Tech University, Evgenii Balai, December 2017

CHAPTER IV

COHERENCY RESULT

In this section we give a sufficient condition of coherency of programs for the new

version of P-log. More precisely, we show that dynamically causally ordered programs

defined in chapter III satisfying an extra condition (unitarity) are coherent.

We start from restating the definitions from [Baral et al., 2009] related to coherent

and unitary programs.

4.1 Coherent Programs

The notion of coherent programs was introduced in [Baral et al., 2009]. Intu-

itively, a program P is coherent if it is logically and probabilistically consistent. The

former means that P has possible worlds. The latter says that causal probabilities,

given by pr-atoms, entail corresponding conditional probabilities defined by the pro-

gram. To provide a better intuition of coherency, we give some examples.

Example 8 (Coherent program).

Consider program Π7:

a,b:boolean.

random(a).

pr(a) = 0.3.

b :- a.

Π7 is consistent and it has two possible worlds: W1 = {a, b} and W2 = {¬a}

with corresponding probabilistic measures 0.3 and 0.7. The probability of a in Π is

therefore equal to

PΠ7(a) = 0.3/(0.3 + 0.7) = 0.3

The probability of a defined by Π7 matches the probability from the pr-atom, and

the program is coherent.

67

Texas Tech University, Evgenii Balai, December 2017

2

Example 9 (Incohrent program).

Consider program Π8:

a,b:boolean.

random(a).

pr(a) = 0.3.

b :- a, not -b.

-b :- a, not b.

Π8 has three possible worlds: W1 = {a, b}, W2 = {a,¬b} and W3 = {¬a} with

corresponding unnormalized probabilistic measures 0.3, 0.3 and 0.7. The probability

of a is therefore equal to:

PΠ8(a) = (0.3 + 0.3)/(0.3 + 0.3 + 0.7) ≈ 0.462

0.462 6= 0.3, so Π8 is not coherent. Intuitively, the probabilistic inconsistency of Π8

is explained by the rules b← a, not ¬b, ¬b← a, not b which create non-determinism

that is not resulted from random selections.

2

We next define coherent programs formally, starting from some notation. Let Π

be an arbitrary program with signature Σ. We will extend Σ with a fresh attribute

term aB for every set B of e-literals of Σ. For a set of e-literals B of Σ , by obs(B)

we denote a set of two rules:

aB ← B

← not aB

68

Texas Tech University, Evgenii Balai, December 2017

Intuitively, obs(B) can be viewed as a generalization of observations of single literals.

If a program Π is extended with the rules from obs(B), the possible worlds of the new

program will be the possible world of Π satisfying B.

Definition 24 (Program coherency).

Let Π be a P-log program and Π′ be a program obtained from Π by removing activity

records. We will say that Π is coherent if:

• PΠ′ is defined.

• For every selection rule r of the form random(a : {X : p(X)})← K and every

probability atom of the form pr(a = y | B) = v of Π, if PΠ′(B ∪K) is not equal

to 0 then PΠ′∪obs(B)∪obs(K)(a = y) = v.

2

Note that the first condition implies consistency of Π′. For the examples of coher-

ent programs, please refer to [Baral et al., 2009].

4.2 Unitary Programs

Let Π be a ground P-log program containing random selection rule r of the form

random(a : {X : p(X)})← K (4.1)

and

pr(a = y | B) = v (4.2)

be a pr-atom of Π.

Let W1 and W2 be possible worlds of Π satisfying K from rule (4.1). We say that

W1 and W2 are probabilistically equivalent with respect to r if

1. for all y, W1 |= p(y) if and only if W2 |= p(y), and

2. for every pr-atom of the form (4.2), W1 |= B if and only if W2 |= B.

69

Texas Tech University, Evgenii Balai, December 2017

A scenario for r is an equivalence class of possible worlds of Π satisfying K, under

probabilistic equivalence with respect to r. Let s be a non-empty scenario for rule r

of Π, a be an attribute term of Π.

We will define the set of possible outcomes of a via r in s, denoted by PO(s, r, a)

to be equal to the set of possible outcomes of a via r in an arbitrary member W of s

(the latter was introduced in section 2.2 and was denoted by PO(W, r, a)).

For a random selection rule r of the form (4.1) and scenario s for r, let atr(s)

denote the set of probability atoms of the form (4.2) whose bodies are satisfied by

every possible world in s.

Definition 25 (Unitary rule).

Rule r of the form (4.1) is unitary in Π, or simply unitary, if for every scenario s of

r, one of the following conditions holds:

1. For every y in PO(s, r, a), atr(s) contains a pr-atom of the form (4.2), and,

moreover, the sum of the values of the probabilities assigned by members of

atr(s) is 1; or

2. There is a y in PO(s, r, a) such that atr(s) contains no pr-atom of the form

(4.2), and the sum of the probabilities assigned by the members of atr(s) is less

than or equal to 1.

2

Definition 26 (Unitary program).

A P-log program is unitary if each of its random selection rules is unitary. 2

In what follows, we will refer to the class of dynamically causally ordered unitary

programs as class B, mentioned in the introduction (Chapter I).

For the examples of coherent programs, please refer to [Baral et al., 2009].

70

Texas Tech University, Evgenii Balai, December 2017

4.3 Coherency Theorem

Theorem 1. Every program from B is coherent.

2

Note that, in the condition 1 of Definition (20), it is necessary to consider pr-atoms

of the form

pr(ai = y | B) = v (4.3)

for correctness of the theorem. We will next show that an alternative formulation of

Definition 20 that omits this condition makes the theorem incorrect.

We will refer to the instance of the condition 1 when r is of the form (4.3) as

condition A. The following example shows that there is a program which satisfies all

conditions of dynamically causally ordered definitions excluding A, is unitary, but is

not coherent.

Consider the program Π9:

a,b,c: #boolean.

random(a).

pr(a | not -b, not b) = 0.3.

random(b) :- -a.

pr(-a | b) = 0.4.

pr(-a | - b) = 0.6.

The program has 3 possible worlds;

W1 = {a},W2 = {¬a, b},W3 = {¬a,¬b}

with corresponding unnormalized measures:

µ̂(W1) = 0.3, µ̂(W2) = 0.2, µ̂(W3) = 0.3

71

Texas Tech University, Evgenii Balai, December 2017

Claim 9. Π9 satisfies all conditions of a dynamically causally ordered program except,

possibly, A.

2

Proof. Consider the leveling a, b. We will show that Π9 satisfies all the conditions

of 20, omitting condition A. The dynamic structure Π0 − Π2 of Π9 induced by the

leveling is as follows:

• Π0 is an empty program with an empty possible world W0.

• Π1 is

a: #boolean.

random(a).

• Π2 coincides with Π.

We next check the conditions from 20, not including condition A (that is, we will only

prove condition 1 for rules).

1. We prove condition 1 for rules.

(a) i = 1. Clearly, random(a) is active in W0.

(b) i = 2. The program Π1 has two possible worlds: W 1
1 = {a} and W 2

1 =

{¬a}1. We prove the condition for each of them separately.

i. The only rule to consider is

random(b)← ¬a,

whose body is falsified by W 1
1 .

1As before, we are omitting atoms of the form p(true) and p(false) defining the dynamic ranges
in the shorthands random(a) and random(b)

72

Texas Tech University, Evgenii Balai, December 2017

ii. Again, the only rule to consider is

random(b)← ¬a,

whose body is satisfied by W 2
1 . Clearly, the rule is active in W 2

1 .

2. We prove condition 2.

(a) i = 1. The rule random(a) is active in W0, where true and false are

possible outcomes of a. The programs W0 ∪ Π1 ∪ {← not a = true} and

W0 ∪Π1 ∪{← not a = false} have unique possible worlds {a = true} and

{a = false} respectively.

(b) i = 2. The program Π1 has two possible worlds: W 1
1 = {a} and W 2

1 =

{¬a}.

i. The condition is vacuously satisfied for W 1
1 , since the body of the only

random selection rule of Π9 containing b in the head is not satisfied

by W 1
1 .

ii. The body of the rule

random(b)← ¬a

is satisfied by W 2
1 . b has two possible outcomes in W 2

1 : true and

false. The program W 2
1 ∪Π2∪{← not b} has a unique possible world:

{¬a, b}. The program W 2
1 ∪ Π2 ∪ {← not ¬b} has a unique possible

world: {¬a,¬b}.

3. We prove condition 3.

(a) i = 1 The condition is trivially satisfied, because W0 does not falsify the

body of the rule random(a).

(b) i = 2 The program Π1 has two possible worlds: W 1
1 = {a} and W 2

1 = {¬a}.

We consider them separately in i. and ii. respectively.

73

Texas Tech University, Evgenii Balai, December 2017

i. The body of the only random selection rule with b in the head,

random(b)← ¬a,

is falsified by W 1
1 . The program Π9 ∪W 1

1 has a unique possible world:

{¬a}

ii. The condition is trivially satisfied, because W 2
1 does not falsify the

body of the rule

random(b)← ¬a

2

Claim 10. Π9 is unitary.

2

Proof. To show that Π9 is unitary, by definition 26, we need to show that both of the

random selection rules

r1 = random(a)

and

r2 = random(b)← ¬a

are unitary. The second rule is unitary by condition 2 of definition 25, because atr2(s)

is, clearly, empty, for every scenario s of r2

We show that the rule r1 is unitary. The scenarios for the rule are

s1 = {{a}}

s2 = {{¬a, b}}

s3 = {{¬a,¬b}}

Note that:

74

Texas Tech University, Evgenii Balai, December 2017

1. the possible worlds {a}, {¬a, b} are not in the same scenario because only one

of them satisfies the body of pr(a | b) = 0.4.

2. the possible worlds {a}, {¬a,¬b} are not in the same scenario because only one

of them satisfies the body of pr-atom pr(¬a | ¬b) = 0.6.

3. The possible worlds {¬a,−b}, {¬a, b} are not in the same scenario because only

one of them satisfies pr-atom pr(¬a | b) = 0.4.

PO(s1, r1, a) is {true, false}. We have only one pr-atom with a in the head in atr1(s1)

whose body is satisfied by members of s1:

pr(a | not ¬b, not b) = 0.3

and 0.3 < 1.

For the scenario s2 PO(s2, r1, a) is {true, false}. We have only one pr-atom in

atr1(s2) whose body is satisfied by members of s2

pr(−a | b) = 0.4

and 0.4 < 1.

For the scenario s3 = {¬a, b}, PO(s3, r1, a) is {true, false}. We have only one

pr-atom in atr1(s3) whose body is satisfied by members of s3:

pr(a | ¬b) = 0.6

and 0.6 < 1.

Therefore, for every scenario s of random(a), condition 2 of Definition 25 is sat-

isfied. Therefore, random(a) is a unitary rule. Since both of the random selection

rules of Π9 are unitary, Π9 is unitary.

2

75

Texas Tech University, Evgenii Balai, December 2017

Condition 1 from Definition 20 for random selection and regular rules is necessary

to guarantee that the value of attribute ai is decided in every possible world Wi. Even

though there might be alternative sufficient conditions for coherency similar to the

one we have and not requiring this condition, we believe this guarantee simplifies the

presentation substantially.

The proof of Theorem 1 is given in appendix A.2. An important intermediate

result of the proof is a formulation of splitting set theorem for P-log, originally intro-

duced in [Lifschitz & Turner, 1994] for logic programs, is given in subsection A.2.2 of

the proof.

76

Texas Tech University, Evgenii Balai, December 2017

CHAPTER V

ALGORITHMS

5.1 Introduction

We address the question of finding a probability PΠ(Q), where Q is a literal. We

will also refer to the literal as a query to Π. More complex conditional probabilities

can be easily reduced to this case.

A naive approach to this question suggests the computation of all possible worlds

of a given program. Consider, for instance, the following program Π10:

a, b, f : #boolean.

random (a).

pr(a) = 0.3

random (b).

pr(b) = 0.6.

f :- a.

f :- b.

-f :- not f.

and a query f .

The program has 4 possible worlds :

W1 = {a, f, b},W2 = {a, f,¬b},W3 = {¬a, b, f},W4 = {¬a,¬f,¬b}

whose corresponding measures are:

µ(W1) = 0.18, µ(W2) = 0.12, µ(W3) = 0.42, µ(W4) = 0.28

The probability of f is the sum of the measures of the possible worlds satisfying

77

Texas Tech University, Evgenii Balai, December 2017

the query:

PΠ10(f) = µ(W1) + µ(W2) + µ(W3) = 0.18 + 0.12 + 0.42 = 0.72

We will design an algorithm that allows to compute the probability of f without

computing all possible worlds of Π10. For program Π10, the algorithm will construct

a tree shown in Figure 5.1, looking for partial assignments satisfying or falsifying

f and representing collections of the program’s possible worlds. The construction

starts from an empty interpretation {}. Then random attribute a is selected1 (shown

as a square node a), and two children are added to the node a, each corresponding to

possible outcomes, true and false, of the attribute and their immediate consequences.

In a similar manner, after selecting b, node {¬a} is further expanded by attaching

the subtree rooted at b.

a

b

{a,f} {-a}

{-a, b, f} {-a,-b,-f}

{}

Figure 5.1: A tree for Π10

The node {a, f}, however, is not extended further. There are two possible worlds

of Π10 which are compatible with the node {a, f}: W1 = {a, b, f} and W2 = {a,¬b, f},

both assigning value true to f . The so called unnormalized measure of {a, f},

µ̂({a, f}), is equal to the sum of the unnormalized measures of W1 and W2 (which

1The choice of the attribute actually depends on the heuristic. In this case we are assuming a is
selected.

78

Texas Tech University, Evgenii Balai, December 2017

coincide with normalize measures, µ(W1) and µ(W2) in this case):

µ̂({a, f}) = µ(W1) + µ(W2) (5.1)

By definition of µ(W1) and µ(W2), we have:

µ̂({a, f}) = µ(W1) + µ(W2)

= P (W1, a) · P (W1, b) + P (W2, a) · P (W2,¬b)

= P (W1, a) · P (W1, b) + P (W1, a) · P (W2,¬b) (since P (W1, a) = P (W2, a))

= P (W1, a) · (P (W1, b) + P (W2,¬b))

= P (W1, a) · 1

= P (W1, a)

(5.2)

Therefore, the unnormalized measure of node {a, f} is equal to the probability of

a in this node, P ({a, f}, a), and, therefore, can be simply read from the corresponding

pr-atom pr(a) = 0.3. Hence, there is no need to extend the node {a, f} further in

order to build a tree which allows to compute the probability of f : the probability

can be computed from the measures of the tree leaves {a, f} and {a, b, f} as follows:

PΠ10(f) = µ(W1) + µ(W2) + µ(W3)

= µ({a, f}) + µ(W3) (by (5.1))

= 0.3 + 0.42 (by (5.2) and the discussion above)

= 0.72

Note that the idea of stopping the tree construction in a particular node was

first described in [Zhu, 2012]. We adapt the ideas from there for the new class B

of coherent programs by defining a new type of search space (tree) and refining the

79

Texas Tech University, Evgenii Balai, December 2017

corresponding conditions. We also address and correct a number of errors found in

[Zhu, 2012].

In the next sections we give more details on the algorithm. In section 5.2 we will

describe a transformation γ which maps programs from B containing user-defined

rules of the form

a = y ← B (5.3)

where a is a random attribute term into equivalent programs not containing such

rules.

The transformation allows us to only consider programs from B which do not

contain rules of the form (5.3) with random attribute term in the head. We believe this

transformation allows to simplify the algorithm as well as the proof of its correctness

substantially. According to our observations, programs containing such rules are rare,

so this transformation will not affect most programs at all in practice.

In Section 5.3 we give auxiliary definitions needed for the algorithm and state

propositions necessary for its correctness. Section 5.4 will contain the description of

the algorithm, including pseudocodes and examples.

5.2 Transformation γ

Let Π be a program with signature Σ. γ(Π) is defined as follows:

1. The signature of γ(Π) consists of

(a) all attribute terms of Σ,

(b) a fresh boolean random attribute term fdo(a) for every action do(a = y)

of Π, and

(c) a fresh boolean attribute term pr(y) for every user-defined rule r of the

form

a = y ← B

80

Texas Tech University, Evgenii Balai, December 2017

such that a is a random attribute term of Π.

2. The rules of γ(Π) are obtained from the rules of Π by

(a) for every user-defined rule of Π of the form

a = y ← B

such that a is a random attribute and Π contains an action do(a, y′) for

some y′, adding the rules:

fdo(a)← B

¬fdo(a)← not fdo(a)

obs(¬fdo(a))

(b) replacing every user-defined r rule of Π of the form

a = y ← B

such that a is a random attribute term of Π with the random selection

rule:

random(a : {Y : pr(Y)})← B

and the fact

pr(y).

Proposition 3. Let Π be a program from B. We have:

1. γ(Π) is from B, and

2. there is a bijection φ from the possible world of Π to the possible worlds of γ(Π)

such that for every possible world W of Π:

81

Texas Tech University, Evgenii Balai, December 2017

(a) µΠ(W) = µγ(Π)(φ(W)), and

(b) W and φ(W) coincide on the atoms of Π.

2

5.3 Definitions

In this section we define the notions needed for the algorithm. The search space

of the algorithm will be defined by AI-trees, and the algorithm will look for so called

solution trees for a query Q – special subtrees of the search space (section 5.3.3) that

will be used to compute the query probability. The nodes of the search tree will

contain attribute terms and e-interpretations (Section 5.3.1). The tree will be built

by gradually extending subtrees of an AI-tree: selecting a random attribute term and

adding children assigning values to it (such attributes and assignments are defined in

section 5.3.2). Sections 5.3.4 - 5.3.7 will discuss ideas and present notions related to

the algorithm efficiency.

5.3.1 E-interpretations

We found it convenient to consider interpretations consisting of e-literals, rather

than atoms. To define the consistency of such interpretations, we need an auxiliary

definition.

Let Π be a program with signature Σ.

Definition 27 (Contrary e-literals).

The e-literals l1 and l2 of Σ are called contrary if at least one of the following two

conditions is satisfied:

1. l1 is of the form a = y and l2 is of one of the forms:

• a 6= y, or

• a = y1 where y1 6= y, or

82

Texas Tech University, Evgenii Balai, December 2017

2. l2 is of the form not l1

2

Definition 28 (Consistent set of e-literals).

A set S of e-literals is called consistent if it does not contain a pair of contrary

e-literals.

2

Moreover, such interpretation will include simple consequences. For instance,

assignment {} will define an e-interpretation containing also e-literals a 6= 2 and

not a = 2. This property is formalized by the following definition:

Definition 29 (Saturated set of e-literals).

A set S of e-literals is called saturated if it satisfies the following conditions:

1. if a = y belongs to S, then for every y1 ∈ range(a) \ {y}, a 6= y1 belongs to S

2. if a = y belongs to S, then not a 6= y belongs to S

3. if a 6= y belongs to S, then not a = y belongs to S

4. if not a 6= y belongs to S, then for every y1 ∈ range(a) \ {y}, not a = y1

belongs to S

5. if a is an attribute and there exists y ∈ range(a) such that {not a = y′ | y′ ∈

range(a) \ {y}} ⊆ S, then not a 6= y belongs to S

2

For a set I of e-literals, by satr(I) we will denote the smallest superset of I which

is saturated.

We are now ready to define e-interpretations:

Definition 30 (E-interpretation).

An e-interpretation I of Σ is a consistent saturated set of e-literals of Σ. 2

83

Texas Tech University, Evgenii Balai, December 2017

In denoting e-interpretations, we will sometimes omit e-literals that can be ob-

tained by saturation. For example, {a} denotes a e-interpretation satr({a}) =

{a, not ¬a, a 6= false}. In addition, whenever it is clear from the context, we will

omit e-literals formed by special attribute terms.

We will use shorthand a = u to denote the set {not a = y | y ∈ range(a)}. For

example, if a is a boolean attribute term, a = u denotes {not a = true, not a = false}.

We next define satisfiability and falsification of program elements w.r.t e-interpre-

tations. Let I be an e-interpretation of Σ.

Definition 31 (An e-interpretation satisfying an extended literal).

I satisfies an e-literal l of Σ if l ∈ I.

2

Definition 32 (An e-interpretation satisfying a set of extended literals).

A set L of e-literals is satisfied by I, if I satisfies every e-literal from L.

2

Definition 33 (An e-interpretation falsifying an extended literal).

I falsifies an e-literal l of Σ if I contains a literal l2 such that l2 and l are contrary.

2

Definition 34 (An e-interpretation falsifying a set of extended literals).

A set L of e-literals is falsified by I, if I falsifies some e-literal from L. 2

We next define relations between e-interpretations of Σ and possible worlds of Π.

Definition 35 (A possible world compatible with an e-interpretation).

A possible world W of Π is compatible with I if W satisfies every e-literal from I. 2

Definition 36 (A consequence).

Let I1, I2 be e-interpretations of Σ. We will say that I2 is a consequence of I1 w.r.t

Π if:

1. I1 ⊆ I2, and

84

Texas Tech University, Evgenii Balai, December 2017

2. every possible world of Π compatible with I1 is also compatible with I2.

2

Proposition 4. Let I be an e-interpretation of Σ and W be a possible world of Π

compatible with I. We have:

• if I satisfies an e-literal l of Σ, then W satisfies l,

• if I falsifies a literal l of Σ, then W does not satisfy l.

2

We next define an unnormalized measure of an e-interpretation, used by the al-

gorithm for computing probabilities:

Definition 37 (E-interpretation’s unnormalized measure).

Let I be an interpretation of Σ and W1, . . . ,Wn be the possible worlds compatible

with I. We will define the unnormalized measure, or simply the measure of I, denoted

by µ̂(I), as follows:

µ̂(I) =
n∏
i=1

µ̂(Wi)

2

5.3.2 Random Attributes Ready in an E-interpretation

The next collection of definitions is related to the selection and assigning values

to attribute terms in an e-interpretation. Such attribute terms are called ready (for

selection). Intuitively, if Π contains a rule

random(a : {X : p(X)})← B

85

Texas Tech University, Evgenii Balai, December 2017

such that B is satisfied by an e-interpretation I, and the set {X : p(X)} is “decided”

in I, then a is ready in I. If every rule with a in the head has a body falsified in I,

a is ready as well (in this case, we can claim that a takes no value in possible worlds

compatible with I).

Definitions 38-41 formalize these concepts.

Definition 38 (Decided attribute term).

An attribute term a is decided in an e-interpretation I of Σ if a = y ∈ I for some y

in range(a), or a = u ⊆ I

2

Let a be a random attribute term of Π, r be a random selection rule of the form:

random(a : {X : p(X))← B, and

I be an e-interpretation of the signature of Π such that I satisfies the body of r. We

define PO(I, r, a) as:

PO(I, r, a) = {y | I satisfies p(y) and y ∈ range(a)}

Definition 39 (Random attribute term active in an e-interpretation via a rule r).

A random attribute term a of Π is active in an e-interpretation I of Σ via rule r if

the following conditions are satisfied:

1. a is not decided by I.

2. r is the only rule of Π satisfying the following conditions:

(a) the head of r is of the form random(a : {X : p(X)})2;

(b) I satisfies the body of r;

(c) every attribute term p(x), where x ∈ range(a), is decided in I;

2recall we view random(a) as a shorthand for random(a : {X : p(X)}), where r is the range of a

86

Texas Tech University, Evgenii Balai, December 2017

(d) PO(I, r, a) 6= ∅;

(e) for every y ∈ PO(I, r, a), satr(I ∪ a = y) is consistent.

3. For every probability atom

pr(a = y | B2) = v

in Π B2 is either falsified or satisfied by I.

2

Definition 40 (Disabled random attribute term).

A random attribute term a of Π is disabled in an e-interpretation I of Σ if the following

conditions are satisfied:

1. a is not decided by I, and

2. for every random selection rule of the form

random(a : {X : p(X)})← B

B is falsified by I.

2

Definition 41 (Ready random attribute term).

A random attribute term a of a program Π is ready in an e-interpretation I of Σ if a

is either active or disabled in I. 2

Definition 42 (Possible values of an attribute term ready in an e-interpretation).

Let I be an e-interpretation and a be an attribute term ready in I. We will say that

y is a possible value of a in I iff:

1. a is active in I via rule r of Π, and y ∈ PO(I, r, a), or

87

Texas Tech University, Evgenii Balai, December 2017

2. a is disabled in I, and y = u.

2

5.3.3 AI-trees

AI-trees (where ’A’ stands for attribute term, and ’I’ stands for interpretation)

will be used to represent the search space of a family of algorithms computing the

probability of a query of programs from B.

Let Π be a program from B with signature Σ. By int(Σ) we will denote the set

of e-interpretations of Σ.

Definition 43 (AI-tree).

The AI-tree of Π, parameterized by a partial function fΠ : int(Σ) ; int(Σ) is a tree

T such that the following conditions are satisfied:

1. Each node of the tree is labeled with a random attribute term of Π (also referred

to as an a-node), or an e-interpretation of Σ (also referred to as an i-node).

2. The root of T is labeled with fΠ({}).

3. A node N2 is a child of a node N1 if at least one of the following two conditions

is satisfied:

(a) N2 is an a-node with label a, N1 is an i-node with label I, and a is ready

in I,

(b) N1 is an a-node with label A whose parent is labeled with interpretation

I, fΠ(I ∪ {A = y},Π) is defined for every possible value y of A in I , and

N2 is an i-node with label fΠ(I ∪{A = y′},Π), where y′ is a possible value

of A in I.

2

88

Texas Tech University, Evgenii Balai, December 2017

By TΠ〈f〉 we will denote the AI-tree of Π parameterized by f .

Whenever it is clear from the context, we will identify nodes with their labels.

We next define a special class of functions which will normally be used as param-

eters of AI-trees.

Definition 44 (Consequence function).

We will say that a partial function f : int(Σ) ; int(Σ) is a consequence function of

Π if:

1. f({}) is defined, and

2. for I ∈ int(Σ), if f(I) is defined, then f(I) is a consequence of I w.r.t. Π and

no e-literal in f(I) \ I is formed by a random attribute term of Π.

2

In what follows we will only consider AI-trees parameterized by consequence func-

tions.

We now describe how, given an AI-tree, the probability of query Q can be com-

puted. We will start from some auxiliary definitions.

Definition 45 (Compatible e-interpretation).

An interpretation I of Σ is compatible if there is a possible world of Π compatible

with I. Otherwise, I is incompatible.

2

Definition 46 (Conclusive e-interpretation).

We will say that an e-interpretation I of Σ is conclusive with respect to query Q of

Π if Q is decided in I.

2

Definition 47 (Cut).

Let T = TΠ〈f〉 be an AI-tree. A tree Tc is a cut of T if Tc is a subtree of T such that:

89

Texas Tech University, Evgenii Balai, December 2017

1. the root of Tc is the root of T ,

2. each i-node I of Tc has at most one child in Tc, and

3. for each a-node a of Tc, I is a child of a in Tc iff I is a child of a in T .

2

Next we define a special class of subtrees of TΠ〈f〉, called solution trees w.r.t Q,

which, as we will later show, can be used to compute the probability of Q.

Definition 48 (f -solution tree with respect to Q).

A tree Tsc is an f -solution tree, or just an f -solution, of Π with respect to query Q if

there is an AI-tree TΠ〈f〉 such that Tsc is a cut of TΠ〈f〉 and every leaf node of Tsc is

either incompatible or conclusive with respect to Q. 2

Definition 49 (Solution tree w.r.t. Q).

A tree Tsc is a solution tree, or just a solution, of Π w.r.t. Q if Tsc is an f -solution of

Π w.r.t. Q for some consequence function f .

2

The following proposition explains how to compute the probability of a query Q

given a solution tree with respect to Q.

Proposition 5. Given a program Π from B, a query Q of Π and a solution tree S of

Π with respect to Q, let L be the set of compatible leaves of S, and LQ be the subset

of L such that each member of LQ satisfies Q. We have:

1. if PΠ is defined, then

PΠ(Q) =

∑
I∈LQ

µ̂Π(I)∑
I∈L

µ̂Π(I)
(5.4)

2. otherwise, ∑
I∈L

µ̂Π(I) = 0 (5.5)

90

Texas Tech University, Evgenii Balai, December 2017

2

The efficiently of the search of a solution depends significantly on the procedure

which checks if a node is incompatible. In section 5.3.4 we will define sufficient

conditions on a consequence function which allow to perform these checks in linear

time. Another difficulty of the computation is related to the computation of measure

µ̂ for compatible leaves of a solution. Section 5.3.5 describes a method for doing this

efficiently. In section 5.3.6 we will describe a special class of solutions which can be

used to compute the probability of a query by doing the incompatibility checks as

described in 5.3.4 and computing the measures using the method from 5.3.5. We

will also discuss the conditions under which there exists such a solution of Π w.r.t Q

there. In addition, in section 5.3.7 we give examples of several consequence functions

that can be used to produce such solutions and discuss their impact on the size of

the solution trees.

5.3.4 Detecting Incompatible Nodes Efficiently

In this section we will define sufficient and necessary conditions for a node of an

AI-tree to be incompatible that can be checked efficiently. We will start from defining

a special class of consequence functions. As before, let Π be a program from class

B with signature Σ. The set of e-literals conflicting with activity record do(a = y),

denoted by conf(do(a = y)), is

{not do(a = y) = true, not do(a = y) 6= false, do(a = y) = false, do(a = y) 6= true}.

The set of e-literals conflicting with an observation obs(l) is

{not obs(l) = true, not obs(l) 6= false, obs(l) = false, obs(l) 6= true}.

For an activity record r, conf(r) denotes the set of e-literals conflicting with r.

91

Texas Tech University, Evgenii Balai, December 2017

Definition 50 (Admissible consequence function).

Let AR be the set of activity records of Π. Let Π′ be the program Π \ AR. Let

f ′ : int(Σ) ; int(Σ) be a consequence function of Π′. We describe partial function

f : int(Σ) ; int(Σ) determined by Π′ and f ′. Consider T = {truly random(a) :

∃y do(a = y) ∈ AR} and let Ltr be the set of literals formed by attribute terms from

T . Let TU be the set of e-literals:

TU = {not l | l ∈ Llr}.

Let ARNOT be the set of e-literals:

ARNOT =
⋃

rec∈AR

conf(rec)

We will define f(I) for every interpretation I such that:

1. I ∩ Ltr = ∅

2. I ∩ ARNOT = ∅

3. f ′(I \ (TU ∪ satr(AR))) is defined,

as follows:

f(I) = satr((f ′(I \ (TU ∪ satr(AR)) \ Ltr \ ARNOT) ∪ TU ∪ AR)

We will say that f is an admissible consequence function w.r.t Π induced by f ′.

2

Proposition 6. Let f be an admissible consequence function of program Π from B.

We have f is a consequence function of Π.

2

For a program Π, by X (Π) we will denote the collection of general axioms of Π of

each of the forms:

92

Texas Tech University, Evgenii Balai, December 2017

← do(a = y), not a = y

← obs(l), not l

← do(a = y), not random(a, p1), . . . , not random(a, pn).

Definition 51 (Definite node).

We will say that an e-interpretation I of Σ is definite (w.r.t Π) if

1. I falsifies the body of every axiom in X (Π), or

2. I satisfies the body of some axiom in X (Π).

2

Finally, we have the following property for incompatible AI-tree nodes.

Proposition 7. Let f be an admissible consequence function of Π and I be a definite

i-node of TΠ〈f〉. I is incompatible iff there exists an axiom in X (Π) whose body is

satisfied by I.

2

5.3.5 Computing Node Measures Efficiently

In order to use Proposition 5 to compute PΠ(Q), we need to compute the measures

of compatible leaf nodes efficiently. In this section we will define a special function µ̂∗

on e-interpretations, called a candidate measure, which can be computed efficiently,

and show that under certain conditions µ̂∗(I) = µ̂(I). The definitions for µ̂∗ will

mostly repeat the definitions of unnormalized measures µ̂ of possible worlds from the

P-log semantics, with the normal satisfiability being replaced with satisfiability for

e-interpretations.

Let I be an e-interpretation satisfying conditions 4 - 6 as defined below.

93

Texas Tech University, Evgenii Balai, December 2017

Condition 4 (Unique selection rule for e-interpretations).

If Π contains two rules r1 and r2 of the forms

random(a : {X : p1(X))← B1

and

random(a : {X : p2(X))← B2

then I does not satisfy at least one of the bodies B1 and B2.

2

Condition 5 (Unique probability assignment for e-interpretations).

If Π contains a random selection rule

random(a(t) : {Y : p(Y)})← B

along with two different probability atoms

pr(a(t) | B1) = v1 and pr(a(t) | B2) = v2

then I does not satisfy at least one of bodies B, B1, and B2. 2

Condition 6 (No probabilities assigned outside of dynamic range for e-interpreta-

tions).

If Π contains a random selection rule

random(a(t) : {Y : p(Y)})← B1

along with probability atom

pr(a(t) = y| B2) = v

then if I satisfies B1 and B2 then I satisfies p(y).

94

Texas Tech University, Evgenii Balai, December 2017

2

For every atom a = y in I such that

y ∈ PO(I, r, a) for some random selection rule r : random(a, p)← B of Π

such that B ⊆ I, (5.6)

truly random(a) ∈ I, (5.7)

for every pr-atom pr(a = y1 |B) = v of Π, either B ⊆ I, or B is falsified by I,

(5.8)

if there is a random selection rule random(a, p)← B s.t. B ⊆ I,

then for every y ∈ range(a), p(y) is decided in I, (5.9)

we will define the corresponding causal probability P (I, a = y). Whenever possible,

the probability of an atom a = y will be directly assigned by pr-atoms of the program

and denoted by PA(I, a = y). To define probabilities of the remaining atoms we

will use the principle of indifference, as we did for defining probabilities for possible

worlds. The probabilities of those remaining atoms will be denoted by PD(I, a = y).

(PA stands for assigned probability and PD stands for default probability).

More precisely, for each atom a = y in I satisfying conditions (5.6) - (5.9) we

have:

1. Assigned probability:

If Π contains pr(a = y | B) = v, I guarantees B, then

PA(I, a = y) = v

(note that Condition 5 implies that PA(I, a = y) is uniquely defined).

95

Texas Tech University, Evgenii Balai, December 2017

2. Default probability:

Let Aa(I) = {y | PA(I, a = y) is defined}, and y be a member of PO(I, r, a)

such that y 6∈ Aa(I). Then let

αa(I) =
∑

y∈Aa(I)

PA(I, a = y)

βa(I) = |{y | y ∈ PO(I, r, a) is possible in I and y 6∈ Aa(I)}|

PD(I, a = y) =
1− αa(I)

βa(I)
.

3. Finally, the causal probability P (I, a = y) is defined by:

P (I, a = y) =

 PA(I, a = y) if y ∈ Aa(I)

PD(I, a = y) otherwise.

Definition 52 (E-interpretation’s candidate measure).

Let I be an e-interpretation of Π and D = {a = y ∈ I | P (I, a = y) is defined}. The

candidate measure, µ̂∗Π(I), of I induced by Π is

µ̂∗Π(I) =
∏

a=y∈D

P (I, a = y).

2

When the program Π is clear from the context we may simply write µ̂∗ instead of

µ̂∗Π.

Notice that, the intuitive meaning of the candidate measure for e-interpretation

may not be immediately clear. In what follows, we introduce a class of e-interpre-

tations with a useful property: the candidate measures of such e-interpretations are

equal to their corresponding measures.

Definition 53 (Informative e-interpretation).

96

Texas Tech University, Evgenii Balai, December 2017

An e-interpretation I of Σ is informative iff

µ̂∗(I) = µ̂(I)

2

Example 10. Consider the program Π11:

a,b:boolean.

random(a).

pr(a) = 0.3.

The e-interpretation I = {a, random(a), truly random(a)} is informative. There is a

unique possible world W of Π11 compatible with I, and

µ̂∗(I) = µ̂(I) = µ̂(W) = 0.3.

2

Clearly, not every e-interpretation is informative.

Example 11. Consider the program Π12:

a,b:boolean.

random(a).

random(b) :- a.

pr(b) = 0.3.

The e-interpretation

I = {¬a, random(a), truly random(a), b, random(b), truly random(b)}

is not informative. There are no possible worlds compatible with I, so µ̂(I) = 0.

However,

µ̂∗(I) = P (¬a, I) · P (b, I) = 0.5 · 0.7 = 0.35.

97

Texas Tech University, Evgenii Balai, December 2017

2

The following proposition gives sufficient conditions for a node to be informative.

Proposition 8. Let Π be a program from B, f be an admissible consequence function

of Π, TΠ〈f〉 be an AI-tree of Π and I be an i-node of TΠ〈f〉. If

1. I is compatible and definite, and

2. for every random attribute term a decided in I, truly random(a) is decided in

I

then I is informative (see definition 53).

2

5.3.6 Efficient Solutions

In this section we will describe a special class of solutions which can be used to

compute the probability of the query efficiently, using the results of the previous two

sections and the formula from Proposition 5.

Definition 54 (Efficient solution).

Let Π be a program from B with signature Σ, f a consequence function of Π, Q a

query of Π and S a cut of TΠ〈f〉 that is a solution of Π w.r.t Q. S is efficient iff:

1. f is an admissible consequence function,

2. every leaf of S is definite, and

3. every compatible leaf of S is informative.

2

Suppose S is an efficient solution. Since every leaf is definite, and it is a cut of a

tree parameterized by an admissible consequence function, incompatible leaves can be

efficiently found using the results from Proposition 7. The measure of the informative

98

Texas Tech University, Evgenii Balai, December 2017

compatible leaves of S can be efficiently computed using the results from Proposition

8, Definition 53 and the formulas for candidate measures.

When searching for a solution, we will look for cuts of an AI-tree parameterized

by an admissible consequence function whose leaves are either:

1. definite and incompatible, or

2. definite, conclusive w.r.t given Q and informative (i.e, deciding truly random(a)

for each decided random attribute term a).

We will refer to such leaves as final w.r.t. Q.

The existence of final solutions in an AI-trees obtained from certain consequence

functions is guaranteed by Proposition 12.

5.3.7 Consequence Functions

The efficiency of the algorithm depends on the number of nodes of TΠ〈f〉 visited

before a solution tree is found. The choice of f largely impacts the efficiency.3 Usually,

the larger consequences are computed by f , the less number of nodes in a tree will

be visited. This section discusses the details.

For a given program Π with signature Σ, we will define 3 different admissible con-

sequence functions: f1 − f3 whose corresponding AI-trees contain efficient solutions.

Function f1 computes a minimal collection of consequence needed for the correctness

of our algorithm. Functions f2 and f3 are the refinements of f1 which are designed

to compute more consequences. Function f2, defined using f1, allows to obtain larger

consequences than f1. Function f3, defined using f2, allows to compute consequences

of some interpretations for which f2 is undefined.

Before describing the functions, we will introduce some notation and abbrevia-

tions.

By RT (Π) we will denote the set of all random attribute terms of Π.

3another important factor is the order in which the tree is explored, affected by the heuristics
used to choose an attribute term (see section 5.4)

99

Texas Tech University, Evgenii Balai, December 2017

Let I be an e-interpretation of Π. In what follows we use the following abbrevia-

tions:

• DRTΠ(I) – the set of random attribute terms of Π decided in I.

• NRTΠ(I) – the set of non-random attribute terms of Π such that:

– each member of NRTΠ(I) does not depend on RT (Π)\DRTΠ(I) in red(Π),

and

– for every member of NRTΠ(I) of the form random(a, p), a ∈ DRTΠ(I)

and p(x) ∈ NRTΠ(I) for every x ∈ range(a),

– for every member of NRTΠ(I) of the form truly random(a) we have

random(a, p) ∈ NRTΠ(I)

for every attribute term of the form random(a, p) of Σ.

We will sometimes omit Π from DRTΠ(I), NRTΠ(I) when the program is clear from

the context. When listing the attribute terms of NRT (I), will will sometimes omit

(some) special attribute terms.

Example 12. Consider the program Π13:

a,b,f,h: #boolean.

random(a).

random(b).

f:- a.

h:- a,b.

and e-interpretations:

I1 = {random(a), a}, and

I2 = {random(a), a, random(b), b}

100

Texas Tech University, Evgenii Balai, December 2017

Clearly, we have:

RT (Π13) = {a, b},

DRT (I1) = {a},

DRT (I2) = {a, b}.

Attribute term f depends only on a, and h depends on both a and b. The attribute

terms formed by truly random and random are included only with the corresponding

random attributes. So,

NRT (I1) = {random(a), truly random(a), f},

NRT (I2) = {random(a), truly random(a), random(b), truly random(b), h, f}.

2

For a partial interpretation I, by ENC(I) (read “the encoding of I”) we will

denote a collection of rules obtained from I as follows:

1. for every atom a = y ∈ I, ENC(I) contains fact a = y,

2. for every e-literal not l ∈ I, ENC(I) contains a constraint ← l, and

3. for every literal of the form a 6= y in I, ENC(I) contains two constraints:

← a = y

and

← not a = y1, . . . , not a = yk

where range(a) = {y1, . . . , yk}.

We will define functions f1 − f3 below.

1. Given an e-interpretation I, let Πcons(I) be a P-log program consisting of:

101

Texas Tech University, Evgenii Balai, December 2017

• all the declarations of Π,

• every rule r of red(Π) such that:

– the head of r is not formed by a random attribute term,

– every e-literal occurring in r is formed by an attribute term from

NRT (I) ∪DRT (I),

– r is not an activity record,

– r is not of the form

truly random(a)←random(a, p),

not do(a, y1), . . . , not do(a, yk)

where for some y ∈ {y1, . . . , yk}, do(a, y) ∈ Π.

Rather than defining the function directly, we first define an auxiliary function

f ′1, a consequence function for the program obtained from Π by removing activ-

ity records. For every interpretation such that Πcons(I)∪ENC(I) has a unique

possible world W we have:

f ′1(I) = I ∪ satr(W ∪
⋃
a∈A

a = u)

where

A = {a | a ∈ NRT (I) and W does not contain atoms formed by a}.

We define f1 to be the consequence function of Π induced by f ′1 (see Definition

50).

Example 13. Consider the program Π14

a,b,h,q,g: #boolean.

102

Texas Tech University, Evgenii Balai, December 2017

random(a).

random(b).

g :- a.

h :- a.

h :- b.

q:- a,b.

and two interpretations

I1 = {a, random(a), truly random(a)}

and

I2 = {¬a, random(a), truly random(a)}

We will compute f1(I1) and f1(I2).

NRT (I1) = {g}, DRT (I1) = {a}. Πcons(I1) contains the rule g ← a, general

axioms with no random attribute terms in the head, and the random selection

rule random(a).

ENC(I1) contains rules:4

a.

← ¬a.

← a 6= true.

← not a, not ¬a.

Note that the last 3 rules were obtained from the e-literals: a 6= false, not a =

false, not a 6= true, that are present in I1 due to the saturation of a.

4Note that there are also rules for e-literals of I1 formed by special attribute terms, such as
random(a), however they are omitted here and in the next examples.

103

Texas Tech University, Evgenii Balai, December 2017

Πcons(I1) ∪ ENC(I1) has a unique possible world W1 = {a, g},

f1(I1) = f ′1(I1) = I1 ∪ {g}

(modulo e-literals not containing special attribute terms).

NRT (I2), DRT (I2) and Πcons(I2) are the same as NRT (I1), DRT (I1) and

Πcons(I1) respectively. ENC(I2) contains rules:

¬a.

