
Plan Failure Analysis: Formalization
and Application in Interactive Planning

Through Natural Language Communication

Chitta Baral1, Tran Cao Son2(B), Michael Gelfond3, and Arindam Mitra1

1 Department of Computer Science and Engineering, Arizona State University,
Tempe, AZ, USA

2 Department of Computer Science, New Mexico State University,
Las Cruces, NM, USA
tson@cs.nmsu.edu

3 Department of Computer Science, Texas Tech University, Lubbock, TX, USA

Abstract. While most robots in human robot interaction scenarios take
instructions from humans, the ideal would be that humans and robots
collaborate with each other. The Defense Advanced Research Projects
Agency Communicating with Computer program proposes the collabo-
rative blocks world scenario as a testbed for this. This scenario requires
the human and the computer to communicate through natural language
to build structures out of toy blocks. To formulate and address this, we
identify two main tasks. The first task, called the plan failure analysis,
demands the robot to analyze the feasibility of a task and to determine
the reasons(s) in case the task is not doable. The second task focuses
on the ability of the robot to understand communications via natural
language. We discuss potential solutions to both problems and present
prototypical architecture for the integration of planning failure analysis
and natural language communication into an intelligent agent architec-
ture.

Keywords: Human-robot interaction (HRI) · Planning · Plan failure
analysis · Natural language communication

1 Introduction

Human-robot interaction is an important field where humans and robots col-
laborate to achieve tasks. Such interaction is needed, for example, in search and
rescue scenarios where the human may direct the robot to do certain tasks and at
times the robot may have to make its own plan. Although there has been many
works on this topic, there has not been much research on interactive planning
where the human and the robot collaborate in making plans. For such interactive
planning, the human may communicate to the robot about some goals and the
robot may make a plan to achieve them. If planning fails the robot may explain
the failure, and the human may use the explanation to make suggestions for
c© Springer International Publishing Switzerland 2016
M. Baldoni et al. (Eds.): PRIMA 2016, LNAI 9862, pp. 376–386, 2016.
DOI: 10.1007/978-3-319-44832-9 25

Plan Failure Analysis: Formalization and Application in Interactive Planning 377

Fig. 1. A blocks world example

overcoming the problem. This interaction may continue until a plan is made and
executed. Let us consider an example of such an interactive planning.

Consider the block world domain in Fig. 1 [9]. The robot has its own blocks
and the human has some blocks. The two share a table and some other blocks
on the table. Suppose that the human communicates to the robot the sentence
“Add another blue stack of the same height!.”

Even if we assume that the robot is able to recognize the color of the blocks,
create, and execute plans for constructions of stacks of blocks, such a commu-
nication presents several challenges to a robot. Specifically, it requires that the
robot is capable of understanding natural language, i.e., it requires that the
robot is able to identify that

• the human refers to stacks of only blue blocks;
• the human refers to the height of a stack as the number of blocks on the stack;
• there is a blue stack of the height 2 on the table; and
• it should use its two blue blocks to build a new stack of two blue blocks.

In addition to the above, it is easy to see that the robot cannot accomplish
the task in the situation in Fig. 1 if it is limited to the typical actions in the
block domain (e.g., pick up, put down, or un/stack blocks) and uses only its
own blocks. It is because of its planning process—looking for a plan to create a
stack of two blue blocks—fails. What should the robot do? Can it reply back that
it needs an additional blue block? Can it ask for the blue block of the human? In
this paper, we address this task of plan failure analysis.

Previous approaches to dealing with the planning failure problem have been
proposed. Partial satisfaction planning (PSP) identifies a maximal subset of
the goal (or a sub-formula; or a collection of subgoals with a maximal aggre-
gated ultility) that can be satisfied (e.g., [4]). This approach does not take into
consideration the fact that some actions/fluents are not considered in the plan-
ning process and/or the presence of a human user interacting with the plan-
ner. Applications of planning system in the literature such as mixed-initiative
(e.g., [1,2,14]) emphasize the need for interaction between a human user and a
planning system. However, the human user plays the primary role in the gen-
eration of a working plan. Assumption-based planning [10] assumes that the
planning agent does not have complete information about the world and thus

378 C. Baral et al.

focuses on asserting additional facts so that the resulting planning problem has
a solution. Similar to PSP, ABP does not consider the presence of a human
user interacting with the planner. Diagnostic planning and/or replanning (e.g.,
[5,11,12]) also needs to deal with planning failure. The focus of approaches in
this line of research is to address discrepancies between what is observed and
what is hypothetically true after the execution of a sequence of actions.

