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Abstract. The paper investigates the relationship between knowledge representa-
tion languages P-log [2] and LPMLN [11] designed for representing and reasoning
with logic and probability. We give a translation from an important subset of
LPMLN to P-log which preserves probabilistic functions defined by LPMLN pro-
grams and complements recent research [12] by the authors of LPMLN where they
give a translation from a subset of P-log to their language. This work sheds light
on the different ways to treat inconsistency in both languages.

1 Introduction

Combining logic and probability has been one of the most important directions of artifi-
cial intelligence research in recent years. Many different languages and formalisms have
been developed to represent and reason about both probabilistic and logical arguments,
such as ProbLog [5, 6], PRISM [16, 17], LPADs [19], CP-Logic [18], MLN [15], and
others.

In this paper we focus on two such languages, P-log and LPMLN. They are distin-
guished from other mentioned alternatives by their common logic base, Answer Set
Prolog (ASP) [8], a logical formalism modeling beliefs of a rational agent. ASP is power-
ful enough to naturally represent defaults, non-monotonically update the knowledge base
with new information, define relations recursively, reason about causal effects of actions,
etc. The language serves as the foundation of the so called Answer Set Programming
paradigm [13, 14] and has been used in a large number of applications [4].

An agent associated with an ASP knowledge base reasons about three degrees of
belief – he can believe that p is true, believe that p is false, or remain uncommitted
about his belief in p. In the latter case the truth of p remains unknown.

An extension of ASP, called P-log, allows the reasoner to express and reason with
finer, numerically expressed, gradation of the strength of his beliefs. In other words,
it preserves the power of ASP and, in addition, allows an agent to do sophisticated
probabilistic reasoning.

The main goal of the P-log designers was to provide the language and reasoning
mechanism which can be used for clear and transparent modeling of knowledge involv-
ing logical and probabilistic arguments. There are a number of non-trivial scenarios
formalized in [3]. More computationally challenging scenarios, including probabilistic
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planning and diagnosis, can be found in [20], where their P-log representations and
performance analysis are given.

A new version of P-log , introduced in [9], replaces ASP by its extension CR-Prolog
[1], which expands logical power of ASP (and hence the original P-log) by allowing so
called consistency restoring rules (cr-rules) used for restoring consistency of the program
by a certain form of abductive reasoning.

Despite the presence of cr-rules, the underlying philosophy of P-log requires the
corresponding knowledge base to be consistent. A rational reasoner is assumed to trust
its rules and refuses to deal with a knowledge base containing statements p and ¬p.
Possible means to ensure consistency of the program should be supplied by a knowledge
engineer. This is natural from a theoretical goal of the authors but is also important in
many practical applications, for example, where inconsistency of the knowledge base
may be a sign of some errors in its design and therefore should be addressed by making
the necessary changes.

The language LPMLN, introduced in [11], is based on a different philosophy. Its
first goal seems to be similar to that of P-log – it is supposed to provide means for
combining ASP based reasoning with reasoning about probability. But, in addition, the
new language is aimed at providing a powerful (though somewhat less predictable) way
of resolving inconsistencies which may appear in LPMLN programs due to mechanical
combination of different knowledge bases, designer mistakes, or some other reasons.
The design of the language was influenced by Markov Logic Networks [15] and seems
to be practically independent from P-log. As a result, the relationship between these
two languages with seemingly similar goals remains unclear. This paper is a step in
remedying this situation. In particular, we give a translation from an important subset
of LPMLN to P-log which preserves probabilistic functions defined by LPMLN programs.
The work complements resent research[12] by Lee and Wang in which the authors give
a translation from a subset of P-log to LPMLN .

The rest of this paper is organized as follows. In section 2 we define the subset
of P-log used in this paper. In section 3 we briefly describe the syntax and semantics
of LPMLN. In section 4 we describe a translation from LPMLN to P-log and define the
correspondence between LPMLN programs and their P-log translations precisely. Section
5 uses the results from sections 4 to describe certain properties of probabilities defined
by LPMLN programs. Section 6 concludes the paper by summarizing the obtained results
and future work.

2 Language P-log

In this section we introduce a simplified version of P-log with consistency restoring
rules from [9] which is sufficient to define the translation from LPMLN. We do so by
considering a simple domain consisting of two adjacent rooms, r1 and r2, and a robot
initially located in r1. We present a P-log program, Π0, modeling direct effects of
the action move of the robot attempting to enter the second room. The program is
presented to illustrate the language constructs so we ignore concerns about its generality,
elaboration tolerance, etc.
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We start with declarations of objects and functions of the domain. In P-log such
functions are usually referred to as attributes, while expressions of the form f(x̄), where
f is an attribute, are called attribute terms. We need the sort

step = {0, 1}

where 0 and 1 denote time-steps before and after the execution of the action respectively.
We also need the sort

room = {r1, r2}

and attributes
move, broken : boolean

loc : step→ room

Here move is true iff at step 0 the robot has attempted to move to room r2; broken holds
if the robot has been broken and hence may exhibit some non-deterministic behavior;
loc gives the location of the robot at a given step. Declarations of P-log are followed by
the program rules. In our case we will have rules

loc(0) = r1 (1)

move (2)

indicating that at step 0 the robot located in room r1 attempted to move to room r2. Here
move is a shorthand for move = true. We use this convention for all boolean functions:
f(x̄) = true and f(x̄) = false are written as f(x̄) and ¬f(x̄) respectively.

As expected the effect of action move for the well-functioning robot is given by the
rule:

loc(1) = r2 ← not broken,move. (3)

If the robot is malfunctioning however we need to state that the effect of move is random
– the robot can still successfully move to room r2 or to stay in room r1. In P-log this is
expressed by the following random selection rule r

[r] random(loc(1))← broken,move (4)

which says that if the malfunctioning robot will attempt to move to room r2 then, in the
resulting state, attribute term loc(1) will randomly take a value from the range of loc. The
rules of the program described so far can be easily translated into regular ASP rules – we
simply need to replace random(loc(1)) in the last rule by (loc(1) = r1 or loc(1) = r2),
replace atoms of the form f(x̄) = y by f(x̄, y) and, for every term f(x̄), add a constraint
{← f(x̄) = y1, f(x̄) = y2, y1 6= y2}. In general, an atom of the form random(f(x̄))
is replaced by the disjunction f(x̄) = y1 or . . . or f(x̄) = yk where {y1, . . . , yk} is
the range of f .

Answer sets of the translation of a P-log program Π into ASP are viewed as pos-
sible worlds of the probabilistic model defined by Π . It is easy to see that program
Π0 consisting of rules (1)–(4) has one such possible world W0 = {move, loc(0) =
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r1, loc(1) = r2}1 . ProgramΠ1 = Π0∪{broken}will have two possible worlds,W1 =
{broken,move, loc(0) = r1, loc(1) = r2} and W2 = {broken,move, loc(0) =
r1, loc(1) = r1}. In the case of multiple possible worlds we need some device al-
lowing to specify the numeric probabilities of possible values of random attributes. This
is expressed in P-log through causal probability statements, or, simply, pr-atoms. A
pr-atom takes the form

prr(f(x̄) = y) = v

where f(x̄) is a random attribute, y is a value from the range of f , and v ∈ [0, 1] is
the probability of y to be selected as the value of f(x̄) as the result of firing random
selection rule r. In case of Π1 such pr-atoms may look as, say,

prr(loc(1) = r1) = 0.3

and
prr(loc(1) = r2) = 0.7

Unnormalized probabilistic measure of a possible world W is defined as the product
of probabilities of the random atoms f1(x̄1) = y1, . . . , fk(x̄k) = yk from W . These
probabilities are obtained from the corresponding pr-atoms. Normalized probabilistic
measures and probability function on the sets of possible worlds and on the literals of the
language are defined as usual. Let P0 and P1 be the probability functions defined by Π0

and Π1 respectively. W0 has no random atoms, the empty product is 1, and hence the
probabilistic measure of W0 and P0(loc(1) = r1) are both equal to 1. The probabilistic
measures of W1 and W2 are 0.7 and 0.3 respectively and hence P1(loc(1) = r1) = 0.3.

As mentioned in the introduction, a P-log program can be inconsistent. For instance,
program Π2 = Π0 ∪ {loc(1) = r1} has no possible worlds. To avoid this particular
inconsistency the program designer can expand Π0 by a cr-rule:

broken
+← . (5)

which allows to restore inconsistency of Π2 by assuming that the robot is broken. Since
the original program Π0 is consistent, the resulting program, Π0

new will define the
same probabilistic model as Π0. The program Π2

new, consisting of Π0
new and the fact

{loc(1) = r1}, unlike the program Π2, will be consistent and have one possible world,
W2. The extension of Π0 by a new information changed the probability of the robot
being in room r2 after execution of move from 1 to 0.

3 Language LPMLN

In this section we give a brief summary of LPMLN ([11]). We limit out attention to ground
programs whose rules contain no double default negation not not and no disjunction.
To the best of our knowledge, no example in the literature demonstrating the use of

1for convenience we will often identify original P-log literals with corresponding ASP ones
(e.g, we will sometimes write loc(1) = r1 in place of loc(1, r1))



5

LPMLN for formalization of knowledge uses these constructs. As usual, we may use rules
with variables viewed as shorthands for the sets of their ground instances. A program
of the language is a finite set of LPMLN rules – ground ASP rules preceded by a weight:
symbol α or a real number. Rules of the first type are called hard while rules of the
second are referred to as soft. Despite their name the hard rules are not really “hard”.
Their behavior is reminiscent of that of defaults. According to the semantics of the
language the reasoner associated with a program constructs possible worlds with non-
zero probability by trying to satisfy as many hard rules as possible. The satisfiability
requirement for the soft rules and the use of their weights for assigning the probability
measure to possible worlds of M are more subtle. In what follows we give the necessary
definitions and illustrate them by an example of LPMLN program. Sometimes we abuse
the notation and identify an LPMLN program M with its ASP counterpart obtained from
M by dropping the weights of its rules. Stable models of such a counterpart will be
referred to as ASP models of M . By MI we denote the set of rules of M which are
satised by an interpretation I of M . An interpretation W is a possible world of M if it
is a ASP model of MW . We will say that a possible world W is supported by MW . As
usual, by ΩM we denote the set of all possible worlds of M . Unnormalized measure of
a possible world W ∈ ΩM (denoted by wM (W )) is expγ where γ is the sum of weights
of all rules of M satisfied by W . Note that, in case M contains rules with α-weights
satisfied byW ,wM (W ) is not a numerical value and should be understood as a symbolic
expression. The probability function, PM , defined by program M is

PM (W ) = lim
α→∞

wM (W )∑
V ∈ΩM wM (V )

It is easy to check that PM maps possible worlds ofM into the interval [0, 1] and satisfies
standard axioms of probability.