← a.

← a 6= false.

← not a, not ¬a.

Πcons(I2) ∪ ENC(I2) has a unique possible world W2 = {¬a}, and

f1(I2) = f ′1(I2) = I2 ∪ g = u

(modulo e-literals not containing special attribute terms)

2

2. To define the second function, f2, we need some definitions. Let nr(Π) be the

set of rules of Π, whose heads are not formed by random attribute terms and

are not activity records. We will define three functions N : 2e-lit(Σ) → 2e-lit(Σ),

H : 2e-lit(Σ) → 2e-lit(Σ) and least : int(Σ)→ 2e-lit(Σ).

• N(L) is the set of e-literals of the form not a = y, such that

– a is a non-random attribute term, and

104

Texas Tech University, Evgenii Balai, December 2017

– the body of every rule whose head is a = y contains a literal contrary

to some literal from L.

• H(L) = satr(L ∪ {head(r) | r ∈ nr(Π), body(r) ⊆ L} ∪N(L)).

• To define least(I), we first state the following proposition:

Proposition 9. For every e-interpretation I of Σ, there exists a fixed point

X of H such that

(a) I ⊆ X,

(b) no fixed point of H is a proper subset of X, and

(c) no other fixed point of H satisfies conditions (a), (b).

We will refer to X satisfying conditions (a) - (c) as the least fixed point of

H relevant to I.

2

We define least(I) to be the least fixed point of H relevant to I.

As in case with f1, we next define an auxiliary function f ′2, a consequence

function for Π without activity records.

If least(I) is not consistent (we can show that, if this is the case, then no possible

world of Π is compatible with I), or f ′1(I) is undefined, then f ′2(I) is undefined,

otherwise

f ′2(I) = least(f ′1(I)).

We define f2 to be the consequence function of Π induced by f ′2.

Example 14. Consider the program Π14 and interpretation I1 and I2 from

example 13. We will compute f2(I1) and f2(I2).

We first compute f2(I1). From example 13, we have

f ′1(I1) = {a, g}.

105

Texas Tech University, Evgenii Balai, December 2017

It can be shown that I1
F = {a, g, h} is the least fixed point ofH relevant to f ′1(I1).

To see that I1
F is a fixed point, notice that {head(r) | r ∈ rgn(Π), body(r) ⊆

I1
F} = {g, h}, and N(I1

F) = {}. Therefore,

H(I1
F) = satr(I1

F ∪ {head(r) | r ∈ nr(Π), body(r) ⊆ I1
F} ∪N(I1

F))

= satr(I1
F ∪ {g, h} ∪ {})

= {a, g, h}

= I1
F , and

least(f ′(I1)) is I1
F . So,

f2(I1) = f ′2(I1)

= least(f ′1(I1))

= I1
F

= {a, g, h}.

The equalities above are modulo e-literals not formed by special attribute terms.

We now compute f2(I2). From Example 13, we have:

f ′1(I2) = {¬a, not g, not ¬g}

It can be shown that I2
F = {¬a, not ¬g, not ¬g, not q, not ¬q} is the least

fixed point of H relevant to f ′1(I2). To see that I2
F is a fixed point, notice that

{head(r) | r ∈ nr(Π), body(r) ⊆ I2
F} = {} , and N(I2

F) = (q = u ∪ g = u). So,

106

Texas Tech University, Evgenii Balai, December 2017

H(I2
F) = satr(I2

F ∪ {head(r) | r ∈ rgn(Π), body(r) ⊆ I2
F} ∪N(I2

F))

= satr(I2
F ∪ {} ∪ q = u ∪ g = u)

= {a} ∪ q = u ∪ g = u

= I2
F , and

least(f ′1(I2)) is I2
F . So,

f2(I2) = f ′2(I2)

= least(f ′1(I2))

= I2
F

= {a} ∪ q = u ∪ g = u

The equalities above are modulo e-literals not formed by special attribute terms.

Notice that f1(I1) (f2(I1) and f1(I2) (f2(I2), so, f2 computes more conse-

quences than f1 for these two interpretations. 2

3. The third function, f3, expands the domain of f2.

In order to define f3, we first define 3 auxiliary functions: G : int(Σ)×2e-lit(Σ) →

2e-lit(Σ), pc : int(Σ)→ 2e-lit(Σ) and most : int(Σ)→ 2e-lit(Σ)

• We define G first:

G(I, J) = satr(J ∪ {head(r) | r ∈ Πcons(I), body+(r) ⊆ J

and body−(r) is not falsified by I})

107

Texas Tech University, Evgenii Balai, December 2017

By GI : 2e-lit(Σ) → 2e-lit(Σ) we will denote the function obtained from G by

fixing the value of its first argument:

GI(J) = G(I, J).

• To define pc(I), we first state the following proposition:

Proposition 10. For every e-interpretation I of Σ, there exists a fixed

point X of GI such that:

(a) I ⊆ X,

(b) no fixed point of GI is a proper subset of X, and

(c) no other fixed point of GI satisfies conditions (a), (b).

We will refer to X satisfying conditions (a) - (c) as the least fixed point of

GI relevant to I.

2

We define pc(I) to be the least fixed point X of GI relevant to I.

• We next define most:

most(I) = {not a = y | a ∈ NRT (I), y ∈ range(a), a = y 6∈ pc(I)}

We define f ′3(I), an auxiliary consequence function for Π with activity records

removed.

If f ′2(I) is defined, then

f ′3(I) = f ′2(I),

otherwise, if Im = satr(I ∪most(I)) and least(Im) are both consistent, then

f ′3(I) = least(Im)

108

Texas Tech University, Evgenii Balai, December 2017

In all other cases, f ′3(I) is undefined. Finally, f3 is defined as the consequence

function of Π induced by f ′3.

Example 15. Consider the following program Π15:

a,b,g,h,q: boolean.

random(a).

random(b).

g:- not h,a.

h:- not g,a.

q:- a.

:- b,h.

:- -b,h.

and interpretation I3 = {a}. We first show that both f1(I3) and f2(I3) are

undefined. NRT (I3) = {g, h, q} , DRT (I1) = {a}, Πcons(I1) consists of rules:

g ← not h, a.

h← not g, a.

random(a).

and general axioms not shown here. ENC(I1) contains rules:

a.

← ¬a.

← a 6= true.

← not a, not ¬a.

109

Texas Tech University, Evgenii Balai, December 2017

Πcons(I1) ∪ ENC(I1) has two possible worlds:

W1 = {a, q, g}

and

W2 = {a, q, h}.

Therefore, f ′1(I3) and f ′2(I3) are undefined.

We now compute f ′3(I3). It can be shown that

I3
F = {a, g, h, q}

is the least fixed point of GI3 relevant to I3. To see that I3
F is a fixed point of

GI3 , notice that

NRT (I3) = {h, g, q}

DRT (I3) = a.

Πcons(I3) contains rules:

g ← not h, a.

h← not g, a.

q ← a.

(and, as before, general axioms not shown here.)

The set {head(r) | r ∈ Πcons(I3), body+(r) ⊆ I3
F , body

−(r) is not falsified by I3}

is {g, h, q}. So,

110

Texas Tech University, Evgenii Balai, December 2017

GI3(I
3
F) = satr(I3

F ∪ {head(r) | r ∈ Πcons(I3), body+(r) ⊆ I3
F

and body−(r) is not falsified by I3})

= satr(I3
F ∪ {g, h, q})

= satr(I3
F)

= I3
F

Hence,

pc(I3) = I3
F = {a, g, h, q}.

Next,

most(I3) = {not a = y | a ∈ NRT (I3) and y ∈ range(a)

and a = y 6∈ pc(I3)}

= {not a = y | a ∈ {g, h, f} and y ∈ range(a)

and a = y 6∈ {a, g, h, f}}

= {}.

Finally,

Im = satr(I3 ∪ {})

= I3

= {a}.

111

Texas Tech University, Evgenii Balai, December 2017

It can be shown that least(Im) is {a, f}. Therefore,

f3(Im) = f ′3(Im)

= least(Im)

= {a, q}

(as before, the last equalities are modulo e-literals not formed by special at-

tribute terms). As we have demonstrated, f2(I3) is undefined, while f3(I3) is

an interpretation. So, f3 extends the domain of f2.

2

The following propositions guarantee that the functions we have constructed in-

deed satisfy the intended properties.

Proposition 11. Let Π be an arbitrary program from B with signature Σ. f1, f2

and f3 are admissible consequence functions of Π.

2

The existence of an efficient solution with respect to Q in an AI-tree parameterized

by f1, f2, f3 is claimed by the following proposition.

Proposition 12. Let Π be a program from B, and T is one of the AI-trees in

{TΠ〈f1〉, TΠ〈f2〉, TΠ〈f3〉}. For every query Q of Π, there exists a cut of T which

is an efficient solution of Π w.r.t Q.

2

More Examples.

We will now show how the choice of consequence function affects the size of solution

trees (and, therefore, possibly, the efficiency of the algorithm which searches for such

trees to compute probabilities).

112

Texas Tech University, Evgenii Balai, December 2017

Example 16. Consider the program Π14 from Example 13. We will consider two

queries: q and h.

An efficient f1- solution of Π14 w.r.t. h (which is also a solution w.r.t. q) is shown in

Figure 5.2. The a-nodes are shown as squares, and the i-nodes are ovals. When writing

an interpretation in i-nodes, we will use a shorthand l1, . . . , ln, a1 = u1, . . . , am = u

to denote the set of literals {l1, . . . , ln} ∪ a1 = u ∪ · · · ∪ am = u.

a

b b

a -a

a, b, h, q a, -b, h, q=u -a, b, h, q=u -a, -b, h=u, q = u

Figure 5.2: f1-solution of Π14 w.r.t to query h (and q)

For any consequence function f , f -solutions differ by the order in which a-nodes

were selected. In the tree from Figure 5.2, attribute a was selected first. Another

f1-solution can be constructed by selecting b first and adding it to the root. In can

be shown that all f1 solutions of Π14 will consist of 10 nodes. However, f2 - solutions

w.r.t queries h and q may contain less than 10 nodes. f2 solutions w.r.t queries h and

q are shown in Figures 5.3 and 5.4 respectively.

a

b

a,h -a,q=u

-a, b, h, q=u -a, -b, h=u, q=u

Figure 5.3: f2-solution of Π14 w.r.t. h

113

Texas Tech University, Evgenii Balai, December 2017

a

b

a,h -a,q=u

a, b, h, q a, -b, h, q=u

Figure 5.4: f2-solution of Π14 w.r.t. q

It is easy to check that all the leaves of the tree on Figure 5.3 (Figure 5.4) are final

w.r.t. corresponding query. Π14 has no actions and observations, and every attribute

is decided in every leaf node. In this case, the size of f2-solution depends on the

attribute term which was selected first. All f2-solutions of Π with b being the child

of the root have 10 nodes, unlike those from Figures 5.3 and 5.4.

Example 17. This example demonstrates the difference between f3 and f2. Consider

program Π15 from Example 15. Figure 5.5 below shows an efficient f3 - solution w.r.t

query q.

a

a, q -a, q=u

Figure 5.5: f3-solution of Π15 w.r.t. f

It can be checked that every f2-solution and f1 solution of Π15 w.r.t q has at least

10 nodes, while f3-solution from Figure 5.5 only has 4 nodes. Even though Π15 has

only one probabilistic causal leveling: V = [b, a], f3 is able to compute consequences

114

Texas Tech University, Evgenii Balai, December 2017

even in case the first selected attribute term (a) does not form a prefix of V , while f1

and f2 are not able to do that.

5.4 Algorithm Description and Implementation

In this section we will describe an algorithm that computes the probability PΠ(Q)

of query Q of program Π from class B. In addition to Π and Q, the algorithm will

accept an admissible consequence function f : int(Σ)→ int(Σ) of Π such that:

for an arbitrary query Q of Π, there exists an f -solution of Π w.r.t Q

Examples of such functions for an arbitrary query are given in Section 5.3.7 (functions

f1 - f3).

We first describe the main routine. The routine consists of two parts: finding the

f-solution and computing the probability from its leaves.

115

Texas Tech University, Evgenii Balai, December 2017

Function 1 Probability

Input: Π: a program from B with signature Σ

Q: query of Π

f : an admissible consequence function of Π s.t. there is an f -solution of Π

w.r.t Q

Output: A rational number or False, where

• if PΠ is defined, return PΠ(Q)

• otherwise, return False

Vars: T : a cut of TΠ〈f〉
P, PQ: rational numbers

I: e-interpretation of Σ

1 P := 0

2 PQ := 0

3 % Note that GetSolution(Π, Q, f) returns an efficient f -solution w.r.t Q due to

the condition on f

4 T := GetSolution(Π, Q, f)

5 for every leaf I of T s.t. I does not falsify any activity record of Π do

6 P := P + µ̂∗Π(I)

7 if I satisfies Q then

8 PQ := PQ + µ̂∗Π(I)

9 if P = 0 then

10 return False

11 else

12 return PQ/P

When searching for the solution, we will start from a cut consisting of a single

node containing e-interpretation f({}), and gradually extend the cut until a solution

is found (that is, every interpretation in its leaves is final w.r.t Q). The extension of

the tree is done by selecting a leaf node containing interpretation I and an attribute

term a ready in I and forming descendants containing assignments of possible values

to a.

If the extension of some leaf N is not possible, the search continues from an

116

Texas Tech University, Evgenii Balai, December 2017

ancestor A of N by removing all A′s current descendants and adding new descendants,

starting with an attribute term ready in A which has not been tried to extend A yet.

In order to avoid skipping some of the solutions, A is chosen to be the closest ancestor

of N which is possible to extend.

In order to keep track of the attribute terms which have not been explored yet

from a given node, we will extend each i-node with a set of such attributes. We will

refer to extended nodes as ei-nodes and to the new trees as candidate trees.

Definition 55 (Ei-node).

Let I be an e-interpretation of Σ and A be a subset of attribute terms of Σ ready in

I. We will refer to the pair 〈I, A〉 as an ei-node of Σ.

2

Definition 56 (Candidate tree).

Let Tcut be an arbitrary cut of the AI-tree of Π parameterized by f . Let Tcand be

a tree obtained from Tcut by replacing every i-node I with an ei-node 〈I, A〉 of the

signature of Π. We will say that Tcand is a candidate tree which represents Tcut. For

a candidate tree T by repr(T) we will denote the tree represented by T .

2

We will next define leaves that need to be extended in order to find a solution.

Definition 57 (Open leaf).

Let T be a candidate tree of Π. We will say that a leaf node N of T is open if

N = 〈I, A〉 is an ei-node such that I is not final w.r.t Q.

2

The set of u-terms of Σ is the union of terms of Σ and {u}.

117

Texas Tech University, Evgenii Balai, December 2017

Function 2 GetSolution

Input: Π: program from B with signature Σ

Q: query of Π

f : admissible consequence function of Π

Output: efficient f -solution of Π w.r.t Q, if such a solution exists

False, otherwise

Vars: T : candidate tree of Π

〈A, I〉, 〈A′, I ′〉 : ei-nodes of Σ

N : a-nodes of Σ

a : attribute term of Σ

y : u-term of Σ

Y : set of u-terms of Σ

1 I := f({})
2 Let A be the set of attribute terms ready in I

3 Let T be the candidate tree consisting of single node 〈I, A〉
4 while T has an open leaf do

5 Select an open leaf 〈I, A〉 of T

6 if A 6= ∅ then

7 Select and delete a from A

8 Let Y be the set of possible values of a in I

9 % note that Y is non-empty, see Def. 42 and Def. 39, clause 2 (d)

10 if there is no y ∈ Y such that f(I ∪ a = y) is undefined then

11 Create a-node N with label a

12 Make N a child of 〈I, A〉
13 for every y ∈ Y do

14 I ′ := f(I ∪ a = y)

15 Let A′ be the set of attribute terms ready in I ′

16 Make 〈I ′, A′〉 a child of N

17 else

18 if there is no ancestor 〈I ′, A′〉 of 〈I, A〉 s.t. A′ 6= ∅ then

19 return False

20 else

21 Let 〈I ′, A′〉 be the closest ancestor of 〈I, A〉 s.t. A′ 6= ∅
22 Remove all descendants of 〈I ′, A′〉 in T

23 return repr(T)

Selection of attribute term. Different solution trees with respect to a given query

Q may have different sizes. The way how an attribute term is selected in line 8 of

118

Texas Tech University, Evgenii Balai, December 2017

function GetSolution affects the size of the solution tree which is produced, and thus,

possibly, the efficiency of the algorithm. At this point, we will do a random selection

from the set of ready attribute terms.

Implementation. A preliminary implementation of this algorithm for consequence

function f3 is available at https://github.com/iensen/plog2.0/wiki. Using an

appropriate data structure for storing the current candidate, the implementation

only consumes O(Attrs(Σ)) memory (note that a naive data structure may require

memory exponential in Attrs(Σ), since the size of candidates trees can be exponential

in terms of Attrs(Σ)).

The implementation performs better than an existing implementation created

by Dr. Zhu (based on an ASP solver Smodels [Simons et al., 2002]), described in

[Zhu, 2012], on some of the benchmarks, and worse on the others.

As expected, our implementation is faster for programs where the value of the

query can be determined from a partial assignment to a small subset of random

attribute terms of the program. Consider, for example, the program based on the

squirrel problem from [Gelfond & Kahl, 2014]5, where the query depends on a small

number of random attribute terms. Table 5.1 shows the performance of both solvers

for this example.

Table 5.1: Performance on squirrel example

Query Dr.Zhu’s Solver My Solver
found(1) 43s 2.2s
found(2) 44s 2.6s
found(3) 43s 2.2s
found(4) 44s 2.3s
found(20) 41s 4.1s
found(15) 42s 2.2s

5P-log programs for my and Dr.Zhu’s solvers can be found at https://github.

com/iensen/plog2.0/blob/master/plogapp/tests/squirrel.plog and https://github.com/

iensen/plog2.0/blob/master/oldplog/Examples/Squirrel/pr.plog respectively.

119

https://github.com/iensen/plog2.0/wiki
https://github.com/iensen/plog2.0/blob/master/plogapp/tests/squirrel.plog
https://github.com/iensen/plog2.0/blob/master/plogapp/tests/squirrel.plog
https://github.com/iensen/plog2.0/blob/master/oldplog/Examples/Squirrel/pr.plog
https://github.com/iensen/plog2.0/blob/master/oldplog/Examples/Squirrel/pr.plog

Texas Tech University, Evgenii Balai, December 2017

However, the following results 6 for the BlockMap problem from [Zhu, 2012], given

in Table 5.2, show that, in some cases, the proposed optimization does not give an

improvement:

Table 5.2: Performance on block map problem example

Grid Size Dr. Zhu’s Solver My Solver
20× 1 0.387s 0.400s
20× 2 0.949s 0.881s
20× 3 2.313s 6.222s
20× 4 7.649s 37.630s
20× 5 18.728s 165.162s

In this problem, it is often the case that the solution tree construction does not stop

until all the random attribute terms were selected. While we expect it to be possible

to achieve a better performance of our solver by improving the data structures and

the consequence function, we do not expect a significant advantage over the naive

approach which computes all the possible worlds.

Finally, below are the results for the programs used to implement safety cases for

a recent NASA R&D project, that involve a substantial amount of both logical and

probabilistic reasoning. The first program7 computes the probability of less than 5

components being broken in the system. The performance results for this program

are shown in Table 5.3.

Table 5.3: Performance on components failure example

Dr. Zhu’s Solver My Solver
17m 44s 1m 36s

6 P-log programs for my and Dr.Zhu’s solvers can be found at https://github.com/iensen/

plog2.0/tree/master/plogapp/tests/weijuns_testsuite/Blocks and https://github.com/

iensen/plog2.0/tree/master/oldplog/Examples/BlockWorld respectively.
7See https://github.com/iensen/plog2.0/blob/master/plogapp/tests/nasa/A4n.plog

and https://github.com/iensen/plog2.0/blob/master/oldplog/Examples/NASA/A4.plog for
mine and Dr.Zhu’s system respectively.

120

https://github.com/iensen/plog2.0/tree/master/plogapp/tests/weijuns_testsuite/Blocks
https://github.com/iensen/plog2.0/tree/master/plogapp/tests/weijuns_testsuite/Blocks
https://github.com/iensen/plog2.0/tree/master/oldplog/Examples/BlockWorld
https://github.com/iensen/plog2.0/tree/master/oldplog/Examples/BlockWorld
https://github.com/iensen/plog2.0/blob/master/plogapp/tests/nasa/A4n.plog
https://github.com/iensen/plog2.0/blob/master/oldplog/Examples/NASA/A4.plog

Texas Tech University, Evgenii Balai, December 2017

The second program8 computes the probability of system’s failure given that less

than 5 components of the system are broken. The performance is shown in Table 5.4.

Table 5.4: Performance on system failure example

Dr. Zhu’s Solver My Solver
3m 41s 1m 39s

In both of the examples, the query can be decided in a node in which enough

components were selected and randomly assigned a failure status.

These results, however, are not conclusive. The implementation is preliminary

and the testing is done on a small number of examples. We believe, however, that

the results are promising and a good implementation will substantially improve the

performance in many interesting cases, and maintain parity with the naive implemen-

tation on others. Such an implementation, however, requires a substantial amount of

work and is beyond the scope of this dissertation.

8See https://github.com/iensen/plog2.0/blob/master/plogapp/tests/nasa/F.plog and
https://github.com/iensen/plog2.0/blob/master/oldplog/Examples/NASA/Fprmod.plog for
mine and Dr.Zhu’s system respectively.

121

https://github.com/iensen/plog2.0/blob/master/plogapp/tests/nasa/F.plog
https://github.com/iensen/plog2.0/blob/master/oldplog/Examples/NASA/Fprmod.plog

Texas Tech University, Evgenii Balai, December 2017

CHAPTER VI

CONCLUSION AND FUTURE WORK

In this work, we have accomplished the following:

• defined extensions of the language which increase its usability and expressive

power,

• defined a new class of P-log programs, B, and proved their coherency,

• designed an inference algorithm for programs from B and proved its correctness,

• developed a preliminary implementation of the algorithm and showed its ad-

vantages on a number of examples.

Future work may include:

• improving the implementation,

• investigating other possible extensions of the language (e.g., with aggregates)

and adapting the algorithm for them,

• designing an algorithm which computes an approximation to queries’ probabil-

ities (we believe the data structures and other ideas from the current work can

be reused for this purpose).

122

Texas Tech University, Evgenii Balai, December 2017

BIBLIOGRAPHY

[Balai & Gelfond, 2017] Balai, E. & Gelfond, M. (2017). Refining and generaliz-
ing p-log - preliminary report. In Proceedings of the 10th Workshop on Answer
Set Programming and Other Computing Paradigms co-located with the 14th In-
ternational Conference on Logic Programming and Nonmonotonic Reasoning, AS-
POCP@LPNMR 2017, Espoo, Finland, July 3, 2017.

[Balai et al., 2013] Balai, E., Gelfond, M., & Zhang, Y. (2013). Towards answer set
programming with sorts. In Logic Programming and Nonmonotonic Reasoning,
12th International Conference, LPNMR 2013, Corunna, Spain, September 15-19,
2013. Proceedings (pp. 135–147).

[Balduccini, 2012] Balduccini, M. (2012). Answer set solving and non-herbrand func-
tions. In Proceedings of the 14th International Workshop on Non-Monotonic Rea-
soning (NMR’2012)(Jun 2012).

[Balduccini & Gelfond, 2003] Balduccini, M. & Gelfond, M. (2003). Logic programs
with consistency-restoring rules. In International Symposium on Logical Formal-
ization of Commonsense Reasoning, AAAI 2003 Spring Symposium Series (pp.
9–18).

[Baral, 2003] Baral, C. (2003). Knowledge representation, reasoning and declarative
problem solving. Cambridge university press.

[Baral et al., 2004] Baral, C., Gelfond, M., & Rushton, N. (2004). Probabilistic rea-
soning with answer sets. In International Conference on Logic Programming and
Nonmonotonic Reasoning (pp. 21–33).: Springer.

[Baral et al., 2009] Baral, C., Gelfond, M., & Rushton, N. (2009). Probabilistic rea-
soning with answer sets. Theory and Practice of Logic Programming, 9(01), 57–144.

[Dix et al., 1996] Dix, J., Gottlob, G., & Marek, V. W. (1996). Reducing disjunctive
to non-disjunctive semantics by shift-operations. Fundam. Inform., 28(1-2), 87–
100.

[Gelfond & Kahl, 2014] Gelfond, M. & Kahl, Y. (2014). Knowledge representation,
reasoning, and the design of intelligent agents: The answer-set programming ap-
proach. Cambridge University Press.

[Gelfond & Lifschitz, 1988] Gelfond, M. & Lifschitz, V. (1988). The stable model
semantics for logic programming. In Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, August 15-19, 1988
(2 Volumes) (pp. 1070–1080).

123

Texas Tech University, Evgenii Balai, December 2017

[Gelfond & Lifschitz, 1991a] Gelfond, M. & Lifschitz, V. (1991a). Classical negation
in logic programs and disjunctive databases. New Generation Computing, 9(3/4),
365–386.

[Gelfond & Lifschitz, 1991b] Gelfond, M. & Lifschitz, V. (1991b). Classical negation
in logic programs and disjunctive databases. New generation computing, 9(3-4),
365–385.

[Lifschitz, 2008] Lifschitz, V. (2008). What is answer set programming? In Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008,
Chicago, Illinois, USA, July 13-17, 2008 (pp. 1594–1597).

[Lifschitz & Turner, 1994] Lifschitz, V. & Turner, H. (1994). Splitting a logic pro-
gram. In Logic Programming, Proceedings of the Eleventh International Conference
on Logic Programming, Santa Marherita Ligure, Italy, June 13-18, 1994 (pp. 23–
37).

[Pearl, 2009] Pearl, J. (2009). Causality.

[Sacca & Zaniolo, 1990] Sacca, D. & Zaniolo, C. (1990). Stable models and non-
determinism in logic programs with negation. In Proceedings of the ninth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems (pp.
205–217).: ACM.

[Simons et al., 2002] Simons, P., Niemelä, I., & Soininen, T. (2002). Extending and
implementing the stable model semantics. Artificial Intelligence, 138(1-2), 181–234.

[Wellman & Henrion, 1993] Wellman, M. P. & Henrion, M. (1993). Explain-
ing’explaining away’. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 15(3), 287–292.

[Zhu, 2012] Zhu, W. (2012). Plog: Its algorithms and applications. PhD thesis, Texas
Tech University.

124

Texas Tech University, Evgenii Balai, December 2017

APPENDIX: PROOFS

A.1 Proofs of Propositions from Chapters I - III

A.1.1 Proof of Proposition 1

Proposition 1. Every possible world W of a program Π satisfies every rule of Π 2

Proof. Let W be a possible world of Π and a = y ← B be the rule of Π. Let N be

the subset of B consisting of e-literals having a default negation. If N contains an

e-literal not l s.t. W does not satisfy not l, then B is not satisfied by W , and, r is

satisfied by W . Otherwise, there is a rule a = y ← B′ in ΠW , where B′ = B \ N .

Now there are only two possibilities:

1. W does not satisfy B′. In this case W does not satisfy B, and W satisfies r

2. W satisfies B′. In this case, since W is a possible world of Π, it satisfies the

rules of ΠW , including a = y ← B′. Therefore, a = y ∈ W , and W satisfy r.

2

A.1.2 Proof of Proposition 2

Lemma 1. Let Π be a program, where U is the set of activity records, and Π2 be a

program obtained from Π by removing a rule b = v ← l, B s.t. l is formed by do(l)

or obs(l), and U does not satisfy l. We have ΩΠ2 = ΩΠ.

2

Proof. We will consider two cases:

1. Suppose l is of the form not l′. Then, since U does not satisfy l, we have l′ is

satisfied by U . Let W be a possible world of Π. It is easy to check, that, since

W is a possible world of Π, it contains U , and, therefore, l′ is satisfied by W .

Then we have ΠW = ΠW
2 . Thus, clearly, W is the minimal set satisfying ΠW

2 ,

and, a possible world of Π2. The proof of the other direction (ΩΠ2 ⊆ ΩΠ) is

symmetrical (with Π and Π2 switched).

125

Texas Tech University, Evgenii Balai, December 2017

2. Suppose l is a literal. We first prove ΩΠ ⊆ ΩΠ2 . Let W be a possible world of

Π. We will prove:

W is a possible world of Π2 (A.1)

By definition of a possible world, we have:

W satisfies ΠW (A.2)

We have

ΠW
2 = (Π \ r)W (A.3)

From (A.2) and (A.3) we have:

W satisfies ΠW
2 (A.4)

For the sake of contradiction, suppose there is W ′ (W such that:

W ′ satisfies ΠW
2 (A.5)

We have:

ΠW = ΠW
2 ∪ {r}W (A.6)

Clearly, W contains no atoms formed by do and obs other than those in U (or

else, the set obtained from W by removing such atoms would satisfy ΠW , which

is a contradiction to the minimality of W). Since the body of R contains a literal

not satisfies by U , and W ′ (W , we have that W ′ contains no atoms formed by

do and obs other than those in U , and thus, does not satisfy l. Therefore, if {r}W

is not-empty, it contains a literal in the body not satisfied by W ′. Therefore,

W ′ satisfies ΠW which is a contradiction to the fact that W is a possible world

of Π.

126

Texas Tech University, Evgenii Balai, December 2017

We now prove ΩΠ2 ⊆ ΩΠ. Let W be a possible world of Π2. Since W does not

satisfy a literal in the body of r, we have that W satisfies {r}W . Therefore, W

satisfies ΠW
W ∪ {r}W . For the sake of contradiction, suppose there is W ′ ⊆ W

that satisfies ΠW
2 ∪ {r}W . Then, W ′ satisfies ΠW

2 , which is a contradiction to

the fact that W is a possible world of Π2.

2

Lemma 2. Let Π be a program, where U is the set of activity records, and Π2 be a

program obtained from Π by replacing a rule b = v ← l, B s.t:

• l is formed by do(l) or obs(l), and

• U satisfies l

with b = v ← B. We have ΩΠ2 = ΩΠ. 2

Proof. Let L be the set of e-literals constructed from all attribute terms formed by do

and obs. Since all rules with obs and do in heads have empty bodies, L is a splitting

set of Π. We prove:

every possible world of Π satisfies l (A.7)

Let W be a possible world of Π. Since botL(Π) consists of U and constraints, we

have that the only possible for botL(Π) is U . By Lemma 5, W \ U ∩ L = ∅. That is,

W contains no atoms formed by do and obs other than those from U . Therefore, W

satisfies l, and (A.7) holds. Similarly,

every possible world of Π2 satisfies l (A.8)

Now, there are two possibilities:

1. l is of the form not l′. By 5, W satisfies not l′. Then we have

ΠW = ΠW
2 (A.9)

127

Texas Tech University, Evgenii Balai, December 2017

and, therefore, W is a possible world of Π2. On the other hand, from (A.9) we

also have that every possible world of Π2 is also a possible world of Π.

2. l is a literal. Let W be a possible world of Π. We have ΠW
2 = ((Π \ {b = v ←

l, B}) ∪ {b = v ← B})W ⊆ ΠW ∪ {b = v ← B})W . There are two cases:

(a) W does not satisfy B. In this case,{b = v ← B}W , and, therefore, ΠW
2 is

satisfied by W . For the sake of contradiction suppose there is W ′ (W

such that W ′ satisfies ΠW
2 . We have ΠW ⊆ ΠW

2 ∪ {b = v ← l, B}W . Since

W ′ satisfies ΠW
2 , W ′ contains U . Since W ′ is a subset of W , it does not

contain atoms formed by do and obs other than those from U .

Therefore,

W ′ satisfies l (A.10)

Since W ′ satisfies ΠW
2 , and {b = v ← B}W ⊆ ΠW

2 ,

W ′ satisfies {b = v ← B})W (A.11)

From (A.10) and (A.11) we have:

W ′ satisfies {b = v ← l, B}W (A.12)

Therefore, W ′ satisfies ΠW ⊆ ΠW
2 ∪ {b = v ← l, B}W , which is a contra-

diction to the fact that W is a possible world of Π.

(b) W satisfies B. By (A.7) we have W satisfies l. Therefore, since the rules

b = v ← l, B belongs to Π, by Proposition 1, we have b = v ∈ W .

Therefore, W satisfies ΠW ∪ {b = v ← B}W , and ΠW
2 . For the sake of

contradiction, suppose there is W ′ (W such that W ′ satisfies ΠW
2 . By

the reasoning identical to the one from (a) we obtain:

W ′ satisfies l (A.13)

128

Texas Tech University, Evgenii Balai, December 2017

Since W ′ satisfies ΠW
2 , it satisfies {b = v ← B}W . Therefore, from (A.13),

W ′ satisfies {b = v ← l, B}W . Since ΠW ⊆ ΠW
2 ∪ {b = v ← l, B}W , we

have that W ′ satisfies ΠW , which is a contradiction to the fact that W is

a possible world of Π.

Let W be a possible world of ΠW
2 .

We have ΠW ⊆ ΠW
2 ∪ {b = v ← l, B}W . There are two cases:

(a) W does not satisfy B. In this case,{b = v ← l, B}W , and, therefore, ΠW

is satisfied by W . For the sake of contradiction suppose there is W ′ (W

such that W ′ satisfies ΠW .

We have ΠW
2 ⊆ ΠW ∪ {b = v ← B}W . Since W ′ satisfies ΠW , W ′ contains

U . Since W ′ is a subset of W , it does not contain atoms formed by do and

obs other than those from U .

Therefore,

W ′ satisfies l (A.14)

Since W ′ satisfies ΠW , and {b = v ← l, B}W ⊆ ΠW ,

W ′ satisfies {b = v ← l, B}W (A.15)

From (A.14) and (A.15) we have:

W ′ satisfies {b = v ← B}W (A.16)

From (A.16) and (A.14) we have W satisfies {b = v ← l, B}W . Therefore,

W ′ satisfies ΠW ⊆ ΠW
2 ∪ {b = v ← l, B}W , which is a contradiction to the

fact that W is a possible world of Π.

(b) W satisfies B. By (A.7) we have W satisfies l. Therefore, since the rules

b = v ← l, B belongs to Π, by Proposition 1, we have b = v ∈ W .

129

Texas Tech University, Evgenii Balai, December 2017

Therefore, W satisfies ΠW ∪ {b = v ← B}W , and ΠW
2 . For the sake of

contradiction, suppose there is W ′ (W such that W ′ satisfies ΠW
2 . By

the reasoning identical to the one from (a) we obtain:

W ′ satisfies l (A.17)

Since W ′ satisfies ΠW
2 , it satisfies {b = v ← B}W . Therefore, from (A.17),

W ′ satisfies {b = v ← l, B}W . Since ΠW ⊆ ΠW
2 ∪ {b = v ← l, B}W , we

have that W ′ satisfies ΠW
2 , which is a contradiction to the fact that W is

a possible world of Π2.

Let W be a possible world of Π. 2

Proposition 2. Let Π be a P-log program and U be the set of activity records of

Π. There exists a bijection ψ : ΩΠ → ΩΠU
such that for every possible world W of Π

1. W = ψ(W), and

2. µΠ(W) = µΠU
(W)

2

Proof. It is sufficient to show that ΩΠ = ΩΠU
, which follows immediately from Lem-

mas 1 and 2. 2

A.2 Coherency Theorem Proof

We prove Theorem 1 in 3 steps. In section A.2.1 we describe a translation τ from

P-log programs into ASP programs and show the relationship between the possible

worlds of a given P-log program Π and answer sets of its translation τ(Π). Then,

in section A.2.2 we formulate splitting set theorem for P-log originally defined in

[Lifschitz & Turner, 1994] for Answer Set Prolog programs. Finally, in section A.2.3

we prove theorem 1 using the results from sections A.2.1 and A.2.2. The proof refines

130

Texas Tech University, Evgenii Balai, December 2017

many of the results used in [Baral et al., 2009] to prove the coherency of causally

ordered unitary programs in the original P-log language.

A.2.1 Translation from P-log to ASP

For every P-log program Π, not necessarily containing general axioms, with sig-

nature Σ we define an ASP program τ(Π) whose answer sets correspond to possible

worlds of Π. More precisely, τ is defined on elements of Π as follows:

1. if f(x̄) = y is a literal of Σ, τ(f(x̄) = y) is f(x̄, y);

2. if f(x̄) 6= y is a literal of Σ, τ(f(x̄) 6= y) is ¬f(x̄, y);

3. if r is a rule of Π, τ(r) is an ASP rule obtained from r by replacing all occurrences

of literals in the rule with their translations;

4. if Π is a P-log program with signature Σ, τ(Π) is an ASP program consisting of

(a) the rules in the set {τ(r) | r is a rule of Π}; and

(b) the rules of the form

¬f(x̄, y1)← f(x̄, y2) (A.18)

for each two atoms f(x̄) = y1 and f(x̄) = y2 of Σ such that y1 6= y2;

5. if A is a set of atoms of Σ, then τ(A) is the set of ASP literals

{f(x̄, y) | f(x̄) = y ∈ A} ∪ {¬f(x̄, y) | f(x̄) = y1 ∈ A ∧ y1 6= y ∧ y ∈ range(f)}

6. If L is a set of literals of Σ, then τ(L) is the set of ASP literals:

τ({f(x̄) = y | f(x̄) = y ∈ L}) ∪ {τ(f(x̄) 6= y) | f(x̄) 6= y ∈ L}

Lemma 3. If I is an interpretation of Σ, then I satisfies a literal l of Σ if and only

if τ(I) satisfies τ(l)

131

Texas Tech University, Evgenii Balai, December 2017

Proof.

⇒

1. if l is of the form f(x̄) = y and I satisfies f(x̄) = y, τ(I) contains an atom

τ(l) = f(x̄, y).

2. If l is of the form f(x̄) 6= y, and I satisfies l, by definition of satisfiability there

must exists an atom f(x̄) = y1, where y1 6= y, such that I satisfies f(x̄) = y1.

Therefore, from part 5 of the definition of τ , τ(I) contains ¬f(x̄, y).

⇐

1. if l is of the form f(x̄, y) and τ(I) satisfies f(x̄, y), then, by construction of τ(I),

we have f(x̄) = y ∈ I.

2. If l is of the form ¬f(x̄, y), and τ(I) satisfies l, by construction of τ(I), I must

contain an atom f(x̄) = y1 for y1 6= y. Therefore, by definition of satisfiability,

I satisfies f(x̄) 6= y.

2

Lemma 4. Let Π be a P-log program not necessarily containing all general axioms.

An interpretation W of Π is a possible world of Π if and only if τ(W) is an answer

set of τ(Π)

Proof.

⇒ Let W be a possible world of Π. We prove that τ(W) is an answer set of τ(Π).

1) We show that τ(W) is a consistent set of ASP literals. We prove by contradic-

tion. Suppose τ(W) is inconsistent. Thus, there exists an ASP atom f(x̄, y)

such that τ(W) contains both f(x̄, y) and ¬f(x̄, y). By definition of τ(W), it

implies that I(f(x̄)) = y and there exists y1 6= y such that I(f(x̄)) = y1. Thus,

since I is a mapping by definition, we have a contradiction.

132

Texas Tech University, Evgenii Balai, December 2017

2) We show that τ(W) satisfies the rules of the reduct τ(Π)τ(W). By Ra we denote

the rules of τ(Π) described in 4.a) of the definition of τ ; by Rb we denote rules

described in 4.b) of the same definition. Clearly, τ(Π)τ(W) = R
τ(W)
a ∪Rτ(W)

b .

(a) We show that τ(W) satisfies the rules of R
τ(W)
a . Let r be a rule in R

τ(W)
a

such that τ(W) satisfies the body of r. We prove that τ(W) satisfies the

head of r. From lemma 3, the definition of τ and the definition of Ra, we

conclude that there is a rule r′ in ΠW such that r = τ(r′). By lemma 3 and

the definition of τ(W), W satisfies the body of r′. Since W is a possible

world of Π, W satisfies the head of r′. By lemma 3 and the definition of

τ(r′), τ(W) satisfies the head of r.

(b) We show that τ(W) satisfies the rules of R
τ(W)
b . Let r be a rule in R

τ(W)
b

given below

¬f(x̄, y1)← f(x̄, y2)

such that τ(W) satisfies f(x̄, y2). We need to show that τ(W) satisfies

¬f(x̄, y1).

By lemma 3, since τ(W) satisfies f(x̄, y2), W satisfies f(x̄) = y2, that, by

definition of τ(W), implies that τ(W) satisfies ¬f(x̄, y).

3) We show that τ(W) is minimal, that is, there does not exist a set of literals A

such that A satisfies the rules of τ(Π)τ(W) and A is a proper subset of τ(W).

We prove by contradiction. Suppose there is A such that

A satisfies all the rules in τ(Π)τ(W) (A.19)

and

A is a proper subset of τ(W) (A.20)

Since A (τ(W), by construction of τ(W) and the fact that W is an interpre-

tation, A does not contain a pair of atoms f(x̄, y1), f(x̄, y2) for y1 6= y2. Thus,

133

Texas Tech University, Evgenii Balai, December 2017

we can construct interpretation I of Σ such that I maps f(x̄) to y if and only

if f(x̄, y) belongs to A.

In a) we show that I satisfies the rules of ΠW . In b) we show that I (W , thus,

obtaining a contradiction (by the definition of possible world, W should be a

minimal interpretation satisfying ΠW).

(a) We prove that I satisfies the rules of ΠW . Let r be a rule of ΠW such that

I satisfies the body of r. We need to show that I satisfies the head of r.

First we prove that A satisfies the body of τ(r). Since r belongs to ΠW , r

does not contain literals preceded by default negation.

• Let l be a literal of the form f(x̄, y) belonging to the body of τ(r).

Since I satisfies the body of r, I(f(x̄)) = y. By construction of I, A

satisfies f(x̄, y).

• Let l be a literal of the form ¬f(x̄, y) belonging to the body of τ(r).

Since I satisfies the body of r, I(f(x̄)) = y1, where y1 6= y. By

construction of I, f(x̄, y1) belongs to A. Since A satisfies the rules of

τ(Π)τ(W), including the rule

¬f(x̄, y)← f(x̄, y1)

Therefore, A satisfies ¬f(x̄, y).

By definition of reduct and from lemma 3 it follows that τ(r) belongs to

τ(Π)τ(W). Therefore, since A satisfies the body of τ(r), and A satisfies the

rules of τ(Π)τ(W), it follows that A satisfies the head of τ(r). Therefore,

there exists an ASP literal f(x̄, y) in the head of τ(r) satisfied by A. By

construction of I, I satisfies literal f(x̄) = y. By definition of τ(r), the

head of r contains the literal f(x̄) = y. Therefore, I satisfies the head of

r.