In this paper, we propose an orthogonal approach to deal with planning fail-
ure within the context of HRI applications. In this type of applications, the robot
understands a basic set of vocabularies for communication with the human user
and is actively engaged in dealing with the failure of the planning process. It will
identify possible reasons for the failure and possible course of actions for recov-
ering from the failure. To achieve this goal, we formalize the planning failure
analysis problem and introduce a notion called a failure analysis of a planning
problem with respect to an extension (Sect. 2). We propose a potential solu-
tion for the natural language understanding problem and describe a system that
translates communications from a human user into an answer set programming
representation (Sect. 3). We discuss how the proposed components can be inte-
grated into an intelligent agent architecture that allows agents to interactively
planning with humans through natural language communication (Sect. 4).

2 Planning Failure Analysis: Formalization

A planning problem is specified by a tuple P = 〈F,A, I,G〉 where F is a set of
fluents (time-dependent Boolean variables), A is a set of actions with their pre-
conditions and (conditional) effects, I describes the initial state, and G describes
the goal state. 〈F,A〉 is often referred to as the domain of the planning problem.

A fluent literal is a fluent f or its negation ¬f . A set of fluent literals S
is consistent if it does not contain f and its negation ¬f . S is complete if for
every f ∈ F , either f ∈ S or ¬f ∈ S. Each action a ∈ A is associated with
a consistent set of literals, pre(a), called the precondition of a; and a set e(a)
of conditional effects of the form ϕ → ψ where ϕ and ψ are consistent sets of
literals. Intuitively, ϕ → ψ says that when a is executed in a state satisfying ϕ
then ψ is true in the resulting state.

A state is an interpretation of F , i.e., a complete and consistent set of fluent
literals. Truth value of a fluent formula in a state is evaluated in the stan-
dard way. If ϕ is true in a state s, we write s |= ϕ. A set of fluent liter-
als is viewed as conjunction of literals belonging to it. For an action a and a
state s, let es(a, s) =

⋃
ϕ→ψ∈e(a),s|=ϕ ψ. The semantics of P is defined by a

transition function Φ that maps each pair of a state s and an action a into
a state denoted by Φ(a, s). Formally, Φ(a, s) is defined as follows: Φ(a, s) =
s \ es(a, s) ∪ es(a, s) if s |= pre(a)where es(a, s) = {l | l ∈ es(a, s)} and
for every f ∈ F , f = ¬f and ¬f = f ; otherwise, Φ(a, s) is undefined. This
function is extended to define Φ∗([a1, . . . , an], s) as (i) Φ∗([], s) = s; and (ii)
Φ∗([a1, . . . , an], s) = Φ(an, Φ∗([a1, . . . , an−1], s)).

Plan Failure Analysis: Formalization and Application in Interactive Planning 379

A state is called the initial state of P if it satisfies I. A plan of length n for
G is a sequence of actions [a1, . . . , an] (or a solution of P) if for every state s0
satisfying I, Φ∗([a1, . . . , an], s0) is defined and satisfies G.

Example 1. The block domain in Fig. 1—in the view of the robot—can
be represented by the planning domain 〈Fb, Ab〉 with a set of constants1

denoting the human (h), the robot (r), the set of blocks Blks =
{b1, . . . , b14}, Fb = {on(B1, B2), has(X,B), ontable(B), holding(X,B),
clear(B), handempty, color(B,C)} and Ab = {pick(B), putdown(B),
stack(B1, B2), unstack(B1, B2), takes(B)} where X ∈ {h, r}, C is one of the
colors, and B,B1, B2 ∈ Blks are blocks with B1 �= B2. Preconditions and effects
of actions are defined as usually, e.g., for the action of picking up a block from
the table or taking its own block, they are:

• pre(pick(B))={handempty, ontable(B), clear(B)}
• e(pick(B)) = {∅ → {holding(B), ¬ontable(B), ¬handempty, ¬clear(B)}}
• etc.