As expected, the probabilistic model defined by M consists of ΩM and PM .

Let us now use LPMLN to formalize the stories from the previous section. Program
M0 will capture the first such story corresponding to P-log programΠ0. It clearly should
contain rules (1) – (3) ofΠ0. In addition, for every attribute f it must include a constraint

← f(X) = Y1, f(X) = Y2, Y1 6= Y2 (6)

which is hidden in P-log semantics of Π0. All these rules, however, should be supplied
with some weights. Since we strongly believe that the rules are correct, we would like to
preserve as many of them as possible. Hence, we view them as hard. LPMLN does not
have a direct analog of rule (4) but, it seems natural to represent it by two rules:

ln(0.3) : loc(1) = r1 ← broken,move (7)

and
ln(0.7) : loc(1) = r2 ← broken,move (8)

where the logarithms are added to the probabilities to cancel the exponentiation from the
definition of unnormalized measure wM . In addition, the hard rule

α : ← not loc(1) = r1, not loc(1) = r2 (9)
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is added to force loc(1) to take a value (in P-log this is guaranteed by the semantics of
disjunction). This concludes construction of M0. It is worth noting that M0 is similar to
the program obtained from Π0 by a general translation from P-log to LPMLN described
in [12].

We will show that there is a simple relationship between probabilistic models defined
by Π0 and M0. The possible worlds of Π0 correspond to the possible worlds M0 with
non-zero probability (also called probabilistic stable models of M0 in [11]). Moreover,
probability functions PM0 and PΠ0 coincide on probabilistic stable models of M0.

Let us first notice that W0 = {move, loc(0) = r1, loc(1) = r2} is an ASP model
of M0

W0
and hence is a possible world of M0. The probability of W0 is 1. Clearly, W0

is the only possible world of M0 satisfying all its hard rules. M0 however has other
possible worlds. For instance, V = {move} satisfies all the rules of M0 \{(1), (3), (9)}
and is the stable model of this program. Therefore, it is a possible world of M0. It is
easy to check however that V is not a probabilistic stable model of M0. In fact, this is a
consequence of a general result in [11] which says that if there is a possible world of
LPMLN program M which satisfies all its hard rules then every probabilistic stable model
of M also satisfies them. The result clearly implies that W0 is the only probabilistic
stable model of M0.

The program M1 = M0 ∪ {α : broken} is again similar to Π1. It has two proba-
bilistic stable models, W1 and W2 with probabilities equal to 0.7 and 0.3 respectively.
As before, there are other possible worlds but none of them satisfies all the hard rules of
M1 and hence they have probability 0.

A more serious difference can be observed however between the program Π2 and
the new program M2 obtained from M0 by adding the rule

α : loc(1) = r1 (10)

Since the rules of Π2 are strict and, therefore, should be satisfied by possible worlds,
the program Π2 is inconsistent. M2 however does not have such a restriction. It will
have three probabilistic stable models. The first one is an ASP model of M2 \ {(2)}.
It resolves contradiction by assuming that the robot failed to move. The second is an
ASP model of M2 \ {(3)}. The contradiction is removed by abandoning the causal law
(3). Another possible explanation may given by an ASP model of M2 \ {(10)} which
assumes that our observation of the robot being in r1 after the execution of move is
incorrect. This seems to be a reasonable answer.

M2 also has other possible worlds, for instance, W ∗ = {loc(1) = r1, loc(1) =
r2,move, loc(0) = r1}. W ∗ however does not satisfy two ground instances of the rule
(6):

α :← loc(1) = r1, loc(1) = r2, r1 6= r2

α :← loc(1) = r2, loc(1) = r1, r2 6= r1

and therefore, has probability 0. This follows from a simple generalization of the result
from ([11]) which says that if there is a possible world of LPMLN program M which
satisfies n hard rules then every possible world satisfying less than n hard rules has
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probability 0. Note, however, that if the rule (6) in M2 were replaced by a seemingly
equivalent rule

α :← f(X) = Y1, f(X) = Y2, Y1 < Y2 (11)

(with a lexicographic meaning of<), the resulting programM∗ would have an additional
probabilistic stable model W ∗. It is an ASP model of the program obtained from M∗ by
removing the following ground instance of (11):

α :← loc(1) = r1, loc(1) = r2, r1 < r2 (12)

Though technically correct the result looks somewhat counterintuitive since the robot
cannot occupy both rooms at the same time. However, we can extend M∗ with another
copy of (12) to increase our confidence in it. The new program will have the same
probabilistic stable models as M2.

Finally, to model the effect of consistency restoring rule (5), we extend M0 with the
rule

w : broken (13)

where w is a very large negative weight. The resulting program M0
new will have 3

probabilistic stable models, in two of which the robot is believed to be broken, however
the probabilities of both of them are very low. This behavior is quite different (and, in
some sense, less elegant) from the similar case in P-log where the cr-rule (5) was not used
since the program Π0 is consistent. Similarly to Π2

new, the program M2
new consisting of

M0
new and the fact {loc(1) = r1} has exactly one probabilistic stable model W2 (which

satisfies all the hard rules of the program). As in P-log, the semantics of LPMLN allow
updating of the probability of the robot to be in room r2 at step 1 from 0 to 1 by adding
new information. However, unlike in P-log, extending the original program M0 with
a soft counterpart (13) of the cr-rule (5) leads to introducing new probabilistic stable
models of the program with negligible probabilities.

4 From LPMLN to P-log

In this section we state the main result of this paper: establishing a relationship between
LPMLN and P-log programs.

First we need a definition. Let M be an LPMLN program and At(M) be the set of
atoms in M .

Definition 1 (Counterpart). A P-log program Π is called a counterpart of M if there
exists a bijection φ from the set of probabilistic stable models of M to the set of possible
worlds of Π such that

1. for every probabilistic stable model W of M , if PM and PΠ are probability
functions defined by M and Π respectively, then PM (W ) = PΠ(φ(W ))

2. for every probabilistic stable model W of M , W ≡At(M) φ(W ), that is, W and
φ(W ) coincide on the atoms of M .

Main Theorem. For every LPMLN program M (as defined in section 3) there exists its
P-log counterpart, τ(M), which is linear-time constructible. �
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The previous theorem immediately implies the following important corollary:

Corollary 1. If A is atom of an LPMLN program M , then

PM (A) = Pτ(M)(A)

where the probabilities PM (A) and Pτ(M)(A) are defined as the sum of probabilities of
possible worlds which contain A of the corresponding program. �

To prove the theorem we need the following Lemma which gives an alternative
characterization of probabilistic stable models of M .

Lemma 1. LetW be an interpretation satisfying n hard rules ofM .W is a probabilistic
stable model of M if and only if

1. W is a possible world of M supported by some M0 ⊆M ;
2. no possible world of M supported by some M1 ⊆ M satisfies more than n hard

rules of M .

�

Proof of the Main Theorem: Here we only provide a construction of τ(M) given a
program M and define a map φ from definition 1 (the complete proof of the theorem,
including a proof of lemma 1 can be found in Appendix B. A short outline of the proof
is given in Appendix A ).

We will assume that all atoms in Π are of the form p, where p is an identifier
(in the general case, the atoms of the form p(t1, . . . , tn) can be translated into unique
identifiers).

In what follows we will construct a P-log program which chooses a subprogram M0

of M and computes ASP models of M supported by M0 such that no possible world of
M is supported by a program containing more hard rules than M0. By Lemma 1, they
will be probabilistic stable models of M . Appropriate probability atoms will ensure that
the corresponding probabilities match.

Let r1, . . . , rn be the enumeration of rules of M . We will refer to i as the label of ri.

The translation τ(M) is defined as follows:

1. τ(M) contains
(a) declarations of the sorts hard and soft – sets of labels of hard and soft rules of

M respectively.
(b) declaration a : boolean for each atom a in the signature of Π .
(c) declarations of the auxiliary attributes

h, b, selected, sat : soft→ boolean

ab : hard→ boolean

whose meaning will be explained later.
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We refer to this part of the translation as the declaration part of τ .
2. For every hard rule ri of the form

α : head← body (14)

τ(M) contains the rules:

head← body, not ab(i) (15)

ab(i)
+← . (16)

The auxiliary relation ab(i) says that “rule ri is abnormal (or not-applicable))”. The
addition of not ab(i) turns the translation (15) of Π’s rule (14) into a default rule of
P-log. The cr-rule (16), called Contingency Axiom [9], says that, the reasoner may
possibly believe ab(i). This possibility, however, may be used only if there is no
way to obtain a consistent set of beliefs by using only regular rules of the program.
It is commonly used to capture indirect exceptions to defaults [7]. Together, these
rules allow to stop the application of a minimal number of the hard rules of M thus
avoiding possible inconsistency and conforming to the semantics of such rules in
LPMLN.
This completes the translation for programs consisting of hard rules only.