(b) We prove that I (W . By construction of I, I contains a literal f(x̄) = y

134

Texas Tech University, Evgenii Balai, December 2017

if an only if f(x̄, y) ∈ A. By definition of τ(W), W contains a literal

f(x̄) = y if and only if f(x̄, y) ∈ τ(W). For a set of ASP literals S, by

S+ we denote the subset of S containing all positive literals of S and by

S− we denote the subset of S containing all negative literals in S (that is,

literals of the form ¬f(ȳ)). It is sufficient to show that A+ (τ(W)+. We

prove by contradiction

i. Suppose A+ is not a proper subset of τ(W)+

ii. Since A is a proper subset of τ(W), A+ is a subset of A and τ(W)+ is

a subset of τ(W), from i. we have

|τ(W)+| = |A+| (A.21)

(and, even more precisely, τ(W)+ = A+)

iii. By definition of τ(W),

|τ(W)−| =
∑

f(x̄)∈{f(x̄)|∃y:W (f(x̄))=y}

(|range(f(x̄))| − 1) (A.22)

iv. For each positive ASP literal f(x̄, y2) in A and for each y1 in range(f)

such that y1 6= y2, there is rule (A.18) in τ(Π). Since A satisfies the

rules of τ(W), in particular, those of the form (A.18), from (A.21)

and the construction of τ(W), it follows that the number of negative

literals in A is bounded below as follows:

|A−| ≥
∑

f(x̄)∈{f(x̄)|∃y:W (f(x̄))=y}

(|range(f(x̄))| − 1) (A.23)

v. By combining equation (A.22) and inequality (A.23), we get

|A−| ≥ |τ(W)−| (A.24)

135

Texas Tech University, Evgenii Balai, December 2017

vi. From equation (A.21) and inequality (A.24) we have

|A| = |A+|+ |A−|

= |τ(W)+|+ |A−|

≥ |τ(W)+|+ |τ(W)−|

= |τ(W)| (A.25)

that contradicts our original assumption (A.20) stating that A is a

proper subset τ(W).

4) From 1)- 3) it follows that τ(W) is an answer set of τ(Π).

⇐ Let A be an answer set of τ(Π) and I be an interpretation of Π such that

A = τ(I). We prove that I is a possible world of Π. In 5) we show that I satisfies

the rules of ΠI and in 6) we show the minimality of I.

5) We prove that I satisfies the rules of ΠI . Let r be a rule of ΠI such that I

satisfies the body of r. From lemma 3 and the definitions of reduct in P-log and

ASP it follows that the rule τ(r) belongs to τ(Π)A, and moreover, A satisfies

the body of τ(r). Since A is an answer set of τ(Π), A satisfies the head of r. By

definitions of τ(r) and τ(I) and lemma 3, this means that I satisfies the head

of r and, therefore r itself.

6) We prove that I is minimal, that is, there does not exist an interpretation I ′

such that I ′ satisfies the rules of ΠI and I ′ (I. We prove by contradiction.

Suppose such I ′ exists. In a) we show that τ(I ′) satisfies the rules of τ(Π)A and

in b) we show that τ(I ′) is a proper subset of A, thus, obtaining a contradiction

to the fact that A is an answer set of τ(Π).

(a) We prove that τ(I ′) satisfies the rules of τ(Π)A. Let r be a rule of τ(Π)A

such that τ(I ′) satisfies the body of r. We show that τ(I ′) satisfies the head

136

Texas Tech University, Evgenii Balai, December 2017

of r. From lemma 3 and the definition of τ and the definition of reducts

in ASP and P-log it follows that ΠI contains a rule r′ such that r = τ(r′).

From 3 we have that I ′ satisfies the body of r′. Since I ′ satisfies the rules

of ΠI , I ′ satisfies the head of r′. Therefore, from lemma 3 it follows that

τ(I ′) satisfies the head of r = τ(r′), and, therefore, the rule r itself.

(b) We prove that τ(I ′) is a proper subset of A = τ(I). By definition of I ′,

I ′ (I (A.26)

Thus, by definition of τ ,

τ(I ′)+ is a proper subset of τ(I)+ (A.27)

From (A.27) it follows immediately

|τ(I ′)+| < |τ(I)+| (A.28)

By definition of τ(I) and τ(I ′), we have

τ(I)− =
⋃

f(x̄)=y∈I

{¬f(x̄) = y1)|y1 ∈ range(f(x̄)) ∧ y1 6= y} (A.29)

τ(I ′)− =
⋃

f(x̄)=y∈I′
{¬f(x̄) = y1)|y1 ∈ range(f(x̄)) ∧ y1 6= y} (A.30)

From (A.26), (A.29) and (A.30) it follows that

τ(I ′)− ⊆ τ(I)− (A.31)

From (A.27) and (A.31) and the fact that τ(I) = τ(I)+∪τ(I)− and τ(I ′) =

137

Texas Tech University, Evgenii Balai, December 2017

τ(I ′)+ ∪ τ(I ′)− we get

τ(I ′) is a proper subset of τ(I) (A.32)

2

Proposition 13. Let Π be a P-log program and W1,W2 be two possible worlds of

Π. It is not true that W1 (W2.

Proof. We prove by contradiction. Let W1 and W2 be two possible world of a program

Π such that

W1 (W2 (A.33)

By Lemma 4,

τ(W1) and τ(W2) are answer sets of τ(Π). (A.34)

By definition of τ ,

τ(W1) = W1 ∪
⋃

f(x̄)=y∈W1

{f(x̄) 6= y1|y1 ∈ range(f(x̄)) ∧ y1 6= y} (A.35)

τ(W2) = W2 ∪
⋃

f(x̄)=y∈W2

{f(x̄) 6= y1|y1 ∈ range(f(x̄)) ∧ y1 6= y} (A.36)

From (A.33), (A.35) and (A.36) it follows that

τ(W1) (τ(W2) (A.37)

(A.37) and (A.34) contradict the theorem about minimality of answer sets of ASP

138

Texas Tech University, Evgenii Balai, December 2017

programs (see Lemma 1 in [Gelfond & Lifschitz, 1991b]).

2

A.2.2 Splitting Set Theorem For P-log

In this section we present the P-log version of the original Splitting Set Theorem

from [Lifschitz & Turner, 1994]. The adoption requires change in the definition of

splitting set (see Definition 61). Other definitions follow [Lifschitz & Turner, 1994]

and are presented for completeness.

Let Π be a program with signature Σ, and X and U be sets of literals of Σ. As

in [Lifschitz & Turner, 1994], we will define the bottom and the top of a program Π

with respect to X and U , denoted by bU(Π) and eU(Π \ bU(P), X) correspondingly.

For a rule r of the form

l← l1, . . . , lk, not lk+1, . . . , not lm (A.38)

where l1, . . . , lm are literals, we will introduce notations:

pos(r) = {l1, . . . , lk}

neg(r) = {ll+1, . . . , lm}

head(r) = l

lit(r) = head(r) ∪ pos(r) ∪ neg(r)

Definition 58 (Bottom w.r.t. U).

The bottom of Π w.r.t U , denoted by bU(Π), is a program such that:

1. bU(Π) = {r | r ∈ Π and lit(r) ⊆ U}

2. the signature of bU(Π) consists of all attribute terms of Σ which form literals

from U

139

Texas Tech University, Evgenii Balai, December 2017

2

We next define Top. For rule r such that pos(r) ∩ U is satisfied by X and every

literal from (neg(r) ∩ U) is not satisfied by X, we define RU(r) to be the rule such

that:

head(RU(r)) = head(r), pos(RU(r)) = pos(r) \ U, neg(RU(r)) = neg(r) \ U

Definition 59 (Top w.r.t. X and U).

The top of Π w.r.t X and U , denoted by eU(Π, X), is a program such that:

1. the rules of eU(Π, X) are

{RU(r) | r ∈ Π and pos(r) ∩ U is satisfied by X and every e-literal

from {not l | l ∈ neg(r) ∩ U} is not satisfied by X}

2. the signature of eU(Π, X) consists of all attribute terms of Σ which do not form

a literal in U .

2

We borrow the definition of a solution to Π w.r.t U :

Definition 60 (Solution to Π w.r.t U).

Let Π be a P-log program. A solution to Π w.r.t U is a pair 〈X, Y 〉 of sets of literals

such that:

1. X is possible world of bU(Π)

2. Y is a possible world of eU(Π \ bU(Π), X)

3. X ∪ Y is consistent

140

Texas Tech University, Evgenii Balai, December 2017

2

We will next define a splitting set for P-log programs:

Definition 61 (Splitting set).

A splitting set for a P-log program Π is any set U of literals of Π’s signature such

that,

1. for every rule r of Π if head(r) ∈ U , then pos(r) ∪ neg(r) ⊆ U ,

2. if a literal formed by attribute term f(x̄) belongs to U , then all the literals of

Σ formed by f(x̄) belong to U .

2

Finally, we state the splitting set theorem for P-log:

Theorem 2. [Splitting Set Theorem]

Let U be a splitting set for a program Π. A set A of literals is a possible world of Π

if and only if A = X ∪ Y for some solution 〈X, Y 〉 to Π with respect to U .

2

Note that the condition 2 from Definition 61, absent from the original definition

of splitting set, is necessary for the correctness of the theorem. For instance, consider

the program:

#s: {1,2}.

p: #boolean.

f: #s.

p:- f != 1.

f = 2.

If condition 2 is not used, U = {p, f 6= 1} would be a splitting set of Π. However,

the theorem then wouldn’t hold for U . The program has only one possible world

{f = 2}. However, there does not exists a solution 〈X, Y 〉 with respect to U , such

that A = X ∪ U , because, the program bU(Π), which contains only one rule

141

Texas Tech University, Evgenii Balai, December 2017

p:- not f != 1.

has exactly one possible world {p}, and, therefore, X ∪ Y must contain p for any

solution 〈X, Y 〉 of Π with respect to U .

Proof for theorem 2.

In 1 we show that τ(U) is a splitting set (as defined in [Lifschitz & Turner, 1994])

for the ASP program τ(Π). In 2 we show τ(bU(Π)) = bτ(U)(τ(Π)). In 3 we show

eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′) = τ(eU(Π \ bU(Π), X)). In 4 we use the results from 1-3

to prove that if A a possible world of Π, then A = X ∪ Y for some solution 〈X, Y 〉 to

Π with respect to U . In 5 we use the results from 1-3 to prove that if A = X ∪ Y for

some solution 〈X, Y 〉 to Π with respect to U , then A is a possible world of Π.

1. We show that τ(U) is a splitting set (as defined in [Lifschitz & Turner, 1994])

for the program τ(Π). Let r be a rule of τ(Π) such that:

the head of r is included into τ(U) (A.39)

We need to show that all the literals occurring in the body of r are included

into τ(U). We consider two possible cases:

(a) there exists r′ of Π such that r = τ(r′). In this case, by construction of

τ(r′) and clause 1 of Definition 61 we have that every literal occurring in

pos(r) ∪ neg(r) is included into U . Thus, by definition of τ(U) and from

r = τ(r′), every literal from the body of r is included into τ(U).

(b) r is of the form ¬f(x, y1) ← f(x, y) where y1 6= y. In this case, by

construction of τ(U) from (A.39) we have that f(x) 6= y1 ∈ U . Therefore,

by clause 2) of definition 61 we have that f(x) = y ∈ U . By definition

of τ(f(x) = y) and τ(U) we have that f(x, y) ∈ τ(U). Therefore, every

literal in the body of r belongs to τ(U).

142

Texas Tech University, Evgenii Balai, December 2017

2. We prove:

τ(bU(Π)) = bτ(U)(τ(Π)) (A.40)

We prove (A.40) in two directions:

τ(bU(Π)) ⊆ bτ(U)(τ(Π)) (A.41)

bτ(U)(τ(Π)) ⊆ τ(bU(Π)) (A.42)

We start from (A.41). Suppose r is a a rule such that

r ∈ τ(bU(Π)) (A.43)

There are two possible cases:

• r is a translation of a rule of bU(Π). In this case, since bU(Π) ⊆ Π, r is a

translation of a rule in Π. Therefore,

r belongs to τ(Π) (A.44)

Also, since every literal occurring in every rule in bU(Π) is from U , and r

is a translation of a rule in bU(Π), we have that:

every literal occurring in r is from τ(U) (A.45)

From (A.45) and (A.44) we have

r ∈ bτ(U)(τ(Π)) (A.46)

143

Texas Tech University, Evgenii Balai, December 2017

Therefore, (A.41) holds.

• r is of the form ¬f(x̄, y1) ← f(x̄, y2) In this case, by definition of τ from

(A.43) we have f(x̄) = y2 and f(x̄) = y1 are atoms of bU(Π), which means

U contains literals l1 and l2 formed by f(x̄) = y1 and f(x̄) = y2 respectively.

Since U is a splitting set, by condition 2 we have that U contains atoms

f(x̄) = y1 and f(x̄) = y2. Therefore, τ(U) contains literals ¬f(x̄, y1) and

f(x̄, y2), r ∈ bτ(U)(τ(Π)), and (A.41) holds.

We next show (A.42). Suppose r is a a rule such that

r ∈ bτ(U)(τ(Π)) (A.47)

There are two possible cases:

• r is a translation of some rule r′ of Π. In this case, from (A.47) we have

that all literals from r are from τ(U). Therefore, lit(r′) ⊆ U , r′ ∈ bU(Π)

and r ∈ τ(bU(Π)). Therefore, (A.42) holds.

• r is of the form ¬f(x̄, y1) ← f(x̄, y2). By construction of bτ(U)(τ(Π)) we

have that:

¬f(x̄, y1) ∈ τ(U) (A.48)

f(x̄, y2) ∈ τ(U) (A.49)

and

r ∈ τ(Π) (A.50)

From (A.48) and (A.49) we have:

all the literals of Σ formed by f(x̄) belong to U (A.51)

144

Texas Tech University, Evgenii Balai, December 2017

From (A.51) we have that

f(x̄) belongs to the signature of bU(Π) (A.52)

Therefore, by definition of τ(Π), we have r ∈ τ(bU(Π). Therefore, (A.42)

holds.

From (A.41) and (A.42) we have (A.40).

3. We show that for every possible world X of bU(Π):

eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) = τ(eU(Π \ bU(Π), X)) (A.53)

We prove (A.53) in two directions:

eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) ⊆ τ(eU(Π \ bU(Π), X)) (A.54)

τ(eU(Π \ bU(Π), X)) ⊆ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.55)

We start from (A.54). Let r be a rule s.t.

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.56)

By construction of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) we have that r = Rτ(U)(r
′),

where

r′ ∈ τ(Π) (A.57)

r′ 6∈ bτ(U)(τ(Π)) (A.58)

145

Texas Tech University, Evgenii Balai, December 2017

pos(r′) ∩ τ(U) ⊆ τ(X) (A.59)

neg(r′) ∩ τ(U) ∩ τ(X) = ∅ (A.60)

From (A.58) we have:

r′ contains a literal which is not from τ(U) (A.61)

There are only two possibilities:

• r′ = τ(r′′) for some rule r′′ from Π. From (A.59) and (c) by lemma 3 we

have:

pos(r′′) ∩ U is satisfied by X (A.62)

From (A.60) and (c) by lemma 3 we have:

every literal in {not l | l ∈ neg(r′′) ∩ U} is not satisfied by X (A.63)

From (A.61) we have:

lit(r′′) contains a literal which is not in U (A.64)

Therefore,

r′′ 6∈ bU(Π) (A.65)

From (A.62),(A.63) and (A.65) we have:

146

Texas Tech University, Evgenii Balai, December 2017

RU(r′′) ∈ eU(Π \ bU(Π), X) (A.66)

Therefore,

τ(RU(r′′)) ∈ τ(eU(Π \ bU(Π), X)) (A.67)

Since r′ = τ(r′′), by construction of R and by Lemma 3 we have:

τ(RU(r′′)) = Rτ(U)(r
′) (A.68)

From (A.67) and (A.68) we have:

Rτ(U)(r
′) ∈ τ(eU(Π \ bU(Π), X)) (A.69)

Therefore, since r = Rτ(U)(r
′), we have:

r ∈ τ(eU(Π \ bU(Π), X)) (A.70)

Therefore, in this case, (A.54) holds.

• r′ is of the form

¬f(x̄, y1)← f(x̄, y2)

where y1 6= y2 and

f(x̄) is an attribute term of Σ (A.71)

From (A.61) by clause 2 of the definition of the splitting set we have:

no literal formed by f(x̄) belongs to U (A.72)

147

Texas Tech University, Evgenii Balai, December 2017

From (A.71) and (A.72) by Definition 59 we have:

f(x̄) belongs to the signature of eU(Π \ bU(Π), X) (A.73)

From (A.72) we have:

Rτ(U)(r
′) = r′ = r (A.74)

From (A.73) we have:

r′ ∈ τ(eU(Π \ bU(Π), X)) (A.75)

From (A.75) and (A.74) we have:

r ∈ τ(eU(Π \ bU(Π), X)) (A.76)

Therefore, in this case, (A.54) holds.

We next prove (A.55).

Let r be a rule s.t.

r ∈ τ(eU(Π \ bU(Π), X)) (A.77)

There are only two possibilities:

• r = τ(r′) for some r′ ∈ eU(Π \ bU(Π), X). By construction of eU(Π \

bU(Π), X), we have that there is r′′ such that:

r′′ ∈ Π (A.78)

r′ = RU(r′′) (A.79)

148

Texas Tech University, Evgenii Balai, December 2017

and:

r′′ 6∈ bU(Π) (A.80)

pos(r′′) ∩ U is satisfied by X (A.81)

every literal from neg(r′′) ∩ U is not satisfied by X (A.82)

From (A.80) we have:

lit(r′′) contains a literal not from U (A.83)

From (A.83), clause 2 of the splitting set definition and the construction

of τ we have:

lit(τ(r′′)) contains a literal not from τ(U) (A.84)

Therefore,

τ(r′′) 6∈ bτ(U)(τ(Π)) (A.85)

From (A.81) and Lemma 3 we have:

pos(τ(r′′)) ∩ τ(U) is satisfied by τ(X) (A.86)

From (A.82) and Lemma 3 we have:

every literal from neg(τ(r′′)) ∩ τ(U) is not satisfied by τ(X) (A.87)

From (A.78) we have:

149

Texas Tech University, Evgenii Balai, December 2017

τ(r′′) ∈ τ(Π) (A.88)

From (A.85), (A.86), (A.87) and (A.88) we have:

Rτ(U)(τ(r′′)) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.89)

By construction of R and by Lemma 3 we have:

τ(RU(r′′)) = Rτ(U)(τ(r′′)) (A.90)

From (A.89) and (A.90) we have:

τ(RU(r′′)) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.91)

From (A.79) and (A.91) we have:

τ(r′) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.92)

From the fact that r = τ(r′) and (A.92) we have:

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.93)

Therefore, in this case, (A.55) holds.

• r is of the form

¬f(x̄, y1)← f(x̄, y2)

for some y1 6= y2.

150

Texas Tech University, Evgenii Balai, December 2017

From (A.77) by construction of τ(eU(Π \ bU(Π), X)) we have:

f(x̄) = y1 and f(x̄) = y2 are atoms of the signature of eU(Π \ bU(Π), X)

(A.94)

Therefore, by clause 2 of Definition 59, we have:

f(x̄) = y1 and f(x̄) = y2 are atoms of Σ (A.95)

and

no literals of U are formed by f(x̄) (A.96)

Therefore,

τ(U) contains no literals of the forms f(x̄, y) or ¬f(x̄, y) (A.97)

Since neg(r) = {}, we have:

every literal in {not l | l ∈ neg(r)∩τ(U)} is not satisfied by τ(X) (A.98)

From (A.97) we have pos(r) ∩ τ(U) = ∅, therefore:

every literal in pos(r) ∩ τ(U) is satisfied by τ(X) (A.99)

From (A.95) we have:

r ∈ τ(Π) (A.100)

From (A.97) we have:

r 6∈ bτ(U)(τ(Π)) (A.101)

151

Texas Tech University, Evgenii Balai, December 2017

From (A.100), (A.101), (A.99), (A.98) we have:

Rτ(U)(r) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.102)

From (A.97) we have:

Rτ(U)(r) = r (A.103)

From (A.103) and (A.102) we have:

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.104)

Therefore, in this case, (A.55) holds.

From (A.54) and (A.55) we have (A.53).

4. → we show that if A a possible world of Π, then A = X ∪ Y for some solution

〈X, Y 〉 to Π with respect to U .

Let A be a possible world of Π. By lemma 4 we have that τ(A) is an answer

set of τ(Π). By splitting set theorem from [Lifschitz & Turner, 1994] we have

that τ(A) = X ′ ∪ Y ′ for some solution 〈X ′, Y ′〉 to τ(Π) with respect to τ(U).

Let Σ be the signature of Π. We will construct two sets of atoms of Σ, X and

Y , such that

• X ′ = τ(X)

• Y ′ = τ(Y)

• 〈X, Y 〉 is a solution to Π with respect to U

• X ∪ Y = A.

In (a) we construct X. In (b) we construct Y . In (c) we show X ′ = τ(X). In

(d) we show Y ′ = τ(Y). In (e) we show 〈X, Y 〉 is a solution to Π with respect

152

Texas Tech University, Evgenii Balai, December 2017

to U . In (f) we show X ∪ Y = A.

(a) We construct X. First, from construction of τ(Π) if follows that

if f(x̄, y) occurs as an atom in τ(Π) then f(x̄) = y is an atom of Σ

(A.105)

Since X ′ is an answer set of the program bτ(U)(τ(Π)), it can only contain

literals which occur in the head of the rules of the program bτ(U)(τ(Π)),

and, by definition of bτ(U)(τ(Π)),

all literals in X ′ occur in τ(Π) (A.106)

Let X be the set defined as follows:

X = {f(x̄) = y | f(x̄, y) ∈ X ′} (A.107)

From (A.105) and (A.106) we have that X is a set of atoms of Σ.

(b) We construct Y . Using arguments similar to the ones in (a), we can show

that if f(x, y) ∈ Y ′, then f(x) = y is an atom for Σ. Then the set Y ,

defined as follows

Y = {f(x̄) = y | f(x̄, y) ∈ Y ′}, (A.108)

is a set of atoms of Σ.

(c) We show that X ′ = τ(X). Since X ′ is an answer set of the program

bτ(U)(τ(Π)), X ′ is consistent. Therefore, it is sufficient to show that for

every atom f(x̄) = y such that

f(x̄) = y ∈ X (A.109)

153

Texas Tech University, Evgenii Balai, December 2017

in X,

{¬f(x̄, y1) | y1 6= y} ⊆ X ′ (A.110)

By construction of τ(Π), for every literal f(x̄) 6= y1 where y1 6= y, τ(Π)

contains a rule r: ¬f(x̄, y1)← f(x̄, y)

We prove that

r belongs to bτ(U)(τ(Π)) (A.111)

Since X ′ is an answer set of bτ(U)τ(Π), and X ′ contains f(x̄, y), f(x̄, y) ∈

τ(U) . By definition of τ(U), τ(U) should also include ¬f(x̄, y1). Thus,

τ(U) contains both τ(f(x̄) = y) and τ(f(x̄) 6= y1) and, by construction of

bτ(U)(τ(Π)), we have (A.111)

Since X ′ is an answer set of bτ(U)τ(Π), from (A.111) we have:

X ′ satisfies r (A.112)

From (A.109) and (A.107) we have that X ′ satisfies the body of r. There-

fore, from (A.112) we haveX ′ also satisfies the head of r, which is ¬f(x̄, y1).

Therefore, (A.110) holds.

(d) We show that Y ′ = τ(Y). Since Y ′ is an answer set of eτ(U)(τ(Π) \

bτ(U)(τ(Π)), X ′), Y ′ is consistent. Therefore, it is is sufficient to show

that for every atom f(x̄) = y such that

f(x̄) = y ∈ Y (A.113)

we have

{¬f(x̄, y1) | y1 6= y} ⊆ Y ′ (A.114)

By construction of τ(Π), for every literal f(x̄) 6= y1 of Σ where y1 6= y,

154

Texas Tech University, Evgenii Balai, December 2017

there is a rule r

¬f(x̄, y1)← f(x̄, y)

such that

r ∈ τ(Π) (A.115)

We prove that

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′) (A.116)

From the results on page 5 of [Lifschitz & Turner, 1994], we have:

Y ′ ∩ τ(U) = ∅ (A.117)

From (A.117), (A.113) and (A.108) we have:

f(x̄, y) 6∈ τ(U) (A.118)

From (A.118) by construction of bτ(U)(τ(Π)) we have:

r 6∈ bτ(U)(τ(Π)) (A.119)

From (A.119) and (A.115) we have:

r ∈ τ(Π) \ bτ(U)(τ(Π)) (A.120)

From (A.120) and (A.118) by definition of top we have (A.116).

Since Y ′ is an answer set of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′), from (A.116) we

have:

Y ′ satisfies r (A.121)

From (A.113) and (A.108) we have that Y ′ satisfies the body of r. There-

155

Texas Tech University, Evgenii Balai, December 2017

fore, from (A.121) we have Y ′ also satisfies the head of the rule, which is

¬f(x̄, y1). Therefore, (A.114) holds.

(e) We show that 〈X, Y 〉 is a solution to Π with respect to U . We prove the

clauses 1-3 of Definition 60 in i - iii respectively.

i. We show that X is a possible world of bU(Π). By construction,

X ′ is an answer set of bτ(U)(τ(Π)) (A.122)

From (c), the fact that X ′ is an answer set of bτ(U)(τ(Π)), A.40 by

lemma 4 we have that X is a possible world of bU(Π).

ii. We show that Y is a possible world of eU(Π \ bU(Π), X).

Recall that:

Y ′ is an answer set of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′) (A.123)

From (A.123), (d), and (A.436) by Lemma 4 we have that Y is a

possible world of eU(Π \ bU(Π), X).

iii. We prove X∪Y is consistent. Recall that τ(A) = X ′∪Y ′ for a possible

world A of Π. From (c) and (d) we have that X ∪ Y consists of all

positive literals which are members of X ′ ∪ Y ′, which is precisely A.

Since A is a possible world, A is consistent, as well as X ∪ Y .

(f) In 2.e).iii we have already shown that A = X ∪ Y .

By theorem 4 and the fact that if Y contains an atom f(x, y), it also contains

atoms f(x, y1) for every y1 6= y, there exists Y ′ such that Y = τ(Y ′) and Y ′ is

a possible world of eU(Π \ bU(P), X).

5. ← we show that if A = X ∪Y for some solution 〈X, Y 〉 to Π with respect to U ,

then A is a possible world of Π.

156

Texas Tech University, Evgenii Balai, December 2017

By 1, τ(U) is a splitting set of τ(Π). We prove that 〈τ(X), τ(Y)〉 is a solu-

tion to τ(Π) with respect to τ(U). In (a) we show that τ(X) is a possible

world of bτ(U)(τ(Π). In (b) we show τ(Y) is a possible world of eτ(U)(τ(Π) \

bτ(U)(τ(Π)), X ′). In (c) we show τ(X) ∪ τ(Y) is consistent.

(a) We show that

τ(X) is a possible world of bτ(U)(τ(Π)) (A.124)

Since 〈X, Y 〉 is a solution of Π w.r.t. U , we have

X is a possible world of bU(Π) (A.125)

Therefore by Lemma 4 we have:

τ(X) is a possible world of τ(bU(Π)) (A.126)

From (A.40) and (A.126) we have (A.124)

(b) We show that

τ(Y) is a possible world of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (A.127)

Since 〈X, Y 〉 is a solution of Π w.r.t. U , we have:

Y is a possible world of eU(τ(Π) \ bU(τ(Π)), X) (A.128)

Therefore by Lemma 4 we have:

τ(Y) is a possible world of τ(eU(τ(Π) \ bU(τ(Π)), X)) (A.129)

157

Texas Tech University, Evgenii Balai, December 2017

From (A.436) and (A.129) we have (A.127)

(c) Since 〈X, Y 〉 is a solution of Π w.r.t. U , X ∪Y is consistent. Therefore, by

construction, τ(X) ∪ τ(Y) is consistent (it consists of atoms from X and

Y and all negative literals of the form f = y for every atom f = y1 where

y 6= y1).

2

The original paper also contains an analogy of the following claim that we will

use in the proof of Theorem 1.

Lemma 5. Let U be a splitting set for a program Π. If A is a possible world of Π such

that A = X ∪ Y for some solution 〈X, Y 〉 to Π with respect to U , then Y ∩ U = ∅.

2

Proof. Since Y is a possible world of eU(Π \ bU(Π), X), and, by clause 2 of Definition

59, the signature of eU(Π \ bU(Π), X) does not contain literals from U , Y does not

contain literals from U . Therefore, Y ∩ U = ∅. 2

A.2.3 Proof of Theorem 1

In this section we will prove the theorem:

Theorem 1.

Every program from B is coherent.

2

The outline of the proof is the same as that of Theorem 1 from [Baral et al., 2009],

which says that a program from a different class introduced there is coherent. First,

[Baral et al., 2009] introduces the notion of a tableau representing a program and

shows that programs considered there can be represented by such tableaux. The

second part of the proof consists of the theorem which states that every program

which can be represented by a tableau is coherent. The definition of a tableaux

and the corresponding theorem about coherency in our proof is very close to that

158

Texas Tech University, Evgenii Balai, December 2017

in [Baral et al., 2009]. The only changes are those related to our refinement of the

semantics of the original P-log. However, proof of the first part requires a substantial

amount of work and new insights, given in lemmas 8 - 27 below.

Definition 62 (Unitary Tree).

Let T be a tree in which every arc is labeled with a real number in [0,1]. We say T

is unitary if the labels of the arcs leaving each node add up to 1.

2

Figure A.1 gives an example of a unitary tree.

Figure A.1: Unitary tree T

Definition 63 (pT (n)).

Let T be a tree with labeled nodes and n be a node of T . By pT (n) we denote the

set of labels of nodes lying on the path from the root of T to n, including the label

of n and the label of the root.

2

159

Texas Tech University, Evgenii Balai, December 2017

Example 18. Consider the tree T from Figure A.1. If n is the node labeled (13),

then pT (n) = {1, 3, 8, 13}.

2

Definition 64 (Path value).

Let T be a tree in which every arc is labeled with a number in [0,1]. The path value

of a node n of T , denoted by pvT (n), is defined as the product of the labels of the

arcs in the path to n from the root. (Note that the path value of the root of T is 1.)

2

When the tree T is obvious from the context we will simply write pv(n).

Example 19. Consider the tree T from Figure A.1. If n is the node labeled with 8,

then pv(n) = 0.3× 0.3 = 0.09.

2

Lemma 6. [Property of Unitary Trees]

Let T be a unitary tree and n be a node of T . Then the sum of the path values of all

the leaf nodes descended from n (including n if n is a leaf) is the path value of n.

2

The proof of Lemma 6 can be found in [Baral et al., 2009].

Definition 65 (A set of literals compatible with an e-literal).

A set S of literals of Π is Π-compatible with an e-literal l of Π if there exists a possible

world of Π satisfying S∪{l}. Otherwise S is Π-incompatible with l. S is Π-compatible

with a set B of e-literals of Σ if there exists a possible world of Π satisfying S ∪ B;

otherwise S is Π-incompatible with B. 2

Definition 66 (A set of literals guaranteeing an e-literal).

A set S of literals is said to Π-guarantee an e-literal l if S and l are Π-compatible

and every possible world of Π satisfying S also satisfies l; S Π-guarantees a set B of

e-literals if S Π-guarantees every member of B. 2

160

Texas Tech University, Evgenii Balai, December 2017

Definition 67 (Ready to branch).

Let T be a tree whose nodes are labeled with atoms of Σ and r be a rule of Π of the

form

random(a(t̄) : {X : p(X)})← K.

where K can be empty. A node n of T is ready to branch on a(t) via r relative to Π

if

1. pT (n) contains no literal of the form a(t) = y for any y,

2. pT (n) Π-guarantees K,

3. for every pr-atom of the form pr(a(t) = y | B) = v in Π, either pT (n) Π-

guarantees B or is Π-incompatible with B, and

4. for every y ∈ range(a), pT (n) either Π-guarantees p(y) or is Π-incompatible

with p(y) and moreover there is at least one y ∈ range(a) such that pT (n)

Π-guarantees p(y).

If Π is obvious from the context we may simply say that n is ready to branch on a(t)

via r.

2

Proposition 14. Suppose n is ready to branch on a(t) via some rule r of Π, and

a(t) = y is Π-compatible with pT (n); and let W1 and W2 be possible worlds of Π-

compatible with pT (n). Then P (W1, a(t) = y) = P (W2, a(t) = y).

2

Proof. Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is

Π-compatible with pT (n); and let W1 and W2 be possible worlds of Π compatible with

pT (n).

Case 1: Suppose a(t) = y has an assigned probability in W1. Then there is a

pr-atom pr(a(t) = y | B) = v of Π such that W1 satisfies B. Since W1 also satisfies

161

Texas Tech University, Evgenii Balai, December 2017

pT (n), B is Π-compatible with pT (n). It follows from the definition of ready-to-branch

that pT (n) Π-guarantees B. Since W2 satisfies pT (n) it must also satisfy B and so

P (W2, a(t) = y) = v.

Case 2: Suppose a(t) = y does not have an assigned probability in W1. Case 1

shows that the assigned probabilities for values of a(t) in W1 and W2 are precisely the

same; so a(t) = y has a default probability in both worlds. We need only show that

the possible values of a(t) are the same in W1 and W2. Suppose then that for some

z, a(t) = z is possible in W1. Then W1 satisfies p(z). Hence since W1 satisfies pT (n),

we have that pT (n) is Π-compatible with p(z). By definition of ready-to-branch, it

follows that pT (n) Π-guarantees p(z). Now since W2 satisfies pT (n) it must also satisfy

p(z) and hence a(t) = z is possible in W2. The other direction is the same. 2

Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is Π-

compatible with pT (n), and W is a possible world of Π compatible pT (n). We may

refer to the P (W,a(t) = y) as v(n, a(t), y). Though the latter notation does not

mention W , it is well defined by proposition 14.

Example 20. [Ready to branch]

Consider the following version of the dice example. Lets refer to it as Π16

#dice = {d1,d2}.

#score = 1..6.

#person = {mike, john}.

roll: #dice -> #score.

owner: #dice -> #person.

owner(d1) = mike.

owner(d2) = john.

even(D) :- roll(D)= Y, Y mod 2 = 0.

-even(D) :- not even(D).

random(roll(D)).

162

Texas Tech University, Evgenii Balai, December 2017

pr(roll(D)=Y | owner(D) = john) = 1/6.

pr(roll(D)=6 | owner(D) = mike) = 1/4.

pr(roll(D)=Y | Y != 6, owner(D) = mike) = 3/20.

Now consider a tree T2 of Figure A.2 1. Let us refer to the root of this tree as n1,

Figure A.2: T2: The tree corresponding to the dice P-log program Π16

the node roll(d1) = 1 as n2, and the node roll(d2) = 2 connected to n2 as n3. Then

pT2(n1) = {true}, pT2(n2) = {true, roll(d1) = 1}, and pT2(n3) = {true, roll(d1) =

1, roll(d2) = 2}. The set {true} of literals Π16-guarantees {owner(d1) = mike,

owner(d2) = john} and is Π16-incompatible with {owner(d1) = john, owner(d2) =

mike}. Hence n1 and the attribute roll(d1) satisfy condition 3 of definition 67. Sim-

ilarly for roll(d2). Other conditions of the definition hold vacuously and therefore n1

is ready to branch on roll(D) via random(roll(D)) relative to Π16 for D ∈ {d1, d2}.

It is also easy to see that n2 is ready to branch on roll(d2) via random(roll(d2)), and

that n3 is not ready to branch on any attribute of Π16.

2

Definition 68 (Expanding a node).

In case n is ready to branch on a(t) via some rule of Π, the Π-expansion of T at n by

a(t) is a tree obtained from T as follows: for each y such that pT (n) is Π-compatible

1The root is labeled with true, which can be viewed, for instance, as a true arithmetic atom 1 = 1

163

Texas Tech University, Evgenii Balai, December 2017

with a(t) = y, add an arc leaving n, labeled with v(n, a(t), y), and terminating in a

node labeled with a(t) = y. We say that n branches on a(t).

2

Definition 69 (Expansions of a tree).

A zero-step Π-expansion of T is T . A one-step Π-expansion of T is an expansion of

T at one of its leaves by some attribute term a(t). For n > 1, an n-step Π-expansion

of T is a one-step Π-expansion of an (n − 1)-step Π-expansion of T . A Π-expansion

of T is an n-step Π-expansion of T for some non-negative integer n.

2

For instance, the tree consisting of the top two layers of tree T2 from Figure A.2

is a Π16-expansion of one node tree n1 by roll(d1).

Definition 70 (Seed).

A seed is a tree with a single node labeled true.

2

Definition 71 (Tableau).

A tableau of Π is a Π-expansion of a seed which is maximal with respect to the subtree

relation.

2

For instance, a tree T2 of Figure A.2 is a tableau of Π16.

Definition 72 (Node representing a possible world).

Suppose T is a tableau of Π. A possible world W of Π is represented by a leaf node

n of T if W is the set of atoms Π-guaranteed by pT (n).

2

For instance, a node n3 of T2 represents a possible world

{owner(d1,mike), owner(d2, john), roll(d1, 1), roll(d2, 2),¬even(d1), even(d2)}.

164

Texas Tech University, Evgenii Balai, December 2017

Definition 73 (Tree representing a program).

If every possible world of Π is represented by exactly one leaf node of T , and every

leaf node of T represents exactly one possible world of Π, then we say T represents

Π. 2

It is easy to check that the tree T2 represents Π2.

Definition 74 (Probabilistic soundness).

Suppose Π is a P-log program and T is a tableau representing Π, such that R is a

mapping from the possible worlds of Π to the leaf nodes of T which represent them.

If for every possible world W of Π we have

pvT (R(W)) = µ(W)

i.e. the path value in T of R(W) is equal to the normalized measure of W , then we

say that the representation of Π by T is probabilistically sound. 2

The following lemma gives conditions sufficient for the coherency of P-log pro-

grams. It will later be shown that all unitary, dynamically causally ordered programs

satisfy the hypothesis of this theorem, establishing Theorem 1.

Lemma 7 (Coherency Condition).

Let Π be a program, and Π′ be a program obtained from Π by removing activity

records. If there exists a unitary tableau T representing Π′, and this representation

is probabilistically sound, then PΠ′ is defined, and for every pair of rules

random(a(t) : {X : p(X)})← K. (A.130)

and

pr(a(t) = y | B) = v. (A.131)

165

Texas Tech University, Evgenii Balai, December 2017

of Π′ such that PΠ′(B ∪K) > 0 we have

PΠ′∪o(B)∪o(K)(a(t) = y) = v

Hence Π is coherent.

2

Proof. Since there exists a unitary tableau representing Π′, by lemma 6 and Definition

74 we have that there exists at least one possible world with a non-zero measure.

Therefore, PΠ′ is defined.

For any set S of literals, let lgar(S) (pronounced “L-gar” for “leaves guarantee-

ing”) be the set of leaves n of T such that pT (n) Π′-guarantees S.

Let µ denote the normalized measure on possible worlds induced by Π′.

Let Ω be the set of possible worlds of Π′ ∪ o(B)∪ o(K). Since PΠ′(B ∪K) > 0 we

have

PΠ′∪o(B)∪o(K)(a(t) = y) =

∑
{W : W∈Ω ∧ a(t)=y ∈ W} µ(W)∑

{W : W∈Ω} µ(W)
(A.132)

Now, let

α =
∑

n∈lgar(B∪K∪{a(t)=y)}

pv(n)

β =
∑

n∈lgar(B∪K)

pv(n)

Since T is a probabilistically sound representation of Π′, the right-hand side of (A.132)

can be written as α/β. So we will be done if we can show that α/β = v.

We first claim

Every n ∈ lgar(B ∪K) has a unique ancestor ga(n) which branches on a(t)

via rule (A.130).

(A.133)

166

Texas Tech University, Evgenii Balai, December 2017

If existence failed for some leaf n then n would be ready to branch on a(t) which

contradicts maximality of the tree. Uniqueness follows from Condition 1 of Definition

67.

Next, we claim the following:

For every n ∈ lgar(B ∪K), pT (ga(n)) Π′-guarantees B ∪K. (A.134)

Let n ∈ lgar(B ∪K). Since ga(n) branches on a(t), ga(n) must be ready to branch

on a(t) via a rule of Π′. So by clause 3 of Definition 67, ga(n) either Π′-guarantees

B or is Π′-incompatible with B. But pT (ga(n)) ⊂ pT (n), and pT (n) Π′-guarantees B,

so pT (ga(n)) cannot be Π′-incompatible with B. Hence pT (ga(n)) Π′-guarantees B.

It also follows from clause 2 of Definition 67 that pT (ga(n)) Π′-guarantees K.

From (A.134), it follows easily that

If n ∈ lgar(B ∪K), every leaf descended from of ga(n) belongs to lgar(B ∪K).

(A.135)

Let

A = {ga(n) : n ∈ lgar(B ∪K)}

In light of (A.133) and (A.135), we have

lgar(B ∪K) is precisely the set of leaves descended from nodes in A. (A.136)

Therefore,

β =
∑

n is a leaf descended from some a∈A

pv(n)

Moreover, by construction of T , no leaf may have more than one ancestor in A, and

hence

β =
∑
a∈A

∑
n is a leaf descended from a

pv(n)

167

Texas Tech University, Evgenii Balai, December 2017

Now, by Lemma 6 on unitary trees, since T is unitary,

β =
∑
a∈A

pv(a)

This way of writing β will help us complete the proof. Now for α. Recall the definition

of α:

α =
∑

n∈lgar(B∪K∪{a(t)=y})

pv(n)

Denote the index set of this sum by lgar(B,K, y). Let

Ay = {n : parent(n) ∈ A, the label of n is a(t) = y}

Since lgar(B,K, y) is a subset of lgar(B ∪K), (A.136) implies that lgar(B,K, y) is

precisely the set of nodes descended from nodes in Ay. Hence

α =
∑

n′ is a leaf descended from some n∈Ay

pv(n′)

Again, no leaf may descend from more than one node of Ay, and so by the lemma on

unitary trees,

α =
∑
n∈Ay

∑
n′ is a leaf descended from n

pv(n′) =
∑
n∈Ay

pv(n) (A.137)

Finally, we claim that every node n in A has a unique child in Ay, which we will label

ychild(n). The existence and uniqueness follow from (A.134), along with Condition

3 of Section 2.2.3, and the fact that every node in A branches on a(t) via rule A.130.

Thus from (A.137) we obtain

α =
∑
n∈A

pv(ychild(n))

168

Texas Tech University, Evgenii Balai, December 2017

Note that if n ∈ A, the arc from n to ychild(n) is labeled with v. Now we have:

PΠ′∪obs(B)∪obs(K)(a(t) = y)

= α/β

=
∑
n∈A

pv(ychild(n))/
∑
n∈A

pv(n)

=
∑
n∈A

pv(n) ∗ v/
∑
n∈A

pv(n)

= v.

2

Lemma 8. [Tableau for programs from B]

Suppose Π is a program from B and U is the set of activity records in Π; then there

exists a tableau T of Π \ U which represents Π \ U such that the representation of

Π \ U by T is probabilistically sound.

2

Proof. Let α = a1 . . . , , ak be a probabilistic leveling of Π s.t. Π is dynamically

causally ordered via α and Π0, . . . ,Πk be the dynamic structure of Π \ U induced by

α. Let W0 be the possible world of Π0.

Consider a sequence T0, . . . , Tk of trees where T0 is a tree with one node, n0,

labeled by true, and Ti is obtained from Ti−1 by expanding every leaf of Ti−1 which

is ready to branch on ai(ti) via any rule relative to Πi by this term. Let T = Tk.