We omit the description of other actions for brevity. The planning problem
discussed in the first section can be represented by Pb = 〈Fb, Ab, Ib, Gb〉 with Ib

encodes the configuration in Fig. 1 and Gb be the following formula:

∨

x�=y∈Blks,{x,y}∩{b7,b8}=∅

[
color(x, blue) ∧ color(y, blue)∧
ontable(x) ∧ on(y, x) ∧ clear(y)

]

We will now formally define the planning failure analysis problem. The above
discussion leads us to the definition.

Definition 1. Let P = 〈F,A, I,G〉 be a planning problem. We say that P needs
a failure analysis if it has no solution.

We can easily check that Pb does not have a solution and thus needs a failure
analysis. Realizing that a planning problem needs a failure analysis is identical
with checking whether it has a solution or not. As such, the complexity of the
problem of identifying whether or not a planning problem needs a failure analy-
sis is the same as that of planning. It is known that the complexity of planning
is undecidable in the general case [13]. Under certain assumptions (e.g., finite
and deterministic domains), it reduces to PSPACE-complete [6]. For planning
problems considered in this paper, if we limit the length of plans then the com-
plexity reduces to NP-complete. We will next focus on answering the question of
why the planning process fails and what can one do when the planning problem
has no solution. We start with the assumption that changes can be caused only
by actions. Thus, one way to rectify this problem is to provide additional actions
that could be used in creating a plan.
1 Fluents/actions with variables are shorthands for collections of their ground instanti-
ations. The formalization used in this example is a variant of the block world domain
representation in planning benchmarks and assumes that each block has a unique
color. The goal is simplified to be “build a stack of two blue blocks.”

380 C. Baral et al.

Definition 2. An extension to a planning problem P = 〈F,A, I,G〉 is a pair
(Afs, Acts) where Afs is a set of fluents and Acts is a set of actions such that
F ∩ Afs = ∅ and A ∩ Acts = ∅.
Intuitively, Acts is the set of actions that the planning agent (robot) could
execute and Afs could be the set of fluents, which occur in the definition of
Acts and do not belong to F . Observe that Acts could change the fluents in F
and their definitions could introduce new fluents. It can contain actions that the
robot cannot use without permission and/or execute independently. Note that
this is different from planning with preferences, which considers that the actions
are available at the robot’s disposal but the robot prefers not to use them.

In our running example, Acts could be the set with a single action
ask permission whose precondition is empty (true) and whose effect is
that the robot can use the human’s blocks in solving the problem2, i.e.,
e(ask permission) = {{has(h,B)} → {has(r,B)} | B ∈ Blks}; Afs =
∅ since every fluent occurring in the definition of ask permission also
belongs to F . For later reference, we will denote with E1 the extension
(∅, {ask permission}) to Pb. Notice that this extension can be refined by
the extension E2 = (∅, {ask permission(B) | B ∈ Blks}) where, for each
b ∈ Blks, ask permission(b) has the precondition {has(h, b)} and an effect
∅ → {has(r, b)}.

Given an extension E = (Afs, Acts) to a planning problem P = 〈F,A, I,G〉,
what could be a failure analysis for P w.r.t. E? The above discussion suggests
that it could be a pair (Af , Ac) with Af ⊆ Afs and Ac⊆Acts such that P∗ =
〈F ∪ Af , A ∪ Ac, I ∪ Af ∗, G〉 has a solution where Af ∗ is an interpretation of
the set of fluents Af . By this definition, E1 is an analysis for Pb w.r.t. E1 since
P∗ = 〈F,A∪{ask permission}, I, G〉 has a solution. Similarly, we can check that
for every X ⊆ {ask permission(B) | B ∈ Blks} such that ask permission(b1) ∈
X, (∅,X) is an analysis for Pb w.r.t. E2.

The above definition appears reasonable for E1 and E2. However, it allows
the possibility of wishful analysis as in the next example. Let us consider the
extension E3 = ({color(b10, blue)}, ∅), i.e., the robot wishes that the color of
another block in its possession is blue. If we were to use the above definition
then E3 is also an analysis for Pb w.r.t. E3. Clearly, this analysis is not practical
for Pb since the robot cannot change the color of a block. On the other hand,
E4 = ({color(b10, blue), paint available}, {paint blue(b10), buy paint}) where
buy paint causes paint available to be true and paint blue(b10) causes the block
10 to be blue is an extension of Pb and is itself an analysis for Pb.