3. For every soft rule ri of the form

w : head← body (17)

τ(M) contains the rules:

head← body, selected(i) (18)

random(selected(i)) (19)

← ¬selected(i), sat(i) (20)

The auxiliary relation selected(i) says that “the rule with label i is selected”; relation
sat(i) stands for ‘the rule with label i is satisfied‘. The addition of selected(i) to
the body of the translation (18) of M ’s rule (17) together with random selection rule
(19) allows a reasoner to select soft rules of a candidate subprogram M0 of M .
Constraint (20) is used to ensure that computed models of M0 satisfy condition
1 from the Lemma 1. Of course, to make this work we need the definition of sat
which is given by the following rules:

sat(i)← b(i), h(i) (21)

sat(i)← not b(i) (22)

b(i)← B (23)

where B is the body of soft rule ri, and

h(i)← l (24)

for every literal l in the head of soft rule ri. As expected, b(i) stands for ‘the body
of ri is satisfied‘ and h(i) for ‘the head of ri is satisfied‘.
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4. Finally, for every selected(i), τ(M) contains probability atom:

pr(selected(i)) =
ewi

1 + ewi
(25)

which says ‘the soft rule ri with weight wi is selected (that is, added to M0) with
probability ewi

1+ewi .

It is easy to see that the size of τ(M) is linear in terms of the size of M . Moreover,
τ(M) is modular, that is, it can be easily extended if new rules are added to M .
The map φ is defined is follows:

φ(W ) =W ∪ {ab(i) | i ∈ hard, ri is not satisfied by W}
∪ {sat(i) | i ∈ soft, ri is satisfied by W}
∪ {selected(i) | i ∈ soft, ri is not satisfied by W}
∪ {¬selected(i) | i ∈ soft, ri is satisfied by W}
∪ {b(i) | i ∈ soft, the body of ri is satisfied by W}
∪ {h(i) | i ∈ soft, the head of ri is satisfied by W}

The rest of the proof can be outlined as follows. We first need to show that for every
probabilistic stable model W , φ(W ) is a possible world of τ(M). This can be done by
using standard techniques suitable for CR-Prolog programs. After that, we show the
bijectivity of φ. This step can be split into two parts. Firstly, the surjectivity of φ(W )
follows from the fact that a probabilistic stable model V of M obtained from a possible
world W of τ(Π) by dropping all newly introduced literals from W satisfies φ(V ) =
W . Secondly, the injectivity follows trivially from the definition of φ. Finally, the
required probability equality from definition 1 follows from the definition of probabilistic
functions in both languages. �

The following is an example of the translation.

Example. Consider the following LPMLN program M from [11]:

α : concertBooked.
α : longDrive← concertBooked, not cancelled.
ln(0.2) : cancelled.
ln(0.8) :← cancelled.

The program has two probabilistic stable models (each of which satisfy both its hard
rules):

1. V1 = {concertBooked, cancelled}
2. V2 = {concertBooked, longDrive}

with corresponding probabilities equal to 0.2 and 0.8.

The corresponding translation τ(M) looks as follows:
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% declaration part:
soft = {3, 4}.
hard = {1, 2}.
concertBooked, cancelled, longDrive : boolean.
b, h, selected, sat : soft→ boolean.
ab : hard→ boolean.
% translation of hard rules:
concertBooked← not ab(1).
longDrive← concertBooked, not cancelled, not ab(2).

ab(R)
+← .

% translation of soft rules:
cancelled← selected(3).
← cancelled, selected(4).
random(selected(R)).
← ¬selected(R), sat(R).
% definition of satisfiability:
sat(R)← not b(R).
sat(R)← b(R), h(R).
b(3).
b(4)← cancelled.
h(3)← cancelled.
% probability atoms:
pr(selected(3)) = 0.2/(1 + 0.2).
pr(selected(4)) = 0.8/(1 + 0.8).

The translation τ(M) has two possible worlds:

1. U1 = {selected(3),¬selected(4), h(3), cancelled,
b(3), b(4), sat(3), concertBooked}

2. U2 = {¬selected(3), selected(4), b(3), longDrive, concertBooked, sat(4)}

As expected, on the atoms ofM ,U1 andU2 coincide with the corresponding probabilistic
stable models {cancelled, concertBooked} and {concertBooked, longDrive} of M
(more specifically, U1 = φ(V1) and U2 = φ(V2)). It can be easily checked that, as
promised, Pτ(M)(U1) = PM (V1) = 0.2 and Pτ(M)(U2) = PM (V2) = 0.8.

5 Probabilities of soft rules in LPMLN

LetM be an LPMLN program with at least one soft rule ri of the form wi : head← body.
The authors of LPMLN view ri as an implication and define the probability PM (ri) as
follows:

PM (ri) =
∑
W∈ΩM ,W |=ri PM (W ) (26)

Note that replacing ΩM with the set of all probabilistic stable models of M gives
an equivalent definition. We will use the result obtained in the previous section to
investigate the relationship between the reasoner’s confidence in ri, i.e, its weight wi
and its probability PM (ri).
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It seems natural to assume that PM (ri) would be proportional to w. However, this is
not necessarily the case. Let us consider the following program:

ln(3) : a.
ln(3) : ← a.
ln(2) : b.

Despite the larger weight, the first rule has smaller probability than the third one (the
corresponding probabilities are equal to 1/2 and 2/3 respectively).

Informally speaking, this happens because the first rule is inconsistent with the
second one, while the third one doesn’t have such a restriction.

We next use the results from the previous section to obtain an alternative understand-
ing of the probability PM (ri). Let τ(M) be the counterpart of M described there and φ
be the bijection from Definition 1. It can be easily seen that ri is satisfied by a possible
world W of M iff φ(W ) contains selected(i). This, together with the first clause of
Definition 1 implies that:

PM (ri) = Pτ(M)(selected(i)) (27)

That is, the probability of ri in M is equal to the probability of selected(i) in P-log
program τ(M). In general, this probability depends on all possible worlds of τ(M) and
their probabilities. However, for some cases it can be determined uniquely by the weight
of ri. This is always the case if τ(M) belongs to the class of coherent P-log programs,
where this probability is equal to the value of the pr-atom pr(selected(i)) in (25). This
class, and the sufficient conditions for a P-log program to be in it, are given in [3].

For instance, it can be checked that the translation of the program M3 consisting of
soft facts ln(3) : a and ln(2) : b is coherent. Thus, the fact that probability of a is equal
to eln(3)/(1 + eln(3)) = 3/4 can be obtained directly from the corresponding pr-atom
(25) of τ(M3). Note that, in general, to compute the probability of an atom, we may
need to perform fairly complex inference (e.g, compute possible worlds of the program).

6 Conclusion and Future Work

We have defined a linear-time constructible modular translation τ from LPMLN programs
into P-log programs. Non-zero probability possible worlds of an LPMLN program M
coincide with possible worlds of τ(M) on atoms of M . Moreover, the probabilistic
functions defined by M and τ(M) coincide on atoms M . The work allowed us to better
understand both languages, including their treatment of potential inconsistencies, and
opened a way to the development of LPMLN solvers based on P-log inference engines.
We also believe that this work, together with the new complementary results from [12],
will allow to use the theory developed for one language to discover properties of the
other.

Our plans for future work are as follows.

1. We plan to complete the current work on the development of an efficient inference
engine for P-log and use the translation τ to turn it into a solver for LPMLN .
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2. In the near future, we expect the appearance of LPMLN solver based on the algorithm
from Section 3.4 [11]. It will be interesting to use the translatiom from [12] to turn it
into P-log solver and compare its performance with that of the one mentioned above.

3. We plan to investigate the possibility of adapting inference methods developed for
MLN [10] and LPMLN for improving efficiency of P-log solvers.
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A Proof of the Main Theorem (Outline)

In this section we provide a sequence of lemmas which may serve as an outline of the
complete proof of the theorem available in appendix B. In section 4 of the main text we
have constructed the translation τ(M) from an LPMLN program M into a P-log program
which has a size linear in terms of the size of M , as well as defined the map φ from
probabilistic stable models of M into possible worlds of τ(M). To complete the proof,
we need to show that φ satisfies the desired properties from definition 1. The properties
follow directly from the lemmas:

Lemma 2. For every probabilistic stable model W of M , φ(W ) is a possible world of
τ(M). �

Proof of lemma 2, outline. We need to show that φ(W ) is an answer set of the CR-Prolog
program which is used to define the possible worlds of τ(M) (the translation from a
P-log program τ(M) into the corresponding CR-Prolog program is described in section
2 of the main text). We denote the CR-Prolog program by τ∗(M). We can prove the
lemma in the following steps:

1. Construct a subset γ of consistency restoring rules of τ∗(M) as follows:

γ = {ab(i) +← |ab(i) ∈ φ(W )}

2. Show that φ(W ) is an answer set of the program constructed from the regular rules
of τ∗(M) and the regular counterparts of the rules in γ.

3. Show that γ is an abductive support of τ∗(M).

The details of step 2 can be found in sections 2.2-2.3 of the complete proof (Appendix
B). Step 3 corresponds to section 2.4 of the complete proof.

�

Lemma 3. For every possible world V of τ(M), the set of atoms in V from the signature
of M is a probabilistic stable model of M . �

Proof of lemma 3, outline. Let W be the set of atoms in V from the signature of M . The
correctness of the lemma can be shown in the following two steps:

1. Show that W is a possible world of M . This can be done by showing that W is an
ASP model of MW (a subset of M constructed from all rules of M satisfied by W ).

2. Show that W is a probabilistic stable model of M (that is, PM (W ) > 0). This can
be shown using some properties of LPMLN programs, including lemma 1 from the
main text.