We will show that Tm is a tableau of Π which represents Π and the representation is

probabilistically sound.

Our proof will unfold as a sequence of lemmas: Let Σi be the signature of Πi for

every i ∈ {0..k}, and Li be the set of all e-literals that can be formed by attribute

terms from the signature of Πi. 2

169

Texas Tech University, Evgenii Balai, December 2017

Lemma 9. Let Π be a P-log program with signature Σ, A be a set of attribute terms

of Σ, L be the set of all e-literals of Σ formed by attribute terms from A. Suppose

there exists a set of atoms WL ⊆ L such that every possible world W of Π, WL ⊆ W

and (W \WL)∩L = ∅. Let R ⊆ Π be a subset of rules of Π such that for every r ∈ R,

the body of r contains an e-literal from L which is not satisfied by WL. We have:

ΩΠ = ΩΠ\R (A.138)

2

Proof. In 1 we will prove ΩΠ ⊆ ΩΠ\R. In 2 we will prove ΩΠ\R ⊆ ΩΠ. (A.138) follows

immediately from 1 and 2.

1. We prove

ΩΠ ⊆ ΩΠ\R (A.139)

Let W ∈ ΩΠ be a possible world of Π. We will show

W ∈ ΩΠ\R (A.140)

Consider the reduct Π′ = (Π \ R)W . To show (A.140), in 1.1 we will show W

satisfies the rules of (Π \R)W . In 1.2 we will prove W is minimal such set.

1.1 We show W satisfies the rules of (Π \ R)W . Since W ∈ ΩΠ, W satisfies

ΠW . Since (Π \R)W ⊆ ΠW , W satisfied the rules of (Π \R)W .

1.2 For the sake of contradiction, suppose there exists W ′ (W such that W ′

satisfies (Π \R)W . We will show that

W ′ satisfies ΠW (A.141)

W ′ satisfies the subset (Π \ R)W of ΠW . Now suppose r ∈ RW . Let r∗ be

the rule of Π which produced r in ΠW . By construction of R, the body of

170

Texas Tech University, Evgenii Balai, December 2017

r∗ contains an e-literal l formed by an attribute term from A not satisfied

by WL. Since WL ⊆ W and (W \ WL) ∩ L = ∅, L is the set of all e-

literals formed by attribute terms from A, the body of r∗ contains l which

is not satisfied by W . l cannot have default negation (or else, the rule r

shouldn’t belong to the reduct RW). Therefore, l belongs to the body of r.

Since W ′ (W , and all the literals in the body of r do not contain default

negation, l is not satisfied by W ′. Therefore, W ′ satisfies r.

2. We prove

ΩΠ\R ⊆ ΩΠ (A.142)

Let W ∈ ΩΠ\R be a possible world of Π \R. We will show

W ∈ ΩΠ (A.143)

Consider the reduct Π′ = (Π)W . To show (A.143), in 2.1 we will show W

satisfies the rules of (Π)W . In 2.2 we will prove W is minimal such set.

2.1 Since W ∈ ΩΠ\R, it satisfies the rules of (Π \ R)W . The further reasoning

is similar to 1.2.

2.2 For the sake of contradiction suppose there exists W ′ (W which satisfies

(Π)W . Since (Π \ R)W ⊆ (Π)W , W ′ also satisfies (Π \ R)W , which is a

contradiction to the fact that W is a possible world of (Π \R).

2

Lemma 10. Let Π be a program with signature Σ such that the base of Π has a

unique possible world. We have Ωred(Π) = ΩΠ. 2

Proof. Let L′0 be the set of literals of Σ each of which does not depend on an a random

attribute term of Π. L′0 is a splitting set of Π. therefore, by splitting set theorem,

171

Texas Tech University, Evgenii Balai, December 2017

for every possible world W of Π we have W ′
0 ⊆ W and (W \ W ′

0) ∩ L′0 = ∅. By

construction of red(Π), Π = red(Π) ∪ R, where the body of every rule in R contains

a e-literal from L′0 not satisfied by W ′
0. Then the lemma follows trivially from lemma

9. 2

Lemma 11. Let 0 ≤ i ≤ k be an integer. Ωred(Πi) = ΩΠi
. 2

Proof. Since bL′0(Πi) = bL′0(Π), bL′0(Πi) is the base of Π which has a unique possible

world W ′
0. Then the lemma follows immediately from Lemma 10. 2

Lemma 12. Let 0 ≤ i ≤ k be an integer. Let Wi be a possible world of Πi. We have:

1. W0 ⊆ Wi

2. (Wi \W0) ∩ L0 = ∅

Proof. Let L′0 be the set of literals from Π’s base signature, and W ′
0 be the answer

set of Π’s base. By Lemma 11

Ωred(Πi) = ΩΠi
(A.144)

Therefore, Wi ∈ Ωred(Π). The lemma follows from the fact that L0 is a splitting set

of red(Πi), and red(Π0) = bL0(red(Πi)), and Lemma 11.

2

Lemma 13. Consider integers n,m such that 0 ≤ n ≤ m ≤ k. If Wm is a possible

world of Πm, then there exists a unique possible world Wn of Πn such that Wn ⊆ Wm,

and (Wm \Wn) ∩ Ln = ∅.

2

Proof. In the first part of the proof we show the existence of Wn. We start from two

special cases.

• Case 1. n = m. The claim clearly holds, we can have Wn = Wm.

172

Texas Tech University, Evgenii Balai, December 2017

• Case 2. n = 0. That is, we prove that if Wm is a possible world of the program

Πm, then there exists a unique possible world W0 of the program Π0 such that

(Wm \W0) ∩ L0 = ∅.

From the definition of a dynamically causally ordered program, Π0 has a unique

possible world W0. Therefore, from Lemma (12) every possible world Am of the

program Πm can be written as W0 ∪ Y , for some Y such that Y ∩ L0 = ∅.

The proof is by double induction on n,m.

1. (Base case n = m = 0) The case follows immediately from Case 1.

2. (Inductive Hypothesis) Let h and j be two integers in the range {0..k} such that

h ≥ j > 0. Let d and g be a pair of integers such that

d ≤ j,

g ≤ h,

d ≤ g

and

d+ g < h+ j.

For every possible world Wd of the program Πd there exists a possible world Wg

of the program Πg such that Wd = Wg ∪ Ug, where Ug ∩ Lg = ∅

3. (Inductive Step) We prove that for every possible world Wh of the program Πh

there exists a possible world Wj of the program Πj such that Wh = Wj ∪ Uj
where Uj ∩ Lj = ∅. Let Wj be the set Wh|Lj

we prove that Wj is a possible

world of Πj. In a) we show that Wj satisfies the rules of Π
Wj

j and in b) we show

that Wj is minimal.

(a) We show that Wj satisfies the rules of Π
Wj

j . Let r be a rule of Π
Wj

j such

that the body of r is satisfied by Wj. We prove that the head of r is

173

Texas Tech University, Evgenii Balai, December 2017

satisfied by Wj. Let r′ be the rule of Πj from which r was obtained during

the computation of Π
Wj

j . Since Wh \Wj does not contain literals from Lj,

and the rules of the program Πj is a subset of the rules of the program

Πh, r
′ belongs to the rules of Πh, and the reduct ΠWh will contain the rule

r. Since Wj ⊂ Wh, Wh satisfies the body of r. Therefore, Since Wh is an

answer set of Πh, the head of r is included into Wh. Since r belongs to

Π
Wj

j , its head must belong to Lj. Since Wj = Wh|Lj
, the head of r also

belongs to Wj. This means that Wj satisfies the head of r.

(b) We show thatWj is minimal. That is, there does not exist an interpretation

W ′
j of Πj such that

W ′
j (Wj (A.145)

and W ′
j satisfies the rules of Π

Wj

j . We prove by contradiction. Suppose

such an interpretation exists. Let’s define Uj and W ′
h as follows:

Uj = Wh \Wj (A.146)

W ′
h = W ′

j ∪ Uj (A.147)

From (A.146) we have:

Uj ∩Wj = ∅ (A.148)

From (A.148) and (A.145) we have:

Uj ∩W ′
j = ∅ (A.149)

From (A.145) - (A.149) we have:

W ′
h (Wh (A.150)

174

Texas Tech University, Evgenii Balai, December 2017

We show that W ′
h satisfies the rules of ΠWh

h , thus, obtaining a contradiction

to the fact that Wh is a possible world of Πh. Let r be a rule of ΠWh
h such

that W ′
h satisfies the body of r. We prove that W ′

h satisfies the head of r.

Let r′ be the rule of Πh from which r was obtained during the computation

of ΠWh
h . We consider two possible cases.

i. r′ is a rule of Πj. In this case r must belong to Π
Wj

j . Since W ′
j satisfies

the rules of Π
Wj

j , and it satisfies the body of r, it must satisfy the head

of r.

ii. r′ is not a rule of Πj. We show that Wh satisfies the body of r′. First,

since r belongs to the reduct ΠWh
h , {not l | l ∈ neg(r)}must be satisfied

by Wh. Since W ′
h satisfies the body of r, which is precisely pos(r), and

W ′
h (Wh, Wh satisfies pos(r) too. This means

Wh satisfies the body of r′ (A.151)

Let us denote the head of r′ by l0. Since Wh is a possible world of Πh,

from (A.151) we have

Wh satisfies l0 (A.152)

We consider two cases:

A. l0 is a member of Lj. We first prove that l0 must be of one of the

forms random(aq, p) or aq = y for some random attribute term

aq, where q ≤ j. We prove by contradiction. Suppose l0 is either

formed by a random attribute term ar, where r > j, or it is formed

by a non-random attribute term random(ar, p), where r > j, or

it is formed by a non-random attribute term b whose attribute is

not random. The first two cases are clearly impossible, because

Lj contains only attribute terms a0, . . . , aj and random(as, p) for

0 ≤ s ≤ r, and l0 belongs to Lj. Consider the latter case, where l0

175

Texas Tech University, Evgenii Balai, December 2017

is formed by non-random attribute term b whose attribute is not

random. We show that, in this case, the level of attribute term

b in Π must exceed j, thus, obtaining a contradiction to the fact

that l0 is a member of Lj.

• We show by contradiction that the rule r′ belongs to red(Π).

Suppose that r′ does not belong to red(Π). This implies that

there is an extended literal el in the body of r′ formed by an

atom in the signature of Π0 such that W0 does not satisfy el.

By case #2, we get that the possible world Wh can be written

as W0 ∪ U ′, where U ′ ∩ L0 = ∅. Therefore, Wh does not satisfy

the literal el, which contradicts A.151.

• We show that the level of body(r′) in Π must exceed j. Suppose

the level of body(r′) does not exceed j. In this case, if both b

and body(r′) have level ≤ j, the rule r′ must belong to Πj, which

contradicts our previous assumption. Thus, since r′ belongs to

red(Π), b must have a level > j.

Thus, we are left with the two cases when

l0 is either formed by aq or is of the form random(aq, p)

(A.153)

for random attribute term aq ∈ {a1 . . . , aj}. By inductive hypoth-

esis, there exists a possible world Wq−1 of the program Πq−1 such

that

Wh = Wq−1 ∪ Uq−1, (A.154)

and

Uq−1 ∩ Lq−1 = ∅ (A.155)

176

Texas Tech University, Evgenii Balai, December 2017

Since r′ does not belong to Πj,

r′ contains at least one literal which does not belong to Lj.

(A.156)

Since q ≤ j,

Lq ⊆ Lj. (A.157)

From (A.156) and (A.157) it follows that

r′ contains at least one literal which does not belong to Lq

(A.158)

Since the head of r′ is formed by aq, from (A.158) it follows that

the body of r′ contains a literal which does not belong to Lq

(A.159)

From (A.159) it follows that

Wq−1 does not satisfy the body of r′. (A.160)

Therefore, by clause 1 of Definition 20 from (A.160) it follows that

we have only of the two cases:

• Wq−1 falsifies the body of r′

which means that the body of r′ contains an extended literal

elq−1 from the signature of Πq−1 such that Wq−1 does not satisfy

it. From (A.154) and (A.155) it follows that Wh does not satisfy

elq−1, and, therefore, it does not satisfy the body(r′). Therefore,

we have a contradiction to (A.151).

• r′ is a general axiom, which is, given that it’s head is either

177

Texas Tech University, Evgenii Balai, December 2017

random(aq, p) or aq, must be of the form:

aq = y ← random(aq, p), not aq = y1, . . . , not aq = yk (A.161)

In this case, the level of all attribute terms in r′ is q ≤ j, and,

therefore, the rule r′ must belong to Πj. Contradiction to the

main assumption in ii.

B. l0 is not a member of Lj. In this case, since, by (A.152), Wh

satisfies l0 and Wh = Wj ∪ Uj, and all the literals in Wj belong to

Lj, l0 belongs to Uj. Since W ′
h = W ′

j ∪ Uj, W ′
h satisfies l0.

In the second part of the proof we show the uniqueness of Wj. Suppose there exist

two different possible worlds W 1
j and W 2

j of Πj such that

Wh = W 1
j ∪ U1

j (A.162)

Wh = W 2
j ∪ U2

j (A.163)

U1
j ∩ Lj = ∅ (A.164)

U2
j ∩ Lj = ∅ (A.165)

Since Lj contains all the literals that can be constructed from the signature of Πj,

from equations (A.162) and (A.164) it follows that

W 1
j = Wh|Lj

(A.166)

Similarly, from equations (A.163) and (A.165) it follows that

W 2
j = Wh|Lj

(A.167)

178

Texas Tech University, Evgenii Balai, December 2017

From equations (A.166) and (A.167) it follows that W 1
j = W 2

j . This contradicts our

original assumption that W 1
j and W 2

j are two different possible world of Πj.

2

Lemma 14. Let Π be a program with a possible world W . The program Π∪W has

a unique possible world W .

Proof. Since W is a possible world of Π, W satisfies ΠW . Therefore, W satisfies

(Π∪W)W = ΠW ∪WW = ΠW ∪W . W is minimal, because, by Proposition 1, every

possible world of ΠW ∪W must include W .

W is the only possible world of Π ∪W , because, by Proposition 1, every possible

world of Π ∪W must include W , and, by Proposition 13, no possible world which

includes W and is different from W can exist.

2

Lemma 15. Let i ∈ {0..k−1} be an integer and V be a possible world of Πi. Let Π′ be

a program from the set {Πi+1∪V ∪{← not ai+1 = y},Πi+1∪V ∪{ai+1 = y},Πi+1∪V }.

For every possible world W of Π′, W0 ⊆ W and W \W0 ∩ L0 = ∅.

2

Proof. Let L′0 be the set of literals from the base S of Π′, and W ′
0 be the answer set

of S. We first show

Ωred(Π′) = ΩΠ′ (A.168)

Since bL′0(Π
′
i) = botL′0(Πi)∪W ′

0, bL′0(Π
′
i) has a unique possible world W ′

0. Therefore,

by splitting set theorem, for every possible world W of Π′i we have W ′
0 ⊆ W and

(W \W ′
0) ∩ L′0 = ∅. By construction of red(Π′i), Π = red(Π′i) ∪ R, where the body

of every rule in R contains a e-literal from L′0 not satisfied by W ′
0. (A.168) follows

immediately from lemma 9.

Clearly, L0 is a splitting set of red(Π′i), and bL0(red(Π′i)) = red(Π0) ∪W0, and

Lemma 11. By lemma (11), W0 is a possible world of red(Π0). By Lemma 14, W0

is a possible world of red(Π0) ∪W0. Therefore, by splitting set theorem, for every

179

Texas Tech University, Evgenii Balai, December 2017

possible W of red(Π′i) we have W0 ⊆ W and W \W0 ∩ L0. Therefore, by (A.168),

the lemma holds. 2

Lemma 16. 2 Let i ∈ {0..k − 1} be an integer and V be a possible world of Πi. Let

Π′ be a program from the set {Πi+1 ∪ V ∪ {← not ai+1 = y},Πi+1 ∪ V ∪ {ai+1 =

y},Πi+1∪V }. For every possible world W of Π′, W \V does not contain literals from

Li.

2

Proof. We define X as follows:

X = (W \ V)|Li
(A.169)

We show:

W \X satisfies the rules of ΠW
i+1 (A.170)

Let r be a rule of ΠW
i+1. We consider 2 cases:

1. Suppose the head of r is not a literal of X. If the body of r is satisfied by W \X,

it is also satisfied by W , thus, since W satisfies the rules of ΠW
i+1, it contains the

head of r. Since the head of r does not belong to X, W \X satisfies head of r.

2. Suppose the head of r is formed by a literal from X. We need to show that, if

the body of r is satisfied by W \ X, the head of r is also satisfied by W \ X.

We consider two cases:

(a) the head of r is of the form aj = y, or of the form random(aj, p), for a

random attribute term aj, where j ≤ i. By Lemma 13, there must exists

a possible world Vj−1 of Πj−1 such that

Vj−1 ⊆ V (A.171)

2the lemma is more general than it is required for this proof of coherency, however we will use it
in section A.3 for another proof

180

Texas Tech University, Evgenii Balai, December 2017

and

(V \ Vj−1) ∩ Lj−1 = ∅ (A.172)

Let r′ be the rule of Πi+1 from which r was obtained during the compu-

tation of the reduct ΠW
i+1 By definition of dynamically causally ordered

program, there are three cases:

i.

Vj−1 satisfies the body of r′ (A.173)

and

all the literals occurring in r′ are in Lj−1 (A.174)

Since j ≤ i, Lj−1 ⊆ Li, we have

r′ belongs to Πi (A.175)

From (A.171), (A.172), (A.173) and (A.174) we have that V satisfies

the body of r′.

Since V is a possible world of Πi from (A.175) we have V contains the

head of r′ (and r, since the heads of r and r′ are the same). Since

V ⊆ (W \X), (W \X) also contains the head of r

ii. Vj−1 falsifies the body of r′. Because (V \ Vj−1)∩Lj−1 = ∅, V falsifies

the body of r′. That is, there exists an e-literal l belonging to the body

of r′ such that l ∈ Lj−1 and V does not satisfy l. Because ((W \X) \

V) ∩ Li = ∅, and Lj−1 ⊆ Li, we have that ((W \X) \ V) ∩ Lj−1 = ∅.

Therefore, since V falsifies body(r′), W \X falsifies body(r′). If l does

not contain default negation, this contradicts our original assumption

that the body of r is satisfied by W \X. Suppose now l = not l′, where

l′ ∈ Lj−1. Since V does not satisfy l, V satisfies l′. Since V ⊆ W (in

all 3 cases) , W satisfies l′. Therefore, W does not satisfy l. This

181

Texas Tech University, Evgenii Balai, December 2017

contradicts the fact that r from the reduct ΠW
i+1 is obtained from r′.

iii. r′ is a general axiom of the form

aj = y ← random(aj, p), not aj = y1, . . . , not aj = yk

and r is of the form

aj = y ← random(aj, p)

Since W \ X satisfies the body of r, and all the literals of Li from

W \X are contained in V , we have

random(aj, p) ∈ V (A.176)

Since V ⊆ W , random(aj, p) ∈ W . Since r belongs to the reduct ΠW
i+1,

{aj = y1, . . . , aj = yk} ∩W = ∅. Since V ⊆ W ,

{aj = y1, . . . , aj = yk} ∩ V = ∅ (A.177)

Since r′ ∈ Πi (all the literals are clearly in Lj ⊆ Li), and V is a possible

world of Πi, from (A.176) and (A.177) we have aj = y ∈ V . Since X

does not contain literals from V , and V ⊆ W , aj = y ∈ W \X.

(b) the head of r is formed by a non-random attribute term nr, whose attribute

is not random, and whose level in Π is ≤ i. Let r′ be the rule of ΠW
i+1 from

which r was obtained. We consider two cases:

i. r′ does not belong to red(Π). In this case the body of r′ contains an

e-literal l ∈ L0 such that |a| = 0 and W0 does not satisfy l.

By Lemma 15 we have:

W0 ⊆ W (A.178)

182

Texas Tech University, Evgenii Balai, December 2017

(W \W0) ∩ L0 = ∅ (A.179)

From (A.179) we have ((W \X) \W0) ∩ L0 = ∅. Therefore, since W0

does not satisfy l and l ∈ L0, W \ X also does not satisfy l, which

contradicts the fact that W \X satisfies the body of r.

ii. r′ belongs to red(Π) The body of r′ must consist of literals in Li

(otherwise, the head of r will not belong to Li, which contradicts the

fact l ∈ X). Since (W \ X) \ V does not contain literals from Li,

and (W \X) satisfies the body of r, V satisfies the body of r. Since

r belongs to the reduct ΠW
i+1, W satisfies all extended literals of the

body of r′ preceded by default negation. Since V ⊆ W , V also satisfies

all extended literals of the body of r′ preceded by default negation.

This means that V satisfies the body of r′. Since all the literals in r′

are members of Li, r
′ must belong to Πi. Since V is a possible world

of Πi, it must satisfy r′, thus, the head of r′, which is the same as the

head of r, must belong to V . Since V ⊆ W \ X, and V satisfies the

head of r, W \X satisfies the head of r.

To conclude the proof, we consider the 3 possible values of Π′ from the lemma sepa-

rately and show X = ∅:

1. Suppose W is the possible world of Πi+1∪V . We need to show that X = ∅. For

the sake of contradiction suppose X 6= ∅. We have previously shown that W \X

satisfies the rules of ΠW
i+1. Since V ⊆ W \ X, W \ X satisfies V . Therefore,

W \X satisfies the rules of ΠW
i+1 ∪ V W , which contradicts the fact that W is a

possible world of Πi+1 ∪ V .

2. Suppose W is the possible world of Πi+1∪V ∪{← not ai+1 = y}. We show that

X = ∅. For the sake of contradiction suppose X 6= ∅. We previously showed

that W \ X satisfies the rules of ΠW
i+1. Since V ⊆ W \ X, W \ X satisfies

183

Texas Tech University, Evgenii Balai, December 2017

V . Since W is a possible world of Πi+1 ∪ V ∪ {← not ai+1 = y}, W contains

ai+1 = y. Therefore, (Πi+1∪V ∪{← not ai+1 = y})W = (Πi+1∪V)W .Therefore,

(W \X) (W satisfies all the rules of (Πi+1 ∪ V ∪ {← not ai+1 = y})W , which

contradicts the fact that W is a possible world of (Πi+1∪V ∪{← not ai+1 = y}).

3. Suppose W is the possible world of Πi+1 ∪ V ∪ {ai+1 = y}. We show that

X = ∅. For the sake of contradiction suppose X 6= ∅. We previously showed

that W \ X satisfies the rules of ΠW
i+1. Since V ⊆ W \ X, W \ X satisfies V .

Since W is a possible world of Πi+1∪V ∪{ai+1 = y}, W satisfies ai+1 = y. Since

ai+1 ∈ Li+1 \ Li, and X consists of literals from Li, W \ X satisfies ai+1 = y.

Therefore, W \X satisfies (Πi+1∪V ∪{ai+1 = y})W , which contradicts the fact

that W is a possible world of (Πi+1 ∪ V ∪ {ai+1 = y}) .

2

Lemma 17. Let i be an integer in the range {0..k− 1} and V be a possible world of

Πi.

1. if no random selection rule with ai+1 is active in V , then every possible world

of Πi+1 ∪ V is a possible world of Πi+1,

2. if there is a random selection rule of the form

random(ai+1, p)← B (A.180)

active in V , and p(y) ∈ V , then every possible world of Πi+1∪V ∪{← not ai+1 =

y}, is a possible world of Πi+1.

2

Proof. Let Πext denote the program Πi+1 ∪ V in case 1 and and the program Πi+1 ∪

V ∪ {← not ai+1 = y} in case 2. Let W be a possible world of Πext. We show that

W is a possible world of Πi+1. We first show that W satisfies the rules of ΠW
i+1, and

then we show that W is minimal.

184

Texas Tech University, Evgenii Balai, December 2017

1. We show that W satisfies the rules of ΠW
i+1. Let r be a rule of ΠW

i+1 such that W

satisfies the body of r. We need to show that W satisfies the head of r. Since

W is a possible world of Πext, it satisfies the rules of ΠW
ext, which include the

rules in ΠW
i+1.

2. We show that W is minimal. That is, there does not exist an interpretation W ′

such that W ′ satisfies the rules of ΠW
i+1 and W ′ (W . We prove by contradiction.

Suppose such W ′ exists. We show that W ′ satisfies the rules of ΠW
ext, obtaining

a contradiction to the fact that W is a possible world of Πext. By definition, W ′

satisfies the rules of ΠW
i+1. Therefore, since, in the second case of the Lemma

{← not ai+1 = y}W = ∅, we just need to show that

W ′ satisfies V W (A.181)

Since V is a collection of facts, we just need to show that V ⊂ W ′. We prove

by contradiction.

Suppose there is an atom a = y of Π such that

a = y ∈ V (A.182)

and

a = y 6∈ W ′ (A.183)

Let us define V ′ to be:

V ′ = W ′|Li
(A.184)

From (A.183) and (A.184) we have:

185

Texas Tech University, Evgenii Balai, December 2017

a = y 6∈ V ′ (A.185)

By lemma 16 we have

W \ V does not contain literals from Li (A.186)

Therefore, since V is a possible world of Πi, we have:

V = W |Li
(A.187)

Since W ′ (W , from (A.187) and (A.184) we have:

V ′ ⊆ V (A.188)

From (A.188), (A.182) and (A.185) we have:

V ′ (V (A.189)

We next show

V ′ satisfies the rules of ΠV (A.190)

From (A.186) we have:

ΠV
i ⊆ ΠW

i+1 (A.191)

Let r be a member of ΠV
i such that V ′ satisfies the body of r. We show that V ′

satisfies the head of r. From (A.184) we have that the body of r is satisfied by

W ′.

186

Texas Tech University, Evgenii Balai, December 2017

Since W ′ satisfies the rules of ΠW
i+1, from (A.191) W ′ satisfies the head of r.

Since r is a member of ΠV
i , head(r) ∈ Li. Therefore, from (A.184), V ′ sat-

isfies head(r). Therefore, (A.190) holds, and, considering (A.188), we have a

contradiction.

2

Lemma 18. For every i ∈ {0, . . . , k} and every leaf node n of Ti program Πi has a

unique possible world W satisfying pTi(n). 2

Proof. We use induction on i. The case where i = 0 follows from Condition 1 of

Definition 17 of dynamically causally ordered program. Assume that the lemma

holds for i − 1 and consider a leaf node n of Ti. By construction of T , there exists

a leaf node m of Ti−1 which is either the parent of n or equal to n. By inductive

hypothesis there is a unique possible world V of Πi−1 containing pTi−1
(m) \ {true}.

(i) First we will show that every possible world W of Πi containing pTi−1
(m) also

contains V . By lemma 13, set V ′ = W |Li−1
is a possible world of Πi−1. Obviously,

pTi−1
(m) \ {true} ⊆ V ′. By inductive hypothesis, V ′ = V , and hence V ⊆ W .

Now let us consider two cases.

(ii) For every random selection r rule of Π of the form

random(ai : {X : p(X)})← K (A.192)

V falsifies K. We will show that in this case m is not ready to branch on ai w.r.t Πi.

It is sufficient to show that for every random selection rule of the form (A.192), V is

not Πi-compatible with K. Since V falsifies K, there exists an e-literal l ∈ K such

that:

V does not satisfy l (A.193)

187

Texas Tech University, Evgenii Balai, December 2017

l ∈ Li (A.194)

Let us show by contradiction. Suppose there exists a possible world W of Πi such

that

W satisfies V ∪K (A.195)

By lemma 13 we have:

(W \ V) ∩ Li = ∅ (A.196)

From (A.193) , (A.194) and (A.196) we have:

W does not satisfy l (A.197)

Therefore, since l ∈ K, we have a contradiction to (A.195). Therefore, m is not

ready to branch on ai w.r.t Πi, and, by construction of Ti, m = n. By condition 3 of

Definition 20, we have V ∪Πi−1 has exactly one possible world, W . By lemma 17, W

is a possible world of Πi. Obviously, W contains V and hence pTi−1
(m). Since n = m

this implies that W contains pTi(n).

Uniqueness follows immediately from (i) and Condition (3) of Definition 20.

(iii) There is a random selection rule r of the form (A.192) active in V .

We will show that m is ready to branch on ai via rule r relative to Π.

Condition (1) of the definition of “ready to branch” (Definition 67) follows imme-

diately from construction of Ti−1.

To prove Condition (2) we need to show that pTi−1
(m) Πi-guarantees K. Since

r is active in V , by Condition 1 of Definition 19 and Condition 2 of Definition 20

we have that there exists y0 such that p(y0) ∈ V and V ∪ Πi+1 has a possible world

containing a = y0, say, W0. Since r is active in V ,

V satisfies K (A.198)

188

Texas Tech University, Evgenii Balai, December 2017

Therefore, by lemma 16, W0 satisfies K. Since V contains pTi−1
(m), W0 also contains

pTi−1
(m). Therefore,

V is Πi-compatible with K (A.199)

Now consider a possible world W of Πi which contains pTi−1
(m). By (i) we have that

V ⊆ W . Since V satisfies K so does W (by lemma 13, (W \V)∩Li−1 = ∅). Condition

(2) of the definition of ready to branch is satisfied.

To prove condition (3) consider pr(ai = y | B) = v from Πi such that B is Πi-

compatible with pTi−1
(m). Πi-compatibility implies that there is a possible world W0

of Πi which contains both, pTi−1
(m) and B. By (i) we have that V ⊆ W0. By Lemma

13 we have that (W \ V) ∩ Li−1 = ∅. From condition (1) of 20 it follows that either

V satisfies B or V falsifies B. If V falsifies B, then W0 does not satisfy B. Hence, V

satisfies B. Since for every possible world W ′ of Πi containing pTi−1
(m) we have that

W ′ contains V and, by Lemma 13 (W \ V) ∩ Li−1 = ∅, we have that W ′ satisfies B

which proves condition (3) of the definition.

To prove Condition (4) we consider y0 ∈ range(ai) such that p(y0) ∈ V (The

existence of such y0 is proven at the beginning of (iii)). We show that pTi−1
(m) Πi-

guarantees p(y0). Condition (2) of Definition 20 guarantees that Πi has possible world,

say W , containing V . By construction, p(y0) ∈ V and hence p(y0) and pTi−1
(m) are Πi

compatible. From (i) we have that pTi−1
(m) Πi-guarantees p(y0). Similar argument

shows that if pTi−1
(m) is Πi-compatible with p(y) then p(y) is also Πi-guaranteed by

pTi−1
(m).

We can now conclude that m is ready to branch on ai via rule r relative to Πi+1.

This implies that a leaf node n of Ti is obtained from m by expanding it by an atom

ai = y.

By Condition (2) of Definition 20, program V ∪Πi ∪ {← not ai = y0} has exactly

one possible world, W . By lemma 17 we have that W is a possible world of Πi.

Clearly W contains pTi(n). Uniqueness follows immediately from (i) and Condition

189

Texas Tech University, Evgenii Balai, December 2017

(2) of Definition 20.

2

Lemma 19. For all i ∈ {0..k}, every possible world of Πi satisfies pTi(n) for some

unique leaf node n of Ti. 2

Proof. We use induction on i. The case where i = 0 is immediate. Assume that the

lemma holds for i − 1, and consider a possible world W of Πi. By Lemma 13, Πi−1

has a possible world V such that:

V ⊆ W (A.200)

(W \ V) ∩ Li−1 = ∅ (A.201)

By the inductive hypothesis there is a unique leaf node m of Ti−1 such that V contains

pTi−1
(m). Consider two cases.

(a) For every random selection rule

random(ai : {X : p(X)})← K (A.202)

K is falsified by V . In part ii of the proof of Lemma 18 we have shown that in

this case m is not ready to branch on ai. This means that m is a leaf of Ti and

pTi−1
(m) = pTi(m). Let n = m. Since V ⊆ W we have that pTi(n) ⊆ W . To show

uniqueness suppose n′ is a leaf node of Ti such that pTi(n
′) ⊆ W , and n′ is not equal to

n. By construction of Ti there is some j and some y1 6= y2 such that aj = y1 ∈ pTi(n′)

and aj = y2 ∈ pTi(n). Since W is an interpretation, it is impossible.

(b) There is a random selection rule r of the form

random(ai : {X : p(X)})← K (A.203)

190

Texas Tech University, Evgenii Balai, December 2017

active in V . Since r is active in V , we have

V satisfies K (A.204)

and, therefore

every literal from K is in Li−1 (A.205)

From (A.204), (A.205), (A.200) and (A.201) we have:

W satisfies K (A.206)

From clause 2 of Definition 19 and the fact that ai ∈ Li we have:

r ∈ Πi (A.207)

Since W is a possible world of Πi, it must satisfies r together with a general axiom

from Πi:

ai = y1 | . . . | ai = ym ← random(ai : {X : p(X)})

← ai = Y, not p(Y)

Therefore, since W satisfies the body of r, there exists y ∈ range(a) such that

ai = y ∈ W (A.208)

and

p(y) ∈ W (A.209)

Since r is active in V , by clause 2 of Definition 19 we must have p(y) ∈ Li−1. From

(A.209) and (A.201) we have:

p(y) ∈ V (A.210)

191

Texas Tech University, Evgenii Balai, December 2017

Repeating the argument from part (iii) of the proof of Lemma 18 we can show that

m is ready to branch on ai via r relative to Πi. Since pTi−1
(m) ⊆ V ⊆ W , pTi−1

(m)

is Πi-compatible with p(y). Thus, there is a leaf node n of Ti which is a son of m

labeled with ai = y. It is easy to see that W contains pTk(n). The proof of uniqueness

is similar to that used in (a).

2

Lemma 20. Let i, j be integers s.t. 0 < i ≤ j ≤ k. For every leaf node n of Ti−1,

every set B of extended literals of Li, and we have pTi−1
(n) is Πi-compatible with B

iff pTi−1
(n) is Πj-compatible with B.

2

Proof. →

Suppose that pTi−1
(n) is Πi-compatible with B. This means that there is a possible

world V of Πi which satisfies pTi−1
(n) and B. By Lemma 19, there exists a unique leaf

node n′ of Ti such that pTi(n
′) \ {true} ⊆ V . Consider a leaf node m of Tj belonging

to a path containing node n′ of Ti. By Lemma 18, Πj has a unique possible world

W containing pTj(m). By lemma 13 W = V ′ ∪ U where V ′ is a possible world of

Πi and U ∩ Li = ∅. This implies that V ′ contains pTi(n
′), and hence, by Lemma 18

V ′ = V . Since V satisfies B and U ∩ Li = ∅ we have that W also satisfies B. Since

pTi−1
(n) ⊆ V ⊆ W , we have pTi−1

(n) is Πj-compatible with B.

←

Let W be a possible world of Πj satisfying pTi−1
(n) and B. By Lemma 13, we have

that W = V ∪ U where V is a possible world of Πi and U ∩ Li = ∅. Since B and

pTi−1
(n) belong to the language of Li we have that B and pTi−1

(n) are satisfied by V

and hence pTi−1
(n) is Πi-compatible with B.

2

Lemma 21. Let i, j be integers such that 0 < i ≤ j ≤ k. For every leaf node n

of Ti−1, every set B of extended literals of Li, we have pTi−1
(n) Πi-guarantees B iff

192

Texas Tech University, Evgenii Balai, December 2017

pTi−1
(n) Πj-guarantees B. 2

Proof. →

Let us assume that pTi−1
(n) Πi-guarantees B. This implies that pTi−1

(n) is Πi-

compatible with B, and hence, by Lemma 20 pTi−1
(n) is Πj-compatible with B. Now

let W be a possible world of Πj satisfying pTi(n). By Lemma 13 W = V ∪U where V

is a possible world of Πi and U ∩Li = ∅. This implies that V satisfies pTi−1
(n). Since

pTi−1
(n) Πi-guarantees B we also have that V satisfies B. Finally, since U ∩ Li = ∅

we can conclude that W satisfies B.

←

Suppose now that pTi−1
(n) Πj-guarantees B. This implies that pTi−1

(n) is Πi-com-

patible with B. Now let V be a possible world of Πi containing pTi−1
(n). By Lemma

19, there exists a unique leaf node n′ of Ti such that

V satisfies pTi(n
′) (A.211)

To show that V satisfies B let us consider a leaf node m of a path of Tj con-

taining n′. By Lemma 18 Πj has a unique possible world W satisfying pTj(m). By

construction,

W satisfies pTi(n
′) (A.212)

By Lemma 13, W = V ′ ∪ U where V ′ is a possible world of Πi and U ∩ Li = ∅.

Since pTi(n
′) is in Li, we have:

V ′ satisfies pTi(n
′) (A.213)

From (A.211) and (A.213) we by Lemma 18 we have:

V = V ′ (A.214)

Since pTi−1
(n)\{true} ⊆ V = V ′ ⊆ W , we have W satisfies pTi−1

(n). Therefore, since

193

Texas Tech University, Evgenii Balai, December 2017

pTi−1
(n) Πj-guarantees B, W satisfies B. Since B belongs to the language of Li it is

satisfied by V ′. Therefore, from V ′ = V we have that V satisfies B and we conclude

pTi−1
(n) Πi-guarantees B.

2

Lemma 22. Let i, j be integers such that 0 < i ≤ j ≤ k. Every leaf node n of Ti−1,

n is ready to branch on term ai relative to Πi iff n is ready to branch on ai relative

to Πj. 2

Proof. →

Suppose n is ready to branch on ai via rule r

random(ai : {X : p(X)})← K (A.215)

relative to Πi. We show that n is ready to branch on ai via r relative to Πj. We prove

the conditions 1-4 of the definition:

1. Condition 1 follows immediately from the fact that n is ready to branch on ai

relative to Πi.

2. We prove condition 2:

pTi−1
(n) Πj-guarantees K (A.216)

By lemma 18, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (A.217)

We prove that

r is active in Wi−1 (A.218)

We prove by contradiction. Suppose r is not active in Wi−1. By condition

1 of 20 we have Wi−1 falsifies K. That is, there is a literal l ∈ Li−1 such

that Wi−1 does not satisfy l. Then, by conditions 2-3 of 20 and Lemma 17

194

Texas Tech University, Evgenii Balai, December 2017

we have that Πi has a possible world Wi containing Wi−1. By Lemma 13,

Wi \ Wi−1 ∩ Li−1 = ∅. Therefore, Wi does not satisfy l, and, therefore, K.

This, given that pTi−1
(n) \ {true} ⊆ Wi−1 ⊆ Wi contradicts the fact n is ready

to branch on ai via r relative to Πi. Therefore, (A.218) holds. Therefore, the

literals occurring in the body of r are from Li−1, and by lemma (21) we conclude

(A.216).

3. We prove condition 3. Let pr(ai = y | B) = v be a pr-atom from Πj. We show

that

pTi−1
(n) either Πj-guarantees B or is Πj-incompatible with B (A.219)

Since n is ready to branch on ai via rule r relative to Πi, we have 3 cases:

(a) pr(ai = y | B) = v is a pr-atom from Πi, and B is Πi-guaranteed by

pTi−1
(n). Using the arguments similar to the ones from 2, we can obtain

B ∈ Li−1, and conclude by lemma (21) that pTi−1
(n) Πj-guarantees B

(b) pr(ai = y | B) = v is a pr-atom from Πi, and B is Πi-incompatible with

pTi−1
(n). That is,

every possible world Wi or Πi satisfying pTi−1
(n) does not satisfy B

(A.220)

By lemma 18, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (A.221)

We prove

Wi−1 falsifies B (A.222)

195

Texas Tech University, Evgenii Balai, December 2017

For the sake of contradiction, suppose (A.222) is false. By condition 1 of

definition (20) we have:

Wi−1 satisfies B (A.223)

By 20 and lemma (17) we have that Πi has a possible world Wi containing

Wi−1. Since B is in Li, by lemma (13) we have

Wi satisfies B (A.224)

Since pTi−1
(n)\{true} ⊆ Wi−1 ⊆ Wi, we have a contradiction from (A.224)

and (A.220).

Therefore, (A.222) holds. Now let Wj be a possible world of Πj satisfying

pTi−1
(n). By lemma (13), There is a possible W ′

i−1 of Πi−1 such that W ′
i−1 ⊆

Wj and

(W ′
i−1 ∩Wj) ∩ Li−1 = ∅ (A.225)

Since pTi−1
(n) is in Li−1, we have pTi−1

(n) ⊆ W ′
i−1. Therefore, By lemma

18

W ′
i−1 = Wi−1 (A.226)

From (A.226), (A.222), (A.225) we have that Wj does not satisfy B. There-

fore, pTi−1
(n) is Πj-incompatible with B

(c) pr(ai = y | B) = v does not belong to Πi. That is,

B contains an e-literal l

l 6∈ Li (A.227)

By lemma 18, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (A.228)

196

Texas Tech University, Evgenii Balai, December 2017

Since B has l s.t. (A.227), Wi−1 cannot satisfy B. Therefore by condition

1 of definition (20),

Wi−1 falsifies B (A.229)

Similarly to 2, given (A.229), we can show that every possible world

Wj satisfying pTi−1
(n) does not satisfy B, which implies pTi−1

(n) is Πj-

incompatible with B

4. We prove condition 4. By lemma 18, there is a unique possible world Wi−1 of

Πi−1 such that:

Wi−1 satisfies pTi−1
(n) (A.230)

As in 1, we can show that r is active in Wi−1. Therefore, by condition 2 of 19,

we have that every atom p(y) s.t. y ∈ range(ai) belongs to Li−1. Therefore,

condition 4 immediately follows from the fact n is ready to branch on ai via

rule r relative to Πi and lemmas (20), (21).

←

Now suppose n is ready to branch on ai via rule r

random(ai : {X : p(X)})← K (A.231)

relative to Πj. We show that n is ready to branch on ai via r relative to Πi. We prove

the conditions 1-4 of the definition:

1. Condition 1 follows immediately from the fact that n is ready to branch on ai

relative to Πi.

2. We prove Condition 2:

pTi−1
(n) Πi-guarantees K (A.232)

197

Texas Tech University, Evgenii Balai, December 2017

By lemma 18, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (A.233)

We prove that

r is active in Wi−1 (A.234)

We prove by contradiction. Suppose r is not active in Wi−1. By condition

1 of 20 we have Wi−1 falsifies K. That is, there is a literal l ∈ Li−1 such

that Wi−1 does not satisfy l. Then, by conditions 2-3 of 20 and Lemma 17

we have that Πj has a possible world Wj containing Wi−1. By Lemma 13,

Wj \ Wi−1 ∩ Li−1 = ∅. Therefore, Wj does not satisfy l, and, therefore, K.

This, given that pTi−1
(n) \ {true} ⊆ Wi−1 ⊆ Wj contradicts the fact n is ready

to branch on ai via r relative to Πj. Therefore, (A.234) holds. Therefore, the

literals occurring in the body of r are from Li−1, and by lemma (21) we conclude

(A.232).