Definition 3. Let P = 〈F,A, I,G〉 be a planning problem and α = [a1, . . . , an]
be one of its solution. We say that a fluent f changes its value during the execu-
tion of α, denoted by ±f

α→ ∓f , if there exist some 1 ≤ j < n such that f is true
(resp. false) Φ∗([a1, . . . , aj−1], s0) and false (resp. true) in Φ∗([a1, . . . , aj], s0).
2 Observe that the action ask permission(.) refers to a communication between the
robot and the human user and thus is not included in the initial planning domain of
Pb. Furthermore, we assume that the human is collaborative and thus would grant
the robot the permission to use his blocks.

Plan Failure Analysis: Formalization and Application in Interactive Planning 381

If we require that the fluent that are added to the domain change their values
in the plans that could be generated, then E3 cannot be used to provide an
analysis for Pb. Observe that there are situations in which wishful analyses might
be useful. For example, when the robot does not have complete information
about the world (e.g., its sensors are imperfect and the robot know that the
information about the initial state can be incorrect; or the robot executes a plan
and observes something unexpected). This issue has been investigated in [10]
or in the literature on diagnostic planning and/or replanning. As discussed, the
focus of the present work is different.

Definition 4. Let E = (Afs, Acts) be an extension to the planning problem P =
〈F,A, I,G〉. A pair (Af , Ac) such that Af ⊆ Afs and Ac ⊆ Acts is called a plan
failure analysis for P w.r.t. E (or an analysis for P, for short) if there exists an
interpretation Af ∗ of the set of fluents Af and P∗ = 〈F ∪Af , A∪Ac, I ∪Af ∗, G〉
has a solution α such that ±f

α→ ∓f for every f ∈ Af .
When Af = Ac = ∅, we say that it is a no-fault analysis; otherwise, it is a

non-trivial analysis.

By the above definition, we can see that E1 is an analysis for Pb w.r.t. E1

but E3 is not an analysis for Pb w.r.t. E3. Definition 4 characterizes analyses
as those that introduce new fluents and actions into the planning problem so
that they will be useful in creating a solution for the new planning problem.
In general, we prefer analyses that change the planning problem in a minimal
way. For example, (∅, {ask permission(b1)}) could be viewed as better than
(∅, {ask permission(b1), ask permission(b2)}) w.r.t. E2 as the former asks for
less from the human.

Definition 5. Let E = (Afs, Acts) be an extension to the planning problem
P = 〈F,A, I,G〉. Let (Af , Ac) and (Af ′, Ac′) be two plan failure analyses for P
w.r.t. E. We say that (Af , Ac) is a more preferred failure analysis than (Af ′, Ac′),
denoted (Af , Ac) ≺ (Af ′, Ac′), if Ac � Ac′.

An analysis (Af , Ac) is said to be a most preferred analysis for P w.r.t. E if
there exists no other analysis that is more preferred than (Af , Ac).

By Definition 5, it is easy to see that (∅, {ask permission(b1)}) is the most
preferred failure analysis for Pb w.r.t E2. We prove that the relation ≺ is a partial
order over the set of analyses for a planning problem.

Proposition 1. For a planning problem P = 〈F,A, I,G〉 and an extension E =
(Afs, Acts) to P, the following holds: (i) ≺ defines a partial ordering over the
set of failure analyses for P w.r.t. E; and (ii) if (∅, ∅) is an analysis for P then
it is the unique most preferred analysis for P w.r.t. E.

It is reasonable to assume that given a planning problem P = 〈F,A, I,G〉
there exists an extension E to P that covers all possible failure analyses for P
should it need a failure analysis. For example, the robot in our running example
should be able to assume that it can ask the human for permission to use the
human’s blocks in responding to the command (as in E1 or E2); or it has, at its

382 C. Baral et al.

disposal, actions for changing the color of a block (as in E4); or all of these (as
in E1 ∪ E2 ∪ E4). However, the fact that the robot cannot make unreasonable
assumptions such as the color of a block could change by itself (as in E3) should
be taken into consideration. Specifying E is therefore problem-dependent and is
out of the scope of this paper. We note that the proposed notion of plan failure
analysis has been proposed by in our earlier work [3]. The formalization proposed
in this paper only shares Definition 1 with the earlier one.