The details are left for section 3.1 of the complete proof. �

Lemma 4. φ is surjective, that is, there for every possible world V of τ(M) there exists
a probabilistic stable model W of M such that φ(W ) = V . �
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Proof of lemma 4, outline. Given a possible world V of τ(M), let W be a set of atoms
obtained from V by removing all atoms not belonging to the signature of M . By lemma
3, W is a probabilistic stable model of M . The fact that φ(W ) = V can be proved by
considering every atom l and showing that l ∈ φ(W ) iff l ∈ V . The details of the last
step can be found in section 3.2 of the complete version. �

Lemma 5. φ is injective, that is, for every two distinct probabilistic stable models W1

and W2 of M , φ(W1) 6= φ(W2). �

Proof of lemma 5, outline. The correctness of the lemma follows immediately from the
fact that W ⊆ φ(W ) for every probabilistic stable model W of M . See section 4 of the
complete proof for the details. �

Lemma 6. φ is bijective. �

Proof of lemma 6: the fact that φ is a bijective follows immediately from lemmas 4 and
5 which state that φ is surjective and injective and surjective respectively. �

Lemma 7. For every probabilistic stable model W of M ,

PM (W ) = Pτ(M)(φ(W ))

�

Proof of lemma 6, outline. The equality can be established by applying the definitions
of probabilistic functions PM and Pτ(M) of the corresponding programs. The key
observation needed is the fact that the random attribute term selected(i) is true in
possible world φ(W ) of τ(M) if and only if the soft rule of M labeled with i is satisfied
by W . See section 5 of the complete proof for details. �

B Proof of the Main Theorem

In this section we complete the proof of the main theorem from section 4. In particular,
we show that for an LPMLN program M , τ(M) is a counterpart of M .

We start from stating and proving some propositions about LPMLN which extend the
results from [11].

Proposition 1. If W1 is a possible world of an LPMLN program M and there exists a
possible world of M which satisfies more hard rules than W1, then PM (W1) = 0.

Proof: Let W2 be a possible world of M which satisfies more hard rules of M than W1.
Let q and r be the number of hard rules satisfied by W1 and W2 respectively. From
the definition of unnormalized measure wM it is to see that there exist two positive real
numbers y1 and y2 such that:

wM (W1) = y1 · eqα (28)

and
wM (W2) = y2 · erα (29)
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By definition of probability function PM we have:

PM (W1) = limα→∞
wM (W1)∑
J∈ΩM

wM (J) (by definition)

= limα→∞
y1·erα∑

J∈ΩM
wM (J) (by (28))

= limα→∞
y1·eqα

wM (W2)+
∑
J∈ΩM\{W2}

wM (J)

= limα→∞
y1·eqα

y2·erα+
∑
J∈ΩM\{W2}

wM (J) (by (29) ) (30)

To compute the limit in (36), we introduce three functions f1(α), f2(α), f3(α) of a real
argument α defined as follows:

f1(α) = 0 (31)

f2(α) =
y1 · eqα

y2 · erα +
∑
J∈ΩΠ\{W2} wΠ(J)

(32)

f3(α) =
eqα · y1
erα · y2

(33)

Then we have

PM (W1) = limα→∞
y1·eqα

y2·erα+
∑
J∈ΩM\{W2}

wM (J) (from (30) )

= limα→∞ f2(α) (by (32) ) (34)

It is easy to see that for every real number α:

0 = f1(α) ≤ f2(α) ≤ f3(α) (35)

Therefore, to show that PM (W1) = limα→∞ f2(α) = 0, it is sufficient to show
limα→∞ f3(α) = 0:

limα→∞ f3(α) = limα→∞
eqα·y1
erα·y2

= limα→∞
y1

e(r−q)α·y2

= 0 (since r > q) (36)

�

Proposition 2. Let M be an LPMLN program and W1 be a possible world of M
satisfying r hard rules of M . Every probabilistic stable model of M satisfies at least r
hard rules of M .

Proof:
Let W2 be a probabilistic stable model of M . For the sake of contradiction, suppose

it satisfies q < r hard rules of M . Then by Proposition 1 we have that PM (W2) = 0,
which contradicts the definition of probabilistic stable model of M .

�
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Proposition 3. LetM be an LPMLN program. LetW be a possible world ofΠ satisfying
q hard rules of M . W is a probabilistic stable model of M if and only if every possible
world of M satisfies at most q hard rules of M .

Proof:

=> Suppose W is a probabilistic stable model of M . For the sake of contradiction,
suppose there exists a possible world of M which satisfies r > q hard rules of
M . By Proposition 2, W has to satisfy at least r hard rules of M , which is a
contradiction, since we know W satisfies q < r hard rules of M .

<= Suppose every possible world of M satisfies at most q rules of M . We show

W is a probabilistic stable model of Π (37)

Let W1, . . . ,Wn be all possible worlds of M . Without loss of generality we will
assume W = W1. Let i be an integer in {1..n}. We have

wM (Wi) = e

∑
w:R∈M,Wi|=R(w)

Let Ai be the set of all hard rules of M satisfied by Wi and Bi be the set of all soft
rules of M satisfied by Wi. Then we have

wM (Wi) = e|Ai|∗α · e
∑
w:R∈Bi(w)

We denote the sum
∑
w:R∈Bi(w) by yi and |Ai| (the number of hard rules of M

satisfied by Wi) by hi. Then we have

wM (Wi) = yi · ehi∗α

Note that yi is a positive real number.
We have

PM (W ) = PΠ(W1)

= limα→∞
wM (W1)∑n
i=1 wM (Wi)

= limα→∞
y1·eh1·α∑n

i=1 yi ∗ ehi·α
(38)

Since every possible world of M satisfies at most q rules of M , hi ≤ h1 = q. Let I
be the largest subset of {1, . . . , n} such that for each j ∈ I , Wj satisfies exactly h1
hard rules (that is, hj = h1). Then we have

for every j ∈ {1, . . . , n} \ I , hj < h1 (39)
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and

PM (W ) = limα→∞
y1·eh1·α∑n

i=1 yi ∗ ehi·α

= limα→∞
y1·eh1·α∑

i∈I yi ∗ eh1·α +
∑
i∈{1,...,n}\I yi ∗ ehi·α

= limα→∞
y1·eh1·α∑

i∈I yi ∗ eh1·α +
∑
i∈{1,...,n}\I yi ∗ ehi·α

= limα→∞
1∑

i∈I
yi∗eh1·α
y1∗eh1·α

+
∑
i∈{1,...,n}\I

yi∗ehi·α
y1∗eh1·α

(40)

To compute the last limit in 40, we introduce a function f(α) of a real argument α:

f(α) =
∑
i∈I

yi∗eh1·α
y1∗eh1·α

+
∑
i∈{1,...,n}\I

yi∗ehi·α
y1∗eh1·α

(41)

and compute the limit:

limα→∞f(α) = limα→∞

(∑
i∈I

yi∗eh1·α
y1∗eh1·α

+
∑
i∈{1,...,n}\I

yi∗ehi·α
y1∗eh1·α

)
= limα→∞

(∑
i∈I

yi∗eh1·α
y1∗eh1·α

)
+ limα→∞

(∑
i∈{1,...,n}\I

yi∗ehi·α
y1∗eh1·α

)
= limα→∞

(∑
i∈I

yi∗eh1·α
y1∗eh1·α

)
(since ∀i ∈ {1, . . . , n} \ I: h1 > hi)

=
∑
i∈I

yi
y1

(42)

Therefore, from (40) we have:

PM (W ) = limα→∞
1∑

i∈I
yi∗eh1·α
y1∗eh1·α

+
∑
i∈{1,...,n}\I

yi∗ehi·α
y1∗eh1·α

= limα→∞
1

f(α)

= 1
limα→∞ f(α) (we know from (42) that limα→∞ f(α) exists)

= 1∑
i∈I

yi
y1

=
∑
i∈I

y1
yi
> 0 (since yj > 0 for every j ∈ {1, . . . , n}) (43)

From the fact that W is a possible world of Π and (43) we have (37).

�
It is worth noticing that Proposition 3 is equivalent to Lemma 1 from the main text

of the paper.
We are ready to prove that τ(M) is a counterpart of M . In step 1 of the proof we
define a mapping φ from probabilistic stable models of M to possible worlds of τ(M).
In 2 we prove for every probabilistic stable model W of M , φ(W ) is a possible world of
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τ(M). In 3-4 we prove that φ is a bijection (to do this, we show that φ is surjective and
injective in 3 and 4 respectively). In 5 we show PM (W ) = Pτ(M)(φ(W )). 1-5 together
imply that τ(M) is a counterpart of M

1. Suppose
W is a probabilistic stable model of M (44)

We define φ(W ) as follows2

φ(W ) := W ∪ {ab(i) | i ∈ hard, ri is not satisfied by W}
∪ {sat(i) | i ∈ soft, ri is satisfied by W}
∪ {selected(i) | i ∈ soft, ri is not satisfied by W}
∪ {¬selected(i) | i ∈ soft, ri is satisfied by W}
∪ {b(i) | i ∈ soft, the body of ri is satisfied by W}
∪ {h(i) | i ∈ soft, the head of ri is satisfied by W} (45)

Note that φ(W ) is consistent by construction.
2. Let W be a probabilistic stable model of M . Let τ ′ be the mapping from P-log

programs to ASP program defined in section 4 and τ∗ be the composition τ ′ ◦ τ . We
need to show that φ(W ) is an answer set of τ∗(M).
As in [7], by α(r) we denote a regular rule obtained from a consistency restoring
rule r by replacing +← with←; α(r) is expanded in a standard way to a set R of
cr-rules, i.e. α(R) = {α(r) : r ∈ R}.
In 2.1 we construct a subset γ of consistency restoring rules of τ∗(M).
Let R be the set of regular rules of τ∗(M). In 2.2-2.3 we show that φ(W ) is an
answer set of R ∪ α(γ) (in particular, in 2.2 we show that φ(W ) satisfies the rules
of R ∪ α(γ) and in 2.3 we prove that there there does not exist a proper subset of
φ(W ) satisfying (R ∪ α(γ))φ(W )).
In 2.4 we show that γ is an abductive support of τ∗(M). Since from 2.3 it follows
that R ∪ α(γ) is consistent, it is sufficient to show there does not exist a subset γ′ of
consistency restoring rules of τ∗(M) such that
(a) |γ′| < γ
(b) the program R ∪ α(γ′) is consistent.
From 2.1 – 2.4 it follows φ(W ) is an answer set of CR-Prolog program τ∗(M), and
therefore a possible world of τ(M).
2.1 We construct a subset γ of consistency restoring rules of τ∗(M) as follows:

γ = {ab(i) +← |ab(i) ∈ φ(W )} (46)

2.2 We will prove that φ(W ) satisfies the rules of R ∪ α(γ). In 2.2.1 we prove
φ(W ) satisfies the rules in R and In 2.2.2 we prove φ(S) satisfies the rules in
α(γ).