3. We prove condition 3. Let pr(ai = y | B) = v be a pr-atom from Πi. We show

that

pTi−1
(n) either Πi-guarantees B or is Πi-incompatible with B (A.235)

Since n is ready to branch on ai via rule r relative to Πj, we have 2 cases:

(a) B is Πj-guaranteed by pTi−1
(n). Using the arguments similar to the ones

from 2, we can obtain B ∈ Li−1, and conclude by Lemma 21 that pTi−1
(n)

Πj-guarantees B

(b) B is Πj-incompatible with pTi−1
(n). That is,

198

Texas Tech University, Evgenii Balai, December 2017

every possible world Wj or Πj satisfying pTi−1
(n) does not satisfy B

(A.236)

By lemma 18, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (A.237)

We prove

Wi−1 falsifies B (A.238)

For the sake of contradiction, suppose (A.222) is false. By condition 1 of

definition (20) we have:

Wi−1 satisfies B (A.239)

By 20 and lemma (17) we have that Πj has a possible world Wj containing

Wi−1. Since B is in Li, by lemma (13) we have

Wj satisfies B (A.240)

Since pTi−1
(n)\{true} ⊆ Wi−1 ⊆ Wi, we have a contradiction from (A.240)

and (A.236).

Therefore, (A.238) holds. Now let Wi be a possible world of Πi satisfying

pTi−1
(n). By lemma (13), There is a possible W ′

i−1 of Πi−1 such that W ′
i−1 ⊆

Wj and

(W ′
i−1 ∩Wi) ∩ Li−1 = ∅ (A.241)

Since pTi−1
(n) is in Li−1, we have pTi−1

(n) ⊆ W ′
i−1. Therefore, By lemma

199

Texas Tech University, Evgenii Balai, December 2017

18

W ′
i−1 = Wi−1 (A.242)

From (A.242), (A.238), (A.2251) we have that Wi does not satisfy B.

Therefore, pTi−1
(n) is Πi-incompatible with B

4. As in 1, we can show that r is active in Wi−1. Therefore, by condition 2 of 19,

we have that every atom p(y) s.t. y ∈ range(ai) belongs to Li−1. Therefore,

condition 4 immediately follows from the fact n is ready to branch on ai via

rule r relative to Πj and lemmas (20), (21).

2

Lemma 23. T = Tk is a tableau for Π \ U = Πk.

2

Proof. Follows immediately from the construction of the T ’s and Π’s, the definition

of a tableau, and Lemmas 22 and 20. 2

2

Lemma 24. T = Tk represents Π \ U = Πk.

2

Proof. Let W be a possible world of Π. By Lemma 19 W contains pT (n) for some

unique leaf node n of T . By Lemma 18, W is the set of literals Π-guaranteed by pT (n),

and hence W is represented by n. Suppose now that n′ is a node of T representing W .

Then pT (n′) Π-guarantees W which implies that W contains pTm(n′). By Lemma 19

this means that n = n′, and hence we proved that every answer set of Π is represented

by exactly one leaf node of T .

Now let n be a leaf node of T . By Lemma 18 Π has a unique possible world W

containing pT (n). It is easy to see that W is the set of literals represented by n. 2 2

200

Texas Tech University, Evgenii Balai, December 2017

Lemma 25. Suppose T is a tableau representing Π. If n is a node of T which is

ready to branch on a(t) via r, then all possible worlds of Π compatible with pT (n)

are probabilistically equivalent with respect to r.

2

Proof. This is immediate from Conditions (3) and (4) of the definition of ready-to-

branch.

2

Notation: If n is a node of T which is ready to branch on a(t) via r, the Lemma

25 guarantees that there is a unique scenario for r containing all possible worlds

compatible with pT (n). We will refer to this scenario as the scenario determined by

n.

Lemma 26. T = Tm is unitary

2

Proof. We need to show that for every node n of T , the sum of the labels of the arcs

leaving n is 1. Let n be a node and let s be the scenario determined by n. s satisfies

(1) or (2) of the Definition 25. In case (1) is satisfied, the definition of v(n, a(t), y),

along with the construction of the labels of arcs of T , guarantee that the sum of the

labels of the arcs leaving n is 1. In case (2) is satisfied, the conclusion follows from

the same considerations, along with the definition of PD(W,a(t) = y). 2

Lemma 27. T = Tm is a probabilistically sound representation of Π \ U .

Proof. Let R be a mapping from the possible worlds of Π \ U to the leaf nodes of T

which represent them. We need to show that for every possible world W of Π \U we

have

vT (R(W)) = µ(W). (A.243)

By definition of µ, we have:

201

Texas Tech University, Evgenii Balai, December 2017

µ(W) =
µ̂(W)∑

Wi∈Ω(Π\U) µ̂(Wi)
(A.244)

where

µ̂(W) =
∏

W (a)=y

P (W,a = y) (A.245)

where the product is taken over atoms for which P (W,a = y) is defined.

By lemma 26, T is a unitary tree. Therefore, by lemma 6 we have that the sum of

path values of it’s leaves is 1. Therefore, it is sufficient to show that for every possible

world W of Π\

vT (R(W)) = µ̂(W). (A.246)

To prove A.246, it is sufficient to show that for every possible world W of Π \ U (1)

pT (R(W)) contains an atom a = y if and only if a = y ∈ W and P (W,a = y) is

defined, (2) if n is a node in the path P of T from its root to R(W) which branches

on a, then the probability assigned to the arc which goes from n to its child in P ,

v(n, a, y) is equal to P (W,a = y).

1) ⇒ We first show that if pT (R(W)) contains an atom a = y, then P (W,a = y)

is defined and W (a) = y.

By definition of P (W,a = y), it is defined if and only if there exists a rule of Π

of the form

random(a : {X : p(X)})← K (A.247)

such that W satisfies K, truly random(a) and p(y).

By definition of T , if a = y belongs to pT (R(W)), there must exist a node n in

the path from the root of T to R(W) such that n branches on a via some rule r

of the form (A.247) of Π. This means that pT (n) Π \U -guarantees K and p(y).

By construction pT (R(W)) contains pT (N), thus, pT (R(W)) Π \ U -guarantees

the body of r and p(y). Since R(W) represents W , W must contain all positive

202

Texas Tech University, Evgenii Balai, December 2017

literals in pT (R(W)). Therefore, W satisfies both K and p(y). From rule A.247

it follows that W satisfies random(a : {X : p(X)}), and, since Π \ U does not

contain activity records, W satisfies truly random(a).

By definition of a tableau representing a program, pT (R(W)) Π \U -guarantees

W . By lemma 19 and minimality of possible worlds, W contains pT (R(W)).

This, W (a) = y.

⇐ We show that if P (W,a = y) is defined, and W (a) = y, then pT (R(W))

contains an atom a = y. We prove by contradiction. Suppose pT (R(W)) does

not contain an atom a = y. There are two possible cases:

(a) pT (R(W)) contains an atom a = y1, where y1 6= y. By definition of a tree

representing a possible world, pT (R(W)) Π \ U -guarantees W . By lemma

19 and minimality of possible worlds (proposition 13), we have that

W satisfies pT (R(W)) (A.248)

Therefore, W (a) contains both a = y1 and a = y, which is impossible by

definition of an interpretation.

(b) pT (R(W)) contains no literal of the form a = y1 for any y1. In this case,

using minimality of possible worlds, it is easy to see that R(W) is ready

to branch on a, which contradicts the definition of a tableau.

2) We show that if n is a node in the path P of T from its root to R(W) which

branches on a, then the probability assigned to the arc which goes from n to

its child in P , v(n, a, y), is equal to P (W,a = y). By definition of v(n, a, y) ,

we only need to show that W is Π \ U -compatible with pT (n). Since W is a

possible world of Π \U , it is sufficient to show that W contains pT (n) \ {true}.

From A.248 we have that W contains pT (R(W)) \ {true}. Since n is a node

on the path P from the root of T to R(W), pT (R(W)) contains pT (n) \ {true}.

203

Texas Tech University, Evgenii Balai, December 2017

Therefore, W contains pT (n) \ {true}.

2

Therefore, as shown by Lemmas 24, 27, and 26, T is a unitary probabilistically

sound representation of Π \ U , that concludes the proof of Lemma 8.

We are now ready to prove the main theorem.

Theorem 1

Every dynamically causally ordered, unitary program is coherent.

Proof. Suppose Π is dynamically causally ordered and U be the set of activity records

of Π. Proposition 8 tells us that Π \U is represented by some tableau T . Lemmas 26

and 27 tells us that the tree is unitary and that the representation is probabilistically

sound correspondingly. Thus, by Lemma 7 Π is coherent. 2

A.3 Algorithm Correctness Proof

A.3.1 Proof of Proposition 3

Lemma 28. Let Π be a program with signature Σ. Suppose Π contains a rule

a = y ← B such that a is a random attribute and Π contains an action do(a, y′)

belongs to Π. Let Π′ be a program with signature of γ(Π), obtained from Π by

adding the rules:

fdo(a)← B

¬fdo(a)← not fdo(a)

of γ(Π). Let ψ be a mapping from the possible worlds of Π such that for each possible

world W of Π:

ψ(W) = W ∪ {fdo(a) | B is satisfied by W} ∪ {¬fdo(a) | B is not satisfied by W}.

204

Texas Tech University, Evgenii Balai, December 2017

ψ is a bijection from ΩΠ to ΩΠ′ .

2

Proof. In 1. we will prove that ψ is a function from ΩΠ to ΩΠ′ . In 2 we will show

that ψ is surjective. In 3 we will prove that ψ is injective. 1-3 together imply that ψ

is a bijection from ΩΠ to ΩΠ′ .

1. Let W be a possible world of Π. We will prove that ψ(W) is a possible world

of Π′. Let L be the set of literals from Σ. L is a splitting set of Π′. botL(Π′) is

Π, thus W is a possible world of botL(Π′). Y = {fdo(a) | B is satisfied by W}∪

{¬fdo(a) | B is not satisfied by W} is a possible world of eL(Π′,W). Therefore,

ψ(W) = W ∪ Y is a possible world of Π′.

2. Let W ′ be a possible world of Π′. Let L be the set of literals from Σ. L is a

splitting set of Π′. By splitting set theorem, W ′ = W ∪Y , where W is a possible

world of Π. It is easy to see that ψ(W) = W ′. Thus, ψ is surjective.

3. Let W1 and W2 be two distinct possible worlds of Π. By definition of ψ, ψ(W)\

W does not include atoms from Σ. Therefore, since W1 and W2 are different,

ψ(W1) and ψ(W2) differ on at least one atom from Σ.

2

Lemma 29. Let Π be a program not containing activity records with signature Σ.

Suppose Π contains a rule a = y ← B such that a is a random attribute and Π. Let

Π2 be a program with signature of γ(Π), obtained from Π by replacing a = y ← B

with:

random(a, pr)← B

pr(y)

205

Texas Tech University, Evgenii Balai, December 2017

of γ(Π). Let ψ be a mapping from the possible worlds of Π such that for each possible

world W of Π

ψ(W) = W ∪ {random(a, pr) | B is satisfied by W}

∪ {pr(y)}

∪ {truly random(a) | B is satisfied by W}

ψ is a bijection from ΩΠ to ΩΠ2 .

2

Proof. In 1. we will prove that ψ is a function from ΩΠ to ΩΠ′ . In 2 we will show

that ψ is surjective. In 3 we will prove that ψ is injective. 1-3 together imply that ψ

is a bijection from ΩΠ to ΩΠ′ .

1. Let W be a possible world of Π we will show that ψ(W) is a possible world of

Π2. In 1.1 we will show that ψ(W) satisfies the rules of Π
ψ(W)
2 In 1.2 we will

prove that ψ(W) is minimal.

1.1 Since no e-literals with default negation in the bodies of rules of Π2 are

formed by random(a, pr), pr(y), or truly random(a), We have:

Π
ψ(W)
2 =(Π \ {a = y ← B})W

∪ {random(a, pr)← B}W

∪ {pr(y)}

∪ {truly random(a)← random(a, pr)}

∪ {a = y1 ← random(a, pr), not a = y2, . . . , not a = yk}

. . .

∪ {a = yk ← random(a, pr), not a = y2, . . . , not a = yk−1}

∪ {← a = Y, random(a, pr), not pr(Y)} (A.249)

206

Texas Tech University, Evgenii Balai, December 2017

where range(a) = {y1, . . . , yk}.

Since random(a, pr) is in ψ(W) if W satisfies B:

{random(a, pr)← B}W is satisfies by ψ(W) (A.250)

By construction of ψ(W):

pr(y) ∈ ψ(W) (A.251)

Since the bodies of rules of Π2, except possibly the rule

truly random(a)← random(a, pr)

satisfied by ψ(W), do not contain e-literals formed by random(a, pr), pr(y)

and truly random(a), and W satisfies ΠW , we have:

ψ(W) satisfies (Π \ {a = y ← B})W (A.252)

If random(a, pr) 6∈ ψ(W), then the other rules are satisfied. Otherwise,

B is satisfied by W , and, therefore, a = y ∈ W , which also implies that

the other rules are satisfied. Therefore, from (A.249), (A.250), (A.251) we

have that ψ(W) satisfies Π
ψ(W)
2 .

1.2 We show ψ(W) is minimal. For the sake of contradiction, suppose there is

W ′ such that:

W ′ (ψ(W) (A.253)

207

Texas Tech University, Evgenii Balai, December 2017

and W ′ satisfies Π
ψ(W)
2 . Consider the set W ′′ defined as follows:

W ′′ = W ′ \ {pr(y)}

\ {random(a, pr) | B is satisfied by W}

\ {truly random(a) | B is satisfied by W,

truly random(a) 6∈ W} (A.254)

In 1.2.1 we will show

W ′′ (W (A.255)

In 1.2.2 we will prove W ′′ satisfies the rules of ΠW , obtaining a contradic-

tion to the fact that W is a possible world of ΠW .

1.2.1 By construction, W ′′ ⊆ W . For the sake of contradiction, suppose

W ′′ = W (A.256)

There are two possibilities:

(a) B is satisfied by W . In this case W ′ and ψ(W) coincide on the

atoms different from pr(y), random(a, pr) and truly random(a).

Therefore, since W ′ satisfies the rules of Π
ψ(W)
2 , it must contain

pr(y), random(a, pr) and truly random(a). Therefore, we have

W ′ = ψ(W), which is a contradiction to (A.253).

(b) B is not satisfied by W . In this case ψ(W) = W ∪ {pr(y)}. Since

W ′ satisfies the rules of Π
ψ(W)
2 , it contains pr(y). Therefore, from

(A.253) there exists an atom a different from pr(y) such that:

a 6∈ W ′ (A.257)

208

Texas Tech University, Evgenii Balai, December 2017

and

a ∈ ψ(W) (A.258)

By construction of W ′′:

a 6∈ W ′′ (A.259)

By construction of ψ:

a ∈ W (A.260)

From (A.260) and (A.259) we have:

W 6= W ′′ (A.261)

which clearly contradicts (A.256).

1.2.2 SinceW ′ satisfies Π
ψ(W)
2 , by (A.249) we haveW ′ satisfies all the rules of

ΠW except possibly {a = y ← B}W . By construction of W ′′, W ′′ also

satisfies all those rules. We now prove W ′′ satisfies {a = y ← B}W . If

{a = y ← B}W is empty, the case is trivially true. Therefore, we can

consider:

{a = y ← B}W is {a = y ← B′} for some set of literals B′ (A.262)

If B′ is not satisfied by W ′′, then the rule a = y ← B′ is satisfied by

W ′′.

Suppose now that

B′ is satisfied by W ′′ (A.263)

Since B′ does not contain literals formed by any of the attributes from

209

Texas Tech University, Evgenii Balai, December 2017

{pr, random, truly random}, from (A.254) we have:

W ′ satisfies B (A.264)

Since W ′ satisfies Π
ψ(W)
2 , from (A.249) we have:

{random(a, pr)← B}W is satisfied by W ′ (A.265)

From (A.262) and (A.265) we have:

random(a, pr)← B′ is satisfied by W ′ (A.266)

From (A.266) and (A.263):

random(a, pr) ∈ W ′ (A.267)

Therefore, since W ′ satisfies the rules Π
ψ(W)
2 , we must have a = y ∈

W ′. Therefore,since a is a random attribute term, W ′′ satisfies a = y

and the rule a = y ← B′.

2. We prove that ψ is surjective. Let W be a possible world of Π2. We can show

that the set of atoms:

W ′ = W \ {pr(y)}

\ {random(a, pr)}

\ {truly random(a) | random(a, pr)

is the only atom of the form random(a, p′) in W} (A.268)

is a possible world of of Π.

3. We prove that ψ is injective. Consider two distinct possible worlds W1 and W2 of

210

Texas Tech University, Evgenii Balai, December 2017

Π. Since random(a, pr) and pr(y) are not in Σ, we have that if ψ(W1) 6= ψ(W2),

then W1 = W2 ∪ {truly random(a)} (up to symmetry), which is impossible by

minimality of possible worlds.

2

Lemma 30. Let Π be a program with signature Σ from B. Let AR be the set of

activity records in γ(Π). red(γ(Π) \ AR) is defined.

Proof. red(γ(Π) \ AR) is defined iff red(γ(Π) \ AR)base has a unique possible world.

By construction, red(γ(Π) \AR)base consists of Πbase ∪R, where R a collection of the

pairs rules of the forms:

fdo(a)← B

¬fdo(a)← not fdo(a)

We have that lit(Σ) is a splitting set of (γ(Π)\AR)base, with botlit(Σ)((γ(Π)\AR)base) =

Πbase, having a unique possible world W and elit(Σ)(Π,W) consists of the pairs of rules

of the form:

fdo(a)

¬fdo(a)← not fdo(a)

Clearly, elit(Σ)(Π,W) V has a unique possible world, and, therefore, by splitting set

theorem W ∪ V is the unique possible world of (γ(Π) \ AR). 2

Lemma 31. Let Π be a program, U be the set of activity records of Π, and Π′ be

obtained from Π by removing U . Let W ′ be a possible world of Π′ such that:

1. for every action do(a = y) of Π, W satisfies a = y and random(a, p) for some p.

2. for every observation obs(l) of Π, W satisfies l

211

Texas Tech University, Evgenii Balai, December 2017

Let W be the set of atoms defined as follows:

W = W ′ \ {truly random(a) | do(a, y) ∈ Π for some y} ∪ U (A.269)

W is a possible world of Π.

2

Proof. In 1 we show W satisfies the rules of ΠW and in 2 we show W is a minimal

such set.

1. Since truly random does not occur in the bodies of rules, we have

ΠW = (Π′W
′ \R) ∪ U

Where R is the collection of the rules of the form

truly random(a)← random(a)

such that do(a, y) ∈ Π for some y.

Since U is in W by construction, we only need to show that

W satisfies the rules from Π′W
′ \R. (A.270)

Clearly, from (A.269), W satisfies all rules of Π′W
′ \ R that do not contain

occurrences of do, obs and truly random. The possible forms of the remaining

rules are considered below:

(a) ← obs(l) such that l 6∈ W ′. These rules are satisfied by W by condition 2

from the lemma, and the construction of W .

(b) truly random(a) ← random(a, p) such that do(a, y) 6∈ Π for every y.

Suppose random(a, p) belongs to W . We need to show truly random(a)

212

Texas Tech University, Evgenii Balai, December 2017

belongs to W . We have random(a, p) ∈ W ′, and hence, since Π′ does

not contain actions or observations, and W ′ is a possible world of Π′,

truly random(a) ∈ W ′. Since do(a, y) 6∈ Π for every y, truly random(a)

belongs to W by construction.

(c) ← do(a, y) such that a = y 6∈ W ′ These rules are satisfied by W by

condition 1 from the lemma, and the construction of W .

(d) ← do(a, y), where there is no p such that random(a, p) belongs to W .

These rules are satisfied by condition 1 from the lemma, and the construc-

tion of W .

Therefore, (A.270) holds and W satisfies the rules of ΠW

2. We prove that W is minimal. Suppose there exists V (W such that V satisfies

the rules of ΠW . Consider the set

V ′ = (V \ U) ∪ {truly random(a) | random(a, p) ∈ W ′ for some p} (A.271)

On the other hand, from (A.269) we have:

W ′ = (W \ U) ∪ {truly random(a) | random(a, p) ∈ W ′ for some p} (A.272)

We show

V ′ (W ′ (A.273)

Since U ⊆ ΠW , and both W and V satisfy the rules of ΠW \R, we have U ⊆ V

and U ⊆ W . Therefore,

(V \ U) ((W \ U) (A.274)

We need to show that there exists atom l such that (A.275) - (A.278) below

213

Texas Tech University, Evgenii Balai, December 2017

hold.

l ∈ W (A.275)

l 6∈ V (A.276)

l 6∈ U (A.277)

l 6∈ {truly random(a) | random(a, p) ∈ W ′ for some p} (A.278)

From (A.274) we have that there exits an l′ such that l = l′ satisfies (A.275) -

(A.277). If l′ also satisfies (A.278) – we found l. Suppose

l′ = truly random(a) (A.279)

and for some p

random(a, p) ∈ W ′ (A.280)

Since l′ ∈ W , from (A.269), Π does not contain actions of the form do(a, y).

Therefore, the rule

truly random(a)← random(a, p)

belongs to ΠW . Since V satisfies the rule of ΠW , and (A.276) holds for l = l′,

we have: random(a, p) 6∈ V . From (A.280) we have random(a, p) ∈ W . Thus,

l = random(a, p) satisfies conditions (A.275) - (A.278) and (A.273) holds.

We will prove that

V ′ satisfies the rules of Π′W
′

(A.281)

214

Texas Tech University, Evgenii Balai, December 2017

We have:

Π′W
′
= ΠW \ U ∪R (A.282)

where R consists of rules of the form

truly random(a)← random(a, p) (A.283)

such that do(a = y) ∈ Π for some y.

Since V satisfies the rules of ΠW , V ′ satisfies every rule of ΠW \ U which do

not contain literals formed by obs, do and truly random. We now show that V ′

satisfies the remaining rules of ΠW \ U . We consider their possible forms:

(a) ← obs(l). Since W ′ is a possible world of Π, it does not contain atoms

formed by obs. Thus, by (A.273) we have obs(l) 6∈ V ′.

(b) truly random(a)← random(a, p) such that do(a, y) 6∈ Π for every y. Sup-

pose

random(a, p) ∈ V ′ (A.284)

We need to show

truly random(a) ∈ V ′ (A.285)

From (A.284), (A.271), (A.272) we have:

random(a, p) ∈ W ′ (A.286)

Therefore, by (A.271) we have (A.285).

(c) ← do(a, y). Since W ′ is a possible world of Π, it does not contain atoms

formed by do. Thus, by (A.273) we have do(a, y) 6∈ V ′.

215

Texas Tech University, Evgenii Balai, December 2017

Therefore, V ′ satisfies the rules of ΠW \ U . We now show that V ′ satisfies the

rules of R. Suppose r is a rule of the form (A.283) such that do(a = y) ∈ Π.

If V ′ satisfies random(a, p), then, by construction random(a, p) ∈ W ′, and by

(A.271), truly random(a) ∈ V ′. Therefore, (A.281) holds, and from (A.273) we

have a contradiction to the fact that W ′ is a possible world of Π′. Therefore,

W is a minimal set satisfying the rules of ΠW .

2

Proposition 3. Let Π be a program from B. We have:

1. γ(Π) is from B

2. there is a bijection φ from the possible world of Π to the possible worlds of γ(Π)

such that for every possible world W of Π:

(a) µΠ(W) = µγ(Π)(φ(W)), and

(b) W and φ(W) coincide on the atoms of Π.

Proof. We first prove:

γ(Π) is from B (A.287)

Let AR1 be the set of activity records in Π and AR2 be the set of activity records

in γ(Π). Let a1, . . . , an be a probabilistic leveling of Π \ AR1 satisfying conditions

1-3 from Definition 20. Clearly, a1, . . . , an is a probabilistic leveling of γ(Π) \ AR2.

Let Π0, . . . ,Πn be the dynamic structure of Π \AR1, and Π2
0, . . . ,Π

2
n be the dynamic

structure of γ(Π) \ AR2. From lemmas 28 and 29 it follows that there is a bijection

216

Texas Tech University, Evgenii Balai, December 2017

ψi from the possible worlds of Πi and the possible worlds of Π2
i :

ψi(W) = W ∪ {fdo(a) | there exists a rule a = y ← B s.t. W |= B, a

is a random attribute term, and do(a, y′) ∈ Π for some y′}

∪ {¬fdo(a) | there is a rule a = y ← B s.t a

is a random attribute term do(a, y) ∈ Π for some y′ and W 6|= B}

∪ {random(a, pr) | there exists a rule a = y ← B s.t. W |= B and a

is a random attribute term}

∪ {pr(y) | there exists a rule a = y ← B s.t. a

is a random attribute term}

Since for every possible world W of Πi, W and ψ(W) do not differ on the atoms of

Σ, conditions 1-3 of definition 21 are satisfied, so γ(Π) is from B.

Let us define φ as follows:

φ(W) = W ∪ {¬fdo(a) | there is a rule a = y ← B s.t. a

is a random attribute term, and do(a, y′) ∈ Π for some y′ ∈ range(a)}

∪ {random(a, pr) | there exists a rule a = y ← B s.t. W |= B and a

is a random attribute term}

∪ {pr(y) | there exists a rule a = y ← B s.t. a

is a random attribute term}

∪ {obs(¬fdo(a))}

It follows from Lemma 31 and the definition of ψn that φ is a bijection from ΩΠ

to Ωγ(Π). Clearly, for every W ∈ ΩΠ, φ(W) coincides with W on the atoms of Σ,

µΠ(W) = µγ(Π)(φ(W)).

217

Texas Tech University, Evgenii Balai, December 2017

2

A.3.2 Proof of Proposition 4

Proposition 4 Let Π be a program with signature Σ. Let I be an e-interpretation

of Σ and W be a possible world of Π compatible with I. We have:

• if I satisfies an e-literal l of Σ, then W satisfies l,

• if I falsifies a literal l of Σ, then W does not satisfy l

2

Proof. The first part of the claim: if I satisfies l, thenW satisfies l follows immediately

from the definition of a compatible possible world.

We next show that if I falsifies W , then W does not satisfy l. We next consider

all 4 possible forms of l:

1. l is a = y. I contains a literal contrary to l, which can be of one of the forms:

(a) a 6= y. Then, W satisfies a 6= y, a = y1 ∈ W for y1 6= y, therefore, since

W cannot assign two values to a, W does not satisfy l.

(b) a = y1 for some y1 6= y. Then, W satisfies a = y1, a = y1 ∈ W . Therefore,

since W cannot assign two values to a, W does not satisfy l.

(c) not a = y. Since W satisfies not a = y, a = y 6∈ W .

2. l is a 6= y. I contains a literal contrary to l, which can be of one of the forms:

(a) a = y. We have W satisfies a = y. Since W is an interpretation, for no

y1 6= y a = y1 ∈ W . Therefore, W does not satisfy a 6= y.

(b) not a 6= y. Since W satisfies not a 6= y, W does not satisfy a 6= y.

3. l is not a = y. Since I falsifies l, I contains a = y. By Definition 35, W satisfies

a = y. Therefore, W does not satisfy l.

218

Texas Tech University, Evgenii Balai, December 2017

4. l is not a 6= y. . Since I falsifies l, I contains a 6= y. Therefore, W satisfies

a 6= y, and W does not satisfy l.

2

A.3.3 Proof of Proposition 5

Before proving Proposition 5, we prove some auxiliary lemmas.

Lemma 32. Let Π be a program with signature Σ and I be an e-interpretation of

Σ. which satisfies (falsifies) a set of extended literals B. Every possible world W of

Π compatible with I satisfies (does not satisfy) B.

2

Proof. This follows immediately from Lemma 4 and Definitions 32 and 34.

2

Lemma 33. Let Π be a program with signature Σ. Let I be an e-interpretation of

Σ. We have:

1. If random attribute term a of Σ is active in I via a rule r of Π, then every

possible world of Π compatible with I assigns a value to Π from the set of

possible values of a in I;

2. If random attribute term a if Σ is disabled in I, then every possible world of Π

compatible with I does not assign a value to a.

2

Proof. 1. Let a be a random attribute term of Π which is active in I via a rule

random(a : {X : p(X)})← B (A.288)

of Π.

219

Texas Tech University, Evgenii Balai, December 2017

Let Y be the set of possible values of a in I. Let W be a possible world of Π

compatible with I. We will show

∃y ∈ Y.a = y ∈ W (A.289)

By clause 2.a) of Definition 10 we have:

B is satisfied by I (A.290)

By Lemma 32, from (A.290) and the fact that W is compatible with I we have

B is satisfied by W (A.291)

Since the rule (A.288) belongs to Π, from (A.291) by Proposition 1 we have:

random(a : {X : p(X)}) is satisfied by W (A.292)

From (A.292), the fact that axiom 2.6 belongs to Π by proposition 1 we have:

W assigns some value y to a (A.293)

Since Π contains axiom (1.3), from (A.292) and (A.293) we have:

p(y) ∈ W (A.294)

Therefore, we just need to show that p(y) ∈ I (which would imply that y is a

possible value of a in I). Since a is active via r, by clause 2 (c) of Definition 39

we have that I either falsifies or satisfies p(y) from (A.294) and Proposition (4)

we have p(y) ∈ I. Therefore, (A.289) holds.

220

Texas Tech University, Evgenii Balai, December 2017

2. Let a be a random attribute term of Π which is disabled in I. By definition of

a disabled attribute term we have: that for every rule of the form

random(a : {X : p(X)})← B

B is falsified by I.

Let W be a possible world of Π compatible with I. We need to show:

no atom of the form a = y′ belongs to W (A.295)

By lemma 32 from (a) and (b) we have for every rule of the form

random(a : {X : p(X)})← B

B is not satisfied by W .

From (c) by minimality of possible worlds we have:

W does not contain atoms of the form random(a : {X : p(X)}) (A.296)

Therefore, we have:

(e) the body of every axiom of the form:

a = y1 ← random(a : {X : p(X)}), not a = y2, . . . , not a = yk

is not satisfied by W

From (c) - (e) by minimality of possible worlds we have (A.295).

2

221

Texas Tech University, Evgenii Balai, December 2017

Lemma 34. Let TΠ〈f〉 be an AI-tree of Π and C be a cut of TΠ〈f〉. For every

possible world of Π, there exists a unique leaf L of I such that W is compatible with

L

2

Proof. Let W be a possible world of Π. We prove by (strong) induction on the number

of i-nodes of C that, for any positive n and for any cut of size n or less, there exists

a unique leaf I of C such that W is compatible with I.

Base Case n = 1 In this case C consists of a single node f({}). Since W is compatible

with {}, and f is a consequence of Π, we have that W is compatible with f({}).

Ind. Hyp. Let k > 1 be an integer. Suppose for any cut C of size less than k, there exists

a unique leaf I of C such that W is compatible with I.

Ind. Step We show that for any cut C of size k there exists a unique leaf I of C such that

W is compatible with I. Let L be a leaf node of C such that the distance from

L to the root of C is maximal. Since k > 1, L is not a root. Let A be the parent

of L, and M be the parent of A. Since L is a leaf node such that the distance

from L to the root of C is maximal, we have:

no child of A has children (A.297)

Let C ′ be the cut obtained from C by removing A and all its children. By

inductive hypothesis:

there exists a unique leaf N of C ′ s.t. W is compatible with N (A.298)

We consider two possibilities:

1. N 6= M . Then, since N is unique, W is not compatible with M . Therefore,

222

Texas Tech University, Evgenii Balai, December 2017

since all the children are supersets of M , W is not compatible with any of

them. Thus, N is the unique leaf node of C such that W is compatible

with N .

2. N = M . In this case W is not compatible with any of the leafs of C which

are not descendants of A. We will show that W is compatible with exactly

one child of A. Since, by construction of an AI-tree, A is ready in M , there

are two cases:

(a) A is disabled in M . By Lemma 33, W does not assign a value to A,

W is compatible with satr(a = u) (A.299)

By construction of TΠ〈f〉, A has exactly one child f(M ∪ {a = u}).

From (A.298), W is compatible with M . Therefore, from (A.299) we

have that W is compatible with M∪{a = u}. Since f is a consequence

function of Π, W is compatible with f(M ∪ {a = u}).

(b) A is active in M . By Lemma 33,

A = y ∈ W (A.300)

for some y from the set of possible values of A in N . By construction

TΠ〈f〉, each child of A assigns a distinct value to a. Clearly, W is not

compatible with all the children of A which assign a value to A different

from y. Therefore, it is sufficient to show that W is compatible with

f(M ∪ {a = y}. From (A.298), W is compatible with M . Therefore,

from (A.300) we have that W is compatible with M∪{a = y}. Since f

is a consequence function of Π, W is compatible with f(M ∪{a = y}).

2

Proposition 5 Given a program Π from B, a query Q of Π and a solution tree S of

223

Texas Tech University, Evgenii Balai, December 2017

Π with respect to Q, let L be the set of compatible leaves of S, and LQ be the subset

of L such that each member of LQ satisfies Q. We have:

1. if PΠ is defined, then

PΠ(Q) =

∑
I∈LQ

µ̂Π(I)∑
I∈L

µ̂Π(I)
(A.301)

2. otherwise, ∑
I∈L

µ̂Π(I) = 0 (A.302)

2

Proof. Let Ω = {W1, . . . ,Wn} be the set of all possible worlds of Π, and ΩQ be the

set of all possible worlds of Π in each of which Q is true. And for an e-interpretation

I, let ΩI be the subset of possible worlds of Π compatible with I.

Recall that the probability PΠ(Q) is defined iff

∑
W∈Ω

µ̂(W) 6= 0 (A.303)

Let L be a set of literals each of which is decided (falsified or satisfied) in every

member of L. By LL we denote the subset of L consisting of all elements of L

satisfying L. Also, by ΩL we denote the subset Ω satisfying every member of L.

We start from showing:

∑
I∈LL

µ̂(I) =
∑
W∈ΩL

µ̂(W) (A.304)

By Definition 37 we have:

∑
I∈LL

µ̂(I) =
∑
I∈LL

(∑
W∈ΩI

(µ̂(W))

)
(A.305)

224

Texas Tech University, Evgenii Balai, December 2017

We next show that for two distinct I1, I2 ∈ L :

ΩI1 ∩ ΩI2 = ∅ (A.306)

Let N be the lowest common ancestor of I1 and I2 in S. By construction, N is

an a-node, and there exists two different terms N = y1 ∈ I1 and N = y2 ∈ I2. By

definition of a compatible possible world (Def. 35), every possible world compatible

with both I1 and I2 has to satisfy both N = y1 and N = y2, which is impossible.

Therefore, (A.306) holds.

From (A.305) and (A.306) we have:

∑
I∈LL

µ̂(I) =
∑

W∈(
⋃

I∈WL
ΩI)

µ̂(W) (A.307)

We next show:

⋃
I∈LL

ΩI = ΩL (A.308)

Indeed, suppose W ∈
⋃
I∈WL

ΩI . That is, W is compatible with I which satisfies L.

This, clearly, means that W satisfies L, and, therefore W ∈ ΩL.

On the other hand, suppose W ∈ ΩL.That is, W is a possible world which satisfies

L. By Lemma 34, there exists a unique member V ∈ L such that W is compatible

with V . That is,

W ∈ ΩV (A.309)

Since L is satisfied by W , L is decided by every member of L, and W is compatible

with L, by Proposition 4, V satisfies L. That is,

V ∈ LL (A.310)

From (A.309) and (A.310) we have W ∈
⋃
I∈LL ΩI . Therefore, (A.308) holds.

225

Texas Tech University, Evgenii Balai, December 2017

From (A.308) and (A.307) we have (A.304).

We now consider both cases from the proposition.

1. PΠ is defined. In this case, let us define PQ and PN as follows:

PQ =
∑

I∈W{Q}

(µ̂(I)) (A.311)

and

PN =
∑
I∈W{}

(µ̂(I)) (A.312)

From (A.311) and (A.304) for L = {Q} we have:

PQ =
∑

W∈Ω{Q}

µ̂(W) (A.313)

From (A.312) and (A.304) for L = {} we have:

PN =
∑
W∈Ω

µ̂(W) (A.314)

From (A.311) - (A.314) we have:

PQ/PN =

∑
I∈W{Q}

µ̂(I)

∑
I∈W{}

µ̂(I)
=

∑
W∈Ω{Q}

µ̂(W)

∑
W∈Ω

µ̂(W)
= PΠ(Q) (A.315)

2. PΠ is undefined. That is, In this case we have:

∑
W∈Ω

µ̂(W) = 0 (A.316)

By (A.304) for L = {} we have:

226

Texas Tech University, Evgenii Balai, December 2017

∑
I∈L

µ̂(I) =
∑
W∈Ω

µ̂(W) (A.317)

From (A.316) and (A.317) we have:

∑
I∈L

µ̂(I) = 0 (A.318)

2

A.3.4 Proof of Proposition 6

Before proving the proposition, we prove some auxiliary lemmas.

Lemma 35. Let I be an interpretation of signature Σ, and L be the set of e-literals

of Σ, and l ∈ satr(L). We have:

1. if l is of the form a = y, then l ∈ L

2. if l is of the form a 6= y, then l ∈ L, or a = y1 ∈ satr(L) for some y1 6= y.

3. if l is of the form not a = y, then l ∈ L, or a 6= y ∈ satr(L) or not a 6= y1 ∈

satr(L) for some y1 6= y

4. if l is of the form not a 6= y, then l ∈ L, or a = y ∈ satr(L), or {not a =

y1 | y1 ∈ range(a) \ {y}} ⊆ satr(L)

2

Proof. To prove 1, suppose l is a = y and a = y 6∈ L. In this case the set satr(L) \ l

is saturated and contains L, which is a contradiction. To prove 2-4, suppose l 6∈ L. If

none of the other conditions hold, we can, again, check easily that the set satr(L) \ l

is saturated and contains L, which is a contradiction.

2

227

Texas Tech University, Evgenii Balai, December 2017

Lemma 36. Let I be an interpretation of signature Σ and L be a set of e-literals of

Σ. If I satisfies L, then I satisfies every literal from satr(L)

2

Proof. Suppose

I satisfies L (A.319)

Let l be an arbitrary e-literal from satr(L). We need to show

I satisfies l (A.320)

We will show that I satisfies l. We consider all four possible forms of an e-literal in

satr(L):

1. l is a = y. In this case by clause 1 of Lemma 35 l ∈ L, and we have that I

satisfies l.

2. l is a 6= y. The only possibilities are:

(a) l ∈ L. From (A.319) we have (A.320)

(b) l 6∈ L. By clause 2 of Lemma 35 we must have a = y1 ∈ satr(L) for some

y1 6= y. By 1 we have a = y1 ∈ I. Therefore, a 6= y is satisfied by I.

3. l is not a = y. The only possibilities are:

(a) l ∈ L. From (A.319) we have (A.320)

(b) l 6∈ L. By clause 3 of Lemma 35, we have only two possibilities:

i. a 6= y ∈ satr(L). In this case by 2 we have that I satisfies a 6= y.

Therefore, a = y1 ∈ I for some y1 6= y. Therefore, a = y 6∈ I

(otherwise, I would be inconsistent). Therefore, I satisfies l.

ii. not a 6= y1 ∈ satr(L) for some y1 6= y. By clause 4 of Lemma 35, either

a = y1 ∈ satr(L), or {not a = y2 | y2 ∈ range(a) \ {y1}} ⊆ satr(L)

228

Texas Tech University, Evgenii Balai, December 2017

In the first case by 1 we have a = y1 ∈ I and l is satisfied by I.

In the second we prove by contradiction. Suppose I does not satisfy

nota = y. This means a = y ∈ I. Since I satisfies L, we must have

a 6= y 6∈ L (A.321)

and

not a 6= y1 6∈ L for every y1 ∈ range(a) \ {y} (A.322)

a = y1 6∈ L for every y1 ∈ range(a) \ {y} (A.323)

not a = y 6∈ L (A.324)

Let La be the set of e-literals formed by a in L, and Sa be the set

of e-literals formed by a in satr(L). Clearly, Sa is saturated. From

(A.321) - (A.324) we have that all the e-literals formed by a in L are

subset of satr(a = y). But then S ′a = Sa ∩ satr(a = y) is a subset of

Sa (since Sa contains not a = y). By lemma (38), S ′a is saturated. But

then the set satr(L) \Sa ∪ (satr(a = y)∩Sa)) is smaller than satr(L)

is saturated, and contains L, which is a contradiction.

4. l is not a 6= y.

Again, there are two possibilities: The only possibilities are:

(a) l ∈ L. From (A.319) we have (A.320)

(b) l 6∈ L. We must have a = y ∈ satr(I) or {not a = y1 | y1 ∈ range(a) \

{y}} ⊆ satr(L) (otherwise, satr(I) \ l is saturated). We consider both

cases separately.

i. a = y ∈ satr(L) by 1 we have a = y ∈ I. Therefore, since I is an

229

Texas Tech University, Evgenii Balai, December 2017

interpretation, a 6= y is not satisfied by I. Thus, l is satisfied by I.

ii. {not a = y1 | y1 ∈ range(a) \ {y}} ⊆ satr(L). By 3 we have that

I satisfies {not a = y1 | y1 ∈ range(a) \ {y}}. Therefore, I ∩ {a =

y1 | y1 ∈ range(a) \ {y}} = ∅. Therefore, I does not satisfy a 6= y,

and I satisfies l.

2

Lemma 37. Let Π be a program, U be the set of activity records of Π, and Π′ be

obtained from Π by removing U . Let W be a possible world of Π. Let W ′ be the set

of atoms

W ′ = W \ U ∪ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

(A.325)

We have W ′ is a possible world of Π′.

2

Proof. Since the bodies of rules of Π′ do not contain occurrences of literals with

default negation formed by obs and truly random, we have:

Π′W
′
= ΠW ∪R \ U (A.326)

Where R is the collection of the rules of the form

truly random(a)← random(a, p)

such that

do(a, y) ∈ Π for some y (A.327)

In 1 we show that W ′ satisfies the rules of Π′W
′
. In 2 we show that no proper subset

of W ′ satisfies the rules of Π′W
′
.

230

Texas Tech University, Evgenii Balai, December 2017

1. We show that W ′ satisfies the rules of Π′W
′
. From (A.326), it is sufficient to

show that W ′ satisfies the rules of ΠW ∪R\U . Let r be a rule from ΠW ∪R\U .

Suppose the body of r is satisfied by W ′. We need to show that

the head of r is satisfied by W ′ (A.328)

Since the bodies of rules of Π ∪R do not contain e-literals formed by attribute

truly random, from (A.325) we have:

the body of r is satisfied by W (A.329)

Since r belongs to ΠW ∪R \ U , r also belongs to ΠW ∪R.

We know have two cases:

(a) r is a rule from ΠW . Since W is a possible world of Π, from (A.329) we

have that

the head of r is satisfied by W (A.330)

Since ΠW \U does not contain literals formed by do and obs in the heads of

rules and r belongs to ΠW \U , from (A.330) and (A.325) we have (A.328).

(b) r is truly random(a)← random(a, p) and r belongs to R. From (A.327),

(A.329) and (A.325) we have truly random(a) ∈ W ′. Therefore, (A.328)

holds.

2. We show that no proper subset of W ′ satisfies the rules of Π′W
′
. For the sake

of contradiction, suppose there is V ′ such that:

V ′ (W ′ (A.331)

and

V ′ satisfies the rules of Π′W
′

(A.332)

231

Texas Tech University, Evgenii Balai, December 2017

Consider the set of atoms V defined as follows:

V = V ′ \ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π} ∪ U

(A.333)

In (a) we will show:

V (W (A.334)

In (b) we will show:

V satisfies the rules of ΠW (A.335)

thus obtaining a contradiction to the fact that W is a possible world of Π.