3 Natural Languge to Answer Set Programming (ASP)

The previous section deals with the planning failure analysis problem, assuming
that the robot understands the commands from the human user. Computing
planning failure analyses can be done using logic programming under answer
set semantics [15] and can be implemented similar to the proposal in [3]. For
space reason, we omit the discussion on computing planning failure analyses.
In this section, we focus on providing this capability to the robot. Specifically,
we describe a translation system that represents the communicative signals of a
human in machine understandable terms. It is a relatively well-studied problem
in Natural Language Processing (NLP) and popularly known as semantic parsing
[17]. A semantic parser maps natural language sentences to a formal representa-
tion language (such as) to allow automated inference and processing. Recently
several powerful systems have been developed to build a semantic parser for var-
ied target representations [7,16,18–20,22,23]. In this research, we have trained
the NL2KR system [22] for the task of translation.

In NL2KR, the meaning of words and phrases are expressed as λ-calculus
[8] expressions. The meaning of a sentence is built from the semantics of con-
stituent words through appropriate λ-calculus applications. The parse tree of

Table 1. A set of human commands and their representation in an intermediate lan-
guage. NL2KR has been trained on these sentences to translate new sentences similar
to these sentences. A small program is written to convert the intermediate formal
representation to the syntax of ASP.

Sentence Meaning

Add another blue stack of the
same height.

λx. goal cond(x, op, add) ∧ goal cond(x, is, stack) ∧
goal cond(x, color, blue) ∧goal cond(x, height,
same) ∧goal cond(x, type, another).

Take my blocks. λx. add block(has robot(x), has(human, x) ∧
block(x)).

How about a red stack of the
same height as the blue
stack?

λx. goal cond(x, is, stack)∧ goal cond(x, color, red)
∧ goal cond(x, height, same)∧ goal cond(x, origin,
blue) ∧ goal cond(x, type, another).

Add another stack of the
same height as the tallest
stack.

λx. goal cond(x, op, add) ∧ goal cond(x, is, stack) ∧
goal cond(x, height, tallest) ∧ goal cond(x, type,
another).

Plan Failure Analysis: Formalization and Application in Interactive Planning 383

the sentence in Combinatory Categorial Grammar [21] (henceforth CCG) directs
how the words are combined to produce the meaning of the sentence. During
training NL2KR takes as input: (1) a set of training sentences and their target
formal representation, and (2) an initial lexicon or dictionary consisting of some
words, their CCG categories and meanings in terms of λ-calculus expressions.
It then produces a bigger lexicon that is used in translation. For this work, the
training set contained the sentences shown in Table 1. For the translation of a
new sentence into the syntax of ASP, the λ-calculus expression of the sentence
is first obtained. A small program then adds syntactic sugar to the λ-calculus
expression to make it a valid ASP statement.

Consider the sentence “Take my blocks” from the Table 1. Let us say that
the initial dictionary contains two entries as shown in Table 2. The first entry
says that the word “take” with the CCG category “S/NP” has the meaning
λp.λx. use(has robot(x), p @x). The second entry provides a meaning of the
word “blocks” for the category “NP”.

Table 2. A sample initial dictionary containing two entries.

Word CCG Meaning

Take S/NP λp.λx. add block(has robot(x), p @x)

Blocks NP λx. block(x)

Given this information, NL2KR then learns the meaning of the unknowns
i.e. the phrase “my blocks” and the word “my” in the following way. It first
obtains the CCG parse tree (Fig. 2) of the input sentence. A CCG parse tree
shows how the words are combined together to characterize the meaning of the
sentence. For example, the CCG in Fig. 2 indicates that the determiner (NP/N)
“my” takes the noun (N) “blocks” as the input to produce the meaning of the
noun phrase (NP) “my blocks”.