2Note that in what follows we, as previously, identify a P-log literal of the form f(t) (which
is a shorthand for f(t) = true) with the literal of the form f(t, true) and the literal of the
form ¬f(t) with f(t, false). For example, we view ab(i) and ab(i, true) as identical literals.
Similarly ¬selected(i) is the same as selected(i, false)
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2.2.1 We will prove φ(W ) satisfies the rules of R. Let r be a rule in R. In what
follows we will consider all possible forms of the rule r and show that r
is satisfied. We first notice that, since the rules of M do not contain new
literals introduced in τ(M), for every rule r of M we have:

r is satisfied by W iff r is satisfied by φ(W ) (47)

if head← body is a rule of M
2.2.1.1 Suppose r is of the form

head← body, not ab(i) (48)

where head← body is a rule of M .
If φ(W ) contains ab(i), the rule is satisfied. Otherwise, by construction
of φ(W ), head← body is satisfied by W , and, therefore, by (47), the
rule (48) is satisfied by φ(W ).

2.2.1.2.2 Suppose r is of the form:

head← body, selected(i) (49)

where head← body is a rule of M . If φ(W ) does not contain
selected(i), the rule is satisfied. Otherwise, similarly to the previous
case, the rule is satisfied.

2.2.1.2.3 Suppose r is of the form:

sat(i)← b(i), h(i) (50)

If φ(W ) satisfies both b(i) and h(i), then the head and the body of ri
are satisfied byW . Therefore, ri is satisfied byW , and, by construction
of φ(W ), sat(i) ∈ φ(W ). Therefore, φ(W ) satisfies the rule (50).

2.2.1.2.4 Suppose r is of the form:

sat(i)← not b(i) (51)

Similarly to the case 2.2.1.2.3 we can show W satisfies ri, sat(i) ∈
φ(W ) and, therefore, φ(W ) satisfies the rule (51).

2.2.1.2.5 Suppose r is of the form:

b(i)← B (52)

where B is the body of the rule ri of M . Suppose φ(W ) satisfies B.
Then, by construction of φ(W ), φ(W ) satisfies b(i), and, therefore,
φ(W ) satisfies (52).

2.2.1.2.6 Suppose r is of the form:

h(i)← l (53)

By the reasoning similar to the one from case 2.2.1.2.5, we can show
that if φ(W ) satisfies l, it also satisfies h(i). Therefore, φ(W ) satisfies
(53).
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2.2.1.2.7 Suppose r is of the form:

← ¬selected(i), sat(i) (54)

Suppose φ(W ) satisfies ¬selected(i). Thus, by construction of φ(W ),
ri is not satisfied by W and φ(W ) does not contain sat(i). Therefore
the rule (54) is satisfied by φ(W ).
If ¬selected(i) is not satisfied by φ(W ), the rule (54) is satisfied by
φ(W ).

2.2.1.2.8 Suppose r is of the form:

selected(i) or ¬selected(i). (55)

where i ∈ soft. In this case, depending on whether or not ri is sat-
isfied by W , by construction φ(W ) contains either selected(i) or
¬selected(i) correspondingly. Therefore, the rule (55) is satisfied by
φ(W ).

2.2.2 By construction of α(γ), it is easy to see that α(γ) consists of facts of the
form ab(i), where ab(i) ∈ φ(W ). Therefore, φ(W ) satisfies all facts in
α(γ).

2.3 We show that every subset of φ(W ) satisfying the reduct (R ∪ α(γ))φ(W ) is
equal to φ(W ).
For the sake of contradiction, suppose there exists a subset W ′ of φ(W ) such
that

W ′ ( φ(W ) (56)

that is, W ′ is a proper subset of φ(W ), and

W ′ satisfies (R ∪ α(γ))φ(W ) (57)

We introduce some notation. By O (read ”original”) we denote the set of
atoms of M . By N (read ”newly added”) we denote the set of atoms of τ∗(M)
excluding atoms of M . For a set X of atoms of τ∗(M), by XO we denote the
set of atoms X ∩O. Finally, by XN we denote the set of atoms X ∩N .
We derive a contradiction by showing that W ′ = φ(W ), that is, by showing that
(56) does not hold. In 2.3.1 we will prove the implication

(W ′O = φ(W )O) =⇒ (W ′N = φ(W )N ) (58)

That is, if W ′ and φ(W ) coincide on the atoms of M , they must also coincide
on other atoms of τ∗(M).
In 2.3.2 we will show

W ′O (W (59)

In what follows, whenever convenient, we ignore the weights of MW and treat
it as an ASP program. For instance, (MW )W will denote the ASP reduct of
ASP program MW with respect to W . In 2.3.3 we will show

W ′O satisfies the rules of (MW )W (60)



24

(60) together with (59) contradicts the fact that W is an ASP model of MW ,
and, therefore, the fact that W is a probabilistic stable model of M which was
our original supposition (44).

2.3.1 We prove (58). Suppose
W ′O = φ(W )O (61)

We will show

W ′N = φ(W )N (62)

Since A ( B implies that for an arbitrary set U , A∩U is a subset of B∩U ,
(56) implies:

W ′N ⊆ φ(W )N (63)

Therefore, to show (62) it is sufficient to show

φ(W )N ⊆W ′N (64)

Let l be an atom such that

l ∈ φ(W )N (65)

In what follows we consider all possible forms of l and show that l ∈W ′N .
In doing that we find useful the following observation. By definition of φ,

φ(W )O = W (66)

From (66) and (61) we have

W ′O = W (67)

2.3.1.1 Suppose l = ab(i).
In this case, by construction of γ,

ab(i)
+← belongs to γ (68)

Therefore, by definition of α

ab(i) belongs to α(γ) (69)

Hence, ab(i) belongs to (R ∪ α(γ))φ(W ). Therefore, by (57), ab(i) ∈
W ′, and, since ab(i) ∈ N , ab(i) ∈W ′N .

2.3.1.2 Suppose l = b(i). Let Bi be the body of the rule ri of M . Since b(i)
belongs to φ(W ), by its construction Bi is satisfied by W .
From (67) we have

Bi is satisfied by W ′ (70)
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Let B′i be the set of literals obtained from Bi by removing all extended
literals containing not. The reduct Rφ(W ) contains the rule

b(i)← B′i (71)

From (70) we have
B′i is satisfied by W ′ (72)

By (57), W ′ satisfies all the rules in Rφ(W ), including the rule (71).
Therefore, from (72) we have b(i) ∈W ′, and, since b(i) ∈ N , b(i) ∈
W ′N .

2.3.1.3 Suppose l = h(i). Since, by (65), h(i) belongs to φ(W ), by construc-
tion of φ(W ), the head of ri is satisfied by W . That is, there exists a
literal li belonging to the head of ri such that

li ∈W (73)

From (73) and (67) we have

li ∈W ′ (74)

By construction, τ∗(M), and therefore the reduct (R ∪ α(γ))φ(W )

contain the rule
h(i)← li (75)

By (57), W ′ satisfies all the rules of (R ∪ α(γ))φ(W ), including (75).
Therefore, from (74) we have h(i) ∈W ′, and, since h(i) ∈ N , h(i) ∈
W ′N .

2.3.1.4 Suppose l = sat(i).
In this case, by construction of φ(W ) we have that the rule ri of M is
satisfied by W . There are two possible cases considered in 2.3.1.2.1
and 2.3.1.2.2 below.

2.3.1.4.1 The body and the head of ri are satisfied by W . By construction of
φ(W ) we have

b(i) ∈ φ(W ) (76)

and
h(i) ∈ φ(W ) (77)

In 2.3.1.2 and 2.3.1.3 we have shown that from (76) and (77) it
follows

b(i) ∈W ′ (78)

and
h(i) ∈W ′ (79)

respectively.
Since the rule

sat(i)← b(i), h(i)
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belongs to the reduct (R ∪ α(γ))φ(W ), by (57) we have W ′ satisfies
this rule and , from (78) and (79) we have sat(i) ∈W ′, and, since
sat(i) ∈ N , we have sat(i) ∈W ′N .

2.3.1.4.2 The body of the rule ri is not satisfied by W . In this case, by con-
struction of φ(W ), b(i) 6∈ φ(W ). In this case the fact

sat(i) (80)

obtained from the rule

sat(i)← not b(i) (81)

of τ∗(M) belongs to the reduct (R ∪ α(γ))φ(W ). Since, by (57),
W ′ satisfies (R ∪ α(γ))φ(W ), we have sat(i) ∈ W ′, and, since
sat(i) ∈ N , we have sat(i) ∈W ′N .

2.3.1.5 Suppose l = selected(i). Since selected(i) belongs to φ(W ), by con-
struction, ¬selected(i) does not belong to φ(W ). By (56), W ′ ⊆
φ(W ). Therefore,

¬selected(i) 6∈W ′ (82)

Since
selected(i) or ¬selected(i)

belonging to the reduct (R ∪ α(γ))φ(W ) is satisfied by W ′ (by (57)),
from (82) we have selected(i) ∈W ′. Since selected(i) ∈ N , we have
selected(i) ∈W ′N .

2.3.1.6 Suppose l is ¬selected(i). This case is very similar to 2.3.1.5.
From 2.3.1.1 - 2.3.1.6 we have (64). From (64) and (63) we have (62).
Therefore, we proved (62) assuming (61), and the implication (58) holds.