(a) We show that (A.334) holds. From (A.325) we have:

W = W ′∪U \{truly random(a) | ∃p, y : random(a, p) ∈ W,do(a, y) ∈ Π}

(A.336)

Since W ′ is a possible world of Π′, U ∩W ′ = ∅. Therefore, it is sufficient

to show:

V ′ \ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

(A.337)

(W ′ \ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

From (A.331) we have:

V ′ \ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

(A.338)

⊆ W ′ \ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

We need to show that there exists atom l such that (A.339) - (A.341) below

232

Texas Tech University, Evgenii Balai, December 2017

hold.

l ∈ W ′ (A.339)

l 6∈ V ′ (A.340)

l 6∈ {truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

(A.341)

From (A.331) we have that there exists an l′ such that l = l′ satisfies

(A.339) - (A.340). If l′ also satisfies (A.341) – we found l. Suppose

l′ = truly random(a) (A.342)

and there exists p such that

random(a, p) ∈ W (A.343)

and

do(a, y) ∈ Π for some y (A.344)

Since W ′ contains no atoms formed by do, the rule

truly random(a)← random(a, p)

belongs to Π′W
′
. Therefore, from (A.332) and the fact that l = l′ satisfies

(A.340), we have:

random(a, p) 6∈ V ′ (A.345)

From (A.343) and (A.325) we have random(a, p) ∈ W ′. Hence, l =

random(a, p) satisfies conditions (A.339) - (A.341) and (A.337) holds.

233

Texas Tech University, Evgenii Balai, December 2017

(b) We show that (A.335) holds. From (A.333) we have:

V satisfies U (A.346)

From (A.332) and (A.326) we have:

V ′ satisfies ΠW ∪R \ U (A.347)

Therefore, since Π does not contain e-literals formed by truly random in

the bodies of rules, from (A.333) we have:

V satisfies every rule from ΠW ∪R \ U

whose head is not formed by truly random

(A.348)

Now let r be a rule from ΠW ∪R \ U of the form

truly random(a)← random(a, p′) (A.349)

Suppose

random(a, p′) ∈ V (A.350)

From (A.333) we have:

random(a, p′) ∈ V ′ (A.351)

Therefore, from the fact that r ∈ ΠW ∪R \ U and (A.347) we have:

truly random(a) ∈ V ′ (A.352)

234

Texas Tech University, Evgenii Balai, December 2017

The only two possible cases are:

i. r belongs to ΠW , by definition of the reduct we have:

there is no y such that do(a, y) ∈ W (A.353)

Since W is a possible world of Π, we have:

there is no y such that do(a, y) ∈ Π (A.354)

Therefore, from (A.352) by (A.333) we have:

truly random(a) ∈ V (A.355)

Therefore, V satisfies r

ii. r belongs to R. By construction of R we have

do(a, y) ∈ Π for some y (A.356)

From (A.325), (A.351) and (A.331) we have

random(a, p′) ∈ W (A.357)

From (A.333), (A.357) and (A.356) we have we have:

truly random(a) ∈ V (A.358)

Therefore, V satisfies r.

235

Texas Tech University, Evgenii Balai, December 2017

Therefore,

V satisfies every rule from ΠW \ U whose head

is of the form truly random(a) (A.359)

From (A.348) and (A.359) we have:

V satisfies every rule from ΠW \ U (A.360)

From (A.360) and (A.346) we have (A.335).

2

Lemma 38. Let S1 and S2 be two saturated sets of e-literals of Σ. The set S1 ∩ S2

is saturated.

2

Proof. Let Y be the set S1 ∩S2. In 1, we prove condition 1. In 2, we prove condition

5 from the definition. The conditions 2-4 are very similar to 1 in their structure. So,

the proofs will be similar as well, and we will omit them here.

1. Let a = y be a member of Y . We need to show that

∀y1 ∈ range(a) \ {y}, a 6= y1 belongs to Y (A.361)

Since Y = S1 ∩ S2 and a = y ∈ Y , we have that

a = y ∈ S1 (A.362)

and

a = y ∈ S2 (A.363)

236

Texas Tech University, Evgenii Balai, December 2017

From (A.423), (A.362) and (A.363) we have:

∀y1 ∈ range(a) \ {y}, a 6= y1 belongs to S1 (A.364)

∀y1 ∈ range(a) \ {y}, a 6= y1 belongs to S2 (A.365)

From (A.364) and (A.365) and the fact that Y = S1 ∩ S2 we have (A.361).

2. We prove condition 5 for Y . Suppose a is an attribute with range(a) =

{y1, . . . , yk} and there is y ∈ {y1, . . . , yk} such that

{not a = y′ | y′ ∈ ({y1, . . . , yk} {y})} ⊆ Y (A.366)

We need to show

not a 6= y ∈ Y (A.367)

Since Y = S1 ∩ S2, from (A.366) we have:

{not a = y′ | y′ ∈ ({y1, . . . , yk} {y})} ⊆ S1 (A.368)

and

{not a = y′ | y′ ∈ ({y1, . . . , yk} {y})} ⊆ S2 (A.369)

From (A.423), (A.368) and (A.369) we have:

not a 6= y ∈ S1 (A.370)

237

Texas Tech University, Evgenii Balai, December 2017

not a 6= y ∈ S2 (A.371)

From (A.370) (A.371), since Y = S1 ∩ S2 we have (A.367).

2

Lemma 39. Let A and B be two sets of e-literals of Σ such that A ⊆ B. We have

satr(A) ⊆ satr(B).

2

Proof. For the sake of contradiction, suppose satr(A) 6⊆ satr(B). Consider the set

X = satr(A) ∩ satr(B). We have X (satr(A) and A ⊆ X. By lemma 38, X =

satr(A) ∩ satr(B) is saturated. Therefore, we have a contradiction to the fact that

satr(A) is the smallest superset of A which is saturated. 2

Lemma 40. Let A and B be two sets of e-literals. We have A∪satr(B) ⊆ satr(A∪B).

2

Proof. Let l be a literal from A ∪ satr(B). If l ∈ A ∪ B, the truth of the lemma

follows immediately. Suppose l 6∈ A ∪ B. Then we have l ∈ satr(B). By Lemma 39

we have l ∈ satr(A ∪B).

2

Lemma 41. Let Π be a program. Let TU be the set of e-literals: Let TU be the set

of e-literals:

TU = {not l | l is formed by truly random(a) and do(a = y) ∈ Π for some y}

Let W be a possible world of Π. W satisfies TU .

2

238

Texas Tech University, Evgenii Balai, December 2017

Proof. Let l be an e-literal from TU formed by truly random(a). Since W is a

possible world of Π, the only rule with truly random(a) in the head is:

truly random(a)← random(a), not do(a, y1), . . . , not do(a, yk)

and we have do(a, y) ∈ Π for some y ∈ {y1, . . . , yk}, we have that ΠW has no rules

with truly random(a) in the head. Therefore, by minimality of possible worlds, the

atom truly random(a) does not belong to W . Therefore, W satisfies l. 2

For an e-literal l, by atf(l) we will denote the attribute term used to form l. For

a set of e-literals I, by atf(I) we will denote the set of attribute terms:

atf(I) = {atf(l) | l ∈ I}

Lemma 42. Let A and B be two sets of e-literals of Σ, such that atf(A)∩atf(B) = ∅.

We have:

satr(A) ∪ satr(B) = satr(A ∪B) (A.372)

2

Proof. From Lemma 40 we have satr(A) ∪ B ⊆ satr(A ∪ B) and satr(B) ∪ A ⊆

satr(A ∪B). Therefore satr(A) ∪ satr(B) ⊆ satr(A ∪B). We next show

satr(A ∪B) ⊆ satr(A) ∪ satr(B) (A.373)

For the sake of contradiction, suppose there exits an e-literal such that:

l ∈ satr(A ∪B) (A.374)

but

l 6∈ satr(A) ∪ satr(B) (A.375)

239

Texas Tech University, Evgenii Balai, December 2017

Let a = atf(l). We must have that a ∈ atf(A) or a ∈ atf(B) (otherwise, the set

obtained from satr(A ∪ B) by removing all e-literals formed by a is saturated, is

smaller than satr(A ∪B), and contains both A and B). Without loss of generality,

a ∈ atf(A) (A.376)

Let LA be the set of e-literals in satr(A) formed by a. Let LAB be the set of e-literals

in satr(A ∪B) formed by a.

From (A.374) and (A.375) and the fact that l is formed by a we have that L′ = LA∩

LAB (LAB. By lemma (38), L′ is saturated. But then we have satr(A∪B)\LAB∪L′

is saturated and contains A and B, which is a contradiction.

2

Lemma 43. Let A be a set of atoms of Σ. satr(A) is consistent.

Proof. It is easy to see that no interpretation can satisfy two inconsistent e-literals.

Consider the interpretation I consisting of atoms in A. Clearly, I satisfies A. By

lemma 36, I satisfies satr(A), therefore it is consistent. 2

Proposition 6. Let f be an admissible consequence function of program Π from B.

We have f is a consequence function of Π.

2

Proof. We prove both conditions of Definition (44) in 1 and 2 respectively. As in the

definition (50), we define set of literals

Ltr = {l | l is formed by truly random(a) and do(a = y) ∈ Π for some y}

set of e-literals:

TU = {not l | l ∈ Llr}

AR, the set of activity records of Π and and ARNOT be defined as in Definition 50.

240

Texas Tech University, Evgenii Balai, December 2017

1. We show that f({}) is defined. Let f ′ be the consequence function of Π′. By

condition 1 of definition (44) , we have that

f ′({}) is defined (A.377)

Since I = {}, we have:

I ∩ Ltr = {} (A.378)

and

I ∩ ARNOT = {} (A.379)

I contains no literals formed by random attribute terms (A.380)

From (A.377) - (A.380) by definition (50) we have that f({}) is defined.

2. We show that if f(I) is defined, then f(I) is a consequence of I w.r.t Π (Def-

inition 36). In (a) we show that f(I) is consistent (note that it is saturated

by construction). In (b) and (c) we prove both conditions of Definition 36

respectively.

(a) We show that f(I) is consistent. Let X be the subset of set of e-literals

from f ′(I \ (TU ∪ satr(AR))) not containing attribute terms from TU and

AR, and Z = f ′(I \ (TU ∪ satr(AR))) ∩ (TU ∪ satr(AR)).

241

Texas Tech University, Evgenii Balai, December 2017

We have:

f(I) = satr((f ′(I \ (TU ∪ satr(AR))) \ Ltr \ ARNOT) ∪ TU ∪ AR)

(A.381)

= satr(X ∪ Z ∪ TU ∪ AR)

⊆ satr(X ∪ TU ∪ satr(AR)) (by Lemma (39))

= satr(X) ∪ satr(TU) ∪ satr(AR) (by Lemma (42))

= X ∪ TU ∪ satr(AR)(X and TU are saturated by construction)

It is easy to check see that X ∪ TU ∪ satr(AR) is consistent: atf(X),

atf(TU) and atf(AR) are pairwise disjoint, X is a subset of an inter-

pretation, TU contains only literals preceded by default negation, and

satr(AR) is consistent by lemma 43. Therefore, since, by (A.381), f(I) is

a subset of X ∪ TU ∪ satr(AR), it is consistent.

(b) We show that I ⊆ f(I). Since f ′ is a consequence function, we have

I \ (TU ∪ satr(AR)) ⊆ f ′(I \ (TU ∪ satr(AR))) (A.382)

Since f(I) is defined, we have I ∩Ltr = ∅ and I ∩ARNOT = ∅. Therefore,

I \ (TU ∪ satr(AR)) ⊆ f ′(I \ (TU ∪ satr(AR))) \ Ltr \ ARNOT (A.383)

242

Texas Tech University, Evgenii Balai, December 2017

Therefore,

I = I \ (TU ∪ satr(AR)) ∪ TU ∪ satr(AR)

⊆ f ′((I \ (TU ∪ satr(AR))) \ Ltr \ ARNOT) ∪ TU ∪ satr(AR)

(by (A.383))

⊆ satr((f ′(I \ (TU ∪ satr(AR))) \ Ltr \ ARNOT) ∪ TU ∪ AR)

(by Lemma 40)

= f(I)

(c) We show that f(I) is a consequence of I w.r.t Π. Let W be a possible

world of Π. compatible with I. We need to show that W is compatible

with f(I). Let Π′ be a program obtained from Π by removing AR. By

Lemma (37), the set of atoms

W ′ = W \U ∪{truly random(a) |∃p, y : random(a, p) ∈ W,do(a, y) ∈ Π}

(A.384)

is a possible world of Π′.

We will show that

W ′ is compatible with I \ (TU ∪ satr(AR)) (A.385)

By construction, W ′ satisfies every e-literal l of I \ (TU ∪ satr(AR)) which

is not formed by do(a) such that do(a) ∈ Π, obs(a) such that obs(a) ∈ Π or

one of the attribute terms from {truly random(a) |∃p, y : random(a, p) ∈

W and do(a, y) ∈ Π} . We consider the remaining forms of l in i-ii below.

i. for f ∈ {obs, do}, l is formed by f(l) and f(l) ∈ Π. Since l ∈ I, and

W is a possible world of Π compatible with I we have that W satisfies

l. Therefore, l must belong to satr(AR) (or else, satr(AR) contains

243

Texas Tech University, Evgenii Balai, December 2017

an e-literal contrary to l, and l is not satisfied by W).

ii. l is formed by a member of

{truly random(a) |∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}

Since l does not belong to TU , l ∈ Ltr. However, since I ∩Ltr = ∅ we

cannot have l ∈ I.

Therefore, (A.385) holds. Since f ′ is a consequence function of Π′, we have:

W ′ satisfies f ′(I \ (TU ∪ satr(AR)) (A.386)

By Lemma 41, we have:

W satisfies TU (A.387)

We next show

W satisfies f ′(I \ (TU ∪ satr(AR)) \ Ltr \ ARNOT (A.388)

By construction, W satisfies every e-literal l of f ′(I \ (TU ∪ satr(AR)) \

Ltr \ ARNOT which is not formed by do(a) such that do(a) ∈ Π, obs(a)

such that obs(a) ∈ Π or one of the attribute terms from

{truly random(a) |∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}.

We consider the remaining forms of l in i-ii below.

i. for f ∈ {obs, do}, l is formed by f(l), and f(l) ∈ Π. From (A.388)

we have W ′ satisfies l. Since W ′ is an answer set of Π′ that doesn’t

contain actions or observations, l must have default negation. Since

l 6∈ ARNOT , we only have two possibilities:

A. l is of the form not f(l) = false. Since W contains f(l), it does

244

Texas Tech University, Evgenii Balai, December 2017

not satisfy f(l) = false, and satisfies l.

B. l is of the form not f(l) 6= true. Since W contains f(l), it does

not satisfy f(l) 6= true, and satisfies l.

ii. l is formed by a member of

{truly random(a) | ∃p, y : random(a, p) ∈ W and do(a, y) ∈ Π}.

Since l 6∈ Ltr, we must have l ∈ TU . By (A.387), we have W satisfies

l.

Therefore, (A.388) holds.

Since W is a possible world of Π containing facts AR we have:

W satisfies AR (A.389)

From (A.389) , (A.388) and (A.387) we have:

(W satisfies f ′(I \ (TU ∪ satr(AR)) \ Ltr \ARNOT) ∪AR ∪ TU (A.390)

From (A.390) by Lemma 36 we have that W is compatible with f(I).

Finally, we show that no attribute term in f(I) \ I is formed by a random

attribute term of Π. Clearly, since AR, TU , Ltr, ARNOT do not contain

e-literals formed by random attribute terms, it is sufficient to show that no

e-literal from f ′(I \ (TU ∪ satr(AR)) \ I is formed by a random attribute

term.

Since f ′ is a consequence function, no literal from f ′(I \ (TU ∪satr(AR))\

(I \ (TU ∪ satr(AR))) is formed by a random attribute term. Therefore,

since AR, TU do not contain e-literals formed by random attribute terms,

we have that no e-literal from f ′(I \ (TU ∪ satr(AR)) \ I is formed by a

245

Texas Tech University, Evgenii Balai, December 2017

random attribute term.

2

A.3.5 Proof of Proposition 7

We start from introducing some notation and definitions. Let Π be a program

from B with signature Σ, f be a consequence function of Π, TΠ〈f〉 be an AI-tree of

Π, and I be an i-node of TΠ〈f〉. By RatomsΠ(I) we will denote the set of atoms of

Σ:

{a = y | a = y ∈ I and a is a random attribute term of Π}

Definition 75 (Reachable sequence).

Let I = I0, . . . , In be a non-empty sequence of e-interpretations of Σ. We will say

that I0, . . . , In is reachable w.r.t. Π iff:

1. I0 is a consequence of {} w.r.t Π.

2. For every i ∈ {1..n}, there exists a unique random attribute term a ready in I

such that Ii is a consequence of satr(Ii−1 ∪ a = y) for some possible value y of

a in Ii−1. We will refer to a as rdiffI(Ii)

3. For every i ∈ {1..n}, every e-literal in Ii \ Ii−1 formed by a random attribute

term of Π is formed by rdiffI(Ii).

We will say that I is reachable via a consequence function f of Π if for every i ∈ {1..n},

Ii = f(Ii ∪ a = y) for a and y satisfying conditions from 2.

2

Definition 76 (Reachable e-interpretation).

Let Π be a program with signature Σ. Let I be an e-interpretation of Σ. We will

say that I is reachable w.r.t program Π if there exists a reachable sequence I1, . . . , In

such that In = I. We will refer to I0, . . . , In as a corresponding sequence for I. For

246

Texas Tech University, Evgenii Balai, December 2017

a consequence function f of Π, we will say that I is reachable via f iff I0, . . . , In is

reachable via f .

2

We will often omit the program from the consideration if it is clear from the

context. For a reachable sequence I = I0, I1, . . . , In by ats(I0, I1, . . . , In) we will

denote the sequence a1 = y1, . . . , an = yn such that:

for every i ∈ {1..n}, ai = diffI(Ii) and ai = yi ⊆ Ii

Lemma 44. Let A be a set of attribute terms of Σ, LA be the set of all e-literals

formed by A, and Y is a subset of LA. Let X be a set of e-literals of Σ. Let I be an

interpretation of Σ. If I satisfies X, then I satisfies satr(X ∪ Y) \ LA. 2

Proof. We first show

satr(X ∪ Y) \ LA ⊆ satr((X ∪ Y) \ LA) (A.391)

For a set of e-literals L of Σ, and an attribute term a, by La we will denote the subset

of L consisting of e-literals formed by a. Suppose (A.391) does not hold. In this case

there exists an attribute term b such that

(satr(X ∪ Y) \ LA)b 6= (satr((X ∪ Y) \ LA))b

Clearly, satr(X ∪ Y) \ LA is saturated. Therefore, by Lemma 38

Lb = (satr(X ∪ Y) \ LA)b ∩ (satr((X ∪ Y) \ LA))b

is saturated. But then satr((X∪Y)\LA)∩Lb is a proper subset of satr((X∪Y)\LA)

containing (X ∪ Y) \ LA which is saturated, which is a contradiction.

Therefore, (A.391) holds. By Lemma 39, since (X ∪ Y) \ LA ⊆ X we have:

247

Texas Tech University, Evgenii Balai, December 2017

satr((X ∪ Y) \ LA) ⊆ satr(X) (A.392)

From (A.391) and (A.392) we have:

satr(X ∪ Y) \ LA ⊆ satr(X) (A.393)

Therefore, since I satisfies X, by Lemma 36 and the definition of satisfiability we

have I satisfies satr(X ∪ Y) \ LA
2

Lemma 45. Let Π be a program from B with signature Σ. Let Π′ be obtained from

Π by removing all activity records. Let f be an admissible consequence function of Π.

Let I an e-interpretation reachable w.r.t Π such that J0, J1, . . . , Jn is a corresponding

sequence for I reachable via f . Let a1 = y1, . . . , an = yn be ats(J0, . . . , Jn). Let W ′

be a possible world of Π′ such that ats(J0 . . . , Jn) ∩RatomsΠ(I) ⊆ W ′. Let I ′ be an

interpretation obtained from I by removing:

1. e-literals formed by truly random(a) for every a such that do(a = y) ∈ Π,

2. e-literals formed by do(a) such that do(a) ∈ Π,

3. e-literals formed by obs(l) such that obs(l) ∈ Π

W ′ is compatible with I ′.

2

Proof. Let R be the set of attribute terms:

R = {truly random(a) | do(a = y) ∈ Π for some y}

248

Texas Tech University, Evgenii Balai, December 2017

Let Atr be the set of attribute terms:

Atr = R ∪ {do(a) | do(a) ∈ Π}

∪ {obs(l) | obs(l) ∈ Π}

and Etr be the set of e-literals of Σ formed by attribute terms in Atr, Ltr, TU , and

ARNOT be the sets of e-literals defined as in definition 50. Let J ′0, . . . , J
′
n be a sequence

of e-interpretations such that for every i ∈ {1..n} J ′i = Ji \ Etr. We will prove by

induction on i that for every i ∈ {0..n}, W ′ is compatible with J ′i . The correctness

of the lemma then follows immediately.

Let f ′ be the consequence function of Π′ such that f is induced by f ′.

Base Case We have J0 = satr((f ′({}) \ Ltr \ ARNOT) ∪ TU ∪ AR)

Since f ′ is a consequence of Π′,

W ′ satisfies f ′({}) (A.394)

Therefore,

W ′ satisfies f ′({}) \ Ltr \ ARNOT (A.395)

Since TU ∪ AR ⊆ Etr, by Lemma (44) we have that

W ′ satisfies satr(f ′({}) \ Ltr \ ARNOT ∪ TU ∪ AR) \ Etr (A.396)

That is, W ′ satisfies J ′0.

Ind. Hyp. Suppose

W ′ is compatible with J ′k (A.397)

for some k < n.

249

Texas Tech University, Evgenii Balai, December 2017

Ind. Step We will show that

W ′ is compatible with J ′k+1 (A.398)

By inductive hypothesis, W ′ is compatible with J ′k, therefore, we have that

W ′ satisfies every e-literal from J ′k (A.399)

By definition of a reachable sequence, we have:

Jk+1 = f(satr(Jk ∪ {ak+1 = y})) (A.400)

where

ak+1 is ready in Jk (A.401)

and

y is a possible value of ak+1 in Jk

We show

W ′ satisfies ak+1 = y (A.402)

We consider two cases: ak+1 = u and ak+1 6= u.

1. ak+1 = u.

Since ak+1 is ready in Jk, and u is a possible value of ak+1 in Jk, we have

that ak+1 is disabled in Jk. Since the bodies of random selection rules

of Π do not contain literals formed by truly random, obs and do, ak+1 is

disabled in J ′k. Therefore, by Lemma 33, W ′ does not assign a value to

ak+1. and we have (A.402).

250

Texas Tech University, Evgenii Balai, December 2017

2. ak+1 = y for y 6= u. Since ats(J0, . . . , Jn) ∩ RatomsΠ(I) ⊆ W ′, and

ak+1 = y ⊆ Jk+1 ⊆ Jn, we have (A.402).

Then we have:

J ′k+1 = f(satr(Jk ∪ {ak+1 = y})) \ Etr (A.403)

= satr(f ′(satr(Jk ∪ {ak+1 = y} \ (TU ∪ satr(AR)))) \ Ltr \ ARNOT)

∪ TU ∪ AR) \ Etr

Therefore, since TU ∪ AR ⊆ Etr, and f ′ is a consequence function of Π′, it is

sufficient to show

W ′ satisfies satr(Jk ∪ {ak+1 = y}) \ (TU ∪ satr(AR)) (A.404)

Since f is defined on satr(Jk ∪ {ak+1 = y}), we have:

satr(Jk ∪ {ak+1 = y}) ∩ Ltr = ∅ (A.405)

and

satr(Jk ∪ {ak+1 = y}) ∩ ARNOT = ∅ (A.406)

Therefore, by minimality of saturation satr(Jk∪{ak+1 = y})\ (TU ∪satr(AR))

does not contain literals formed by do and obs not preceded by default nega-

tion. W ′ satisfies all such literals. Also, from (A.405), satr(Jk ∪ {ak+1 =

y}) \ (TU ∪ satr(AR)) does not contain literals formed by attribute terms from

R. Therefore,

W ′ satisfies satr(Jk ∪ {ak+1 = y}) \ (TU ∪ satr(AR)) ∩ Etr (A.407)

251

Texas Tech University, Evgenii Balai, December 2017

We have: Let Z = TU ∪ satr(AR)

satr(Jk ∪ {ak+1 = y}) \ TU \ satr(AR) = satr(J ′k ∪ Y ∪ {ak+1 = y}) \ Z

= satr(J ′k ∪ {ak+1 = y}) ∪ satr(Y) \ Z

for some Y consisting of e-literals from Etr.

From (A.397) and (A.402) by Lemma 36 we have

W ′ satisfies satr(J ′k ∪ {ak+1 = y}) (A.408)

From (A.408) and (A.407) we have (A.404).

Therefore, (A.398) holds.

2

Lemma 46. Let Π be a program from B with signature Σ. Let Π′ be the program

obtained from Π by removing activity records. Let a1, . . . , am be a probabilistic

leveling of Π′ satisfying condition from Definition 20. Let T1, . . . , Tm be the sequence

of trees described in the proof of lemma 8 such that Tm = T is a tableau which

represents Π′. Let f be an admissible consequence function of Π, and I be an e-

interpretation of Σ reachable w.r.t f . Let A be the set of atoms of I formed by

random attribute terms of Π. There exists a leaf node n of T such that A ⊆ pT (n).

2

Proof. For a subset A′ of A, let h(A′) denote the statement:

there exists a leaf node n of T such that A′ ⊆ pT (n)

Clearly, h({}) holds.(by construction, T is non-empty and {} is a subset of any leaf

node of T).

252

Texas Tech University, Evgenii Balai, December 2017

We will prove the lemma by defining an order ≺ of subsets of A such that:

for any proper subset A′ of A, A′ ≺ A (A.409)

for any subset A′ of A, ¬A′ ≺ A′ (A.410)

for any three subsets A1, A2, A3 of A, A1 ≺ A2 ∧ A2 ≺ A3 implies A1 ≺ A3 (A.411)

and showing that if for a proper subset A′ of A, there exists a node n of T such that

A′ ⊆ pT (n), then there exists another subset A′′ of A such that:

(a) A′ ≺ A′′

(b) there exists a node n′ of T such that A′′ ⊆ pT (n′)

The existence of A′′ for every subset A′ of A satisfying (a)-(b) and the properties

(A.409) - (A.411) of ≺ imply that there exists a node nf of T such that A ⊆ pT (nf).

Therefore, for any leaf node nl of T which is descendant of nf , A ⊆ pT (nl). Since for

any node of a tree there exists at least one leaf descendant, the lemma holds.

1. We define ≺ satisfying (A.409) - (A.411). Let A′ = {b1, . . . , bj} be a subset of

A. By for a random attribute term a of Π, by it(a) we denote the index of

a in a1, . . . , am. (that is, it(a) = i iff a = ai). We will first define a function

val : 2A → {0..(2|A| − 1)}:

val(A′) =

j∑
i=1

2m−it(bj) (A.412)

The relation ≺ is defined as follows:

A1 ≺ A2 iff val(A1) < val(A2) (A.413)

It is easy to check that the subsets of A are in one-to-one correspondence with

numbers in {0..(2|A| − 1)} obtained by applying the function val to them.

253

Texas Tech University, Evgenii Balai, December 2017

Therefore,

for any two subsets A1 6= A2 of A, val(A1) 6= val(A2) (A.414)

and (A.410) holds. Also, (A.409) holds because val(A) > val(A′) for any subset

A′ of A.

Therefore, since < is transitive, (A.411) holds.

2. Let A′ = {b1, . . . , bk} be a proper subset of A. Let d a the node of T such that

A′ ⊆ pT (d). We show that there exists another subset A′′ of A such that:

(a) A′ ≺ A′′, and

(b) there exists a node d′ of T such that A′′ ⊆ pT (d′).

Let CI = I0, I1, . . . , In be the corresponding sequence for I, and ats(J0, . . . , Jn)

be as1 = y1, . . . , asn = yn.

Let j be the smallest integer such that

yj 6= u (A.415)

and

asj = yj 6∈ A′ (A.416)

Note that, since A′ is a proper subset of A, j exists and j ≤ n.

By definition of corresponding sequence,

Ij is a consequence of satr(Ij−1 ∪ {asj = yj}) (A.417)

where

asj is ready in Ij−1 (A.418)

254

Texas Tech University, Evgenii Balai, December 2017

and

yj is a possible value of asj in Ij−1 (A.419)

From (A.415) and (A.418) we have that asj is active in Ij−1. Therefore, there

exists a unique rule r of the form

random(asj : {X : p(X)})← B (A.420)

such that

B is satisfied by Ij−1 (A.421)

every atom of the form p(y1), where y1 ∈ range(asj), is decided in Ij−1

(A.422)

p(yj) is satisfied by Ij−1 (A.423)

for every y ∈ PO(Ij−1, r, asj), Ij−1 ∪ {asj = y} is consistent (A.424)

and

the body of every pr-atom for asj is either satisfied or falsified by Ij−1

(A.425)

Let dl be a leaf of T with ancestor d. By Lemma 18, there exists a unique

possible world Wk of Π′ such that

Wk satisfies pT (dl) (A.426)

255

Texas Tech University, Evgenii Balai, December 2017

Let I ′j−1 be obtained from Ij−1 by removing:

(a) e-literals formed by truly random(a) for every a such that do(a = y) ∈ Π,

(b) e-literals formed by do(a) such that do(a) ∈ Π,

(c) e-literals formed by obs(l) such that obs(l) ∈ Π

Since j is the smallest index such that yj 6= u and asj = yj 6∈ A′, every atom

from as1 = y1, . . . , asj−1
= yj−1 belongs to A′. Since A′ ⊆ pT (d) ⊆ pT (dl), by

lemma (45) we have:

Wk is compatible with I ′j−1 (A.427)

Since B does not contain literals formed by truly random, do and obs, from

(A.427) and (A.421) by lemma 32 we have:

Wk satisfies B (A.428)

Let nit(asj)−1 be the ancestor of dl such that

nit(asj)−1 is a leaf node in Tit(asj)−1 (A.429)

We will prove

nit(asj)−1 is ready to branch on asj relative to Π′ (A.430)

We will prove (A.431) by contradiction. Suppose

nit(asj)−1 is not ready to branch on asj relative to Π′ (A.431)

256

Texas Tech University, Evgenii Balai, December 2017

In this case, by construction of T ,

pT (dl) contains no atoms formed by asj (A.432)

Since Wk is the only possible world satisfying pT (dl), from (A.428) we have:

pT (dl) Π′-guarantees B (A.433)

From (A.423) and (A.427) we have:

Wk satisfies p(yj) (A.434)

Therefore, since Wk is the only possible world of Π′ containing pT (dl):

pT (dl) Π′-guarantees p(yj) (A.435)

From (A.435), (A.433) (A.432) and the fact that Wk is the only possible world

of Π′ satisfying pT (dl) we have

dl is ready to branch on asj relative to Π′ (A.436)

Therefore, T is a not a tableau of Π′ (it is not maximal with respect to sub-

tree relation), which is a contradiction. Therefore, (A.431) does not hold, and

(A.430) holds.

We next show:

nit(asj)−1 Π′ -guarantees p(ysj) (A.437)

From (A.436) we have that pT (dl) has an atom formed by asj . Since Wk satisfies

257

Texas Tech University, Evgenii Balai, December 2017

pT (dl) nit(asj)−1 is an ancestor of dl, we have that Wk satisfies pT (nit(asj)−1).

Therefore, from (A.430) and (A.434) we have (A.437).

Therefore, by construction, T contains a child nc of nit(asj+1)−1 such that

pT (nc) = pT (nit(ask+1
)−1) ∪ {asj = yj}.

Now consider the set of atoms An = A ∩ pT (nc). Clearly there exists a node of

T which contains An (it’s nc). Therefore, we only need to show

A′ ≺ An (A.438)

By construction, the nodes d, nit(asj)−1 and dl belong to the same path from

the root of T to its leaf nf . Let us denote this path by P . Consider the sets

Aup = A′ ∩ pT (nit(asj)−1) and Adown = A′ \ pT (nit(asj)−1). Since nc is a child of

nit(asj)−1, it is sufficient to show that:

for every a = y ∈ Adown, it(a) > it(asj) (A.439)

If nit(asj)−1 has no children in P , then, since d belongs to P , A′ ⊆ pT (d), Adown

is empty, and (A.439) is vacuously true.

Let n′c be the child of nit(asj)−1 in P . Since nit(asj)−1 is ready to branch on asj

and belongs to the tree Tit(asj)−1, pT (n′c) = pT (nit(asj)−1) ∪ {asj = y′} for some

y′. Therefore, since every node Adown does not belong to pT (nit(asj)−1), and no

node of Adown is equal to asj = y′ (since no atom in A′ is formed by asj), every

atom of Adown labels an edge below n′c. Therefore, by construction of the tree,

we have (A.439).

2

Proposition 7 Let f be an admissible consequence function of Π. Let I be a

258

Texas Tech University, Evgenii Balai, December 2017

definite i-node of TΠ〈f〉. I is incompatible iff there exists an axiom in X (Π) whose

body is satisfied by I.

2

Proof. ⇒We will prove that if I is incompatible, then there exists an axiom in X (Π)

whose body is satisfied by I. We prove the contrapositive: if the body of every axiom

in X (Π) is not satisfied by I, then I is compatible. Suppose the body of every axiom

in X (Π) is not satisfied by I. Since I is a definite node, we have:

I falsifies the body of every axiom in X (Π) (A.440)

Let U be the set of activity records of Π. Let Π′ be the program Π \ U . By

construction, I is reachable w.r.t f . Let A be the set of atoms in I formed by random

attribute terms of Π. Let T1, . . . , Tm be the sequence of trees described in the proof

of lemma 8 such that Tm = T is a tableau which represents Π′. By lemma (46),

there exists a leaf node n of T such that A ⊆ pT (n). Let W ′ be the possible world

of Π′ represented by n. Let I ′ be an interpretation obtained from I by removing

all e-literals formed by truly random(a) for every a such that do(a = y) ∈ Π. By

Lemma 45,

W ′ is compatible with I ′ (A.441)

We next show:

for every action do(a = y) of Π, W ′ satisfies a = y (A.442)

The axiom

← do(a, y), not a = y

belongs to X (Π).

By (A.440), the fact that I is in the image of an admissible consequence function

259

Texas Tech University, Evgenii Balai, December 2017

that includes all activity records of Π, we have that I satisfies a = y. By construction

if I ′, I ′ satisfies a = y. Therefore, by (A.441) we have (A.442). Similarly, using the

other axioms:

← obs(l), not l

and

← do(a, y), not random(a, p1), . . . , random(a, pn)

we can show:

for every observation obs(l) of Π, W ′ satisfies l (A.443)

and

for every action do(a = y) of Π, W ′ satisfies random(a, p) for some p (A.444)

From (A.442) - (A.444) by lemma (31) we have that the set of atoms:

W = W ′ \ {truly random(a) | do(a, y) ∈ Π} ∪ U (A.445)

is a possible world of Π.

It is sufficient show that:

W is compatible with I (A.446)

Let A1 be the set of attribute terms from activity records of Π, and A2 be the set

of attribute terms

{truly random(a) | do(a = y) ∈ Π}

From (A.441) by construction of I ′ and W , W satisfies all e-literals from I that are

not formed by attribute terms from A1 ∪A2. In 1 and 2 we show that W satisfies all

260

Texas Tech University, Evgenii Balai, December 2017

e-literals from I formed by attribute terms from A1 and A2 respectively.

1. We prove that

W satisfies all e-literals from I formed by attribute terms from A1 (A.447)

Since I is reachable via f , we have I = f(I ′) for some interpretation I ′, where

I = f(I ′) = satr((f ′(I ′ \ (TU ∪ satr(AR))\Ltr \ARNOT)∪TU ∪AR) (A.448)

By lemma (39), we have:

satr(AR) ⊆ I (A.449)

Since W is a possible world of Π, W satisfies AR. Therefore, by lemma 36,

W satisfies satr(AR) (A.450)

Since every e-literal formed by A1 not belonging to satr(AR) is contrary to an

e-literal from satr(AR), and I is a consistent set of e-literals, from (A.450) we

have (A.447).

2. We prove that

W satisfies all e-literals from I formed by attribute terms from A2 (A.451)

Similarly to 1, from (A.448) we can see that I can only contain e-literals formed

by A2 belonging to TU . Therefore, by Lemma 41, W satisfies all such e-literals.

⇐ Suppose there exists an axiom r in X (Π) whose body is satisfied by I. Suppose

there exists a possible world compatible with I. By Proposition 4, the possible world

does not satisfy r, which contradicts Proposition 1.

261

Texas Tech University, Evgenii Balai, December 2017

2

A.3.6 Proof of Proposition 8

Lemma 47. Let Π be a program with signature Σ, I be an e-interpretation of Σ

such that every random attribute term of Π is decided in I. There exists at most one

possible world of Π compatible with I.

2

Proof. Let A be the set of atoms in I formed by random attribute terms of Π. For

the sake of contradiction, suppose there exists two different possible worlds, W1 and

W2 of Π, compatible with I. We have:

A is the set of atoms in W1 formed by random attribute terms of Π (A.452)

A is the set of atoms in W2 formed by random attribute terms of Π (A.453)

Let Π′ be a program obtained from Π by removing activity records. By lemma

37, there exists two possible worlds, W ′
1 and W ′

2 of Π′, which coincide with W1 and

W2 respectively on the atoms formed by random attribute terms. Therefore, from

(A.452) and (A.453) we have a contradiction to Lemma 18.

2

Let Π be a program from B with signature Σ.

Lemma 48. Let I be a reachable interpretation of Σ and I0, . . . , In be a corresponding

sequence for I. For every random attribute term a of Π we have:

1. for every e-literal l in I, if a is formed by random attribute term, then a is

decided in I,

2. a = y ∈ I, then a = y is an element of ats(I0, . . . , In)

3. if a = u ⊆ I , then a = u is an element of ats(I0, . . . , In).

262

Texas Tech University, Evgenii Balai, December 2017

2

Proof. This follows immediately from the definition of a reachable sequence (Defini-

tion 75). 2

If I0, . . . , In is a reachable sequence with ats(I0, . . . , In) = a1 = y1, . . . , an = yn,

and a = y is an atom in In , then we will refer to i such that ai = a and yi = y as

the spot of a = y in I0, . . . , In.

Lemma 49. Let I0, . . . , In be a reachable sequence of program Π. We have:

for every i, j ∈ {0..n} such that i ≤ j, Ii ⊆ Ij

2

Proof. It is sufficient to show that for every i ∈ {0..n}, Ii ⊆ Ii+1. The lemma then

follows immediately from the reflexivity and transitivity of ⊆. By definition of a

reachable sequence, we have Ii+1 is a consequence of satr(Ii∪{a = y}) for some atom

a = y. By Lemma (39) we have:

Ii ⊆ satr(Ii ∪ {a = y}) (A.454)

By clause 1 of Definition 36 we have:

satr(Ii ∪ {a = y}) ⊆ Ii+1 (A.455)

From (A.454) and (A.455) we have:

Ii ⊆ Ii+1 (A.456)

2

263

Texas Tech University, Evgenii Balai, December 2017

Lemma 50. Let I be a reachable interpretation of Σ s.t. µ̂∗(I) is defined. Let a = y

be an atom of Σ such that a is a random attribute term of Σ. We have P (I, a = y)

defined iff truly random(a) ∈ I. 2

Proof. If truly random(a) 6∈ I, then, clearly, P (I, a = y) is not defined. Suppose

now P (I, a = y) is not defined. Let I0, . . . , In be a corresponding sequence for I. Let

i be the spot of a = y in I0, . . . , In. We have that a is active in Ii−1, which means:

B is satisfied by Ii−1 (A.457)

for every y ∈ range(a), p(y) is decided in Ii−1 (A.458)

for every pr-atom pr(a = y1 |B1) = v of Π, B1 ⊆ Ii−1 or B1 is falsified by Ii−1

(A.459)

By Lemma 49:

Ii−1 ⊆ I (A.460)

From (A.460) and (A.457) - (A.459):

B is satisfied by I (A.461)

for every y ∈ range(a), p(y) is decided in I (A.462)

for every pr-atom pr(a = y1 |B1) = v of Π, B1 ⊆ Ii or B1 is falsified by I (A.463)

264

Texas Tech University, Evgenii Balai, December 2017

Since W is compatible with I, from A.460 we have:

W is compatible with Ii−1 (A.464)

Since a = y ∈ I, and W is compatible with I, by Proposition 4 we have a = y ∈ W .

From (A.458), (A.464) and lemma 33 and the fact that a is active in Ii we have:

p(y) ∈ Ii−1 (A.465)

From (A.465) and (A.460) we have:

p(y) ∈ I (A.466)

Since P (I, a = y) is not defined, one of the conditions from (5.6) - (5.9) has to be

violated. Therefore, from (A.465), (A.461) - (A.463) we have that

truly random(a) 6∈ I (A.467)

2

Lemma 51. Let Π be a program from B. Let I be a reachable e-interpretation of Π

such that:

1. µ̂∗(I) is defined, and

2. for every random attribute term a decided in I, truly random(a) is decided in

I.

Let W be a possible world compatible with I. For every random attribute term

decided in a we have:

1. if P (I, a = y) is defined, then P (W,a = y) defined and P (W,a = y) = P (I, a =

y)

265

Texas Tech University, Evgenii Balai, December 2017

2. if P (I, a = y) is undefined, then P (W,a = y) is undefined

2

Proof. 1. Suppose P (I, a = y) is defined. By condition (5.6) - (5.7) we have that

there exists a rule r of Π such that:

y ∈ PO(I, r, a) for some random selection rule

random(a, p)← BofΠ such that B ⊆ I
(A.468)

truly random(a) ∈ I, (A.469)

for every pr-atom pr(a = y1 |B) = v of Π, either B ⊆ I, or B is falsified by I

(A.470)

for every y ∈ range(a), p(y) is decided in I (A.471)

From (A.468) we have B ⊆ I, then by Proposition 4 we have:

W satisfies B (A.472)

From (A.468) we have p(y) ⊆ I, then by Proposition 4 we have:

W satisfies p(y) (A.473)

From (A.469) by Proposition 4 we have:

W satisfies truly random(a) (A.474)

Since P (I, a = y) is defined, we have that

a = y ∈ I (A.475)

266

Texas Tech University, Evgenii Balai, December 2017

From (A.475) by Proposition 4 we have:

a = y ∈ W (A.476)

From (A.476), (A.472) - (A.474) we have that P (W,a = y) is defined.

From (A.470) by Proposition 4 we have:

for every pr-atom pr(a = y1 |B1) = v of Π, B1 ⊆ I iff W |= B1 (A.477)

From (A.471)) by Proposition 4 we have:

for every y ∈ range(a), p(y) ∈ I iff p(y) ∈ W (A.478)

From (A.477) and (A.478) we have P (I, a = y) = P (W,a = y).