The verb (S/NP) “take” then scoops the noun phrase (NP) “my blocks” to
produce the meaning of the sentence (S) “take my blocks”. With the CCG parse
tree in hand, NL2KR then uses an operation called “Inverse-λ” to obtain the
meaning of the phrase “my blocks” as “λx.has(human, x) ∧ block(x)” from the
meaning of “take” and “take my blocks”. The “Inverse-λ” operator takes two
λ-expressions, H (the root node) and G (the left child or the right child) and
returns the λ-expression F for the other child such that either H = G@F (when
G is the left child) or H = F@G (when G is the right child). Finally, it obtains
the meaning of the word “my” λx8.λx6.has(human, x6)∧x8@x6 by “Inverse-λ”
from the meaning of “my blocks” and “blocks” and saves it in the final dictionary
for use during the translation of new sentences.

Furthermore, NL2KR uses a operation called “generalization” to handle
unknown words. For example, given a new sentence “Use my blocks” NL2KR
will generalize the meaning of “use” by the meaning of “take” to translate it

384 C. Baral et al.

take my blocks [S]
#x.add_block(has(robot,x),has(human,x)^block(x))

#x.add_block(has(robot,x),has(human,x)^block(x))

take [S/NP]
#p.#x.add_block(has(robot,x),p^@x)
#p.#x.add_block(has(robot,x),p^@x)

my blocks [NP]
#x1.has(human,x1)^block(x1)
#x1.has(human,x1)^block(x1)

my [NP/N]
#x3.#x1.has(human,x1)^x3@x1
#x3.#x1.has(human,x1)^x3@x1

blocks [N]
#x.block(x)
#x.block(x)

Fig. 2. An augmented CCG parse tree for the sentence “take my blocks” obtained from
NL2KR. Each node shows the CCG category, the text description and the λ-expression
associated with that node. NL2KR treats ‘#’ as ‘λ’.

to “λx. add block(has robot(x), has(human, x) ∧ block(x))”. A λ-to-ASP pro-
cedure will then convert the λ expression to the desired ASP representation,
add block(has robot(S) ← has(human, S), block(S)).

4 Discussion

The components described in the previous sections are developed in response to
the challenge given in [9]. Since a non-trivial analysis represents a reason for the
failure of the planning process, an intelligent agent (robot) working interactively
with a human user can use failure analyses to explain to him/her why it fails
to achieve the goal. In fact, we envision that the proposed components can be
integrated into a general architecture for a robot to interactively working with
a human user as in Fig. 3.

Results

NLP
Module Planner

Executor

Failure
Analysis

Human Commands
Fail

Success

Results

Response

ASP

Analysis

Fig. 3. Schematic integration of planning failure analysis and NLP module into an
intelligent agent architecture

We will next discuss additional tasks that are required for an end-to-end
implementation of the architecture in Fig. 3. The first task is to compute the
plan failure analyses that can be computed using answer set programming.

Plan Failure Analysis: Formalization and Application in Interactive Planning 385

The second task is related to the planning component of the robot. In gen-
eral, the planner is supposed to plan for goals of arbitrary formulae over the
set of fluents of the planning domain. Yet, it is expected that a communica-
tion between the human and the robot would sometimes contain directives that
do not belong to the language of the planning domain (e.g., ‘same’, ‘height’,
‘tallest’, ‘another’, etc.). As demonstrated, our translation system can learn new
vocabularies3 and translates these directives to new statements representing in
the language of the planner. We believe that if other state-of-the-art off-the-shelf
planning systems (e.g., FF, Fast Downward, etc.) are used, converting the new
directives to a formula might be more suitable. How to train our translation
system for this task and what is the impact on the performance of the system
are two very interesting questions that we leave for future research.

5 Conclusions

We discuss challenges in development of intelligent agents that interact with
humans in planning. We introduce the notion of a planning failure analysis for a
planning problem given its extension and also show that failure analyses can be
computed using ASP and used for generating responses. We describe a transla-
tion system that can convert natural language communications to ASP goals. We
discuss how the proposed components can be integrated into an overall archi-
tecture for developing intelligent agents that interact with human in problem
solving and describe additional tasks that need to be completed.