2.3.2 We prove that W ′O (W .
From the definitions of W ′O and W ′N :

W ′ = W ′O ∪W ′N (83)

and

φ(W ) = φ(W )O ∪ φ(W )N (84)

From (58), (83), (84) we have

(W ′O = φ(W )O) =⇒ (W ′ = φ(W )) (85)

From (85) and (56) we have

W ′O 6= φ(W )O (86)

From (86) and (56) we have

W ′O ( φ(W )O (87)
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By construction of φ, we have

φ(W )O = W (88)

From (88) and (87) we have (59).
2.3.3 We prove (60) which says that W ′O satisfies all the rules of the reduct

(MW )W .
We divide the rules of (MW )W into two categories: the ones obtained from
hard and soft rules ofMW respectively. We will show in 2.3.3.1. and 2.3.3.2
respectively that the rules of both types are satisfied by W ′O.

2.3.3.1 Let r be a rule of (MW )W of the form head← body such that

r is obtained from a hard rule ri of MW (89)

That is, ri is a rule of M such that

ri is satisfied by W (90)

We will prove that
W ′O satisfies r (91)

by showing that the rule r belongs to the reduct (R ∪ α(γ))φ(W ) and,
therefore, is satisfied by W ′ by (57). Since r only contains atoms from
O, this will immediately imply (91).
Let ri be of the form

α : head← body′

We will show

body′ \ body is satisfied by φ(W ) (92)

For the sake of contradiction, suppose

body′ \ body is not satisfied by φ(W ) (93)

In this case there exists not l′ ∈ body′ such that

l′ ∈ φ(W ) (94)

But, since l′ occurs in a rule of M , and therefore belongs to O, from
(94) we have

not l′ is not satisfied by W (95)

But then we have not l′ in body′ which is not satisfied by W , therefore,
the rule head ← body of (MW )W cannot be obtained from the hard
rule α : head ← body′ of MW , which is a contradiction to (89).
Therefore, (92) holds. From (92), the construction of φ(W ), and the
fact that body and body′ are constructed from the literals of M , we
have
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body′ \ body is satisfied by W (96)

By construction of τ∗(M), the rule

head← body′, not ab(i) (97)

belongs to R, the set of all regular rules of τ∗(M).
By (57) W ′ satisfies all the rules of (R ∪ α(γ))φ(W ), therefore

W ′ satisfies the reduct {head← body′, not ab(i)}φ(W ) (98)

By (90), ri is satisfied by W . Therefore, by construction of φ(W ) we

have

ab(i) 6∈ φ(W ) (99)

Since W ′ is a subset of φ(W ) (by (56)), we have

ab(i) 6∈W ′ (100)

Since ab(i) does not belong to φ(W ), from (98) we have

W ′ satisfies the reduct {head← body′}φ(W ) (101)

Since all the literals in head and body′ are atoms from O, the reduct
of head ← body′ with respect to φ(W ) is the same as the reduct of
head← body′ with respect to W . Therefore,

W ′ satisfies the reduct {head← body′}W (102)

Since all the literals in head and body′ are atoms from O, possibly
preceded by default negation, from (102) we have

W ′O satisfies the reduct {head← body′}W (103)

By (96), the reduct of head ← body′ with respect to W is head ←
body. Thus, from (103) we have (91).

2.3.3.2 Let r be a rule of (MW )W of the form head← body obtained from a
soft rule ri of MW . We will show

W ′O satisfies r (104)

Let ri be of the form

w : head← body′

Since ri belongs to MW , ri is satisfied by W . Therefore, we have

selected(i) ∈ φ(W ) (105)
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and

¬selected(i) 6∈ φ(W ) (106)

By construction of R the rule

selected(i) | ¬selected(i) (107)

belongs to R and, hence, to the reduct Rφ(W ). From (56) and (106) we
have

¬selected(i) 6∈W ′ (108)

Since, by (57), W ′ satisfies all the rules of the reduct Rφ(W ), it satisfies
the rule (107), and

selected(i) ∈W ′ or ¬selected(i) ∈W ′ (109)

From (108) and (109) we have

selected(i) ∈W ′ (110)

The further reasoning needed to obtain (104) is similar to the case
2.3.3.1. The only difference is that we need to consider the rule

head← body′, selected(i) (111)

from R where selected(i) ∈W ′ instead of the rule (97) we considered
in 2.3.3.1 with ab(i) 6∈W ′.

2.4 We show that γ, constructed in 2.1, is an abductive support of τ∗(M). In 2.3
we have shown that the program (R ∪ α(γ)) is consistent (in particular, it has
an answer set φ(W )). Therefore, it is sufficient to show that there does not exist
a subset γ′ of consistency restoring rules of τ∗(M) such that
(a) |γ′| < |γ|
(b) the program R ∪ α(γ′) is consistent.
We prove by contradiction. Suppose there exists γ′ such that (a) and (b) hold
Let W ′ be an answer set of R ∪ α(γ′).
As in 2.2, we will use the notation W ′O to denote a subset of W ′ consisting of
all literals of M and W ′N to denote the set difference W ′ \W ′O.
In 2.4.1 we show that W ′O ∈ ΩM . In 2.4.2 we obtain a contradiction to the fact
that W is a probabilistic stable model of M by establishing PrM (W ) = 0. We
do so by proving that W satisfies less hard rules than W ′O and using Proposition
1.

2.4.1 We show W ′O ∈ ΩM . By definition of a possible world of M , it is sufficient
to prove there is no proper subset of W ′O satisfying the rules (MW ′O

)W
′
O .

For the sake of contradiction, suppose there exists W ′′O such that

W ′′O (W ′O (112)
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and

W ′′O satisfies (MW ′O
)W
′
O (113)

Let H be the set of literals defined as:

H = W ′′O ∪W ′N (114)

It is easy to see that, by 112 and 114,

H (W ′ (115)

We prove
H satisfies the rules of (R ∪ α(γ′))W

′
(116)

Let r be a rule in (R ∪ α(γ′))W
′
. Suppose

the body of r is satisfied by H (117)

(otherwise r is satisfied byH). Since r belongs to a reduct, its body contains
no default negations, and therefore from (115) and (117) we have

the body of r is satisfied by W ′ (118)

Since W ′ is an answer set of (R ∪ α(γ′)), it satisfies all the rules of
(R ∪ α(γ′))W

′
, including r. Therefore, from (118) we have

the head of r is satisfied by W ′ (119)

Since W ′ and H coincide on the atoms in N , if the head of r is in N , (119)
implies r is satisfied by H . Therefore, it is sufficient to consider possible
forms of r in case the head of r is constructed from the atoms in O. There
are only two possible cases, 2.4.1.1 and 2.4.1.2, considered below.

2.4.1.1 Suppose r is of the form

head← body

where the corresponding rule r∗ of R from which r was obtained is of
the form

head← body, not l1, . . . , not lk, not ab(i) (120)

By construction of R, the rule

head← body, not l1, . . . , not lk (121)

belongs to M . We will denote this rule by rM .
Since r belongs to the reduct (R∪α(γ′))W

′
, and {l1, . . . , lk} ⊆ O we

must have
ab(i) 6∈W ′ (122)
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and

{l1, . . . , lk} ∩W ′O = ∅ (123)

To prove r is satisfied by H , suppose body is satisfied by H , and,
therefore, since body is constructed from the atoms in O,

body ⊆W ′′O (124)

From (112) we have W ′′O ⊆W ′O, and therefore:

body ⊆W ′O (125)

From (125) and (123) we have:

W ′O satisfies the body of rM (126)

From (126), (122) we have that

W ′ satisfies the body of r∗ (127)

From the fact that W ′ is an answer set of R ∪ α(γ′′), and therefore
satisfies the rules of R including r∗ we have

W ′ satisfies head (128)

Since head is constructed from the atoms in O, we have:

W ′O satisfies head (129)

From (129) we have

W ′O satisfies rM (130)

Since rM belongs to M , from (130) (by definition of MW ′O
) we have

rM ∈MW ′O
(131)

From (123) and the fact that {l1, . . . , ln} ⊆ O we have:

{rM}W
′
O = {head← body} ⊆ (MW ′O

)W
′
O (132)

Since, by (113),W ′′O satisfies the rules of (MW ′O
)W
′
O , including head←

body, from (124) we have

W ′′O satisfies head (133)

By (114), W ′′O ⊆ H , and therefore

H satisfies head (134)

Therefore, H satisfies r.
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2.4.1.2 Suppose r is of the form

head← body, selected(i)

where the corresponding rule r∗ of R from which r was obtained is of
the form

head← body, selected(i), not l1, . . . , not lk (135)

We will consider two possible cases
2.4.1.2.1 Suppose selected(i) 6∈ W ′. In this case, by construction of H ,

selected(i) 6∈ H , and therefore r is satisfied by H .
2.4.1.2.2 Suppose selected(i) ∈W ′. This case is similar to 2.4.1.1, except we

use the fact selected(i) ∈W ′ instead of (122) in all the arguments
from there.

Therefore, H (W ′ satisfies the rules of (R ∪ α(γ′))W
′

which contradicts
the fact that W ′ is an answer set of R ∪ α(γ′).

2.4.2 We show PM (W ) = 0. From 2.4.1 we have that

W ′O ∈ ΩM (136)

Let h be the number of hard rules in M and k be the number of hard rules
of M satisfied by W . Then we have |γ| = h− k (by construction of φ(W )
and γ).
We next show

W ′O satisfies at least h− |γ′| hard rules of M (137)

Let ab(i) be the head of a cr-rule of τ∗(M) not belonging to γ′ (such a rule
must exist since |γ′| < |γ| and γ is a subset of cr-rules of τ∗(M)).
By construction, ab(i) does not belong to the heads of R ∪ α(γ′). Hence,

ab(i) 6∈W ′ (138)

By construction of τ∗(M), R contains the rule

head← body, not ab(i)

Since W ′ is an answer set of R ∪ α(γ′), it satisfies the rules of M , and,
therefore,

W ′ satisfies head← body, not ab(i) (139)

From (138) and (139) we have that W ′ satisfies head← body,
and, therefore, the hard rule

α : head← body

of M is satisfied by W ′O.
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Therefore, since ab(i) was chosen arbitrarily from the heads of cr-rules not
belonging to γ′, we have (137).
Since |γ′| < |γ|, for some positive integer m from (137) we have

W ′O satisfies h− |γ|+m = k +m hard rules of M (140)

From (140) and the fact that W satisfies k hard rules of M , W satisfies less
hard rules then W ′O. Since both W and W ′O are possible worlds of M , by
Proposition 1, we have PM (W ) = 0. Therefore, γ′ cannot exist, and γ is
an abductive support of τ∗(M).