2. Suppose P (I, a = y) is undefined. By lemma 50, truly random(a) 6∈ I. Since

truly random(a) is decided in I, we must have truly random(a) = u ∈ I or

truly random(a) = falseinI. In both cases, by Proposition 4, W does not

satisfy truly random(a). Therefore, P (W,a = y) is undefined.

2

Lemma 52. Let Π be a program with signature Σ. Let I be a compatible reachable

e-interpretation of Σ. We have that µ̂∗(I) is defined.

Proof. Let W be a possible world compatible with I. For the sake of contradiction,

suppose µ̂∗(I) is undefined. In this case, one of the conditions 4 -6 has to be violated

for I. We consider each condition separately:

1. Suppose Condition 4 is violated for I. In this case there are two rules

random(a, p1)← B1

267

Texas Tech University, Evgenii Balai, December 2017

and

random(a, p2)← B2

such that B1, B2 ⊆ I. Therefore, by Proposition 4, we have W |= B1 and

W |= B2. In this case, Condition 1 is violated for Π. Contradiction.

2. Suppose Condition 5 is violated for I. In this case there is a random selection

rule random(a, p1)← B and two pr-atoms pr(a(t) |B1) = v1 and pr(a(t) |B2) =

v2 such that B1, B2, B ⊆ I. Therefore, from (A.480) we have B1, B2, B ⊆ I. In

this case, Condition 2 is violated for Π. Contradiction.

3. Suppose Condition 6 is violated for I. In this case Π contains a random selection

rule r1 : random(a, p) ← B1, a probability atom pr(a = y| B2) = v. such that

B1, B2 ⊆ I and p(y) 6∈ I. Let I0, . . . , In be the corresponding sequence for I.

Let i be the spot of a = y in I0, . . . , In. a is active in Ii−1. Therefore, there

is a rule r2 : random(a, p2) ← B3 s.t. Ii−1 satisfies B3 and p2(y) is decided in

Ii−1 for every y ∈ range(a). Since W is compatible with both Ii−1 and I, and

Condition 3 is satisfied by W , we have r1 = r2. Therefore, p = p2 and p(y) is

decided in Ii−1 for every y ∈ range(a). By Lemma 54, p(y) 6∈ Ii−1. Therefore,

since p(y) is decided in Ii−1, we have p(y) = false or p(y) = u in Ii−1. Since

W is compatible with Ii−1, p(y) 6∈ W . Therefore, Condition 3 is violated for Π.

Contradiction.

2

Lemma 53. Let I be a reachable interpretation of Σ s.t. µ̂∗(I) is defined. Let

I0, . . . , In be a corresponding sequence of I. Let a = y be an atom of Σ such that

P (I, a = y) is defined and i be the spot of a = y in I0, . . . , In. P (satr(Ii−1 ∪ a =

y ∪ truly random(a)), a = y) is defined. 3

2

3Note that, since P (I, a = y) is defined, we have a = y ∈ I and truly random(a) ∈ I. We also
have Ii ⊆ I by Lemma 49. Therefore, by Lemma 39, satr(Ii ∪ a = y ∪ truly random(a)) is a subset
of I, and, is therefore consistent.

268

Texas Tech University, Evgenii Balai, December 2017

Proof. We first prove that

µ̂∗(satr(Ii−1 ∪ a = y ∪ truly random(a))) is defined (A.479)

We know:

satr(Ii−1 ∪ a = y ∪ truly random(a)) ⊆ I (A.480)

and that

u∗(I) is defined (A.481)

For the sake of contradiction suppose (A.479) doesn’t hold. In this case, one of the

Conditions 4 - 6 has to be violated. We consider each condition in 1-3 below.

1. Suppose Condition 4 is violated for satr(Ii ∪ a = y ∪ truly random(a)). In

this case there are two rules random(a, p1) ← B1 and random(a, p2) ← B2

such that B1 ⊆ satr(Ii ∪ a = y ∪ truly random(a)) and B2 ⊆ satr(Ii ∪ a =

y∪ truly random(a)). Therefore, from (A.480) we have B1 ⊆ I and B2 ⊆ I. In

this case, Condition 4 is violated for interpretation I, and µ̂∗(I) is undefined.

Contradiction.

2. Suppose Condition 5 is violated for satr(Ii ∪ a = y ∪ truly random(a)). In

this case there is a random selection rule random(a, p1)← B and two pr-atoms

pr(a(t) | B1) = v1 and pr(a(t) | B2) = v2 such that B1, B2, B ⊆ satr(Ii ∪ a =

y ∪ truly random(a)). Therefore, from (A.480) we have B1, B2, B ⊆ I. In

this case, Condition 5 is violated for interpretation I, and µ̂∗(I) is undefined.

Contradiction.

3. Suppose Condition 6 is violated for satr(Ii ∪ a = y ∪ truly random(a)). In this

case Π contains a random selection rule r1 : random(a, p) ← B1, a probability

atom pr(a = y| B2) = v. such that B1, B2 ⊆ satr(Ii∪a = y∪ truly random(a))

and p(y) 6∈ satr(Ii−1∪ a = y∪ truly random(a)). Since i is the spot of a = y in

I0, . . . , Ii−1, a is active in Ii−1. Therefore, there is a rule r2 : random(a, p2)← B3

269

Texas Tech University, Evgenii Balai, December 2017

s.t. Ii−1 satisfied B3 and p2(y) is decided in Ii−1 for every y ∈ range(a). Since

µ̂∗(I) is defined, and Ii−1 ⊆ satr(Ii−1 ∪ a = y ∪ truly random(a)) ⊆ I, by

condition 4 we have: r1 = r2. Therefore, p = p2 and p(y) is decided in Ii−1 for

every y ∈ range(a). By Lemma 54, p(y) ∈ satr(Ii ∪ a = y ∪ truly random(a))

iff p(y) ∈ I. Therefore, p(y) ∈ I. Since satr(Ii ∪ a = y∪ truly random(a)) ⊆ I,

B1, B2 ⊆ I. Therefore, Condition 4 is violated for I, and µ̂∗(I) is undefined.

Contradiction.

Therefore, (A.479) holds. We show P (satr(Ii−1∪a = y∪ truly random(a)), a = y) is

defined. Since a is active in Ii−1, by Definition 39, there is a rule r : random(a, p)← B

such that:

Ii−1 satisfies B (A.482)

every attribute term p(x), where x ∈ range(a), is decided in Ii−1 (A.483)

for every pr-atom pr(a = y′ | B2) = v,B2 ⊆ Ii−1 or B is falsified by Ii−1 (A.484)

Since i is the spot of a = y, By clause 2 of Definition 75 we have:

y ∈ PO(Ii−1, r, a) (A.485)

We prove Conditions (5.6) - (5.9) in 1-4 respectively.

1. From (A.480), (A.482) and (A.485) we have satr(Ii−1∪a = y∪truly random(a))

satisfies B, and y ∈ PO(satr(Ii−1∪a = y∪ truly random(a))). Therefore, (5.6)

is satisfied.

2. Clearly, truly random(a) ∈ satr(Ii−1 ∪ a = y ∪ truly random(a)). Therefore,

270

Texas Tech University, Evgenii Balai, December 2017

(5.7) is satisfied.

3. From (A.480), (A.484) and (A.482) we have that for every pr-atom pr(a =

y′ | B2) = v, B2 ⊆ I or B is falsified by I. Therefore, (5.8) is satisfied.

4. By condition 1, r is the only random selection rule whose body is satisfied by

satr(Ii−1∪a = y∪ truly random(a)). By (A.480), (A.483) every attribute term

p(y) s.t. y ∈ range(a) is decided in satr(Ii−1 ∪ a = y ∪ truly random(a)).

Therefore, condition (5.9) is satisfied.

2

Before moving to the next lemma, we introduce a definition.

Definition 77 (Future probability).

Let I be a reachable interpretation of Σ s.t. µ̂∗(I) is defined. Let I0, . . . , In be a

corresponding sequence of I. Let a = y be an atom of Σ such that P (I, a = y) is

defined and i be the spot of a = y in I0, . . . , In. For each possible value y of a in Ii−1,

The future probability of a = y in Ii−1, P ∗(Ii−1, a = y), is equal to P (satr(Ii−1 ∪ a =

y ∪ truly random(a)), a = y).

2

Lemma 54. Let I, J be two e-interpretations of Σ such that I ⊆ J , and a be an

attribute term decided in I. An atom a = y belongs to I iff a = y belongs to J . 2

Proof. Suppose a = y ∈ I. Since I ⊆ J , a = y ∈ J .

Suppose a = y ∈ J . Since a is decided in I, we have that

∃y′ ∈ range(a) : a = y′ ∈ I, or a = u ∈ I (A.486)

If a = u ∈ I, then a = u ∈ J , which is impossible because a = y ∈ J , and

not a = y and a = y are contrary. Therefore,

∃y′ ∈ range(a) : a = y′ ∈ I (A.487)

271

Texas Tech University, Evgenii Balai, December 2017

It is impossible to have y′ 6= y, because in that case from I ⊆ J we will have

a = y ∈ J and a = y′ ∈ J , two contrary literals in J . Therefore, a = y ∈ J .

2

Lemma 55. Let I be a reachable interpretation of Σ s.t. µ̂∗(I) is defined. Let

I0, . . . , In be a corresponding sequence of I. Let a = y be an atom of Σ such that

P (I, a = y) is defined and i be the spot of a = y in I0, . . . , In. We have that

P ∗(Ii−1, a = y) is defined and P (I, a = y) = P ∗(Ii−1, a = y)

2

Proof. By lemma 53, P ∗(Ii−1, a = y) is defined. Since µ̂∗(I) and P (I, a = y) are

defined, by Condition 4 and (5.6), there is a unique rule of the form:

random(a, p)← B

s.t.

I satisfies B (A.488)

Since i is the spot of a = y in I0, . . . , In, a is active in Ii−1. Therefore, by Definition

39,

ai−1 is not decided in Ii−1 (A.489)

and there exists a rule r′ : random(a, p′)← B′ in Π such that:

Ii−1 satisfies the body of r′ (A.490)

every attribute term p′(x), where x ∈ range(a), is decided in Ii−1 (A.491)

for every pr-atom pr(a = y | K) of Π, K ⊆ Ii−1 or K is falsified by Ii−1 (A.492)

272

Texas Tech University, Evgenii Balai, December 2017

By Lemma 49, we have:

Ii−1 ⊆ I (A.493)

From (A.493) and (A.490) we have:

I satisfies the body of r′ (A.494)

Since µ̂∗(I) is defined, by Condition 4 from (A.494) and (A.488) we have:

r = r′ (A.495)

From (A.491) and (A.493) by Lemma 54 we have:

for every atom p(x), where x ∈ range(a), p(x) ∈ I iff p(x) ∈ Ii−1 (A.496)

From (A.492) and (A.493) by Lemma 54 we have:

for every pr-atom pr(a = y | K) of Π, K ⊆ Ii−1 iff K ⊆ I (A.497)

By definition of future probability:

P ∗(Ii−1, a = y) = P (satr(Ii−1 ∪ a = y ∪ truly random(a)), a = y) (A.498)

By Lemma 39 we have:

Ii−1 ⊆ satr(Ii−1 ∪ a = y ∪ truly random(a)) (A.499)

From (A.491) and (A.499) we have by Lemma 54:

for every atom p(x), where x ∈ range(a), p(x) ∈ Ii−1 iff

p(x) ∈ satr(Ii−1 ∪ a = y ∪ truly random(a)) (A.500)

273

Texas Tech University, Evgenii Balai, December 2017

From (A.500) and (A.496) we have:

for every atom p(x), where x ∈ range(a), p(x) ∈ I iff

p(x) ∈ satr(Ii−1 ∪ a = y ∪ truly random(a)) (A.501)

From (A.499), (A.495) and (A.490) we have:

satr(Ii−1 ∪ a = y ∪ truly random(a)) satisfies the body of r (A.502)

From (A.492) and (A.499) we have by Lemma 54:

for every pr-atom pr(a = y | K) of Π, K ⊆ Ii−1 iff

K ⊆ satr(Ii−1 ∪ a = y ∪ truly random(a)) (A.503)

From (A.503) and (A.497) we have:

for every pr-atom pr(a = y | K) of Π, K ⊆ I iff

K ⊆ satr(Ii−1 ∪ a = y ∪ truly random(a)) (A.504)

From (A.504), (A.501), (A.502) and (A.488) we have:

P (I, a = y) = P (satr(Ii−1 ∪ a = y ∪ truly random(a)), a = y) (A.505)

Therefore, from (A.498):

P (I, a = y) = P ∗(Ii−1, a = y) (A.506)

274

Texas Tech University, Evgenii Balai, December 2017

2

Lemma 56. Let Π be a program from B, I0, . . . , In and J0, . . . , Jn be two reachable

sequences of Π such that:

1. ats(I0, . . . , In) = ats(J0, . . . , Jn)

2. for every i < n, Ii = Ji

3. In ⊆ Jn

4. for every random attribute term a decided in In, truly random(a) is decided in

In

5. In is compatible

We have:

1. ΩIn = ΩJn

2. if In is compatible and µ̂∗(In) is defined, then µ̂∗(Jn) is defined, and µ̂∗(Jn) =

µ̂∗(In)

Proof. 1. We prove 1. Consider two cases:

(a) n = 0. In this case In and Jn are both consequence of {}. Therefore, every

possible of Π is compatible with both In and Jn, and we have ΩIn = ΩJn .

(b) n > 0. In this case

In is a consequence of In−1 ∪ a1 = y1 (A.507)

Jn is a consequence Jn−1 ∪ a2 = y2 (A.508)

Since for every i < n, Ii = Ji, from (A.508) we have:

Jn is a consequence In−1 ∪ a2 = y2 (A.509)

275

Texas Tech University, Evgenii Balai, December 2017

Since ats(I0, . . . , In) = ats(J0, . . . , Jn), from (A.509) we have:

Jn is a consequence In−1 ∪ a1 = y1 (A.510)

From (A.507), (A.508), (A.510) we have:

ΩIn−1∪a1=y1 = ΩIn = ΩJn (A.511)

2. Suppose In is compatible, µ̂∗(In) is defined. We will prove that µ̂∗(Jn) is defined,

and µ̂∗(Jn) = µ̂∗(In) From (A.511) we have that Jn is compatible. Therefore, by

Lemma 52, µ̂∗(Jn) is defined. If n = 0, both In and Jn have no atoms formed by

random attribute terms, so µ̂∗(Jn) = µ̂∗(In) = 1. Suppose now n > 0. Let AI

(AJ) be the set of atoms s.t. for every a ∈ A, P (In, a) (P (Jn, a)). By Lemma

48, since ats(I0, . . . , In) = ats(J0, . . . , Jn), we have that the collections of atoms

formed by random attribute terms coincide in both In and Jn. By Lemma 54,

truly random(a) ∈ In iff truly random(a) ∈ Jn. Therefore,

AI = AJ (A.512)

Now we will prove:

for every a ∈ AI , P (In, a) = P (Jn, a) (A.513)

Let a be an atom in AI , and Let i be the spot of a in I0, . . . , In. By Lemma 55,

P (In, a) = P ∗(Ii−1, a) (A.514)

Since ats(I0, . . . , In) = ats(I0, . . . , In), i is the spot of a in J0, . . . , Jn, and, by

Lemma 55,

276

Texas Tech University, Evgenii Balai, December 2017

P (Jn, a) = P ∗(Ji−1, a) (A.515)

Since j ≤ n, we have Ii−1 = Ji−1. Therefore, from (A.514) and (A.515), we

have P (In, a) = P (Jn, a). Therefore, (A.513) holds. From (A.513) and (A.512)

we have µ̂∗(In) = µ̂∗(Jn).

2

Lemma 57. Let Σ′ be a signature consisting of a collection A of attribute terms from

Σ. Let W be an interpretation of Σ′. Let I be an e-interpretation of Σ such that:

1. I contains all atoms of Wi that are not formed by do, obs, and truly random

2. for every attribute term a such that:

(a) W has no atoms formed by a,

(b) a is from Σ′

(c) a is not formed by do, obs or truly random

we have a = u ⊆ I

Let l be an e-literal from Σ′ not formed by do, obs and truly random. We have:

• if W satisfies l, then I satisfies l,

• if W does not satisfy l, then I falsifies l

2

Proof. • We first prove the case W satisfies l. We consider all possible forms of l:

1. l is a = y. In this case a = y ∈ W . By clause 1, a = y ∈ I.

2. l is a 6= y. In this case a = y1 ∈ W for y1 6= y. By condition 1, a = y1 ∈ I.

Since I is saturated, a 6= y ∈ I.

277

Texas Tech University, Evgenii Balai, December 2017

3. l is not a = y. In this case we have only two possibilities:

(a) W has no atoms formed by a. In this case by clause 2 not a = y ∈

a = u ⊆ I.

(b) W has an atom a = y1, for y1 6= y. In this case by clause 1 a = y1 ∈ I.

By clause 1 of Definition 29, a 6= y ∈ I. By clause 3 of Definition 29,

l ∈ I.

4. l is not a 6= y. We have two cases:

(a) W has no atoms formed by a. In this case by clause 2 a = u ⊆ I. By

clause 5 of Definition 29, l ∈ I.

(b) W has an atom a = y1, for y1 6= y. In this case by clause 1 a = y1 ∈ I.

By clause 2 of Definition 29, nota 6= y ∈ I. Then by clause 4 of

Definition 29 we have l ∈ I

• We next prove the case W does not satisfy l. We consider all possible forms of

l:

1. l is a = y. We consider two cases:

(a) W has no atoms formed by a. In this case a = u ⊆ I. Therefore, since

a = y is contrary to not a = y, I falsifies l.

(b) W has an atom a = y1 where y1 6= y. In this case a = y1 ∈ I. Since

a = y1 and a = y are contrary, I falsifies l.

2. l is a 6= y. We consider two cases:

(a) W has no atoms formed by a. In this case a = u ⊆ I. Therefore, since

a 6= y is contrary to not a 6= y, I falsifies l.

(b) W has an atom a = y. In this case a = y ∈ I. Since a 6= y and a = y

are contrary, I falsifies l.

3. l is not a = y. In this a = y ∈ W , a = y ∈ I. Since a = y and not a = y

are contrary, I falsifies l

278

Texas Tech University, Evgenii Balai, December 2017

4. l is not a 6= y. In this case W has an atom a = y1 where y1 6= y. Therefore,

a = y1 ∈ I. By clause 1 of Definition 29, a 6= y ∈ I. Since a 6= y and

not a 6= y are contrary, I falsifies l.

2

Lemma 58. Let Π be a program from B with signature Σ Let I be a compatible

e-interpretation of Σ. Let Π′ be obtained from Π by removing activity records. Let

a1, . . . , an is a probabilistic leveling of Π such that Π is dynamically causally or-

dered via a1, . . . , an. Let | | be the total leveling of Π determined by a1, . . . , an. Let

Π0, . . . ,Πn be a dynamic structure of Π′ induced by a1, . . . , an. Let Wi be a possible

world of Πi for some i ∈ {0..n− 1}. If I satisfies the following conditions:

1. I contains no e-literals formed by ai+1

2. I contains all atoms of Wi not formed by random, do, obs, and truly random

3. for every attribute term a such that:

• Wi has no atoms formed by a,

• |a| ≤ i, and

• a is not formed by do, obs or truly random, random

we have a = u ⊆ I

then ai+1 is ready in I.

2

Proof. By clause 1 definition 20, there are only two possibilities:

• Wi falsifies the body B of every random selection rule random(ai+1, p) ← B.

We prove that, in this case, ai+1 is disabled in I. Condition 1 of Definition 40

is satisfied, because I contains no e-literals formed by ai+1. Condition 2 follows

from Lemma 57.

279

Texas Tech University, Evgenii Balai, December 2017

• for some random selection rule r: random(ai+1, p)← B of Π we have:

Wi satisfies B (A.516)

By condition 1 from Definition 20 we have

r is active in Wi−1 (A.517)

Therefore, by condition 2 of Definition 19

for every y ∈ range(a), |p(y)| ≤ i (A.518)

and, by condition 3 of the same definition:

there exists y ∈ range(a), p(y) ∈ W . (A.519)

From condition 1 of Definition 20 we have:

for every pr-atom pr(ai+1 | B) = v, B is either falsified or satisfied by Wi

(A.520)

In this case we will prove that ai+1 is active in I. We will prove all the conditions

from Definition 39:

1. ai+1 is not decided by I – this is true by condition 1 from the lemma.

2. r satisfies the following conditions:

(a) the head of r is of the form random(ai+1, p);

(b) I satisfies B – this follows from (A.516) and Lemma 57;

(c) every attribute term p(x), where x ∈ range(a), is decided in I – this

follows from (A.518) and Lemma 57;

280

Texas Tech University, Evgenii Balai, December 2017

(d) PO(I, r, a) 6= ∅ – this follows from (A.519) and Lemma 57;

(e) for every y ∈ PO(I, r, a), satr(I ∪ a = y) is consistent – this follows

from the fact that I contains no e-literals formed by a.

3. For every probability atom

pr(a = y | B2) = v

B2 is either falsified or satisfied by I – this follows from (A.520) and Lemma

57.

2

Lemma 59. Let I be a compatible interpretation of Σ and attribute term a be active

in I via rule r. All the possible worlds compatible with I belong to a unique scenario

s for r. 2

We will refer to the scenario from lemma 59 as the scenario determined by I.

Proof. Let W1 be a possible world compatible with I, and s be a scenario of W for

r. Let W2 be another possible world compatible with I. We need to show

W2 ∈ s (A.521)

Let r be of the form

random(a, p)← B

Since I is active in a, by condition 2 (c) of definition 39 we have:

for every x ∈ range(a), p(x) is decided in I (A.522)

and, by condition 3:

for every pr-atom pr(a = y | K) = v ∈ Π), K is decided by I (A.523)

281

Texas Tech University, Evgenii Balai, December 2017

If W1 satisfies p(y) for some y ∈ range(a), then, by (A.522), p(y) ∈ I, and, since W2

is compatible with I, p(y) ∈ W2. If W2 does not satisfy p(y) for some y ∈ range(a),

then, by (A.522), p(y) = u ∈ I or p(y) = false ∈ I and, since W2 is compatible with

I, p(y) 6∈ W2.

Similar arguments using (A.523) show that for each pr-atom pr(a = y | K) = v ∈

Π), W1 satisfies K iff W2 satisfies K.

Therefore, W2 ∈ s.

2

Lemma 60. Let Π be a program from B with signature Σ, f be an admissible

consequence function of Π, I be an e-interpretation of Σ reachable via f . If

1. I is compatible and definite, and

2. for every random attribute term a decided in I, truly random(a) is decided in

I

then I is informative (see definition 53).

2

Proof. Let I be a reachable interpretation of Σ satisfying conditions 1-2 from the

lemma. We will show that I is informative. Let W1, . . . ,Wk be the possible worlds of

Π compatible with I.

For an interpretation J , Let und(J) be the number of random attribute terms

undecided in J . We will prove by induction on n the following claim (which implies

the lemma immediately): For any admissible consequence function f of Π, and any

interpretation I reachable via f such that und(I) = n: if I satisfies conditions 1-2

from the lemma, then I is informative.

Base Case n = 0. In this case I decides all random attribute terms of Π. Since I is

compatible, there exists a possible world W of Π compatible with I. By Lemma

47,

282

Texas Tech University, Evgenii Balai, December 2017

W is the only possible world compatible with I (A.524)

By Lemma 52,

µ̂∗(I) is defined.

Therefore, by Definition 52 we have:

µ̂∗Π(I) =
∏
a=y∈I

P (I, a = y) (A.525)

where the product is taken over atoms for which P (I, a = y) is defined.

Also, by Definition 3 we have:

µ̂Π(W) =
∏

a=y∈W

P (I, a = y) (A.526)

where the product is taken over atoms for which P (W,a = y) is defined.

Since every random attribute is decided in I, and W is compatible with I, by

Lemma 51 from (A.525) and (A.526) we have:

µ̂(W) = µ̂∗(I) (A.527)

Therefore, we have:

µ̂(I) = µ̂(W) (by Def. 37 and (A.524))

= µ̂∗(I) (by (A.527))

Ind. Hyp. Suppose that for any admissible consequence function f of Π, and any inter-

pretation I reachable via f such that exactly k random attribute terms of Π

are undecided in Π: if I satisfies conditions 1-2 from the lemma, then I is

informative.

283

Texas Tech University, Evgenii Balai, December 2017

Ind. Step Let f be an admissible consequence function and I be an interpretation of Σ

reachable via f such that:

und(I) = k + 1 (A.528)

I is definite and compatible (A.529)

and

for every random attribute term a decided in I,

truly random(a) is decided in I
(A.530)

We will prove:

I is informative (A.531)

Let I0, . . . , Ih be a corresponding sequence for I having f as a consequence

function, and a1 = v1, . . . , ah = vh be ats(I0, . . . , Ih).

The rest of the proof will be organized as follows. In 1 we construct an admissible

consequence function fn of Π and an interpretation I∗ is an e-interpretation

reachable via fn. In 2 we will prove

I ⊆ I∗ (A.532)

In 3 we will prove, using Lemma 56:

µ̂∗(I) = µ̂∗(I∗) (A.533)

and

µ̂(I) = µ̂(I∗) (A.534)

In 4 we will show, using Lemma 58, that au is ready in I∗. In 5 will will show

that, if Y is the set of possible values of au in I∗, then each interpretation in the

284

Texas Tech University, Evgenii Balai, December 2017

set {I∗∪{au = y} | y ∈ Y } is compatible. In 6 we will describe a new admissible

function of Π, fnn, construct a family I∗Y = {fnn(I∗ ∪ {au = y}) | y ∈ Y } of

e-interpretations reachable via fnn, indexed by the set Y of the possible values

of au in I∗, and will prove, using the result from 5, that:

• for each y ∈ Y , und(I∗Y) = k

• each e-interpretation is I∗Y is compatible, definite and, for every random

attribute term decided in I∗Y , truly random(a) is decided. That is, by

inductive hypothesis:

the members of I∗Y are informative (A.535)

In 7 we will show that the measure of I∗ is equal to the sum of measures of

e-interpretations in I∗Y :

µ̂(I∗) =
∑
y∈Y

µ̂(I∗y) (A.536)

In 8 we will show that the candidate measure of I∗ is equal to the sum of

candidate measures of e-interpretations in I∗Y :

µ̂∗(I∗) =
∑
y∈Y

µ̂∗(I∗y) (A.537)

From (A.533) - (A.537) we get µ̂(I) = µ̂∗(I). That is, (A.531) holds.

1. We first construct an admissible consequence function fn of Π. Since f is an

admissible consequence function of Π, there exists a consequence function

f ′ of Π \ AR such that f is induced by f ′. Let f ′∗ : int(Σ) ; int(Σ) be a

consequence function of Π′ which computes all possible consequences w.r.t

Π′ of every compatible interpretation E as follows:

285

Texas Tech University, Evgenii Balai, December 2017

f ′∗(E) = {l | ∀W ∈ ΩΠ\AR : W |= E ⇒ W |= l

and if atf(l) is random, then atf(l) ∈ atf(E)}

In (a) and (b) we argue that f ′∗(E) is well defined for every compatible e-

interpretation E, that is f ′∗(E) is an e-interpretation for each compatible E.

In (a) we show that f ′∗(E) is consistent and in (b) that f ′∗(E) is saturated.

Then we show that f ′∗ is a consequence function. In (c) we show f ′∗({}) is

defined, in (d) that for every E, if f ′∗(E) is defined, than it is a consequence

of E. And in (e) that f ′∗(E)\E has no literals formed by random attribute

terms

(a) since WE |= f ′∗(E), and no interpretation satisfies two contrary literals,

f ′∗(E) is consistent

(b) for the sake of contradiction, suppose for some E, f ′∗(E) is not sat-

urated. In this case there exists an e-literal l in f ′∗(E) such that

satr({l}) 6⊆ f ′∗(E). Let l′ be an e-literal s.t.

l′ ∈ satr({l}) (A.538)

and

l′ 6∈ f ′∗(E) (A.539)

By construction of f ′∗:

∀W ∈ ΩΠ\AR : W |= E ⇒ W |= l (A.540)

By Lemma 36:

286

Texas Tech University, Evgenii Balai, December 2017

∀W ∈ ΩΠ\AR : W |= l⇒ W |= satr(l) (A.541)

From (A.541) and (A.538):

∀W ∈ ΩΠ\AR : W |= l⇒ W |= l′ (A.542)

From (A.540) and (A.542):

∀W ∈ ΩΠ\AR : W |= E ⇒ W |= l′ (A.543)

Therefore, l′ must be in f ′∗(E), which contradicts (A.539).

(c) From Lemma 18 it follows Π \ R has a possible world. Therefore, {}

is compatible and, by construction, f ′∗({}) is defined.

(d) Clearly, E ⊆ f ′∗(E) because ∀l ∈ E : ∀W ∈ ΩΠ \ AR : W |= E ⇒

W |= l and ∀l ∈ E : atf(l) ∈ atf(E) by definition of atf . Moreover,

∀l ∈ f ′∗(E) : ∀W ∈ ΩΠ \ AR : W |= E ⇒ W |= l. Therefore, f ′∗(E) is

a consequence of E for every compatible interpretation E.

(e) By construction, if some random attribute term formed a literal l in

f∗(E), then atf(l) ∈ atf(E). Therefore, atf(f ′∗(E)) \ atf(E) has no

random attribute terms.

Using the set TU and AR as in Definition 50, we will define a function

f ′n : int(Σ) ; int(Σ) as follows:

f ′n(E) =


f ′(E), if f ′(E) is defined, h > 0,

and E 6= {Ih−1 ∪ bh = vh} \ satr(AR) \ TU

f ′∗(E), otherwise

287

Texas Tech University, Evgenii Balai, December 2017

We have that

f ′n is a consequence function of Π \ AR (A.544)

because f ′ and f ′∗ are consequence functions of Π \ AR.

Let fn be the admissible consequence function of Π induced by f ′n.

We will show that

if h > 0, fn is defined on {Ih−1 ∪ bh = vh} (A.545)

By Lemma 39,

(Ih−1 ∪ bh = vh) \ satr(AR) \ TU ⊆ Ih−1 ∪ bh = vh ⊆ I. Therefore, from

(A.559), (Ih−1 ∪ bh = vh) \ satr(AR) \ TU is compatible (w.r.t Π \R).

Therefore,

f ′n({Ih−1 ∪ bh = vh} \ satr(AR) \ TU) (A.546)

is defined.

Since f is defined on {Ih−1 ∪ bh = vh}, we have that conditions 1-2 from

Definition 50 are satisfied for {Ih−1 ∪ bh = vh}. Therefore, from (A.546),

(A.545) holds.

We next show:

if h = 0, fn is defined on {} (A.547)

Any consequence function is defined on {}, so this is trivially holds. We

next define I∗ as follows:

I∗ =

fn({Ih−1 ∪ bh = vh}), if h > 0

fn({}), otherwise

288

Texas Tech University, Evgenii Balai, December 2017

Note that I∗ is well defined by (A.545) - (A.547). Also, since, by construc-

tion fn is an admissible consequence function of Π, we have:

I∗ is an e-interpretation reachable via fn (A.548)

Moreover, since, if h > 0 then fn({}) = f({}) and for any j ∈ {0..h − 2}

we have f ∗(Ij ∪ {bj = vj})) = f(Ij ∪ {bj = vj})) by construction of f , we

have:

I0, . . . , Ih−1, I
∗ is a sequence reachable via fn (A.549)

such that, since bh = vh ∈ I∗:

ats(I0, . . . , Ih−1, I
∗) = ats(I0, . . . , Ih−1, Ih) (A.550)

follows immediately from the facts that f ′ and f ′∗ are consequence functions

of Π \ AR.

2. We will prove (A.532).

Let J denote {} if h = 0 and Ih−1 ∪ {bh = vh} otherwise. We have:

I∗ = fn({J}) (A.551)

= satr((f ′n(J) \ Ltr \ ARNOT) ∪ TU ∪ AR)

= satr((f ′∗(J) \ Ltr \ ARNOT) ∪ TU ∪ AR) (A.552)

and

I = f({J}) (A.553)

= satr((f ′(J) \ Ltr \ ARNOT) ∪ TU ∪ AR)

Suppose l ∈ f ′(J). Then, since f ′ is a consequence function of Π \ R

289

Texas Tech University, Evgenii Balai, December 2017

we have: ∀W ∈ ΩΠ\AR : W |= J ⇒ W |= l. Therefore, l ∈ f ′∗(J) by

construction

f ′(J) ⊆ f ′∗(J) (A.554)

From (A.551), (A.553) and (A.554) by Lemma 39 we have (A.532).

3. Recall that by Lemma 52, we have:

µ̂∗(I) is defined (A.555)

From (A.532), (A.550), (A.549), the fact that I0, . . . , Ih is a corresponding

sequence of I and condition 2 of this lemma from Lemma 56 we have:

ΩI = ΩI∗ (A.556)

and, in addition, from the fact that I is compatible and (A.555) we have

(A.533). (A.534) follows immediately from (A.556) and Definition 37.

4. We will show that

au is ready in I∗ (A.557)

We will use the result from Lemma 58.

We start from constructing Wu−1 and then will argue that Wu−1 and I∗

satisfy the conditions from the lemma.

Let AR be the set of activity records of Π. Let a1, . . . , am be the prob-

abilistic leveling satisfying conditions 1-3 from Definition 21 for program

Π \AR. Let au be the first attribute in the sequence a1, . . . , am such that:

au is not decided in I (A.558)

290

Texas Tech University, Evgenii Balai, December 2017

Let a1 = y1, . . . , au−1 = yu−1 be the assignments to a1, . . . , au−1 in I. Let

T0, . . . , Tm be the sequence of trees for Π \ AR described in the proof of

Lemma 8. Let

S = {ai = yi | 1 ≤ i ≤ u− 1 and yi 6= u}

Let W be a possible world s.t:

W is compatible with I (A.559)

Clearly,

S ⊆ W (A.560)

Let W ′ be the set of atoms:

W ′ = W \AR∪{truly random(a) |∃p, y : random(a, p) ∈ W,do(a, y) ∈ Π}

(A.561)

By Lemma 37, W ′ is a possible world of Π \ AR. By Lemma 19, Tm has

a unique leaf node n s.t. W ′ satisfies pT (n). Let nu−1 be the ancestor of

n, which is also a leaf of the tree Tu−1. Let Π0, . . . ,Πm be the dynamic

structure of Π \ AR induced by a1, . . . , am. By Lemma 18 , there exists a

unique possible world Wu−1 of Πu−1 such that:

Wu−1 satisfies pT (nu−1) (A.562)

We next show that Wu−1 and I∗ satisfies all the premises from Lemma

58. In (a) we show that I∗ is compatible. In (b) we show I∗ contains no

291

Texas Tech University, Evgenii Balai, December 2017

e-literals formed by au. In (c) we prove that

each atom from Wu−1 not formed by do, obs

and truly random belongs to I∗
(A.563)

For each attribute term such that:

Wu−1 has no atoms formed by a, (A.564)

a’s level at most u− 1 in the total leveling induced by a1, . . . , am,

(A.565)

a is not formed by do, obs and truly random, (A.566)

we have

a = u ⊆ I∗. (A.567)

(a) In 2 we have shown ΩI = ΩI∗ . Therefore, since W is compatible with

I, we have:

I∗ is compatible (A.568)

(b) From (A.549), (A.550) and (A.558) by Lemma 48 we have that I∗

contains no e-literals formed by au.

(c) Let J = {} if h = 0 and Ih−1 ∪ bh = vh otherwise. Given that TU ,

AR, ARNOT and Ltr are defined as in Def. 50 we have:

I∗ = fn(J) (A.569)

= (f ′∗((Ih−1 ∪ bh = vh) \ TU \ satr(AR)) \ Ltr \ ARNOT)

∪ satr(AR) ∪ TU

Let V be a possible world of Π \ AR such that:

292

Texas Tech University, Evgenii Balai, December 2017

V is compatible with {Ih−1 ∪ bh = vh} \ (satr(AR) ∪ TU) (A.570)

By Lemma 13, there exists a possible world W ′
u−1 of Πu−1 such that:

W ′
u−1 ⊆ V (A.571)

and

(V \W ′
u−1) ∩ Lu−1 = ∅ (A.572)

We next show

W ′
u−1 satisfies pTu−1(nu−1) (A.573)

Let now c = x be an atom in pTu−1(nu−1), different from true. From

(A.562) we have:

c = x ∈ Wu−1 (A.574)

Therefore, from (A.571) we have:

c = x ∈ W ′ (A.575)

Therefore, from (A.561):

c = x ∈ W (A.576)

From (A.574), since Wu−1 is a possible world of Πu−1, and Wu−1 ∈

Lu−1, and

c = x ∈ Lu−1 (A.577)

293

Texas Tech University, Evgenii Balai, December 2017

c ∈ {a1, . . . , au−1} (A.578)

Therefore, since I decides all random attribute terms from a1, . . . , au−1

and W is compatible with I we have:

c = x ∈ I (A.579)

Since c = x is an atom in pTu−1(nu−1), c is a random attribute term.

Therefore, by Lemma 48 we have c = x is an element of ats(I). There-

fore, since Ih−1∪ bh = vh contains all elements of ats(I), c = x belongs

to {Ih−1∪ bh = vh}\ (satr(AR)∪TU), and since V is compatible with

{Ih−1 ∪ bh = vh} \ (satr(AR) ∪ TU), we have:

c = x ∈ V (A.580)

From (A.571), (A.572), (A.580) and (A.577) we have:

c = x ∈ W ′
u−1 (A.581)

Therefore, (A.573) holds. From (A.573) and (A.562) by Lemma 18 we

have:

W ′
u−1 = Wu−1 (A.582)

From (A.582) and (A.571)

V satisfies Wu−1 (A.583)

Therefore, since V was chosen arbitrarily from the possible worlds

compatible with {Ih−1 ∪ bh = vh} \ (satr(AR) ∪ TU), by definition of

294

Texas Tech University, Evgenii Balai, December 2017

f ′∗:

Wu−1 ⊆ f ′∗({Ih−1 ∪ bh = vh} \ (satr(AR) ∪ TU)) (A.584)

Therefore, from (A.569) we have (A.563).

From (A.582) and (A.572) we have:

(V \Wu−1) ∩ Lu−1 = ∅ (A.585)

Let now a be an attribute term satisfying (A.564) -(A.566). From

(A.565) we have that every atom a = y belongs to Lu−1. Since Wu−1

has no atoms formed by a, from (A.585) we have that V has no atoms

formed by a. Therefore, V satisfies not a = y. Hence, since V was

chosen arbitrarily from the possible worlds compatible with {Ih−1 ∪

bh = vh} \ (satr(AR)∪TU), we must have not a = y ∈ I∗ by (A.569).

Therefore, by Lemma 58, au is ready in I∗.

5. Let Y be the set of possible values of au in I ′∗. We will show that

every interpretation in {I∗ ∪ {au = y} | y ∈ Y } is compatible (A.586)

We will use the result from Proposition 7. We will first construct an

auxiliary admissible function faux of Π and show that

each element of {I∗ ∪ {au = y} | y ∈ Y } is reachable via faux (A.587)

Since I is definite and compatible and reachable via an admissible conse-

quence function f , by Proposition 7 we have:

295

Texas Tech University, Evgenii Balai, December 2017

I falsifies the body of every axiom in X (A.588)

From 2 and Lemma 39 we have:

I ⊆ I∗ ⊆ I∗ ∪ {au = y} (A.589)

From (A.588) and (A.589) we have:

I∗ ∪ {au = y} falsifies the body of every axiom in X (A.590)

From (A.590) and (A.587) by Proposition 7 we will conclude that (A.586).

We will construct faux in (a) and show that (A.587) holds in (b).

(a) Let AU denote satr(AR)∪TU . Let faux : int(Σ) ; int(Σ) be defined

as follows:

f ′aux(E) =


f ′n(E), if f ′n(E) is defined,

and E 6∈ {(I∗ ∪ au = y) \ AU | y ∈ Y }

E, if E ∈ {(I∗ ∪ au = y) \ AU | y ∈ Y }

The fact that f ′aux is a consequence function of Π \AR follows imme-

diately from (A.544). Let faux be the admissible consequence function

determined by f ′aux.

(b) We prove (A.587).

We first that

for any y ∈ Y , faux is defined on I∗ ∪ au = y (A.591)

296

Texas Tech University, Evgenii Balai, December 2017

In 2, we have shown that ΩI = ΩI∗ . Since I is compatible,

I∗ is compatible (A.592)

We prove conditions 1-3 from Definition 50 in i-iii respectively. We

will use Ltr and ARNOT as defined there.

i. from (A.592) and Lemma 41, I∗ cannot contain e-literals contrary

to TU . That is, I∗ ∩ Ltr = ∅. Therefore, by minimality of satura-

tion,

{I∗ ∪ au = y} ∩ Ltr = ∅. (A.593)

ii. Since I∗ is in the image of an admissible consequence function fn,

satr(AR) ⊆ I∗ ⊆ {I∗ ∪ au = y}. Therefore, since I∗ ∪ au = y is an

e-interpretation, it is consistent and

(I∗ ∪ au = y) ∩ ARNOT = ∅ (A.594)

iii. f ′aux is defined on (I∗ ∪ au = y) \ TU \ satr(AR) by construction

Then, using the sets of e-literals ARNOT , Ltr and TU from Definition

50 and denoting ARNOT ∪LTR by AL and TU ∪ satr(AR) by TA, for

every y ∈ Y we have:

faux(I
∗ ∪ au = y) = (f ′aux((I

∗ ∪ au = y) \ TA) \ AL) ∪ TA

= (I∗ ∪ au = y) \ TA \ AL ∪ TA (A.595)

From (A.595) and (A.594) and (A.593) we have:

297

Texas Tech University, Evgenii Balai, December 2017

faux(I
∗ ∪ au = y) = (f ′aux((I

∗ ∪ au = y) \ TA) ∪ TA

= (I∗ ∪ au = y) (A.596)

Since faux agrees with fn on any interpretation not deciding au, by

Lemma 48 and the definition of a reachable sequence from (A.549) we

have:

I1, . . . , I
′
∗ is reachable via faux (A.597)

Since, by A.557, au is ready in I∗, by definition of reachable sequence

from (A.596) we have that for every y ∈ Y :

I1, . . . , I
∗, I∗ ∪ au = y is reachable via faux (A.598)

Therefore, (A.587) holds.

6. We will start by constructing a new consequence function fnn of Π. As

before, we start from describing a consequence function for Π \ AR, and

then define fnn in terms of it. Let Y be the set of possible values of

au in I∗. Let f ′nn : int(Σ) ; int(Σ) be a partial function defined on

every compatible interpretation as follows (we use the set TU as defined

in Definition 50, and AU will denote TU ∪ satr(AR), and the consequence

function f ′∗ described in 1):

f ′nn(E) =


f ′n(E), if f ′n(E) is defined,

and E 6∈ {(I∗ ∪ au = y) \ AU | y ∈ Y }

f ′∗(E), otherwise

The fact that f ′nn is a consequence function of Π \ R follows immediately

298

Texas Tech University, Evgenii Balai, December 2017

from the facts that both f ′n and f ′∗(E) are consequence functions of Π \R.