References

1. Ai-Chang, M., Bresina, J., Charest, L., Chase, A., Hsu, J.C.J., Jonsson, A.,
Kanefsky, B., Morris, P., Rajan, K., Yglesias, J., Chafin, B.G., Dias, W.C.,
Maldague, P.F.: Mapgen: mixed-initiative planning and scheduling for the Mars
Exploration Rover Mission. IEEE Intell. Syst. 19, 8–12 (2004)

2. Allen, J.F., Ferguson, G.: Human-machine collaborative planning. In: Proceedings
of 3rd International Workshop on Planning and Scheduling for Space (2002)

3. Baral, C., Son, T.C.: “Add another blue stack of the same height!”: ASP based
planning and plan failure analysis. In: Calimeri, F., Ianni, G., Truszczynski, M.
(eds.) LPNMR 2015. LNCS, vol. 9345, pp. 127–133. Springer, Heidelberg (2015)

4. Benton, J., Do, M.B., Kambhampati, S.: Anytime heuristic search for partial sat-
isfaction planning. Artif. Intell. 173(5–6), 562–592 (2009)

5. Brafman, R.I., Shani, G.: Replanning in domains with partial information and
sensing actions. J. Artif. Intell. Res. 45, 565–600 (2012)

6. Bylander, T.: The computational complexity of propositional strips planning. Artif.
Intell. 69(1–2), 165–204 (1994)

7. Chen, D.L., Mooney, R.J.: Learning to interpret natural language navigation
instructions from observations (2011)

3 If it cannot deal with a new word, the system should respond by asking for an
alternative or about the meaning of the word.

386 C. Baral et al.

8. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math.
58(2), 345–363 (1936)

9. DARPA: Communicating with Computers (CwC) (2015)
10. Davis-Mendelow, S., Baier, J.A., McIlraith, S.A.: Assumption-based planning: gen-

erating plans and explanations under incomplete knowledge. In: Proceedings of
AAAI (2013)

11. De Giacomo, G., Reiter, R., Soutchanski, M.: Execution monitoring of high-
level robot programs. In: Principles of Knowledge Representation and Reasoning,
pp. 453–465. Morgan Kaufmann Publishers (1998)

12. Erdem, E., Patoglu, V., Saribatur, Z.G.: Integrating hybrid diagnostic reasoning
in plan execution monitoring for cognitive factories with multiple robots. In: ICRA
(2015)

13. Erol, K., Nau, D., Subrahmanian, V.: Complexity, decidability and undecidability
results for domain-independent planning. Artif. Intell. 76(1–2), 75–88 (1995)

14. Ferguson, G., Allen, J.F.: Trips: An integrated intelligent problem-solving assistant.
In: Proceedings of AAAI, pp. 567–572 (1998)

15. Gelfond, M., Lifschitz, V.: Logic programs with classical negation. In: Proceedings
of 7th International Conference on Logic Programming, pp. 579–597 (1990)

16. Ge, R., Mooney, R.J.: Learning a compositional semantic parser using an exist-
ing syntactic parser. In: JCAMACL and IJCNLP, pp. 611–619. Association for
Computational Linguistics (2009)

17. Kate, R.J., Wong, Y.W., Mooney, R.J.: Learning to transform natural to formal
languages. In: Proceedings of AAAI 2005 (2005)

18. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Inducing prob-
abilistic CCG grammars from logical form with higher-order unification. In:
EMNLP, pp. 1223–1233. ACL (2010)

19. Kwiatkowski, T., Zettlemoyer, L., Goldwater, S., Steedman, M.: Lexical generaliza-
tion in CCG grammar induction for semantic parsing. In: EMNLP, pp. 1512–1523.
ACL (2011)

20. Mooney, R.J.: Learning for semantic parsing. In: Gelbukh, A. (ed.) CICLing 2007.
LNCS, vol. 4394, pp. 311–324. Springer, Heidelberg (2007)

21. Steedman, M.: The Syntactic Process. MIT Press, Cambridge (2000)
22. Vo, N.H., Mitra, A., Baral, C.R.: The NL2KR platform for building natural lan-

guage translation systems. In: Association for Computational Linguistics (ACL)
(2015)

23. Zettlemoyer, L.S., Collins, M.: Online learning of relaxed CCG grammars for pars-
ing to logical form. In: EMNLP-CoNLL, pp. 678–687 (2007)