To summarize, from 2.2-2.3 it follows φ(W ) is an answer set of R ∪ α(γ),
where R is the set of regular rules of τ∗(M) and γ is a subset of consistency
restoring rules of τ∗(M) constructed in 2.1. In 2.4 we have shown that γ is an
abductive support of τ∗(M). Together 2.1 - 2.4 imply that φ(W ) is an answer
set of τ∗(M) and therefore a possible world of τ(M).

3. We show φ is surjective. That is, for every possible world V of τ(M) there exists a
probabilistic stable model U of M s.t. φ(U) = V . In 3.1 we prove VO (VO here is
the notation introduced in step 2 meaning the subset of all atoms of M in V ) is a
probabilistic stable model of M . In 3.2 we show φ(VO) = V .

3.1 Since V is a possible world ofΠ , it is, by definition, an answer set of CR-Prolog
program τ∗(M), which is, in turn, an answer set of the ASP programR∪α(γ∗),
where R is the set of regular rules of τ∗(M) and γ∗ is an abductive support of
τ∗(M). First of all, by applying exactly the same reasoning as in 2.4.1, we get

VO ∈ ΩM (141)

Therefore, we only need to show

PM (VO) 6= 0 (142)

Let h be the number of hard rules in M . In 3.1.1 we show that every possible
world of M satisfies at most h− |γ∗| hard rules of M , in 3.1.2 we show that VO
satisfies at least h− |γ∗| hard rules of M , and in 3.1.3 we show PM (VO) > 0
using the results from 3.1.2 and 3.1.1 and Proposition 3.

3.1.1 We show by contradiction that every possible world of M satisfies at most
h− |γ∗| hard rules of M . Suppose there exists X ∈ ΩM such that for some
m > 0

X satisfies h− |γ∗|+m hard rules of M (143)

We denote h − |γ∗| + m by k. By the reasoning identical to the one we
applied in 2.1 - 2.3 we have

φ(X) is an answer set of R ∪ α(γ+) (144)

for a subset γ+ of consistency restoring of τ∗(M), such that

|γ+| = h− k (145)
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Therefore, from (143) and (145) we have

|γ+| = h− k (146)
= h− h− |γ∗|+m (147)
= |γ∗| −m (148)

Since m > 0, and the program R ∪ α(γ+) is consistent (by (144)), we
have a contradiction to the fact that abductive support γ∗ is minimal (by
cardinality) subset of consistency restoring rules ofM such that the program
R ∪ α(γ∗) is consistent.

3.1.2 We show that VO satisfies at least h − |γ∗| hard rules of M . If h = |γ∗|,
the claim is obviously true. Otherwise, there exists at least one consistency
restoring rule ab(i) +← such that

ab(i)
+← 6∈ γ∗ (149)

By construction of τ∗(M), R contains the rule

head← body, not ab(i) (150)

From (149) and by construction of τ∗(M), the program R ∪ α(γ∗) does
not contain any rules with ab(i) in the head, and V does not contain ab(i).
Since V satisfies all rules of R, including (150), and ab(i) 6∈ V , we have
the hard rule

α : head← body

is satisfied by V and, since all the atoms in the rule are in O, by VO.
Therefore, since we have h − |γ∗| distinct literals of the form ab(i) not
belonging to γ∗, VO satisfies at least h− |γ∗| distinct hard rules of M .

3.1.3 We show
PM (VO) > 0 (151)

Let W1, . . . ,Wn be all the members of ΩM . Without loss of generality, we
will assume VO = W1. Let hi be the number of hard rules of M satisfied
by Wi. By 3.1.1 and 3.1.2 we have hi ≤ h1 Therefore, by (141) and
Proposition 3, we have W1 = VO is a probabilistic stable model of M , that
is, VO is a possible world of M such that (151) holds.

3.2 We show φ(VO) = V . We need to show that for every literal l of τ∗(M),

l ∈ V if and only if l ∈ φ(VO) (152)

First of all, if l is an atom in O, then, by definition of VO and construction of
φ, l ∈ V if and only if l ∈ φ(VO) . In what follows we will consider all other
possible forms of l.

3.2.1 Suppose l = ab(i), where i is the label of a hard rule ri of M of the form

α : head← body
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To show (152), it is sufficient to show

ab(i) 6∈ V if and only if ab(i) 6∈ φ(VO) (153)

By construction of φ,

ab(i) ∈ φ(VO) iff ri is not satisfied by VO (154)

From (154) we have:

ab(i) 6∈ φ(VO) iff ri is satisfied by VO (155)

Therefore, based on (155), to show (153) (and, therefore, (152)), it is
sufficient to show:

ri is satisfied by VO iff ab(i) 6∈ V (156)

Suppose ab(i) 6∈ V . By construction of τ∗, the rule r∗i

head← body, not ab(i)

belongs to τ∗(M). Since, by definition, V satisfies τ∗(M), V satisfies r∗.
Therefore, since ab(i) 6∈ V ,

V satisfies head← body (157)

Since ri is of the form α : head ← body, where head and body are
constructed from atoms in O, from (157) we have

VO satisfies ri (158)

Now suppose ri is satisfied by VO. For the sake of contradiction, suppose

ab(i) ∈ V (159)

By construction, the only rule of τ∗(M) with ab(i) in the head is the
consistency restoring rule ab(i) +←. Therefore, there exists an abductive
support σ of τ∗(M) such that

ab(i)
+← ∈ σ (160)

and
V is an answer set of R ∪ α(σ) (161)

Let us consider the set
V ′ = V \ {ab(i)} (162)

Let σ′ be the set of consistency restoring rules of τ∗(M) obtained from V ′

by converting every atom of the form ab(j) in V ′ into consistency restoring
rule ab(j) +←. From (159), (161) and (162) we have

σ′ ( σ (163)
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We will show σ′ is an abductive support of τ∗(M), which together with
(163) gives a contradiction to the fact that σ is an abductive support of
τ∗(M). To show σ′ is an abductive support of τ∗(M), it is sufficient to
show

V ′ is an answer set of R ∪ α(σ′) (164)

We denote R ∪ α(σ′) by Π1. Let P = Π1 \ {r∗}. Then we have

ΠV ′

1 ={head← body}V ′

∪ PV ′ (165)

Since ab(i) does not occur in P , by 162 we have:

PV
′

= PV (166)

From (163) and (161) and (166) we have that V satisfies the rules of PV
′
.

Since those rules do not contain an occurrence of ab(i), by construction of
V ′ we have

V ′ satisfies the rules of PV
′
. (167)

By (158), VO satisfies
head← body

Therefore, from (162) and the fact that body and head are constructed from
atoms of O, we have

V ′ satisfies head← body (168)

From (165), (167) and (168) it follows that

V ′ satisfies all the rules of ΠV ′

1 (169)

We now show V ′ is minimal. Suppose there exists V ′′ such that

V ′′ ( V ′ (170)

and
V ′′ satisfies the rules of ΠV ′

1 (171)

Let

V ′′′ =V ′′ ∪ {ab(i)} (172)

By (162) and (159) and the fact that V ′′ ( V ′ we have

V ′′′ ⊆ V (173)
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Let us now show that V ′′′ is a proper subset of V . Since V ′′ ( V ′ and V ′

does not contain ab(i) by construction, we have

there exists an atom l different from ab(i)

s.t. l ∈ {V ′ \ V ′′} (174)

By construction of V ′, l ∈ V . Therefore, by (172) and (174), l 6∈ V ′′′, and

V ′′′ ( V (175)

We will next show that

V ′′′ satisfies (R ∪ α(σ))V (176)

We notice
(R ∪ α(σ))V = ΠV

1 ∪ {ab(i)}

In 3.2.1.1 we will prove

V ′′′ satisfies ΠV
1 (177)

and in 3.2.1.2 we will prove

V ′′′ satisfies ab(i) (178)

From (177) and (178) we will have (176).
3.2.1.1 We prove ΠV

1 is satisfied by V ′′′ By definition of reduct, since V ′ =
V \ {ab(i)} ( V , we have

ΠV
1 ⊆ ΠV ′

1 (179)

By (171),
V ′′ satisfies the rules of ΠV

1 (180)

Since ΠV
1 does not contain an occurrence of ab(i), from (172) and

(180) we have
V ′′′ satisfies the rules of ΠV

1 (181)

3.2.1.2 By (172), V ′′′ satisfies ab(i).
Therefore, V ′′′ ( V satisfies all the rules of (R ∪ α(σ))V which is a
contradiction to the fact that V is an answer set of (R ∪ α(σ))V .
Therefore, V ′′ satisfying conditions (171) and (170) cannot exist and V ′ is
an answer set of Π1 = R∪α(σ′), and σ′ is an abductive support of τ∗(M),
which, by (163) is a contradiction to the fact that σ is an abductive support
of τ∗(M). Therefore, (159) does not hold, ab(i) 6∈ V and (156) holds.