Let fnn be the admissible consequence function of Π induced by f ′nn. For

each y ∈ Y , we define:

I∗y = fnn(I∗ ∪ au = y) (A.599)

We will show that

for every y ∈ Y I∗y is informative (A.600)

Using the inductive hypothesis, it is sufficient to show: (a) I∗y is reachable

via fnn, (b) ind(I∗y) = k. (c) I∗y is definite (d) I∗y is compatible (e) for every

random attribute term a decided in I∗y truly random(a) is decided. We

will prove the claims in (a) - (e) below.

(a) We will prove:

I∗y is reachable via fnn (A.601)

Since fnn agrees with fn on any interpretation not deciding au, by

Lemma 48 and the definition of a reachable sequence from (A.549) we

have:

I1, . . . , I
∗ is reachable via fnn (A.602)

for any y ∈ Y , fnn is defined on I∗ ∪ au = y (A.603)

In 5 (b) we have already checked that conditions 1-2 of Definition 50

are satisfied for I∗ ∪ au = y. Therefore, it is sufficient to prove:

f ′nn((I∗ ∪ au = y) \ AU) is defined (A.604)

299

Texas Tech University, Evgenii Balai, December 2017

By 5, there exists a possible world U of Π such that

U is compatible with I∗ ∪ {au = y} (A.605)

By lemma 37, the set

U ′ = U ∪ {truly random(a)|∃p, y : random(a, p) ∈ W,do(a, y) ∈ Π}

\ AR
(A.606)

is a possible world of Π \ AR.

Since I∗ ∪ au = y satisfies conditions 1-2 from Definition 50, the

set (I∗ ∪ au = y) \ AU contains no e-literals formed by do, obs and

truly random. Therefore, from (A.606) and (A.605) we have:

U ′ satisfies (I∗ ∪ au = y) \ AU (A.607)

Therefore, by construction of f ′nn, we have (A.604). Hence, (A.603)

holds as well.

Since, by (A.557), au is ready in I∗, by definition of reachable sequence

from (A.602) we have that for every y ∈ Y :

I1, . . . , I
∗, I∗y is reachable via fnn (A.608)

Therefore, (A.601) holds.

300

Texas Tech University, Evgenii Balai, December 2017

(b) Let By Lemma 48,

ind(I∗y) = m− (h+ 1)

= m− h− 1

= ind(Ih)− 1

= k + 1− 1

= k

(c) We have:

From (A.608) by Lemma 49 we have:

I∗ ⊆ I∗y (A.609)

From (A.532) and (A.609) we have:

I ⊆ I∗y (A.610)

It is easy to see that for any e-interpretation M , if M satisfies (falsifies)

an e-literal, then any superset of M satisfies (falsifies) the e-literal.

Therefore, since I is definite, from (A.610) we have that I∗y is definite.

(d) Similarly to (c), from I ⊆ I∗y and the fact that I falsifies the bodies of

all axioms from X (Π), we have that I∗y falsifies them too. Therefore,

from (A.601), the fact that fnn is admissible, and Proposition 7, I∗y is

compatible.

(e) By Lemma 48, b1, . . . , bh, au are the only random attributes decided in

I∗y . Since, by condition 2 of the lemma, for every b ∈ {b1, . . . , bh}, I

decides truly random(b), and I ⊆ I∗y (see (c)), we have that I∗y decides

truly random(b) for every b ∈ {b1, . . . , bh} as well. We now consider

au. If do(au, y) ∈ Π, then, by definition of an admissible consequence

301

Texas Tech University, Evgenii Balai, December 2017

function, I∗y must contain truly random(au) = u. We now consider the

case when Π does not contain actions for au. By construction of fnn,

it is sufficient show that truly random(au) is decided in f ′∗((I
∗ ∪ au =

y) \ AU). There are two possibilities:

i. au is active in I∗. In this case y 6= u. Let V be a possible world of

Π \ AR s.t

V is compatible with (I∗ ∪ au = y) \ AU (A.611)

We will show:

V is compatible with satr(((I∗ ∪ au = y) \ AU) ∪ truly random(a))

Since au is active in I∗, there exists a random selection rule

random(au, p)← B

such that I∗ satisfies B. Since B does not contain e-literals formed

by do, obs, truly random we have that (I∗ ∪ au = y) \AU satisfies

B. Therefore, by Proposition 4 from (A.611) we have:

V satisfies B (A.612)

Therefore, by Proposition 1, V contains random(au, p). Since Π \

AR does not rules with heads formed by do, V does not contain

atoms formed by do. Therefore, V satisfies the body of the axiom

truly random(au) ← random(au, p),

not do(au, y1), . . . , not do(au, yk)

(A.613)

302

Texas Tech University, Evgenii Balai, December 2017

Therefore, by Proposition 1, truly random(au) ∈ V . Therefore,

since V was chosen arbitrarily from the possible worlds compatible

with (I∗ ∪ au = y) \ AU , by definition of f ′∗:

truly random(au) ∈ f ′∗((I∗ ∪ au = y) \ AU) (A.614)

ii. au is disabled in I∗. In this case y = u. Let V be a possible world

of Π \ AR s.t

V is compatible with (I∗ ∪ au = u) \ satr(AR) \ TU (A.615)

We will show:

V is compatible with

satr(((I∗ ∪ au = y) \ AU) ∪ truly random(a) = u)
(A.616)

Since au is disabled in I∗, for every random selection rule of the

form random(au, p) ← B, I∗ falsifies B. Since the bodies of ran-

dom selection rules do not contain e-literals formed by do, obs,

truly random, we have that (I∗ ∪ au = y) \ satr(AR) \ TU does

not satisfy any of them. Therefore, by Proposition 4 from (A.615)

we have:

V does not satisfy the body of every random selection rule for au

(A.617)

Therefore, by minimality of possible worlds, for every p,

random(au, p) 6∈ V.

303

Texas Tech University, Evgenii Balai, December 2017

Therefore, V does not satisfy the body of the axiom

truly random(au) ← random(au, p),

not do(au, y1), . . . , not do(au, yk).

Therefore, by minimality of possible worlds,

truly random(au) 6∈ V.

Therefore, since V was chosen arbitrarily from the possible worlds

compatible with (I∗ ∪ au = y) \ AU , by definition of f ′∗:

truly random(au) = u ⊆ f ′∗((I
∗ ∪ au = y) \ AU) (A.618)

Therefore, in both cases, truly random(au) is decided in I∗y .

7. We prove (A.536). There are only two cases:

(a) au is disabled in I∗. In this case Y = {u}. In (A.610) we have shown

I∗ ⊆ I∗u. Therefore,

ΩI∗u ⊆ ΩI∗ (A.619)

We also have:

ΩI∗ ⊆ ΩI∗∪au=u (by Lemmas 36 and 33 (clause 2))

⊆ ΩI∗u (since fnn is a consequence function of Π) (A.620)

From (A.619) and (A.620) we have:

ΩI∗u = ΩI∗ (A.621)

304

Texas Tech University, Evgenii Balai, December 2017

Therefore, by Definition 37:

µ̂(I∗) = µ̂(I∗u) (A.622)

From (A.622) we have (A.536).

(b) au is active in I∗. In (A.610) we have shown that for every y ∈ Y ,

I∗ ⊆ I∗y . Therefore, ⋃
y∈Y

ΩI∗y ⊆ ΩI∗ (A.623)

On the other hand:

ΩI∗ ⊆
⋃
y∈Y

ΩI∗∪{au=y} (by Lemmas 36 and 33 (clause 1))

⊆
⋃
y∈Y

ΩI∗y (since fnn is a consequence function of Π)

(A.624)

From (A.623) and (A.624) we have:

⋃
y∈Y

ΩI∗y = ΩI∗ (A.625)

Since no possible world can assign two different values to au, we have

that for every y1, y2 ∈ Y :

ΩI∗y1 ∩ ΩI∗y2 = ∅ (A.626)

We have:

305

Texas Tech University, Evgenii Balai, December 2017

∑
y∈Y

µ̂(I∗y) =
∑
y∈Y

(∑
W∈ΩI

y
u

µ̂(W)

)
(by Def. 37)

=
∑

W∈
⋃

y∈Y ΩI
y
u

µ̂(W) (by (A.626))

=
∑

W∈ΩI∗

µ̂(W) (by (A.623))

= µ̂(I∗) (by Def. 37)

Therefore, (A.536) holds.

8. We prove (A.537). By Lemma 48, every atom a = y from I∗y formed by

a random attribute term belongs to {b1 = v1, . . . , bh = vh, au = y}. Let

y be a member of Y . Let A∗ be the set of atoms in I∗ formed by an

attribute term from {b1, . . . , bh} s.t. for every b = v ∈ A∗, P (I∗, b = v)

is defined. Let A∗y be the set of atoms in I∗y formed by an attribute term

from {b1, . . . , bh} s.t. for every b = v ∈ A∗y, P (I∗y , b1 = v1) is defined. By

Lemma 49, we have:

I∗ ⊆ I∗y (A.627)

From A.532 and the fact that for each b ∈ {b1, . . . , bh} truly random(b) is

decided in I, we have:

for each b ∈ {b1, . . . , bh} truly random(b) is decided in I∗ (A.628)

From (A.628) and (A.627) by Lemma 54 we have:

for each b ∈ {b1, . . . , bh} truly random(b) ∈ I∗ iff truly random(b) ∈ I∗y
(A.629)

306

Texas Tech University, Evgenii Balai, December 2017

Therefore, by Lemma 50:

A∗ = A∗y (A.630)

We now prove

for every b = v in A∗, P (I∗, b = v) = P (I∗y , b = v) (A.631)

Let b = v be an atom in A∗, and let i be the spot of a in I0, . . . , Ih−1, I
∗, I∗y .

Since b 6= au, i ≤ h. By Lemma 55, we have:

P (I∗, a) = P ∗(Ii−1, a) (A.632)

and

P (I∗y , a) = P ∗(Ii−1, a) (A.633)

From the last two equations we have P (I∗y , a) = P (I∗, a). Therefore,

(A.631) holds.

From (A.631) and (A.630) we have:

µ̂∗(I∗y) =

µ̂
∗(I∗) ∗ P (I∗y , au = y), if P (I∗y , au = y) is defined

µ̂∗(I∗), otherwise

(A.634)

Now we consider two cases:

(a) au is disabled in I∗. In this case, Y = {u}, no atoms formed by au

belong to I∗u, therefore, by (A.634) we have:

µ̂∗(I∗) = µ̂∗(I∗u) (A.635)

Therefore, (A.537) holds

307

Texas Tech University, Evgenii Balai, December 2017

(b) au is active in I∗. In this case we prove what

for every y ∈ Y , P (I∗y , au = y) is defined (A.636)

Let y be a member of Y . Since au is active in I∗, there exists a random

selection rule random(au, p) ← B such that I∗ satisfies B ∪ p(y) By

Lemma 49, I∗ ⊆ I∗y , therefore,

I∗y satisfies B ∪ p(y) (A.637)

Now we show that

truly random(au) ∈ I∗y (A.638)

Let y′ be an arbitrary value from range(au). Consider an axiom ax1 :

← do(au = y′), not au = y′

Since au is active in I∗,

I∗ does not contain au = y′ (A.639)

Since I is a definite node which falsifies the bodies of all axioms in

X (Π), by A.532 we have that

I∗ also falsifies the bodies of all axioms in X (Π) (A.640)

From (A.639) and (A.640) and the fact that ax1 ∈ X (Π), we have:

I∗ falsifies do(au = y′) (A.641)

Since y′ was chosen arbitrarily from the range(au), we have:

308

Texas Tech University, Evgenii Balai, December 2017

for every y′ ∈ range(au), I∗ falsifies do(au = y′) (A.642)

Let W be a possible world of Π compatible with I. In 2 we have

shown ΩI = ΩI∗ . Therefore, W is compatible with I∗. From (A.642)

we have that for every y′ ∈ range(au), do(au = y′) does not belong to

W . Therefore,

Π does not contain actions for au (A.643)

In 6 (e) i (see equation (A.614)) we have proved that, if au is active in

I∗, then:

truly random(au) ∈ f ′∗((I∗ ∪ au = y) \ AU) (A.644)

Therefore, by construction of fnn from (A.644) and (A.643) we have

(A.638).

Since au is active in I∗ via random(au, p)← B, by conditions 2(c) and

we have:

for every pr-atom pr(au = y′ |B′) = v ∈ Π,

B′ ⊆ I∗, or B′ is falsified by I∗
(A.645)

for every y′ ∈ range(au), p(y′) is decided in I∗ (A.646)

Therefore, by (A.532) we have:

for every pr-atom pr(au = y′ |B′) = v ∈ Π,

B′ ⊆ I∗y , or B′ is falsified by I∗y

(A.647)

for every y′ ∈ range(au), p(y′) is decided in I∗y (A.648)

From (A.637) , (A.638), (A.647), (A.648) we have that conditions (5.6)

309

Texas Tech University, Evgenii Balai, December 2017

- (5.9) are satisfies for I∗y and au = y. Therefore, (A.636) holds. From

(A.634) we have:

µ̂∗(I∗y) = µ̂∗(I∗) ∗ P (I∗y , au = y) (A.649)

In (6) we have shown that for each y ∈ Y , I∗y is compatible. Therefore,

for each y ∈ Y , there exists a possible world Wy compatible with I∗y .

By Lemma 59, all possible worlds compatible with I∗ belong to a

unique scenario s∗ for r. Therefore,

for every y′ ∈ Y,Wy ∈ s∗ (A.650)

Therefore, we have:

∑
y∈Y

µ̂(I∗y) =
∑
y∈Y

(µ̂(I∗) · P (I∗y , au = y)) (by (A.649))

= µ̂(I∗) ·
∑
y∈Y

(P (I∗y , au = y)

= µ̂(I∗) ·
∑
y∈Y

(P (Wy, au = y) (by Lemma 51)

= µ̂(I∗) ·
∑
y∈Y

(P (Wy′ , au = y) for some y′ ∈ Y (by (A.650))

= µ̂(I∗) (since Π is unitary)

Therefore, (A.537) holds.

2

Proposition 8. Let TΠ〈f〉 be an AI-tree of program Π from B. Let I be an i-node

of TΠ〈f〉. If

310

Texas Tech University, Evgenii Balai, December 2017

1. I is compatible and definite, and

2. for every random attribute term a decided in I, truly random(a) is decided in

I

then I is informative (see definition 53).

2

2

Proof. Since every i-node of TΠ〈f〉 is a reachable interpretation of Σ, the proposition

follows immediately from Lemma 60. 2

A.3.7 Proof of Proposition 9

Proposition 9 For every e-interpretation I of Σ, there exists a fixed point X of

H such that

1. I ⊆ X,

2. no fixed point of H is a subset of X, and

3. no other fixed point of H satisfies conditions (a), (b).

We will refer to X satisfying conditions (a) - (c) as the least fixed point of H relevant

to I.

Proof. We first prove that H is monotonic. We have: H(L) = satr(L∪{head(r) | r ∈

nr(Π), body(r) ⊆ L} ∪ N(L)) By definition of satr, L ⊆ satr(L). By Lemma 39,

satr(L) ⊆ satr(L ∪ {head(r) | r ∈ nr(Π), body(r) ⊆ L} ∪ N(L)). Therefore, L ⊆

satr(L ∪ {head(r) | r ∈ nr(Π), body(r) ⊆ L} ∪ N(L) = H(L). Therefore, H is

monotonic.

Consider now an operator H ′ which is defined on all sets of e-literals containing L,

and H ′(I) = H(I) for every such set. Clearly, all interpretations containing L form a

complete lattice with supremum L and infimum elit(Σ). By Knaster-Tarski Theorem

311

Texas Tech University, Evgenii Balai, December 2017

(see, for instance, Theorem A.2.1. from [Baral, 2003]), H ′ has the least fixed point

F , which is a also the fixed point of H satisfying the conditions from the proposition.

2

A.3.8 Proof of Proposition 10

Proposition 10. For every e-interpretation I of Σ, there exists a fixed point X of

GI such that:

1. I ⊆ X,

2. no fixed point of GI is smaller than X, and

3. no other fixed point of GI satisfies conditions (a), (b).

We will refer to X satisfying conditions (a) - (c) as the least fixed point of GI relevant

to I.

2

Proof. We will first prove that GI is monotonic. We have:

GI(J) = satr(J ∪ {head(r) | r ∈ Πcons(I), body+(r) ⊆ J

and body−(r) is not falsified by I})

By definition of satr, J ⊆ satr(J). By Lemma 39,

satr(J) ⊆ satr(J ∪ {head(r) | r ∈ Πcons(I), body+(r) ⊆ J

and body−(r) is not falsified by I}).

Therefore,

312

Texas Tech University, Evgenii Balai, December 2017

J ⊆ satr(J) ⊆ satr(J ∪ {head(r) | r ∈ Πcons(I), body+(r) ⊆ J

and body−(r) is not falsified by I}) = GI(J),

and GI is monotonic.

Consider now an operator G′I which is defined on all sets of e-literals containing

J , and G′I(X) = GI(X) for every such set X. Clearly, all interpretations containing

J form a complete lattice with supremum J and infimum elit(Σ). By Knaster-Tarski

Theorem (see, for instance, Theorem A.2.1. from [Baral, 2003]), G′I has the least

fixed point F , which is a also the fixed point of H satisfying the conditions from the

proposition.

2

A.3.9 Proof of Proposition 11 (Proof for f1, f2 and Sketch for f3)

Lemma 61. Let Π be a P-log program not necessarily containing all the general

axioms, and I be an e-interpretation of its signature.

ΩI
Π ⊆ ΩΠ∪ENC(I) (A.651)

2

Proof. Let W be a member of ΩI
Π. Since W is a possible world of Π, it satisfies

the rules of Π. Since W is compatible with I, it satisfies the rules of ENC(I).

Therefore, W satisfies the rules of the reduct (Π ∪ ENC(I))W . For the sake of

contradiction suppose there exists a proper subset W ′ of W which satisfies the rules

in (Π ∪ ENC(I))W . Then W ′ satisfies the rules in ΠW , which is a contradiction to

the fact that W is a possible world of Π.

2

We next introduce some notation. We first introduce some notation.

313

Texas Tech University, Evgenii Balai, December 2017

For a program Π (not necessarily containing all the general axioms) with signature

Σ and e-interpretation I of Σ, by drop(Π, I) we denote a program obtained from Π

as follows:

1. removing every rule of the form

a = y ← B

where a = y ∈ I and B is non-empty

2. replacing every rule of the form

a = y ← B

where a = y1 ⊆ I for some y1 6= y with the constraint

← B

Lemma 62. Let Π be a program (not necessarily containing all general axioms)

containing a fact a = y. Let Π2 be a program obtained from Π by removing a rule r

of the form a = y ← B with a non-empty body. We have

ΩΠ = ΩΠ2 (A.652)

2

Proof. Let W be a possible world of Π. ΠW
2 = (Π \ r)W . So, clearly, W satisfies the

rules of ΠW
2 . For the sake of contradiction, suppose there is W ′ (W such that W ′

satisfies the rules of ΠW
2 . Since ΠW

2 contains a fact a = y, a = y ∈ W ′. Therefore,

W ′ also satisfies the rules of ΠW
2 . Contradiction.

Suppose now W is a possible world of Π2. ΠW = (Π2 ∪ {r})W . Since Π2 contains

a fact a = y, a = y ∈ W . Therefore, W satisfies ΠW = ΠW
2 ∪ {r}W . For the sake of

314

Texas Tech University, Evgenii Balai, December 2017

contradiction, suppose there exists W ′ (W such that W ′ satisfies the rules of ΠW .

Then, clearly, W ′ satisfies the rules of ΠW
2 ⊆ ΠW , which is a contradiction to the fact

that W is a possible world of ΠW
2 .

2

Lemma 63. Let Π be a program (not necessarily containing all general axioms)

containing a fact a = y. Let Π2 be a program obtained from Π by replacing a rule r

of the form a = y1 ← B, where y1 6= y2, which a constraint ← B.

ΩΠ = ΩΠ2 (A.653)

2

Proof. We start from proving ΩΠ ⊆ ΩΠ2 . Let W be a possible world of Π. W contains

a = y, therefore,

W does not satisfy B (A.654)

(or else it would not satisfy the rule a = y1 ← B). Next, we have:

ΠW
2 = (Π \ {a = y1 ← B})W ∪ {← B}W (A.655)

We prove:

W satisfies {← B}W (A.656)

If W does not satisfy one of the e-literals with default negation, (A.656) clearly holds.

Otherwise, there rule a = y1 ← B′, where B′ is obtained from B by removing all e-

literals with default negation, belongs to ΠW . Since W is a possible world of Π, it

satisfies a = y1 ← B′. Since a = y ∈ W , we have that W does not satisfy B′. Since

B′ ⊆ B, W does not satisfy B, and, therefore, (A.656) holds. Therefore, since W is

a possible world of Π, from (A.656) and (A.655) we have:

W satisfies the rules of ΠW
2 (A.657)

315

Texas Tech University, Evgenii Balai, December 2017

We now prove W is minimal such set. For the sake of contradiction, suppose there is

W ′ ⊆ W such that W ′ satisfies the rules of ΠW
2 . We have

ΠW ⊆ ΠW
2 ∪ {a = y1 ← B}W (A.658)

Since W ′ satisfies the rules of ΠW
2 , it satisfies {← B}W . Therefore, W ′ satisfies

{a = y1 ← B}W , and, by (A.658), ΠW . So, we have a contradiction to the fact that

W is a possible world of Π.

We now prove ΩΠ2 ⊆ ΩΠ. Suppose now W is a possible world of Π2. Since W

satisfies the rules of ΠW
2 , it satisfies {← B}W . Therefore, W satisfies {a = y1 ← B}W ,

and, by (A.658), ΠW , To conclude the proof, we need to show that W is a minimal

set satisfying ΠW . Suppose there exists W ′ (W such that W ′ satisfies ΠW . As in

the first part of the proof, we can use the relation

ΠW ′

2 = (Π \ {a = y1 ← B})W ′ ∪ {← B}W ′ (A.659)

and show that, since W ′ satisfies {a = y1 ← B}W ′ , it also satisfies {← B}W ′ , and,

therefore, ΠW ′
2 , which contradicts the fact that W is a possible world of Π2.

2

Lemma 64. Let Π be a program (not necessarily containing all general axioms)

containing a constraint of the form ← a = y1 for each y1 ∈ range(a). Let Π2 be

a program obtained from Π by replacing a rule r of the form a = y ← B with a

constraint ← B.

ΩΠ = ΩΠ2 (A.660)

Proof. We start from proving ΩΠ ⊆ ΩΠ2 . Let W be a possible world of Π. W does

not contain a = y for any y ∈ range(a), therefore,

W does not satisfy B (A.661)

316

Texas Tech University, Evgenii Balai, December 2017

(or else it would not satisfy the rule a = y ← B). The remaining reasoning is similar

to the one from the proof of Lemma 63, only the explanation of why any of the

possible worlds of both Π2 and Π does not satisfy any head of the form a = y is

different. 2

Lemma 65. Let Π be a program (not necessarily containing all general axioms) with

signature Σ. Let I be an e-interpretation of Σ. We have:

Ωdrop(Π,I)∪ENC(I) = ΩΠ∪ENC(I) (A.662)

2

Proof. The lemma immediately follows from the definition of drop and Lemmas 62 -

64. 2

Lemma 66. Let Π be a P-log program (not necessarily containing all general axioms).

Let C be a set of constraints in Π and Π2 be a program obtained from Π by removing

C. We have:

ΩΠ ⊆ ΩΠ2 (A.663)

2

Proof. It is well known that the effect of adding a constraint to a program is to

eliminate some of its stable models [Lifschitz, 2008]. The lemma then follows from

Lemma 4 (it is easy to see that τ(Π) and τ(Π2) only differ in constraints obtained by

translating C). 2

Lemma 67. Let Π be a P-log program (not necessarily containing all general axioms).

Let C be a set of constraints in Π. Let Π2 be the program obtained from Π by

removing C. If every member of ΩΠ2 satisfies every constraint in C, then:

ΩΠ = ΩΠ2 (A.664)

2

317

Texas Tech University, Evgenii Balai, December 2017

Proof. Suppose every member of ΩΠ2 satisfies every constraint in C. We will show

ΩΠ = ΩΠ2 . In Lemma 66 we have shown that ΩΠ ⊆ ΩΠ2 . Here we will prove

ΩΠ2 ⊆ ΩΠ. Let W be a possible world of Π2. Since W satisfies C, it is easy to see

that W satisfies (Π2∪C)W . Suppose now there exists W ′ (W satisfying (Π2∪C)W .

Then W ′ would satisfy ΠW
2 , which is a contradiction to the fact that W is a possible

world of Π2. 2

Proposition 11. Let Π be a program from B with signature Σ. f1, f2 and f3 are

admissible consequence functions of Π. 2

Proof. Let AR be the set of activity records in Π. Let Π0, . . . ,Πn be the dynamic

structure of Π \ AR satisfying the condition from Definition 20. We prove the claim

for functions f1 − f3 in 1-3 respectively.

1. We prove that f1 is an admissible consequence function. By construction, it is

sufficient to show that f ′1 is a consequence function of Π \ AR. Recall that for

each I such that

Πcons(I) ∪ ENC(I) has a unique possible world W (A.665)

we have defined f ′1(I) as follows:

f ′1(I) = I ∪ satr(W ∪
⋃
a∈A

a = u)

where

A = {a | a ∈ NRT (I) and W does not contain atoms formed by a}.

In 1.1 we will prove that if f ′1(I) is defined, then it is an e-interpretation of Σ.

In 1.2 we will prove that f ′1({}) is defined. In 1.3 we will show that for every

I ∈ int(Σ), if f ′1(I) is defined, then it is a consequence of I. In 1.4 we will show

318

Texas Tech University, Evgenii Balai, December 2017

that for each I s.t. f(I) is defined, f(I) \ I has no e-literals formed by random

attribute terms.

1.1 Suppose f ′1(I) is defined. In 1.1.1 we will prove that I∪satr(W ∪
⋃
a∈A a =

u) is consistent. In 1.1.2 we will show that I ∪ satr(W ∪
⋃
a∈A a = u) is

saturated.

1.1.1 By Lemma 43 and the minimality of saturation, satr(W ∪
⋃
a∈A a = u)

is consistent. Therefore, it is sufficient to show that I contains no e-

literals contrary to a member of satr(W ∪
⋃
a∈A a = u). For the sake

of contradiction, suppose some l ∈ I is contrary to an e-literal in

satr(W ∪
⋃
a∈A a = u). We will consider all 4 possible forms of l:

(a) l is a = y. In this case a = y ∈ ENC(I). Therefore, a = y ∈ W ⊆

satr(W ∪
⋃
a∈A a = u). Since satr(W ∪

⋃
a∈A a = u) is consistent,

it cannot contain a literal contrary to l. Contradiction.

(b) l is not a = y. In this case ← a = y ∈ ENC(I). Therefore,

W does not satisfy a = y. Therefore, neither W nor
⋃
a∈A a = u

contain a = y, and, by minimality of saturation, the only e-literal

contrary to not a = y does not belong to satr(W ∪
⋃
a∈A a = u).

(c) l is not a 6= y. We have ← a 6= y ∈ ENC(I). Therefore, W does

not satisfy a 6= y. Therefore, by Lemma 36,

a 6= y 6∈ satr(W) (A.666)

By minimality of saturation:

a 6= y 6∈ satr(
⋃
a∈A

a = u) (A.667)

319

Texas Tech University, Evgenii Balai, December 2017

By Lemma 42:

satr(W ∪
⋃
a∈A

a = u) = satr(
⋃
a∈A

a = u) ∪ satr(W) (A.668)

From (A.639), (A.640) and (A.668) we have:

a 6= y 6∈ satr(W ∪
⋃
a∈A

a = u) (A.669)

Therefore, the only literal contrary to not a 6= y does not belong

to satr(W ∪
⋃
a∈A a = u).

(d) l is a 6= y. In this case the rules def(a) ← a = Y , ← not def(a),

← a = y. Therefore, W contains an atom a = y1 for y1 6= y.

Therefore, a 6= y ∈ satr(W ∪
⋃
a∈A a = u), and, since satr(W ∪⋃

a∈A a = u) is consistent, it doesn’t contain e-literals contrary to

l.

1.1.2 We will prove that I ∪ satr(W ∪
⋃
a∈A a = u) is saturated. For a

set of e-literals L and attribute term a, by La we will denote the

subset of L of e-literals formed by attribute term a. For the sake of

contradiction, suppose I ∪ satr(W ∪
⋃
a∈A a = u) is not saturated.

In this case there must exists a s.t. (I ∪ satr(W ∪
⋃
a∈A a = u))a

is not saturated. Clearly, a 6∈ A, because the set satr(a = u) ⊆

satr(W ∪
⋃
a∈A a = u) is saturated, and any literal formed by a is

contrary to one in satr(a = u). Similarly, a is not from an atom

in W , because satr(W) ⊆ satr(W ∪
⋃
a∈A a = u) is saturated, and

any e-literal formed by a not belonging to satr(W) is contrary to

a member of satr(W). Therefore, a an attribute term from an e-

literal in I not occurring in W ∪
⋃
a∈A a = u). Then we cannot have

(I∪satr(W∪
⋃
a∈A a = u))a to be not saturated, because I is saturated,

and, by minimality of saturation, (I ∪ satr(W ∪
⋃
a∈A a = u))a are

320

Texas Tech University, Evgenii Balai, December 2017

precisely the e-literals in I formed by a.

1.2 We will prove that f ′1({}) is defined. Π′cons({}) ∪ ENC(I) coincides with

Π0, which by Definition 20 has a unique possible world. Therefore, f ′({})

is defined.

1.3 We prove that that for every I ∈ int(Σ), if f ′1(I) is defined, then it is a

consequence of I. By Lemma 39, I ⊆ f ′1(I). Suppose V is a possible world

of Π \R such that:

V is compatible with I (A.670)

We will prove that

V is compatible with f ′1(I) (A.671)

By Lemma 61, we have:

ΩI
red(Π) ⊆ Ωred(Π)∪ENC(I) (A.672)

By Lemma 11, we have:

Ωred(Π\AR) = ΩΠ\AR (A.673)

From (A.672) and (A.673) we have:

ΩI
Π\AR ⊆ Ωred(Π\AR)∪ENC(I) (A.674)

By Lemma 65 we have:

Ωred(Π\AR)∪ENC(I) = Ωdrop(red(Π\AR),I)∪ENC(I) (A.675)

Let C be the set of constraints in drop(red(Π \AR), I). By Lemma 66 we

321

Texas Tech University, Evgenii Balai, December 2017

have:

Ωred(Π\AR)∪ENC(I) ⊆ Ω(drop(red(Π\AR),I)\C)∪ENC(I) (A.676)

From (A.674) - (A.676) we have:

ΩI
Π\AR ⊆ Ω(drop(red(Π\AR),I)\C)∪ENC(I) (A.677)

Let AI be the set of attribute terms decided in I, and let L(I) be the set

of literals of Σ formed by attribute terms in

NRT (I) ∪DRT (I) ∪ AI \ {truly random(a) | do(a, y) ∈ Π for some y}

We will first prove that

L(I) is a splitting set of drop(red(Π \ AR), I) ∪ ENC(I) (A.678)

Indeed, suppose drop(red(Π \ AR), I) ∪ ENC(I) contains a rule r of the

form:

a = y ← B (A.679)

such that

a = y ∈ L(I) (A.680)

and l is a literal such that

l occurs in B (A.681)

322

Texas Tech University, Evgenii Balai, December 2017

To show (A.678), it is sufficient to show that

l ∈ L(I) (A.682)

Let a1 be the attribute term from l. By construction of drop(red(Π \

AR), I) ∪ ENC(I), we have

a depends on a1 in red(Π) (A.683)

We next show that

a is a non-random attribute term (A.684)

Indeed, for the sake of contradiction suppose a is a random attribute term.

Since a = y belongs to L(I), by construction of L(I), it must be decided

in I. But, by construction of drop(red(Π \ AR), I) ∪ ENC(I), the pro-

gram cannot contain rules with non-empty body with attribute a in the

head such that a is interpreted by I. Therefore, (A.679) cannot belong to

drop(red(Π\AR), I)∪ENC(I). Contradiction. Therefore, (A.684) holds.

By construction of drop(red(Π \AR), I)∪ENC(I), since the body of r is

non-empty, we have:

a ∈ NRT (I) (A.685)

Then we have two possible remaining cases:

(a) a is a non-random attribute term and a1 is a random attribute term.

From (A.685) and (A.683) we have

a1 ∈ DRT (I) (A.686)

323

Texas Tech University, Evgenii Balai, December 2017

and, therefore, by definition of L(I), (A.682) holds.

(b) Both a and a1 are non-random attribute terms. For the sake of con-

tradiction, suppose

a1 6∈ NRT (I) (A.687)

This, by construction of drop(red(Π \ AR), I), this means one of the

two things:

i.

a1 depends on ar in red(Π \ AR) (A.688)

for some random attribute ar term such that

ar 6∈ DRT (I) (A.689)

From (A.683) and (A.688) we have:

a depends on ar in red(Π \ AR) (A.690)

From (A.690) and (A.689) we have:

a 6∈ NRT (I) (A.691)

The last equation contradicts (A.685), therefore, (A.687) does not

hold, a1 ∈ NRT (I), and, by definition of L(I), (A.682) holds.

ii.

a1 is of the form random(a2, p) (A.692)

where

random(a2, p) 6∈ NRT (I) (A.693)

But in this case, since a1 is non-random, we must have a of the form

324

Texas Tech University, Evgenii Balai, December 2017

truly random(a2), and thus, it by definition ofNRT (I), we cannot

have truly random(a2) ∈ NRT (I). Contradiction to A.685.

Therefore, we have (A.678). From (A.678) by the definition of a splitting

set we have:

L(I) is a splitting set of (drop(red(Π \ AR), I) \ C) ∪ ENC(I) (A.694)

By Lemma 65 we have:

Ωdrop(Πcons(I),I)∪ENC(I) = ΩΠcons(I)∪ENC(I) (A.695)

We have:

drop(Πcons(I), I) ∪ ENC(I) =

botL(I)((drop(red(Π \ AR), I) \ C) ∪ ENC(I)) ∪ C2 (A.696)

where C2 is the collection of constraints from ENC(I) each of which con-

tains an e-literal formed by an attribute term not belonging to L(I).

We first show:

all the constraints in C2 are of the form ← l, where l is a literal

(A.697)

For the sake of contradiction, suppose there is a constraint in C2 which is

not of the form ← l. This means C2 contains a constraint

← not a = y1, . . . , not a = yk

for some a 6∈ L(I). However, botL(I)((drop(red(Π\AR), I)\C)∪ENC(I))

325

Texas Tech University, Evgenii Balai, December 2017

has no rules with a in the head (because a 6∈ L(I)!), so we must have that

botL(I)((drop(red(Π \ AR), I) \ C) ∪ ENC(I)) is inconsistent (A.698)

On the other hand, from (A.695), the fact that W is a possible world of

ΩΠcons(I)∪ENC(I), and (A.696) we get that

W is a possible world of botL(I)((drop(red(Π \ AR), I) \ C) ∪ ENC(I))

(A.699)

(A.699) and (A.698) contradict each other, so we have (A.697). Sup-

pose now C2 has a constraint of the form not l, where the attribute

term in l is not in L(I). In this case, clearly, every possible world in

botL(I)((drop(red(Π \AR), I) \C) ∪ENC(I)) satisfies every constraint in

C2, and, therefore, by Lemma 67:

ΩbotL(I)((drop(red(Π\AR),I)\C)∪ENC(I)) = ΩbotL(I)((drop(red(Π\AR),I)\C)∪ENC(I))∪C2

(A.700)

From (A.695), (A.696), (A.700) and (A.665) we have:

W is the unique possible world of ΩbotL(I)((drop(red(Π\AR),I)\C)∪ENC(I))

(A.701)

From (A.670) and (A.677) we have:

V is a possible world of (drop(red(Π \ AR), I) \ C) ∪ ENC(I) (A.702)

From (A.701) and (A.702) by splitting set theorem and Lemma 5 we have:

326

Texas Tech University, Evgenii Balai, December 2017

V ⊆ W (A.703)

and

(V \W) ∩ L(I) = ∅ (A.704)

Since the set of literals from NRT (I) is a subset of L(I), we have:

(V \W) ∩NRT (I) = ∅ (A.705)

Therefore, (A.671) holds.

1.4 We prove that for every I ∈ int(Σ), if f ′1(I) \ I does not contain e-literals

formed by random attribute terms. We have:

f ′1(I) \ I ⊆ satr(W ∪
⋃
a∈A

a = u)

Since Πcons does not have rules whose heads are formed by atoms formed by

random attribute terms, and A does not have random attribute terms ei-

ther, by minimality of saturation none of the e-literals in satr(W∪
⋃
a∈A a =

u) is formed by a random attribute term.

2. We now prove that f2 is an admissible consequence function of Π. By construc-

tion, it is sufficient to show that f ′2 is a consequence function of Π \ AR.

We start from proving a claim. Let I be an e-interpretation of Σ such that

least(I) is defined. We will prove:

every possible world of Π which satisfies I also satisfies least(I) (A.706)

By Knaster-Tarski theorem (see, for instance, Theorem A.2.2 from [Baral, 2003],

327

Texas Tech University, Evgenii Balai, December 2017

least(I) is equal to H(. . . H(︸ ︷︷ ︸
finite composition

I) . . .) Therefore, it is sufficient to show:

every possible world of Π which satisfies I also satisfies H(I) (A.707)

Let W be a possible world of Π such that:

W satisfies I (A.708)

H(I) = satr(I ∪ {head(r) | r ∈ nr(Π), body(r) ⊆ I} ∪N(I)) (A.709)

We first prove that W satisfies {head(r) | r ∈ nr(Π), body(r) ⊆ I}. Indeed, by

Proposition 4, W satisfies {body(r) | r ∈ nr(Π), body(r) ⊆ I}. Therefore, by

Proposition 1,

W satisfies {head(r) | r ∈ nr(Π), body(r) ⊆ I} (A.710)

We now prove W satisfies N(I). Recall that N(L) is the set of e-literals of the

form not a = y, such that

• a is a non-random attribute term, and

• the body of every rule whose head is a = y contains a literal contrary to

some literal from L.

Let not a = y be a member of N(I). By Proposition 4, W falsifies the body

of every rule with head a = y. Therefore,by minimality of possible worlds, W

does not contain a = y, and satisfies not a = y. Since not a = y was chosen

arbitrarily from the N(I), we have

W satisfies N(I) (A.711)

From (A.710) and (A.711) and (A.708) we have:

328

Texas Tech University, Evgenii Balai, December 2017

W satisfies I ∪ {head(r) | r ∈ nr(Π), body(r) ⊆ I} ∪N(I) (A.712)

From (A.712) by Lemma 36 we have that

W satisfies H(I) (A.713)

Therefore, (A.707) and (A.706) hold.

We now prove that f ′2 is, indeed, a consequence function of Π\R. In 2.1 we will

show that f ′2({}) is defined. In 2.2 we will show that if f ′2({I}) is defined, then

it is a consequence of I w.r.t Π. In 2.3 we will show that if f ′2({I}) is defined,

then f ′2({I}) \ I does not contain random attribute terms.

2.1 We prove that f ′2({}) is defined. In 1 we have shown that f ′1 is a con-

sequence function of Π \ R. Lemma 18 implies that Π \ R is consistent.

Let W be a possible world of Π. W satisfies {}. Since f ′1 is a consequence

function of Π\R, W satisfies f ′({}). By (A.706), W satisfies least(f ′({})).

Therefore, since no interpretation satisfies inconsistent set of e-literals, W ,

least(f ′({})) is consistent, and, by construction, f ′2({}) = least(f ′1({})) is

defined.

2.2 We show that if f ′2(I) is defined, then it is a consequence of I w.r.t Π. We

have:

f ′2(I) = least(f ′1(I))

By definition of least,

f ′1(I) ⊆ least(f ′1(I)) (A.714)

Since f ′1 is a consequence function,

I ⊆ f ′1(I) (A.715)

329

Texas Tech University, Evgenii Balai, December 2017

From (A.714) and (A.715) we have:

I ⊆ f ′2(I) (A.716)

The second condition follows immediately from (A.706).

2.3 We show that if f ′2(I) is defined, then f ′2(I) \ I does not contain e-literals

formed by random attribute terms. By construction, the attribute terms

in {head(r) | r ∈ nr(Π), body(r) ⊆ L} ∪ N(L) do not contain such liter-

als. Therefore, by minimality of saturation, the subset of f ′2(I) formed by

random attribute terms coincide with the same subset of I, which implies

f ′2(I) \ I does not contain e-literals formed by random attribute terms.

3. The main argument for the third function will be based on the claim that most is

a consequence function for Π\AR. Function most is similar to function AtMost

from Stable Models [Simons et al., 2002] The correctness of the claim can be

established using the properties of unfounded sets [Sacca & Zaniolo, 1990].

2

A.3.10 Proof of Proposition 12 (Sketch)

Proposition 12 Let Π be a program from B, and T is one of the AI-trees in

{TΠ〈f1〉, TΠ〈f2〉, TΠ〈f3〉}. For every query Q of Π, there exists a cut of T which

is an efficient solution of Π w.r.t Q.

Proof. Let a1, . . . , an be a causal order of Π. For each function f ∈ {f1, f2, f3}, we

will define a sequence of cuts of TΠ〈f〉 as follows:

1. T0 is a tree consisting of root f({})

2. Ti is obtained from Ti−1 by:

• adding a child ai to each leaf of Ti−1,

330

Texas Tech University, Evgenii Balai, December 2017

• for each newly added node labeled with ai, adding children {f(parent(ai)∪

{ai = y} | y is a possible value of ai in I} where parent(ai) is the parent

of ai in TΠ〈f〉.

It can be then shown that all the leafs of Tn decide all the attribute terms of Σ,

so they are final w.r.t. Q. The fact that f on each of the corresponding inputs

can be shown using the results from Lemma 58.

2

331

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	toI INTRODUCTION
	toII SYNTAX AND SEMANTICS OF P-LOG
	Syntax of P-log
	Sorted Signatures of P-log
	P-log Programs
	P-log Declarations

	Semantics of P-log
	Interpretations
	Possible Worlds
	Probabilities

	A Note on Activity Records in the Bodies of Rules

	toIII DYNAMICALLY CAUSALLY ORDERED P-LOG PROGRAMS
	Causally Ordered Programs
	Dynamically Causally Ordered Programs
	Examples
	Die
	Random Tree
	Blood Type Problem
	Not Dynamically Causally Ordered

	toIV COHERENCY RESULT
	Coherent Programs
	Unitary Programs
	Coherency Theorem

	toV ALGORITHMS
	Introduction
	Transformation
	Definitions
	E-interpretations
	Random Attributes Ready in an E-interpretation
	AI-trees
	Detecting Incompatible Nodes Efficiently
	Computing Node Measures Efficiently
	Efficient Solutions
	Consequence Functions

	Algorithm Description and Implementation

	toVI CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	APPENDIX: PROOFS
	Proofs of Propositions from Chapters I - III
	Proof of Proposition 1
	Proof of Proposition 2

	Coherency Theorem Proof
	Translation from P-log to ASP
	Splitting Set Theorem For P-log
	Proof of Theorem 1

	Algorithm Correctness Proof
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11 (Proof for f1,f2 and Sketch for f3)
	 Proof of Proposition 12 (Sketch)