3.2.2 Suppose l = h(i), where ri is of the form w : head ← body. The only
rules of τ∗(M) with h(i) in the head are

{h(i)← l′|l′ ∈ head}
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Therefore,

h(i) belongs to V iff ∃l′ ∈ head s.t. l′ ∈ V (182)

By construction of φ(VO) and definition of VO,

∃l′ ∈ head s.t. l′ ∈ V iff ∃l′ ∈ head s.t l′ ∈ φ(VO) (183)

By construction of φ,

∃l′ ∈ head s.t. l′ ∈ φ(VO) iff h(i) belongs to φ(VO) (184)

From (182) - (184) we have

h(i) belongs to V iff h(i) belongs to φ(VO) (185)

3.2.3 Suppose l is of the form b(i), where
ri be of the form w : head← body. The only rule of τ∗(M) defining b(i)
is

b(i)← B

where B is a set of literals formed by atoms in O. Therefore,

b(i) belongs to V iff B is satisfied by V (186)

By construction of φ(VO) and definition of VO,

B is satisfied by V iff B is satisfied by φ(VO) (187)

By construction of φ,

B is satisfied by φ(VO) iff b(i) belongs to φ(VO) (188)

From (186) - (188) we have

b(i) belongs to V iff b(i) belongs to φ(VO) (189)

3.2.4 Suppose l = sat(i).
By applying the reasoning identical to the one in 2.2-2.3, from (141) we
have

φ(VO) is an answer set of R ∪ α(σ1) (190)

for some subset σ1 of consistency restoring rules of τ∗(M).
The only rules of τ∗(M) and R ∪ α(σ1) with sat(i) in the head are :

sat(i)← b(i), h(i)

and
sat(i)← not b(i)

By 3.2.2 and 3.2.3, each of the atoms b(i) and h(i) belongs to V if and
only if it belongs to φ(VO), Therefore, from (190) and the fact that V is
an answer set of τ∗(M) by minimality of answer sets we have that sat(i)
belongs to V if and only if sat(i) belongs to φ(VO).
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3.2.5 Suppose l = selected(i)
We first prove the following:

selected(i) ∈ φ(VO) iff sat(i) ∈ φ(VO) (191)

Indeed, by construction of φ(VO), selected(i) ∈ φ(VO) iff ri is satisfied
by VO iff sat(i) ∈ φ(VO).
We next prove the following:

selected(i) ∈ V iff sat(i) ∈ V (192)

First of all, since V is an answer set of τ∗(M),

either ¬selected(i) or selected(i) belongs to V (193)

Suppose sat(i) ∈ V . In this case ¬selected(i) 6∈ V (or else, the constraint

← ¬selected(i), sat(i)

is violated). Therefore, selected(i) ∈ V .
Suppose now selected(i) ∈ V . For the sake of contradiction assume

sat(i) 6∈ V (194)

Let ri be of the form w : head← body. By construction of τ∗(M), sat(i)
is defined by the rules

sat(i)← not b(i)

sat(i)← b(i), h(i)

where the only rules of τ∗(M) defining h(i) and b(i) are

{h(i)← l|l ∈ head}

and
b(i)← body

Since V is an answer set of τ∗(M), sat(i) ∈ V iff head← body is satisfied
by V . Therefore, by (194), we have head← body is not satisfied by V .
But then the rule

head← body, selected(i)

of τ∗(M) is not satisfied by V , which is a contradiction.
Therefore, (194) does not hold and we have

sat(i) ∈ V (195)

Therefore, (192) holds.
By (192), (191) and 3.2.4 we have selected(i) ∈ V iff selected(i) ∈
φ(VO)
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3.2.6 Suppose l = ¬selected(i).
Since the rule

selected(i) | ¬selected(i) (196)

belongs to τ∗(M), the disjunction selected(i) | ¬selected(i) has to be
satisfied by both V (since it’s an answer set of program containing (196))
and φ(VO) (by construction of φ)).

3.2.6.1 Suppose ¬selected(i) ∈ V . Since V satisfies the rules of τ∗(M),
including the constraint:

← ¬selected(i), sat(i) (197)

we have
sat(i) 6∈ V (198)

By 3.2.4 we have
sat(i) 6∈ φ(VO) (199)

By construction of φ we have

selected(i) 6∈ φ(VO) (200)

and

¬selected(i) ∈ φ(VO) (201)

3.2.6.2 Suppose ¬selected(i) ∈ φ(VO). By construction of φ, selected(i) 6∈
φ(VO). By 3.2.5, selected(i) 6∈ V . Since V satisfies the rule

selected(i)|¬selected(i)

¬selected(i) ∈ V .
4. We show φ is injective. That is, for every two distinct probabilistic stable models
W1 and W2 of M , we will show

φ(W1) 6= φ(W2) (202)

By definition of φ, for every possible world U of M , φ(U)O = U . Therefore,

φ(W1)O = W1 (203)

and
φ(W2)O = W2 (204)

From (203) and (204) and the fact that W1 and W2 are distinct we have

φ(W1)O 6= φ(W1)O (205)

From (205) we immediately have (202).
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5. We show
PM (W ) = Pτ(M)(φ(W )) (206)

Let FWSAT (FWUNSAT ) be the set of soft rules of M satisfied (unsatisfied) by W .
Similarly, let HW

SAT (HW
UNSAT ) be the set of hard rules of M satisfied (unsatisfied)

by W . We first prove the following:

All possible worlds of M satisfy at most |HW
SAT | hard rules of M (207)

Suppose there exists a possible world W ′ of M such that it satisfies q > |HW
SAT |

hard rules of M . We will denote |HW
SAT | r = |HW

SAT |). Note that q > r. Then by
Proposition 1 we have PrM (W ) = 0 which is a contradiction to the fact that W is
a probabilistic stable model of M .
We then perform a computation similar to the one we did in in the proof of Propo-
sition 3. Let ΩM = {W1, . . . ,Wn}. Without loss of generality we can assume
W = W1. Let I be the largest subset of {1, . . . , n} such that for every i ∈ I , Wi

satisfies exactly |HW
SAT | hard rules of M , let hi be the number of hard rules satisfied

by Wi and let yi denote exp(
∑
w:R∈FWiSAT

w)

Similarly to (43) we have

PM (W ) = y1∑
i∈I yi

=
exp(
∑
w:R∈FWSAT

w)∑
i∈I exp(

∑
w:R∈FWiSAT

w)
(208)

We next compute Pτ(M)(φ(W )).
In what follows we will sometimes use the shorthand sel for selected. By P (sel(j))

andP (¬sel(j)) we denote the probabilities of sel(j) and¬sel(j) respectively defined by

pr-atoms of τ(M) (the probabilities are P (sel(j)) = ew
j

1+ew
j and P (¬sel(j)) = 1

1+ew
j

respectively). We also denote the set of all probabilistic stable models of M by Ω+
M . We

then have

Pτ(M)(φ(W )) =
wτ(M)(φ(W ))∑

Wi∈Ω+
M
wτ(M)(φ(Wi))

=
∏
sel(j)∈φ(W ) P (sel(j))·

∏
¬sel(j)∈φ(W ) P (¬sel(j))∑

Wi∈Ω+
M

(∏
sel(j)∈φ(Wi)

P (sel(j)) ·
∏
¬sel(j)∈φ(Wi)

P (¬sel(j)
)

(209)

We note that for a probabilistic stable model W of M , selected(j) belongs to φ(W )
if and only if rj is a soft rule of M satisfied by W if and only if sat(j) belongs to φ(W ).

Therefore, ∏
selected(j)∈φ(W )

P (selected(j)) =
∏

rj∈FWSAT

p(j) (210)

where p(j) denotes ewj

1+ewj
.
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Similarly, for a probabilistic stable model W of M , ¬selected(j) belongs to φ(W )
if and only if rj is a soft rule of M not satisfied by W if and only if ¬sat(j) belongs to
φ(W ). Therefore, ∏

¬selected(j)∈φ(W )

P (¬selected(j)) =
∏

rj∈FWUNSAT

(1− p(j)) (211)

By U we will denote the product
∏
w:R∈M (1 + ew). From (209) - (211) we have:

Pτ(M)(φ(W )) =

∏
ri∈FWSAT

p(i)·
∏
ri∈FWUNSAT

(1−p(i))∑
Wj∈Ω+

M

(∏
ri∈F

Wj
SAT

p(i) ·
∏
ri∈F

Wj
UNSAT

(1− p(i))
)

=

∏
w:R∈FW

SAT
ew/(1+ew)·

∏
w:R∈FW

UNSAT
1/(1+ew)∑

Wj∈Ω+
M

(∏
w:R∈F

Wj
SAT

ew/(1 + ew) ·
∏
r∈F

Wj
UNSAT

1/(1 + ew)
)

=

(∏
w:R∈FWSAT

ew
)
/U∑

Wj∈Ω+
M

(∏
w:R∈F

Wj
SAT

ew
)
/U

=

(∏
w:R∈FWSAT

ew
)
/U(∑

Wj∈Ω+
M

(∏
w:R∈F

Wj
SAT

ew
))
/U

=

∏
w:R∈FWSAT

ew(∑
Wj∈Ω+

M

∏
w:R∈F

Wj
SAT

ew
)

=
exp(
∑
w:R∈FWSAT

w)∑
Wj∈Ω+

M
exp(

∑
w:R∈F

Wj
SAT

e
)

(212)

Let WI = {Wi|i ∈ I}We next show

WI = Ω+
M (213)

Let O be a member of Ω+
M , that is, O is a probabilistic stable model of M . Let r

denote |HW
SAT |. Suppose O satisfies r1 < r hard rules of M . By Proposition 1 we have

PM (O) = 0, which is a contradiction. Suppose now O satisfies r2 > r hard rules of M .
In this case, again, by Proposition 1 we have PM (W ) = 0, which contradicts the fact
that W is a probabilistic stable model of M .

Therefore, O satisfies exactly r hard rules of M and

Ω+
M ⊆WI (214)

Let now H be a member of WI , that is, H is a possible world of M which satisfies
exactly r hard rules of M . Clearly, there does not exist a possible world H1 of M
satisfying more than r hard rules of M (since in this case PM (W ) = 0 by Proposition
1). In other words, every stable model of M satisfies at most r hard rules of M . Then H
is a probabilistic stable model of M by Proposition 3 and we have

WI ⊆ Ω+
M (215)

From (214) and (215) we have (213). From (213), (212) and (208) we have (206). �


