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Abstract

The paper introduces a new modular action language, ALM, and illustrates the method-
ology of its use. It is based on the approach of Gelfond and Lifschitz (1993; 1998) in
which a high-level action language is used as a front end for a logic programming system
description. The resulting logic programming representation is used to perform various
computational tasks. The methodology based on existing action languages works well for
small and even medium size systems, but is not meant to deal with larger systems that
require structuring of knowledge. ALM is meant to remedy this problem. Structuring of
knowledge in ALM is supported by the concepts of module (a formal description of a
specific piece of knowledge packaged as a unit), module hierarchy, and library, and by the
division of a system description of ALM into two parts: theory and structure. A theory
consists of one or more modules with a common theme, possibly organized into a module
hierarchy based on a dependency relation. It contains declarations of sorts, attributes, and
properties of the domain together with axioms describing them. Structures are used to de-
scribe the domain’s objects. These features, together with the means for defining classes
of a domain as special cases of previously defined ones, facilitate the stepwise develop-
ment, testing, and readability of a knowledge base, as well as the creation of knowledge
representation libraries. To appear in Theory and Practice of Logic Programming (TPLP).
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1 Introduction

In this paper we introduce a new modular action language, ALM, and illustrate

the principles of its use. Our work builds upon the methodology for representing

knowledge about discrete dynamic systems introduced by Gelfond and Lifschitz

(1993; 1998). In this approach, a system is viewed as a transition diagram whose

nodes correspond to possible states of the system and whose arcs are labeled by ac-

tions. The diagram is defined by a system description – a collection of statements in

a high-level action language expressing the direct and indirect effects of actions as

well as their executability conditions (see, for instance, action languages A (Gelfond

and Lifschitz 1993), B (Gelfond and Lifschitz 1998); AL (Turner 1997; Baral and



2 Daniela Inclezan and Michael Gelfond

Gelfond 2000); the non-modular extension of AL with multi-valued fluents (Dovier

et al. 2007); C (Giunchiglia and Lifschitz 1998); C+ (Giunchiglia et al. 2004a); K
(Eiter et al. 2004); D (Strass and Thielscher 2012); E (Kakas and Miller 1997);

H (Chintabathina et al. 2005; Chintabathina 2012)). Such languages allow concise

representations of very large diagrams. In order to reason about the system, its ac-

tion language description is often translated into a logic program under the answer

set semantics (Gelfond and Lifschitz 1988; 1991). This allows for the use of Answer

Set Programming (ASP) (Gelfond and Lifschitz 1991; Niemelä 1998; Marek and

Truszczynski 1999) to perform complex reasoning tasks such as planning, diagno-

sis, etc. This methodology was successfully used in a number of interesting medium

size applications, but does not seem to be fully adequate for applications requiring a

larger body of knowledge about actions and their effects, step-wise design, and mul-

tiple use of, possibly previously designed, pieces of knowledge. (The phenomenon is

of course well known in Computer Science. Similar considerations led to the early

development of notions of subroutine and module in procedural programming. In

logic programming, early solutions were based on the concepts of macro and tem-

plate (Baral et al. 2006; Calimeri and Ianni 2006).) Just a few examples of domains

that we consider large enough to benefit from the above-mentioned practices are:

the Zoo World and Traffic World examples proposed by Erik Sandewall (Sande-

wall 1999) and modeled in (Henschel and Thielscher 1999; Akman et al. 2004);

the Monkey and Banana Problem by John McCarthy (McCarthy 1963; McCarthy

1968) and formalized in (Erdoǧan and Lifschitz 2006; Erdoǧan 2008); the Mission-

aries and Cannibals Problem by John McCarthy (McCarthy 1998) represented in

(Gustafsson and Kvarnström 2004; Erdoǧan 2008).

This inadequacy is due to the fact that most action languages, with some notable

exceptions like MAD (Lifschitz and Ren 2006; Erdoǧan and Lifschitz 2006; Desai

and Singh 2007) and TAL-C (Gustafsson and Kvarnström 2004), have no built-in

features for supporting the description of a domain’s ontology and its objects, and

for structuring knowledge and creating knowledge-based libraries. ALM is designed

to address these problems. It is based on an earlier action language, AL, introduced

in (Gelfond and Inclezan 2009) where it is called ALd , which so far has been the

authors’ language of choice (see, for instance, (Gelfond and Kahl 2014)). However,

the basic ideas presented in the paper can be used for defining versions of ALM
based on other action languages.

ALM has constructs for representing sorts (i.e., classes, kinds, types, categories)

of objects relevant to a given domain, their attributes,1 and a subsort relation that

can be viewed as a directed acyclic graph (DAG). We refer to this relation as a sort

hierarchy. These constructs support a methodology of knowledge representation

that starts with determining the sorts of objects in a domain and formulating the

domain’s causal laws and other axioms in terms of these sorts. The specialization

construct of the language, which corresponds to the links of the sort hierarchy,

1 Attributes are intrinsic properties of a sort of objects. In ALM they are represented by possibly
partial functions defined on elements of that sort.
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allows to define new sorts (including various sorts of actions) in terms of other,

previously defined sorts.

The definition of particular objects populating the sorts is usually given only

when the domain knowledge is used to solve a particular task, e.g., predicting the

effects of some particular sequences of actions, planning, diagnosis, etc.

It is worth noting that allowing definitions of actions as special cases of other,

previously defined actions was one of the main goals of actions languages like ALM
and MAD . Such definitions are not allowed in traditional action languages. ALM’s

solution consists in allowing action sorts, which do not exist in MAD . We believe

that the ALM solution is simpler than the one in MAD , where special cases of

actions are described using import statements (similar to bridge rules in C+).

ALM also facilitates the introduction of particular domain objects (including

particular actions) that are defined as instances of the corresponding sorts. For

example, an action go(bob, london, paris) can be defined as an instance of action

sort move with attributes actor , origin, and destination set to bob, london, and

paris respectively; action go(bob, paris) is another instance of the same sort in

which the origin of the move is absent. Note that, since axioms of the domain are

formulated in terms of sorts and their attributes, they are applicable to both of these

actions. This is very different from the traditional action language representation

of objects as terms, which requires separate axioms for go(bob, london, paris) and

go(bob, paris).

Structuring of knowledge in ALM is supported by the concepts of module, mod-

ule hierarchy, and library, and by the division of a system description of ALM into

two parts: theory and structure. Theories contain declarations of sorts, attributes,

and properties of the domain together with axioms describing them, while struc-

tures are used to describe the domain’s objects. Rather traditionally, ALM views

a module as a formal description of a specific piece of knowledge packaged as a

unit. A theory consists of one or more modules with a common theme, possibly

organized into a module hierarchy based on a dependency relation. Modules of a

theory can be developed and tested independently, which facilitates the reuse of

knowledge and stepwise development and refinement (Wirth 1971) of knowledge

bases, and increases their elaboration tolerance (McCarthy 1998).

Theories describing recurrent knowledge may be stored in libraries and used in

different applications. The structure part of an ALM system description contains

definitions of objects of the domain together with their sorts, values of their at-

tributes, and statics - relations between objects that cannot be changed by actions.

If a system description of ALM satisfies some natural consistency requirements and

provides complete information about the membership of its objects in the system’s

sorts then it describes the unique transition diagram containing all possible trajec-

tories of the system. In this sense ALM is semantically similar to AL. There are

also some substantial differences. First, if no complete information about member-

ship of objects in sorts is given, then the system description specifies the collection

of transition diagrams corresponding to various possible placements of objects in

the system’s sorts. This has no analog in AL. Second, in addition to the semantics

of its system descriptions, ALM provides semantics for its theories. Informally,
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a theory of ALM can be viewed as a function taking as an input objects of the

domain, their sort membership, and the values of static relations, and returning

the corresponding transition diagram – a possible model of the theory. (This defi-

nition has some similarity with the notions of module developed for logic programs

under the answer set semantics, e.g. (Oikarinen and Janhunen 2006) and (Lierler

and Truszczynski 2013). Accurate mathematical analysis of these similarities and

their use for automatic reasoning in ALM is a matter for future research.) The

availability of a formal semantics clarifies the notion of an ALM theory and allows

us to define an entailment relation (T entails q if q is true in every model of T ).

To accurately define the semantics of ALM theories, we introduce the notion of a

basic action theory (BAT ) — a pair consisting of a specific type of sorted signature

(which we call an action signature), and a set of axioms over this signature. An

interpretation I of the signature of a BAT theory T defines: objects, their sort

membership, and statics; while T can be viewed as a function that takes I as input

and returns the transition diagram T (I ) defined by I . In a sense, T (I ) is very

similar to system descriptions of AL and other traditional action languages. The

difference is in the forms of their signatures and axioms. As in AL, the precise

definition of states and transitions of T (I ) is given in terms of its translation into

logic programs under the answer set semantics.

A system description D of ALM can be viewed as a formal definition of a par-

ticular BAT theory T , and a class of its interpretations. The latter is given by

the structure of D , the former by its theory. If the structure of D is complete, i.e.,

defines exactly one interpretation I , then D represents T (I ).

An earlier version ofALM has been tested in the context of a real-life application,

as part of our collaboration on Project Halo. Project Halo is a research effort by

Vulcan Inc. aimed towards the development of a Digital Aristotle – “an application

containing large volumes of scientific knowledge and capable of applying sophisti-

cated problem-solving methods to answer novel questions” (Gunning et al. 2010).

The Digital Aristotle uses the knowledge representation language called SILK (Se-

mantic Inferencing on Large Knowledge) (Grosof et al. 2009), which is based on

the well-founded semantics (Van Gelder et al. 1991) and transaction logic with de-

faults and argumentation theories (Fodor and Kifer 2011). Our first contribution

to Project Halo consisted in creating an ALM formalization of an important bio-

logical process, cell division (Inclezan and Gelfond 2011). The use of ALM allowed

us to create libraries of knowledge and reuse information when representing the

cell division domain. As a second step, we created a question answering system

capable of answering complex temporal projection questions about this biological

process (Inclezan 2010). Our model of cell division represented in the higher level

language ALM served as a front end for the question answering system, which was

implemented both in ASP and in the language of the Digital Aristotle.

Our language has evolved since our collaboration on Project Halo. The version of

ALM presented here differs from that described in previous papers (Gelfond and

Inclezan 2009; Inclezan and Gelfond 2011) in various ways. We simplified and gen-

eralized the basic concepts of our language, as well as its syntax and semantics. (We

say more about the new features of ALM in the conclusion section of the paper.)
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The reasoning in ALM is based on the reduction of temporal projection, planning,

diagnosis, etc. to the problem of computing the answer sets of logic programs (for

a general description see, for instance, (Baral 2003)) by ASP solvers (see (Niemelä

and Simons 1997), (Gebser et al. 2012), or (Leone et al. 2006)).

The rest of this paper is organized as follows: we first introduce the concept of

basic action theory, which is a fundamental concept in this work. We then describe

language ALM and the methodology of ALM’s use. We end with conclusions

and future work. There are three appendices containing the grammar of ALM,

the description of the use of ALM in Digital Aristotle, and a comparison between

ALM and MAD .

2 Basic Action Theories

In this section we give the definition of a fundamental concept of ALM called basic

action theory (BAT ). A BAT consists of a collection of axioms over a so called

action signature — a special type of sorted signature providing suitable vocabulary

for representing knowledge about dynamic domains. Sorted signatures needed for

our purpose are somewhat atypical. They allow partial functions and contain means

for describing a hierarchy of sorts and attributes of their elements. We start with

the precise definition of sorted signatures and their interpretations.

2.1 Sorted Signatures and Their Interpretations

By sorted signature we mean a tuple

Σ = 〈C,O,H,F〉

where C, O, and F are sets of strings over some fixed alphabet. The strings are used

to name sorts, objects, and (possibly partial) functions respectively. Each function

symbol f ∈ F is assigned a positive integer n (called f ’s arity), sorts c0, . . . , cn for

its parameters, and sort c for its values. We refer to c as the range of f and use the

standard mathematical notation f : c0 × . . .× cn → c for this assignment.

Finally, H is a sort hierarchy — a directed acyclic graph with two types of nodes:

sort nodes labeled by sort names from C, and object nodes labeled by object names

from O. Whenever convenient we identify nodes of the hierarchy with their labels.

A link from sort c1 to sort c2, denoted by 〈c1, c2〉, indicates that elements of sort

c1 are also elements of sort c2. We refer to c2 as a parent of c1. A link from object

o to a sort c, denoted by 〈o, c〉, indicates that object o is of sort c. For simplicity,

we assume that the graph has exactly one sink node, which corresponds to the sort

containing all the elements of the hierarchy. A triple 〈C,O,H〉 will be sometimes

referred to as an ontology.

Sorts, object constants, and functions of a sorted signature are normally parti-

tioned into user-defined, pre-defined, and special.

The collection of pre-defined symbols may include names for some commonly

used sorts and functions, such as: sorts booleans and integers; a sort [m..n] for

every pair of natural numbers m and n such that m < n, denoting the set of
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natural numbers in the closed interval [m,n]; standard object constants true, false,

0, 1, 2, etc., denoting elements of these sorts; standard arithmetic functions and

relations +, −, ∗, /, mod , <, ≤, etc. (The list is not exhaustive. When needed we

may introduce other similar symbols.) All these symbols are pre-interpreted, i.e.,

come with their usual mathematical interpretations.

The collection of special symbols consists of:

• sorts and function symbols pertinent to sort hierarchies of sorted signatures:

— Sort nodes denoting the collection of sorts labeling the sort nodes of H.

This sort is never used as a label of a node in H.

— Sort object constants denoting the collection of constants labeling the

object nodes of H. This sort is never used as a label of a node in H.

— Sort universe denoting the collection of elements of sorts from H;

— Function symbol link : nodes × nodes → booleans where link(c1, c2)

returns true iff H contains a link from sort c1 to sort c2.

— Function symbol is a : universe × nodes → booleans where is a(x , c)

returns true if c is a source node of H (i.e., c has no subsorts in H) and

object x from the universe is of the sort denoted by c.

— Function symbol instance : universe × nodes → booleans denoting the

membership relation between objects of the universe and the sorts of

the domain. This function will be later defined in terms of function is a.

— Function symbols subsort : nodes × nodes → booleans,

has child , has parent , sink , source : nodes → booleans

describing properties of sorts of H and their members. All these func-

tions (with their self-explanatory meaning) will be later defined in terms

of function link .

• Function symbol domf : c0 × . . . × cn → booleans (read as domain of f ) for

every user-defined function symbol f : c0 × . . .× cn → c with n > 0.

Terms of a sorted signature are defined as usual:

• A variable and an object constant is a term.

• If f : c0 × . . . × cn → c is a function symbol and t0, . . . , tn are terms then

f (t0, . . . , tn) is a term.

Expressions of the form

t1 = t2 and t1 6= t2 (1)

are called literals. Positive literals are also referred to as atoms. (For simplicity of

presentation we use standard shorthands and write t and ¬t instead of t = true

and t = false, respectively; 3 ≤ 5 instead of ≤ (3, 5); etc.) Terms and literals not

containing variables are called ground. Our notion of an interpretation of a sorted

signature is slightly different from the traditional one.
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Definition 1 (Interpretation)
An interpretation I of Σ consists of

• A non-empty set |I| of strings called the universe of I.
• An assignment that maps

— every user-defined sort c of H into a subset I(c) of |I| and user defined

object constant o into an element from |I|;
— every user-defined function symbol f : c0 × . . . × cn → c of Σ into a

(possibly partial) function I(f ) : I(c0)× . . .× I(cn)→ I(c);
— the special function is a into function I(is a) such that:

– for every x ∈ |I| and every sort c of H, I(is a)(x , c) is true iff c is

a source node of H and x ∈ I(c) and

– for every object o and sort c of H, I(is a)(I(o), c) is true iff 〈o, c〉 ∈
H;

— the special function link into function I(link) such that for every two

sort nodes c1, c2, I(link)(c1, c2) is true iff 〈c1, c2〉 ∈ H;
— the special function domf for user-defined function f : c0× . . .× cn → c

into function I(domf ) such that for every x̄ ∈ I(c0) × . . . × I(cn),

I(domf )(x̄ ) is true iff x̄ belongs to the domain of I(f ).

• On pre-defined symbols, I is identified with the symbols’ standard interpre-

tations.

An interpretation I of Σ can be naturally extended to ground terms: if I is defined

on terms t1, . . . , tn and I(f ) is defined on the tuple (I(t1), . . . , I(tn)) then

I(f (t1, . . . , tn)) =def I(f )(I(t1), . . . , I(tn))·

Otherwise I(f (t1, . . . , tn)) is undefined.

Finally, we say that an atom t1 = t2 is

• true in I if both I(t1) and I(t2) are defined and have the same value;
• false in I if both I(t1) and I(t2) are defined and have different values; and
• undefined in I otherwise.

Similarly, a literal t1 6= t2 is true in I if t1 = t2 is false in I; it is false in I if t1 = t2
is true in I; and undefined otherwise.

Note that every interpretation I can be uniquely represented by the collection of

atoms that are true in this interpretation. For instance, for every sort c of H, I(c)

can be represented as the set {instance(o, c) : I(o) ∈ I(c)}; for a unary function f ,

I(f ) can be viewed as the set {f (x ) = y : I(x ) ∈ I(domf ) and I(f )(I(x )) = I(y)},
etc.

2.2 Action Signature and Axioms of a BAT

Since ALM is a language for specifying properties of actions, in what follows we

limit ourselves to action signatures — sorted signatures that
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• contain a special sort actions and

• have their user-defined and special function symbols divided into three dis-

joint categories: attributes, statics, and fluents. Attributes describe intrinsic

properties of objects of a given sort; statics and fluents describe relations be-

tween objects. Values of attributes and statics are constants – they cannot

be changed by actions. The values of fluents can. Both statics and fluents are

further divided into basic and defined. The latter are total boolean functions

that can be defined in terms of the former. They are used primarily for the

brevity of representation.

A literal (atom) in which f is an attribute is called an attribute literal (atom).

Similarly for static and fluent literals that are, in turn, divided into basic and

defined. We assume that all special functions of an action signature, except domf ,

are defined statics; domf is a basic fluent when f is a basic fluent and a defined

static otherwise. Since the semantics of ALM will be defined in terms of a version

of ASP with function symbols, ASP{f} (Balduccini 2013), which does not allow

terms with nested user-defined functions, we limit atoms of an action signature to

those constructed from terms with at most one user-defined function symbol. (This

is not a serious limitation and can easily be avoided by viewing nested terms as

shorthands.)

We can now define the syntax and informal semantics of statements of a BAT over

a fixed action signature Σ. Variables in these statements are universally quantified.

Definition 2 (Statements of a BAT )

• A dynamic causal law is an expression of the form

occurs(a) causes f (x̄ ) = o if instance(a, c), cond (2)

where a and o are variables or object constants, f is a basic fluent, c is the

sort actions or a subsort of it, and cond is a collection of literals. The law says

that an occurrence of an action a of the sort c in a state satisfying property

cond causes the value of f (x̄ ) to become o in any resulting state.

• A state constraint is an expression of the form

f (x̄ ) = o if cond (3)

where o is a variable or an object constant, f is any function except a defined

function, and cond is a collection of literals. The law says that the value of

f (x̄ ) in any state satisfying condition cond must be o. Additionally, f (x̄ ) = o

can also be replaced by the object constant false, in which case the law says

that there is no state satisfying condition cond .

• The definition of a defined function p is an expression of the form

p(t1) if cond1

. . .

p(tk ) if condk

(4)

where ts are sequences of terms, and cond1, . . . , condk are collections of lit-

erals. Moreover, if p is a static then cond1, . . . , condk can not contain fluent
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literals. Statements of the definition will be often referred to as its clauses.

The statement says that, for every Y , p(Y ) is true in a state σ iff there is

1 ≤ m ≤ k such that statements condm and tm = Y are true in σ.

• An executability condition for actions is an expression of the form

impossible occurs(a) if instance(a, c), cond (5)

where a is a variable or an object constant, c is the sort actions or a subsort

of it, and cond is a collection of literals and expressions of the form occurs(t)

or ¬occurs(t) where t is a variable or an object constant of the sort actions.

The law says that an occurrence of an action a of the sort c is impossible

when condition cond holds.

Dynamic causal laws and constraints will be sometimes referred to as causal laws.

We use the term head to refer to l in (2) and (3), and to any of the p(ti), 1 ≤ i ≤ k ,

in (4). We call body the expression to the right of the keyword if in statements

(2), (3), (5), or in any of the statements of (4). Statements not containing variables

will be referred to as ground.

Definition 3 (Basic Action Theory – BAT )

A Basic Action Theory (BAT ) is a pair consisting of an action signature Σ and a

collection T of statements over Σ (called axioms of the theory) such that:

• If f is a basic fluent then

— T contains a state constraint:

domf (X0, . . . ,Xn) if f (X0, . . . ,Xn) = Y (6)

— No dynamic causal law of T contains an atom formed by domf in the

head.

• If f is a defined fluent, a static, or an attribute then T contains the definition:

domf (X0, . . . ,Xn) if f (X0, . . . ,Xn) = Y (7)

• T contains definitions of special statics of the hierarchy given in terms of

functions is a and link :

instance(O ,C ) if is a(O ,C )

instance(O ,C2) if instance(O ,C1), link(C1,C2)

has child(C2) if link(C1,C2)

has parent(C1) if link(C1,C2)

source(C ) if ¬has child(C )

sink(C ) if ¬has parent(C )

subsort(C1,C2) if link(C1,C2)

subsort(C1,C2) if link(C1,C ), subsort(C ,C2)

(8)

To simplify the notation, in what follows we will often identify a theory with the

collection of its axioms. Axioms (6)–(8) above are self-explanatory, with the possible

exception of the restriction prohibiting the appearance of domf in the head of

dynamic causal laws. To understand the latter requirement it is sufficient to notice
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that it is not enough to include object O in the domain of basic fluent f — it is also

necessary to specify the value of f (O). Otherwise the causal law making domf (O)

true would become non-deterministic,2 which is not allowed in the current version

of ALM. The presence of a law assigning a value to f (O) makes dynamic causal

laws with domf in the head unnecessary. It is however useful to allow dynamic

causal laws with ¬domf (O) in the head as a simple way of removing O from the

domain of f .

The following is an example of a basic action theory.

Example 1 (A Basic Action Theory T 0)

Let us consider an action signature Σ0 with three sorts, c1, c2 and c3, the special

sorts universe and actions, and the pre-defined sort booleans, organized in a hierar-

chy H0 in which universe is the parent of c1, c1 is the parent of c2, c3, actions, and

booleans, and object constant o is of sort c3; attributes attr1, attr2 : actions → c3;

C1

actions booleansC3C2

O

Fig. 1. Hierarchy H0 of T 0

basic fluents f , g : c2 → c3; and special functions like link , is a, domf , domg . The

hierarchy H0 can be seen in Figure 1, but we omitted from the picture the sort

universe whose only child is c1.

The basic action theory T 0 over Σ0 consists of the causal laws

occurs(A) causes f (X ) = Y if instance(A, actions),

attr1(A) = Y ,

g(X ) = o

occurs(A) causes ¬domf (X ) if instance(A, actions),

attr2(A) = o

false if ¬domg(X ),

instance(X , c2).

The third axiom requires function g to be total.

In addition, T 0 contains standard BAT axioms:

2 To see why, consider, for instance, a basic fluent f declared as f : {0, 1} → {0, 1} and a dynamic
causal law “occurs(a) causes domf (1).” Intuitively, the axiom says that after a is executed
f (1) must be defined, i.e., f (1) = 0 or f (1) = 1, which is non-deterministic.
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State constraints for the basic fluents:

domf (X ) if f (X ) = Y

domg(X ) if g(X ) = Y

Definitions for the domains of attributes:

domattr1(X ) if attr1(X ) = Y

domattr2(X ) if attr2(X ) = Y

and the collection of axioms from (8).

2.3 Semantics of BAT s

Intuitively, a basic action theory T defines the collection of discrete dynamic sys-

tems satisfying its axioms. The semantics of T will describe such systems by specify-

ing their transition diagrams, often referred to as models of T . Nodes of a transition

diagram represent possible states of the dynamic system; arcs of the diagram are

labeled by actions. A transition 〈σ0, a, σ1〉 says that the execution of action a in

state σ0 may take the system to state σ1.

A state of the diagram will be defined by the universe — a collection of objects

of the sorts of T , and by a physically possible assignment of values to T ’s func-

tions. Moreover, we assume that the sorted universe and the values of statics and

attributes are the same in all states, i.e., states only differ by the values of fluents.

To make this precise it is convenient to partition an interpretation I of an action

signature Σ into two parts: fluent part consisting of the universe of I and the

restriction of I on the sets of fluents, and static part consisting of the same universe

and the restriction of I on the remaining elements of the signature. Sometimes we

will refer to the latter as a static interpretation of Σ.

We also need the following notation: Given an action signature Σ and a collection

U of strings in some fixed alphabet, we denote by ΣU the signature obtained from

Σ by expanding its set of object constants by elements of U , which we assume to

be of sort universe.

Definition 4 (Pre-model)

Let T be a basic action theory with signature Σ and U be a collection of strings in

some fixed alphabet. A static interpretation M of ΣU is called a pre-model of T

(with the universe U ) if M(universe) = U and for every object constant o of ΣU

that is not an object constant of Σ, M(o) = o.

Given a pre-model M with the universe U we will often denote signature ΣU by

ΣM.

To illustrate this notion let us consider a pre-model of theory T from Example

1:

Example 2 (A pre-model of Basic Action Theory T 0)

To define a pre-model of basic action theory T 0 from Example 1 let us consider

a static interpretation M with the universe UM = {x , y , z , a, b, true, false} such

that:
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M(universe) =M(c1) = {x , y , z , a, b, true, false};
M(c2) = {x};
M(c3) = {y , z},
M(actions) = {a, b};
M(o) = {y}; and

M(attr1)(a) =M(attr2)(b) = y .

In addition: every symbol from UM is added to Σ0
U and mapped into itself; domattr1 =

{a}, domattr2 = {b}; the interpretation of special function link is determined by

the hierarchy from Figure 2; the interpretation of is a is extracted from the inter-

pretation of the hierarchy’s sorts.

Clearly, M satisfies the conditions in Definition 4 and hence is a pre-model of T 0.

A pre-model M of T uniquely defines a model TM of T if such a model exists.

The definition of TM will be given in two steps: first we define TM’s states and

then its transitions.

Intuitively, if theory T does not contain definitions, then a state of TM is an

interpretation I with static part M that satisfies the state constraints of T . The

situation is less simple for theories containing definitions (especially recursive ones).

Similar to the case of AL, the definition of a state will be given using logic programs

under the answer set semantics; specifically, we will use logic programs with non-

Herbrand partial functions in the language ASP{f} (Balduccini 2013).3

Let M be a pre-model of action theory T .

Program SM:

By SM we denote a logic program that consists of:

a) rules obtained from the state constraints and definitions of T by replacing

variables with properly typed object constants of ΣM, replacing object con-

stants with their corresponding interpretations in M, removing the constant

false from the head of state constraints, and replacing the keyword if with

←,

b) the Closed World Assumption:

¬d(t0, . . . , tn)← not d(t0, . . . , tn)

for every defined function d : c0 × . . . × cn → booleans and ti ∈ M(ci),

0 ≤ i ≤ n.

end of SM:

Finally, we define a program SI used in the definition of states of the transition

diagram defined by M.

Program SI :

3 Other approaches for introducing non-Herbrand functions in ASP can be seen, for instance, in
(Cabalar 2011; Lifschitz 2012; Bartholomew and Lee 2013).
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For every interpretation I of Σ with static part M, by SI we denote the logic

program obtained by adding to SM the set of atoms obtained from I by removing

the defined atoms.

end of SI

Definition 5 (State)
Let M be a pre-model of a BAT theory T . An interpretation σ with static part

M is a state of the transition diagram TM defined by M if σ is the only answer

set of Sσ.

Notice that σ is not a state if Sσ has multiple answer sets, a situation that would

only occur when the value of some defined function is not completely determined

by the values of basic functions. We will return to this issue later, in Section 4.2.

Example 3 (States of the diagram)
Let M be the pre-model of theory T 0 from Example 2. The program SM for this

M looks as follows:

← ¬domg(x ), instance(x , c2).

domf (x )← f (x ) = y

domf (x )← f (x ) = z

domg(x )← g(x ) = y

domg(x )← g(x ) = z

domattr1(a)← attr1(a) = y

domattr1(a)← attr1(a) = z

domattr2(a)← attr2(a) = y

domattr2(a)← attr2(a) = z

domattr1(b)← attr1(b) = y

domattr1(b)← attr1(b) = z

domattr2(b)← attr2(b) = y

domattr2(b)← attr2(b) = z

and the Closed World Assumptions for the special functions. Recall that, accord-

ing to the definition of an interpretation of a sorted signature, for every x ∈ |I|,
I(is a)(x , c) is true iff c is a source node of the sort hierarchy and I(x ) ∈ I(c),

and for every object o and sort c, I(is a)(I(o), c) is true iff 〈o, c〉 is a link in our

hierarchy. This, together with the condition on the interpretation of link guaran-

tees that every state of TM contains atoms is a(x , c2), is a(y , c3), and other atoms

formed by is a and link that define our hierarchy. The collection of these atoms

together with the closed world assumptions for is a, link and the other defined

statics uniquely determine their values. It is easy to check that every state of M
contains literals formed by these special fluents. Every state of TM also contains

attr1(a) = y , attr2(b) = y , and domg(x ). Overall, TM has the following six states

(for each state, we only show non-special fluents):

σ1 = {f (x ) = y , g(x ) = y} σ2 = {f (x ) = z , g(x ) = y}
σ3 = {f (x ) = y , g(x ) = z} σ4 = {f (x ) = z , g(x ) = z}
σ5 = {g(x ) = y} σ6 = {g(x ) = z}·
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In addition, states σ1, σ2, σ3, and σ4 contain domf (x ) while states σ5 and σ6, in

which f is undefined on x , contain ¬domf (x ).

To define transitions of the diagram that corresponds to a pre-modelM with the

universe U , we construct a logic program PM whose signature is obtained from the

signature of program SM defined above by

• adding a new sort, step, ranging over 0 and 1;

• replacing every fluent f : c0 × . . .× cn → c by function

f : c0 × . . .× cn × step → c;

• adding a function symbol occurs : actions × step → booleans.

Program PM:

Program PM is obtained from a theory T and pre-model M by

a) replacing variables by properly typed object constants of ΣM;

b) replacing object constants by their corresponding interpretations in M;

c) removing the object constant false from the head of state constraints;

d) replacing every occurrence of a fluent term f (t) in the head of a dynamic

causal law by f (t , I + 1);

e) replacing every other occurrence of a fluent term f (t) by f (t , I );

f) removing “occurs(a) causes” from every dynamic causal law and adding

occurs(a) to the body;

g) replacing “impossible occurs(a)” in every executability condition by ¬occurs(a);

h) replacing occurs(a) by occurs(a, I ) and ¬occurs(a) by ¬occurs(a, I );

i) replacing the keyword if by ←;

j) adding the Closed World Assumption:

¬d(t0, . . . , tn , I )← not d(t0, . . . , tn , I )

for every defined fluent d : c0×. . .×cn → booleans and ti ∈M(ci), 0 ≤ i ≤ n;

k) adding the rule:

¬f (t0, . . . , tn)← not f (t0, . . . , tn)

for every defined static of the form f : c0×. . .×cn → booleans and ti ∈M(ci),

0 ≤ i ≤ n;

l) adding the Inertia Axiom:

domf (t0, . . . , tn , I + 1) ← domf (t0, . . . , tn , I ),

not ¬domf (t0, . . . , tn , I + 1)·
¬domf (t0, . . . , tn , I + 1) ← ¬domf (t0, . . . , tn , I ),

not domf (t0, . . . , tn , I + 1)·

for every basic fluent domf : c0 × . . . × cn → booleans, and ti ∈ M(ci),

0 ≤ i ≤ n;

m) adding the Inertia Axiom:

f (t0, . . . , tn , I + 1) = t ← domf (t0, . . . , tn , I + 1),

f (t0, . . . , tn , I ) = t ,

not f (t0, . . . , tn , I + 1) 6= t



Modular Action Language ALM 15

for every basic fluent f : c0×. . .×cn → c not formed by dom, and ti ∈M(ci),

0 ≤ i ≤ n, and t ∈M(c).

end of PM

Note that the last axiom is a modification of the standard logic programming version

of the Inertia Axiom (see, for instance, (Gelfond and Kahl 2014)), which is stated

for total (boolean) functions. The main difference is the addition of the domain

statements in the body. The inertia axiom for the function domf is of the standard

form.

Program P(M, σ0, a): Let σ0 be a state of the transition diagram defined by a pre-

model M, and let a ⊆ M(actions). By P(M, σ0, a) we denote the logic program

formed by adding to PM the set of atoms obtained from σ0 by replacing every

fluent atom f (t0, . . . , tn) = t by f (t0, . . . , tn , 0) = t and adding the set of atoms

{occurs(x , 0) : x ∈ a}.
end of P(M, σ0, a)

Definition 6 (Transition)

Let σ0 and σ1 be states of the transition diagram defined by a pre-model M and

let a ⊆M(actions). The triple 〈σ0, a, σ1〉 is a transition of the transition diagram

defined by a pre-model M of a BAT theory T if program P(M, σ0, a) has an

answer set A such that f (t0, . . . , tn) = t ∈ σ1 iff

• f is an attribute or a static and f (t0, . . . , tn) = t ∈ A, or

• f is a fluent and f (t0, . . . , tn , 1) = t ∈ A.

Definition 7 (Model)

A transition diagram TM defined by a pre-model M of a basic action theory T is

called a model of T if it has a non-empty collection of states.

The following example illustrates the definition.

Example 4 (A Model of Basic Action Theory T 0)

To define a model of theory T 0 from Example 1 let us consider the pre-model M
from Example 2. States of the diagram defined by this pre-model were given in

Example 3. To define the transitions of the model defined by M we use Definition

6. Let us illustrate this by showing that a triple 〈σ1, b, σ5〉 is a transition. To do

that we need first to construct a program P(M, σ1, b) (we are only showing rules

relevant to our argument):

[1] f (x , 1) = y ← instance(b, actions),

occurs(b, 0),

attr1(b) = y ,

g(x , 0) = y .

[2] ¬domf (x , 1) ← instance(b, actions),

occurs(b, 0),

attr2(b) = y .
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[3] domf (x , 0)← f (x , 0) = y .

domf (x , 1)← f (x , 1) = y .

domg(x , 0)← g(x , 0) = y .

domg(x , 1)← g(x , 1) = y .

[4] f (x , 1) = y ← domf (x , 1),

f (x , 0) = y ,

not f (x , 1) 6= y .

g(x , 1) = y ← domg(x , 1),

g(x , 0) = y ,

not g(x , 1) 6= y .

[5] domf (x , 1) ← domf (x , 0),

not ¬domf (x , 1).

domg(x , 1) ← domg(x , 0),

not ¬domg(x , 1).

[6] f (x , 0) = y .

g(x , 0) = y .

occurs(b, 0).

It is easy to see that the program has a unique answer set, say, S . Since σ5 =

{g(x ) = y} we need to show that the only fluent atom with the step parameter 1

belonging to S is g(x , 1) = y . By the second rule from group [5], domg(x , 1) ∈ S .

By the second rule of [4] we have that g(x , 1) = y ∈ S . As expected, function g

maintains its value by inertia. The situation is different for f . By rule [2] we have

that ¬domf (x , 1) ∈ S and hence neither rule [5] nor [4] for f are applicable. Rule [1]

is also not applicable since attr1 is not defined for b. Therefore the state defined by

S is exactly σ5 = {g(x ) = y}. (Note that the argument would not be possible if we

were to use the traditional version of the Inertia Axiom. The modification related

to the treatment of dom presented in axioms [4] and [5] is essential.)

Using the same method one can easily verify that triples 〈σ2, a, σ1〉, 〈σ5, a, σ1〉,
〈σ5, b, σ5〉, etc. are transitions of the transition diagram defined by M.

2.4 Entailment Relation

Let us consider a fixed action theory T with action signature Σ, and define an

entailment relation between T and statements of Σ.

Let I be an interpretation of Σ. A ground instance of a statement α of Σ with

respect to I is a statement obtained by replacing variables of α by properly typed

object constants in ΣI and replacing object constants of α by their interpretations

in I.

Now let us consider a model TM of a basic action theory T defined by a pre-model

M with the universe U and let σ be a state of TM.
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Definition 8 (Satisfiability Relation for Ground Statements of a BAT )

• A state σ of TM satisfies a ground state constraint α if σ contains the head

of α whenever it contains its body.

• A state σ of TM satisfies a ground definition α if σ contains the head of a

clause in α iff α contains a clause with the same head and the body belonging

to σ.

• A transition 〈σ0, a, σ1〉 of TM satisfies a ground dynamic causal law α that

starts with the expression “occurs(e) causes” if a contains action e and σ1
contains the head of α whenever σ0 contains its body.

• A transition 〈σ0, a, σ1〉 of TM satisfies a ground executability condition α that

starts with the expression “impossible e” if either (1) a does not contain e

or (2) the body of α contains:

— a ground literal l such that l /∈ σ0, or

— an expression “occurs(e1)” such that e1 /∈ a, or

— an expression “¬occurs(e2)” such that e2 ∈ a.

Definition 9 (Satisfiability Relation for Arbitrary Statements of a BAT )

Let TM be a model of a basic action theory T defined by a pre-modelM with the

universe U .

• TM satisfies a constraint α over signature Σ of T if every state of TM satisfies

all ground instances of α with respect to U . Similarly for definitions.

• TM satisfies a dynamic causal law α over signature Σ of T if every transition

of TM satisfies all ground instances of α with respect to U . Similarly for

executability conditions.

Definition 10 (Entailment)

A statement α is entailed by a theory T (T |= α) if α is true in every model of T .

Having the notion of entailment allows us to investigate the relationship between

causal laws. For instance we can show that

{occurs(A) causes f if p, q ; occurs(A) causes f if ¬p} |= occurs(A) causes f if q

{occurs(A) causes f if p, q ; q if p} |= occurs(A) causes f if p

etc. Our notion of entailment is somewhat similar to the notion of subsumption

from (Eiter et al. 2010) – a relation between an action description and a query

(including queries having the form of causal laws and executability conditions).

Our entailment relation can be viewed as a generalization of subsumption from

system descriptions to theories. It allows variables and, unlike that of subsumption,

is defined in terms of multiple transition diagrams specified by the theory. There

are also related formalisms that allow entailment of causal laws and executability

conditions (see, for instance (Turner 1999) and (Giunchiglia et al. 2004b))). There

are many interesting problems related to the ALM entailment, including that of

finding a sound and complete set of inference rules for it. We hope to address these

problems in our future work.
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3 Language ALM

In this section we use examples to introduce the syntax of theories and system

descriptions ofALM and define their semantics. (The full grammar for the language

can be seen in Appendix A.)

We begin with describing unimodule system descriptions, i.e. system descriptions

whose theories consist of exactly one module.

3.1 Unimodule System Descriptions

We start with a comparatively simple problem of formalizing the domain described

by the following story:

Example 5 (A Travel Domain)

Consider a travel domain in which there are two agents, Bob and John, and three

locations, New York, Paris, and Rome. Bob and John can move from one location

to another if the locations are connected.

If we were to represent this knowledge in AL we would start with identifying ob-

jects of the domain including actions such as, say, go(bob, paris, rome) and write

AL axioms describing the relationships between these objects. The use of ALM
suggests a very different methodology.

Methodology of Describing Dynamic Domains in ALM:

1. Determine what sorts of objects are relevant to the domain of discourse and

how these sorts can be organized into an inheritance hierarchy.

2. Use ALM to describe the basic action theory for this type of domains. This

should be done in two steps:

• Describe the action signature of our abstraction by declaring sorts (to-

gether with their attributes and the inheritance hierarchy), basic and

defined statics and fluents. (Notice that this signature normally will not

contain particular objects of our story. It would have no mention of

Bob, Paris, etc. However, the signature may include some object con-

stants pertinent to the general domain of the story – see for instance

the Monkey and Banana Problem in Section 4.1.)

• Use this action signature to formulate axioms of the theory.

3. Populate sorts of your hierarchy with objects relevant to your story and de-

scribe these objects and their sort membership in ALM.

As is the case with other problem solving methodologies, we begin by choosing a

proper level of abstraction for our example. Since the example is used for illustrative

purposes we opted for using the following simple abstraction:

Our domains will contain things and discrete points in space. Certain things,

called agents, will be able to move from one point to another if the two points are

connected. We are interested in the relations between points and the locations of

things, including changes of these locations caused by a sequence of given moves.
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(Note that our abstraction does not allow a location to be a part of another location,

e.g., we will not be able to express that Paris is located in France. It ignores the

means of transportation, the possibility that locations may have restrictions on the

number of things they can contain, etc.)

Accordingly, our basic action theory containing commonsense knowledge about

motion formulated in these terms will include sorts things, agents, points, and

move, together with special sorts universe and actions, which belong to every action

signature.

We call this basic action theory Tbm . The sorts of Tbm will be organized in a

hierarchy depicted in Figure 2.

universe

actionspointsthings

agents move

Fig. 2. Sort Hierarchy for Tbm

Our next step is to describe Tbm in ALM.

Example 6 (Motion Theory in ALM)

The description of a theory in ALM starts with the keyword theory and is followed

by a collection of modules. Our theory, called basic motion, consists of only one

module moving

theory basic motion

module moving

〈module body〉

where 〈module body〉 stands for the declarations of sorts, functions, and axioms of

the theory. We assume that things, points, and agents have no attributes, while

actions from the sort move may come with attribute actor indicating the mover

involved in the action, and attributes origin and destination (abbreviated as dest)

describing the locations of the actor before and after the execution of the action.

Syntactically, all this information is specified as:

sort declarations

points, things :: universe

agents :: things
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move :: actions

attributes

actor : agents

origin : points

dest : points

The construct :: is called specialization and corresponds to the links of the sort

hierarchy; for instance, the link from agents to things in Figure 2 is recorded by

the statement agents :: things. Multiple links going into the same sort can be

recorded by a single statement, as in points, things :: universe. Note that the

special sorts universe and actions do not have to be declared. In case of a sort

hierarchy with multiple links from c to pc1, . . . , pck we will use a specialization

statement of the form c :: pc1, . . . , pck . In describing the attributes of actions

of the sort move we use a shorthand. Attributes of move are functions defined on

elements of the sort move, which means that the definition of, say, attribute actor

should be written as actor : move → agents. After some deliberation however,

we decided to allow to write it simply as actor : agents. The same agreement

holds for attributes with a larger number of parameters; an attribute of a sort

c that has the form attr name : c × c0 × . . . × cn → cn+1 can be written as

attr name : c0 × . . . × cn → cn+1. This completes the description of the syntactic

representation of our sort hierarchy in ALM.

The next step is to syntactically describe functions in the signature. One of the

functions mentioned in our informal description specifies whether two points are

connected or not. Let us call it connected . In general, the value of connected can

be changed by actions (airports can be closed, roads blocked, etc.) and hence we

define connected to be a basic fluent. In some scenarios, the property connected

will be a symmetric relation but not in others; similarly, it may be a transitive

relation or not. To allow for elaboration tolerance, we introduce two basic static

functions, symmetric connectivity and transitive connectivity to characterize the

property connected . The other function relevant to our domain maps things into

points at which they are located. Let us call it loc in. The value of the function can

be changed by actions of our domain, hence it is a fluent. It is not defined in terms

of other functions, thus it is a basic fluent. It is also a total function, as we assume

that the location of every thing is defined in every state. In ALM these functions

are syntactically declared as:

function declarations

statics

basic

symmetric connectivity : booleans

transitive connectivity : booleans

fluents

basic

connected : points × points → booleans

total loc in : things → points
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In this example the keywords function declarations are followed by the lists

of statics and fluents. Elements from each list are divided into basic and defined

with each total function in the list preceded by the keyword total. Naturally, the

declaration of a sort, static, or fluent in a module should be unique.

This concludes our description of action signature of Tbm
4.

Now we are ready to define the collection of axioms of Tbm . In ALM, we precede

this collection by the keyword axioms. Each axiom will be ended by a period (.),

as in:

axioms

occurs(X ) causes loc in(A) = D if instance(X ,move),

actor(X ) = A,

dest(X ) = D .

connected(X ,X ).

connected(X ,Y ) if connected(Y ,X ),

symmetric connectivity .

¬connected(X ,Y ) if ¬connected(Y ,X ),

symmetric connectivity .

connected(X ,Z ) if connected(X ,Y ),

connected(Y ,Z ),

transitive connectivity .

impossible occurs(X ) if instance(X ,move),

actor(X ) = A,

loc in(A) 6= origin(X ).

impossible occurs(X ) if instance(X ,move),

actor(X ) = A,

loc in(A) = dest(X ).

impossible occurs(X ) if instance(X ,move),

actor(X ) = A,

loc in(A) = O ,

dest(X ) = D ,

¬connected(O ,D).

The keyword total in the declaration of the basic fluent loc in stands for the axiom

false if ¬domloc in(X ).

that would otherwise have to be included among the axioms above. In general, the

keyword total included in the declaration of a function f : c0× . . .× cn → c stands

for the axiom

false if ¬domf (X0, . . . ,Xn).

4 The description does not mention object constants, which can be declared in ALM by state-
ments o : c and r(c1, . . . , cn ) : c. The first statement defines object constant o of sort c; the
second defines the collection of object constants of the form r(x1, . . . , xn ) where x1, . . . , xn are
object constants from sorts c1, . . . , cn . Example of the latter can be found in module climbing
of Monkey and Banana representation from section 4.1.
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This completes our description of the basic action theory Tbm in ALM.

Note that the semantics of the unimodule ALM theory basic motion is given by

the basic action theory Tbm defined by it. In the following sections we will present

other examples of basic action theories and their interpretations represented in

ALM. (Whenever possible we will make no distinction between these theories and

their ALM representations.)

As discussed above, a basic action theory T is used to define the collection of its

models — transition diagrams representing dynamic domains with shared ontology

and properties. Usually, a knowledge engineer is interested in one such domain,

characterized by particular objects, sorts, and values of statics. If the engineer’s

knowledge about this domain is complete, the domain will be represented by a

unique model of T . Otherwise there can be several alternative models.

The syntactic construct of ALM used to define such knowledge is called a struc-

ture and has the form

structure name

〈structure body〉

where 〈structure body〉 stands for the definition of objects in the hierarchy of Tbm

and the values of its statics. Let us illustrate the use of this construct by the

following example:

Example 7 (ALM’s Representation of a Specific Basic Motion Domain.)

Let us consider the ALM theory basic motion from Example 6, which encodes

the basic action theory Tbm , and use ALM to specify the particular basic motion

domain from Example 5.

The ALM definition of the structure used to describe this domain starts with

the header:

structure Bob and John

followed by the definition of agents and points:

instances

bob, john in agents

new york , paris, rome in points

To specify particular actions of our domain we expand our list of instances by

go(X ,P1,P2) in move where P1 6= P2

actor = X

origin = P1

dest = P2

Note that the last definition describes several instances simultaneously via the use

of variables; we call this type of definition an instance schema. The instance schema

defining go(X ,P1,P2) stands for the collection of instance definitions:
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go(bob,new york , paris) in move

actor = bob

origin = new york

dest = paris

. . .

go(john, paris, rome) in move

actor = john

origin = paris

dest = rome

The condition where P1 6= P2 ensures that Bob and John do not move to a

destination identical to the origin.

The following would also be a valid instance schema:

go(X ,P) in move

actor = X

dest = P

if we were interested only in the destinations of Bob and John’s movements, but

not in their origins.

In our example connectivity between points is both symmetric and transitive: This

is captured syntactically by the following: 5

values of statics

symmetric connectivity .

transitive connectivity .

This concludes our definition of Bob and John structure.

To syntactically relate a theory with its structure, we use the construct of ALM
called system description. In our case it will look as follows:

system description travel

theory basic motion

module moving

〈module body〉
structure Bob and John

〈structure body〉

where 〈module body〉 and 〈structure body〉 are defined in Examples 6 and 7. The

system description travel contains all the information we considered relevant to our

particular travel domain. It is not difficult to see that this knowledge is complete and

therefore describes exactly one model (i.e., one transition diagram) of basic motion.

This is exactly the model we intended for our domain. A part of this model can be

seen in Figure 3. We only show fluent loc in and assume that in every state of the

5 If a theory contains an object constant o then its value, say y, can be declared as:

object constants
o = y

If the structure contains no assignment of value to constant o, we assume that o belongs to the
structure’s universe and is mapped into itself.
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part of the diagram shown in the picture Paris and Rome are connected to each

other, but neither of them is connected to New York; we use shorthands b, j , ny ,

p, and r for bob, john, new york , paris, and rome respectively; and we only show

arcs that are labeled by a single action.

Fig. 3. (Partial) Transition Diagram for System Description travel

The model is unique because we specified the membership of our objects in the

source nodes of the hierarchy. This information is sufficient to uniquely define the

universe and the interpretations of all the sorts.

The next example illustrates how incomplete information about a domain can

lead to multiple models of the system description of this domain:

Example 8 (System Description with Multiple Models)

Consider a system description underspecified hierarchy consisting of a theory pro-

fessors and a structure alice:

system description underspecified hierarchy

theory professors

module professors

sort declarations

professor :: person

assistant , associate, full :: professor

axioms

false if instance(X ,C1), instance(X ,C2),

link(C1, professor), link(C2, professor),

C1 6= C2·
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structure alice

instances

alice in professor

The theory describes a simple hierarchy. The structure populates the hierarchy

with one member, Alice (see Figure 4). Unfortunately all we know about Alice is

that she is a professor. It is not difficult to check that this system description has

three models. In the first one Alice is an assistant professor, in the second she is an

associate professor, and in the third one - a full professor.

prof

fullassocassist

alice

Fig. 4. Underspecified Hierarchy

We hope that these examples gave the reader a sufficient insight in the meaning

of unimodule ALM theories and system descriptions. In general, the semantics of

a syntactically correct unimodule theory T of ALM is given by the unique BAT
defined by T . Similarly, the semantics of a system description D of ALM is given

by models of the BAT theory defined by T and by the set of interpretation defined

by the structure of D .

3.2 Organizing Knowledge into Modules

So far we only considered very simple ALM theories consisting of one module. To

create theories containing a larger body of knowledge we need multiple modules

organized into a module hierarchy. To illustrate this concept let us consider an

extension of basic action theory Tbm of motion by an additional sort of things

called carriables, which can be carried between connected points by agents that are

holding them. Recall from Example 6 that we represented the original Tbm as an

ALM theory called basic motion, with a unique module moving . We will use the

name motion for the ALM theory that will specify the extension of Tbm . The new

theory will contain the moving module developed above as well as a new module

called carrying things:

theory motion

module moving

〈module body〉
module carrying things

〈module body〉
In addition to sorts, fluents, and axioms from module moving , the signature of the

new module carrying things will contain two new sorts, carriables and carry ; a

new inertial fluent, holding ; and a defined fluent, is held . Informally, holding will

be understood as having in one’s hands and carry as moving while holding, which

will allow us to define carry as a special case of move.
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The dependency of carrying things on moving is expressed in ALM by the syn-

tactic construct depends on called module dependency as follows:

module carrying things

depends on moving

This says that the sorts and functions explicitly declared in carrying things depend

on sorts and functions declared in the module moving . We say that the declarations

of moving are implicit in module carrying things. We require all sorts and functions

appearing in a module to be either explicitly or implicitly declared in that module.

By means of the module dependency construct, a theory of ALM can be structured

into a hierarchy of modules. The dependency relation of this hierarchy should form

a DAG. Now we define the body of the new module:

sort declarations

carriables :: things

carry :: move

attributes

carried object : carriables

Note that, since carry is defined as a special case of move, it automatically inherits

the attributes of move; hence those attributes do not have to be repeated in the

declaration of carry . Next, the module contains the declarations of functions:

function declarations

fluents

basic

total holding : agents × things → booleans

defined

is held : things → booleans

and the new axioms:

axioms

loc in(C ) = P if holding(T ,C ),

loc in(T ) = P .

loc in(T ) = P if holding(T ,C ),

loc in(C ) = P .

is held(X ) if holding(T ,X ).

impossible occurs(X ) if instance(X ,move),

actor(X ) = A,

is held(A).

impossible occurs(X ) if instance(X , carry),

actor(X ) = A,

carried object(X ) = C ,

¬holding(A,C ).

The first two axioms say that an agent and an object he is holding have the same

location. The next defines fluent is held(X ) – object X is held by someone or

something. The first executability condition states that to move an actor should be
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free (i.e., not held). The second states that it is impossible to carry a thing without

holding it.

Structuring a theory of ALM into a hierarchy of modules has several advantages.

First, this supports the stepwise development of a knowledge base by allowing parts

of its theory to be developed and tested independently from other parts. Second,

it increases the readability of ALM theories, due to the more manageable size

of their modules.6 And finally, this approach facilitates the creation of knowledge

libraries. Theories containing very general information can be stored in a library and

imported from there when constructing system descriptions. For instance, imagine

that our motion theory is stored in a library called commonsense library . The

system description travel could then be re-written by importing this theory as

follows:

system description travel

import theory motion from commonsense library

structure Bob and John

〈structure body〉

We hope that these examples gave the reader some insight into the meaning

of theories of ALM that have more than one module. The accurate semantics for

such a theory T is given by its flattening, i.e., by translating T into the unimodular

theory with the same intuitive meaning.

First, we will give the semantics of theories satisfying the semantic conditions

given in the following definition, theories that we call semantically coherent.

Definition 11 (Semantically Coherent Theory)

A theory of ALM is semantically coherent if it satisfies the following conditions:

• All sorts and functions appearing in a module of T are (explicitly or implicitly)

declared in that module.

• The module hierarchy of T defined by relation “depends on” forms a DAG,

G . (The nodes of G correspond to modules of T . An arc 〈M2,M1〉 is in G if

and only if module M2 contains the statement “depends on M1”.)

• No two modules of a theory contain different declarations of the same sort or

the same function name.

The last condition in Definition 11 can be weakened to allow the use of the same

name for a function and its restriction on a smaller sort. This and other similar

features however can somewhat distract from the main ideas of ALM and will not

be included in the original version of ALM.

The flattening f (T ) of an ALM theory T is constructed by the following algo-

rithm:

1. Select modules M1 and M2 of T such that M1 contains the statement “depends

on M2”.

6 For greater readability, we recommend maintaining a balance between a manageable module
size and a relatively shallow module dependence hierarchy.
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2. Replace M1 and M2 by the new module M obtained by uniting depends on

statements, sort declarations, object constant declarations, function declara-

tions, and axioms of M2 with those of M1.
3. Remove the statement “depends on M2” from M .
4. Replace M1 and M2 in all the statements of T of the form “depends on M1”

and “depends on M2” by M .
5. Repeat until no dependent modules exist.
6. Construct a new module with declarations and axioms defined as unions of

the corresponding declarations and axioms of the remaining modules.
7. Return the resulting unimodule theory f (T ).

The second condition in Definition 11 guarantees that the algorithm will termi-

nate. The first and second conditions ensure that the result of the algorithm does

not contain the depends on statement and that all sorts and functions within mod-

ule M of step 2 have unique (explicit or implicit) declarations. Thanks to condition

three this property is preserved by step 6 of the algorithm and hence f (T ) is indeed

a unimodule theory.

As expected, the semantics of an ALM theory T with more than one module is

given by the semantics of the unimodule theory f (T ).

For illustrative purposes we give the result of applying the flattening algorithm

to the motion theory given above:

theory flat motion

module flat motion

sort declarations

points, things :: universe

agents, carriables :: things

move :: actions

attributes

actor : agents

origin : points

dest : points

carry :: move

attributes

carried object : carriables

function declarations

statics

basic

symmetric connectivity : booleans

transitive connectivity : booleans

fluents

basic

total loc in : things → points

total holding : agents × things → booleans

connected : points × points → booleans
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defined

is held : things → booleans

axioms

occurs(X ) causes loc in(A) = D if instance(X ,move),

actor(X ) = A, dest(X ) = D .

connected(X ,X ).

connected(X ,Y ) if connected(Y ,X ), symmetric connectivity .

¬connected(X ,Y ) if ¬connected(Y ,X ), symmetric connectivity .

connected(X ,Z ) if connected(X ,Y ), connected(Y ,Z ),

transitive connectivity .

loc in(C ) = P if holding(T ,C ), loc in(T ) = P .

loc in(T ) = P if holding(T ,C ), loc in(C ) = P .

is held(C ) if holding(T ,C ).

impossible occurs(X ) if instance(X ,move), actor(X ) = A,

origin(X ) 6= loc in(A).

impossible occurs(X ) if instance(X ,move), actor(X ) = A,

dest(X ) = loc in(A).

impossible occurs(X ) if instance(X ,move), actor(X ) = A,

loc in(A) = O , dest(X ) = D ,

¬connected(O ,D).

impossible occurs(X ) if instance(X ,move),

actor(X ) = A, is held(A).

impossible occurs(X ) if instance(X , carry), actor(X ) = A,

carried object(X ) = C , ¬holding(A,C ).

For readability, we selected the same names for the theory and its module. This

theory will be used in Appendix C for the purpose of comparing ALM and MAD .

Finally, the semantics of a system description with a theory T consisting of

multiple modules is given by the collection of models of the BAT defined by f (T )

and the collection of interpretations defined by the system’s structure.

This concludes our introduction to the syntax and semantics of ALM.

4 Methodology of Language Use

In this section we further illustrate the methodology of using ALM for knowledge

representation and for solving various computational tasks.

4.1 Representing Knowledge in ALM

We exemplify the methodology of representing knowledge in ALM by considering

a benchmark commonsense example from the field of reasoning about action and

change — the Monkey and Banana Problem (McCarthy 1963; McCarthy 1968).

(Another, more realistic, example of the use of ALM can be found in Appendix B.)
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Problem 1 (Monkey and Banana)

A monkey is in a room. Suspended from the ceiling is a bunch of bananas, beyond

the monkey’s reach. In the room there is also a box. The ceiling is just the right

height so that a monkey standing on the box under the bananas can reach the

bananas. The monkey can move around, carry other things around, climb on the

box, and grasp the bananas. What is the best sequence of actions for the monkey

to get the bananas?

In accordance with the basic methodology of declarative programming, we will

first represent knowledge about the problem domain and then reduce the problem’s

solution to reasoning with this knowledge. Based on our current experience, we

recommend to divide the process of representation into the following steps:

Methodology of Creating Modular Representations in ALM:

• Build a hierarchy of actions pertinent to the domain.

• Starting from the top of the hierarchy gradually build and test modules cap-

turing properties of its actions. If necessary, add general non-action modules

(e.g. a module defining a sequence of actions). Whenever feasible, use existing

library modules.

• Build a module main containing specific information needed for the problem

solution.

• Populate the hierarchy with the domain’s objects.

Here are a few comments about the second step listed above: When deciding how

many actions to describe in one module, consider balancing the size of the module

with the depth of the (part of the) hierarchy that it captures; also consider the

resulting depth of the module dependency hierarchy. For instance, an action and

its opposite are normally included in the same module. So are actions that usually

occur together and share common fluents and sorts. To facilitate the discovery of

relevant library modules, we assume that a dictionary indexed by action classes

will be available to knowledge engineers. Action classes will be associated with the

library modules in which they are described. The signature and axioms of library

modules will be viewable by the knowledge engineer.

Let us illustrate the methodology by solving the Monkey and Banana problem.

The story is clearly about an agent moving around, and grasping and carrying

things between various points. The hierarchy of actions pertinent to the story is

illustrated in Figure 5.

Note that, unlike other actions, action release does not explicitly appear in the

story. However, it is often advisable to consider actions together with their oppo-

sites, so our hierarchy contains release together with grasp.

To gradually build a theory monkey and banana containing the knowledge needed

to solve the Monkey and Banana problem, we start with selecting a root of the ac-

tion hierarchy – in our case action move. The inheritance hierarchy pertinent to

move appears in Figure 2. We already discussed the module moving describing the

properties of move. The theory consisting of this module can be tested on a number
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move

carry climb

grasp release

Fig. 5. Action Hierarchy for the Monkey and Banana Problem

of specific domains using ASP-based methods discussed in the next section. Next

we select three actions carry, grasp, and release understood as move while hold-

ing, take and hold, and stop holding respectively. Since these actions share a fluent

holding7 and sorts things and agents, and since a things-carrying agent usually also

executes actions grasp and release, knowledge about these actions can be put in the

same module. To do that we extend the inheritance hierarchy by a subclass carri-

ables of things and expand module carrying things from section 3.2 by information

about another two actions. Sort declarations of carrying things from 3.2 will now

also include

grasp :: actions

attributes

grasper : agents

grasped thing : things
and

release :: actions

attributes

releaser : agents

released thing : things

The section function declarations of the new module will contain the additional

function can reach needed as a precondition for the executability of grasp. The

function will be defined in terms of locations of things.

defined

can reach : agents × things → booleans

The set of axioms will be expanded as follows. The first two axioms below describe

the direct effects of our new actions: action grasp results in the grasper holding the

thing he grasped; this is no longer true after the thing is released.

occurs(A) causes holding(X ,Y ) if instance(A, grasp),

grasper(A) = X ,

grasped thing(A) = Y .

occurs(A) causes ¬holding(X ,Y ) if instance(A, release),

releaser(A) = X ,

released thing(A) = Y .

7 For simplicity we assume that an agent can only hold one thing at a time. A more general
module may allow to grasp a collection of things up to a certain capacity.
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The constraint

¬holding(X ,Y2) if holding(X ,Y1),Y1 6= Y2

ensures that only one thing can be held at a time (and hence to grasp a thing an

agent must have his hands free).

This is followed by the executability conditions: one cannot grasp a thing he is

already holding or a thing that is out of his reach; one cannot release a thing unless

he is holding it.

impossible occurs(A) if instance(A, grasp),

grasper(A) = X ,

grasped thing(A) = Y ,

holding(X ,Y ).

impossible occurs(A) if instance(A, grasp),

grasper(A) = X ,

grasped thing(A) = Y ,

¬can reach(X ,Y ).

impossible occurs(A) if instance(A, release),

releaser(A) = X ,

released thing(A) = Y ,

¬holding(X ,Y ).

We also need a simple definition of can reach – an agent can always reach an object

he shares a location with.

can reach(M ,O) if loc in(M ) = loc in(O).

This definition will later be expanded to describe the specific geometry of our

domain.

This completes our construction of the new module carrying things.

After testing the theory consisting of moving and carrying things we proceed to

constructing a new module, climbing , which axiomatizes action climb understood

as moving from the bottom of a thing to its top. We assume that one can climb

only on tops of a special type of things called elevations, which will be added to

our hierarchy as a subset of things. The corresponding declarations look as follows:

module climbing

depends on moving

sort declarations

elevations :: things

climb :: move

attributes

elevation : elevations

Now we introduce notation for points associated with the tops of elevations. The

points are represented by object constants of the form top(E ) where E is an eleva-

tion. In ALM this is expressed by the following:
object constants

top(elevations) : points
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(Notice that top here is not a function symbol; if e is an elevation, then top(e) is

simply a point.)

The module contains axioms saying that top(E ) is the destination of climbing an

elevation E :

dest(A) = top(E ) if elevation(A) = E .

and that a thing cannot be located on its own top:

false if loc in(E ) = top(E ).

The last axiom prohibits an attempt by an agent to climb an elevation from a

distance:

impossible occurs(X ) if instance(X , climb),

actor(X ) = A,

elevation(X ) = O ,

loc in(O) 6= loc in(A).

After testing the existing modules we concentrate on the specific information

needed for the problem solution. It will be presented in a module called main.

module main

depends on carrying things, climbing

The main goal of the module is to define when the monkey can reach the banana.

We start by dividing our sort points into three parts: floor points, ceiling points,

and movable points:

sort declarations

floor points, ceiling points,movable points :: points

where the latter correspond to tops of movable objects. We will see the use of these

sorts a little later. Now we move to function declarations. The story is about three

particular entities: the monkey, the banana, and the box. They will be defined as

constants of our module.

object constants

monkey : agents

box : carriables, elevations

banana : carriables

We will also need a function under, such that under(P ,T ) is true when point P is

located under the thing T . Note that, if we consider this function to be defined for

arbitrary points, it will be dynamic – under(top(box ), banana) can be true in one

state and false in another. This will force us to declare this function as a fluent,

causing an unnecessary complication. Instead we define under for floor points only,

which is sufficient for our purpose and is substantially simpler.

function declarations

statics

basic under : floor points × things → booleans

To define our function can reach we need the following axiom:
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axioms

can reach(monkey , banana) if loc in(box ) = P ,

under(P , banana),

loc in(monkey) = top(box ).

Finally, we need the following axioms for the basic fluent connected :

connected(top(box ),P) if loc in(box ) = P ,

instance(P ,floor points).

¬connected(top(box ),P) if loc in(box ) 6= P ,

instance(P ,floor points).

connected(P1,P2) if instance(P1,floor points),

instance(P2,floor points).

¬connected(P1,P2) if instance(P1, ceiling points),

instance(P2, points),

P1 6= P2.

This completes the construction of module main as well as theory monkey and banana

that we will use to solve the Monkey and Banana problem. It is easy to see that

the theory is semantically coherent, as it satisfies the conditions in Definition 11.

Figure 6 and 7 represent the sort hierarchy and module hierarchy of this theory,

respectively.

universe

points

things

banana boxmonkey

agents carriables elevations

actions

move

carryclimb

grasp

release

floor
points

ceiling 
pointsmovable 

points

top(box)

Fig. 6. Sort Hierarchy for the Monkey and Banana Problem

To complete the description of our domain we introduce the structure containing

three points located on the floor of the room and one point located on the ceiling,

as well as movable points and particular actions mentioned in the story:

structure monkey and banana

instances

under banana, initial monkey , initial box in floor points

initial banana in ceiling points

top(box ) in movable points
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moving

carrying_thingsclimbing

main

Fig. 7. Module Hierarchy for the Monkey and Banana Problem

move(P) in move where instance(P , points)

actor = monkey

dest = P

carry(box ,P) in carry where instance(P ,floor points)

actor = monkey

carried object = box

dest = P

grasp(C ) in grasp where instance(C , carriables)

grasper = monkey

grasped thing = C

release(C ) in release where instance(C , carriables)

releaser = monkey

released thing = C

climb(box ) in climb

actor = monkey

elevation = box

values of statics

under(under banana, banana).

symmetric connectivity .

¬transitive connectivity .

The structure specifies that the relation connected is symmetric, but not transitive.

The latter prevents the monkey from moving from its initial location directly on

top of the box.

The theory and structure described above can be combined into a system de-

scription monkey and banana as follows:

system description monkey and banana problem

theory monkey and banana

import motion from commonsense library

module main

〈module body〉
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structure monkey and banana

〈structure body〉

Note that the import statement above is a directive to import all of the modules

of the library theory motion into the theory monkey and banana.

The system describes a unique hierarchy and a unique transition diagram, τ .

Note that the hierarchy contains properly typed constants monkey , box , and banana

declared in our module main; and that some of our functions, e.g. under , are partial.

It is not difficult to check that there is a path in τ that starts with the initial

state of our problem and is generated by actions move(initial box ), grasp(box ),

carry(box , under banana), release(box ), climb(box ), grasp(banana). The final state

of this path will contain a fluent holding(monkey , banana). In the next section we

discuss how ASP based reasoning can be used to automatically find such sequences.

4.2 ALM’s Use in Solving Computational Tasks

A system description of ALM describes a collection of transition diagrams that

specifies some dynamic system. System descriptions can be used to solve computa-

tional tasks such as temporal projection or planning, using a methodology similar

to that developed for non-modular action languages like AL (see, for instance,

(Gelfond and Kahl 2014)).

4.2.1 Temporal Projection

Normally, system descriptions of ALM are used in conjunction with the description

of the system’s recorded history — a collection of facts about the values of fluents

and the occurrences of actions at different time steps in a trajectory. (Since we

are only dealing with discrete systems such steps are represented by non-negative

integers). Together, the system description and the history define the collection of

possible trajectories of the system up to the current step. In our methodology of

solving temporal projection tasks, possible trajectories are obtained by computing

the answer sets of a logic program. To formally describe this methodology, we need

the following definitions.

Definition 12 (History – adapted from (Balduccini and Gelfond 2003a))

By the recorded history Γn of a system description D up to time step n we mean

a collection of observations, i.e., facts of the form:

1. observed(f (t), v , i) – fluent f (t) was observed to have value v at time step i ,

where 0 ≤ i ≤ n.

2. happened(a, i) – action a was observed to happen at time step i , where 0 ≤
i < n.

(There are two small differences between this and the definition of a history by

Balduccini and Gelfond (2003a): the latter only allows boolean fluents and observa-

tions that have the form observed(l , i) where l is a fluent or its negation. Similarly

for the next definitions in this subsection.)
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We say that the initial situation of Γn is complete if, for every user-defined basic

fluent f and any sequence of ground terms t such that observed(domf (t), true, 0) ∈
Γn , Γn also contains a fact of the form observed(f (t), v , 0).

Example 9 (History)

A possible recorded history for the system description monkey and banana problem

in Section 4.1 may look as follows:

Γ1 =def {observed(loc in(monkey), initial monkey , 0),

observed(loc in(box ), initial box , 0),

happened(move(initial box ), 0)}

which says that, initially, the monkey was at point initial monkey and the box was

at initial box ; the monkey went to the initial location of the box.

The semantics of a history Γn is given by the following definition:

Definition 13 (Model of a History – adapted from (Balduccini and Gelfond 2003a))

Let Γn be a history of a system description D up to time step n.

(a) A trajectory 〈σ0, a0, σ1, . . . , an−1, σn〉 is a model of Γn if:

1. ai = {a : happened(a, i) ∈ Γn}, for every 0 ≤ i < n.

2. if observed(f (t), v , i) ∈ Γn then f (t) = v ∈ σi , for every 0 ≤ i ≤ n.

(b) Γn is consistent if it has a model.

(c) An atom f (t) = v holds in a model M of Γn at time 0 ≤ i ≤ n if f (t) = v ∈ σi ;
A literal f (t) 6= v holds in a model M of Γn at time 0 ≤ i ≤ n if domf (t) =

true ∈ σi and f (t) = v /∈ σi ;
Γn entails a literal l at time step 0 ≤ i ≤ n if, for every model M of Γn , l

holds in M .

Example 10 (Model of a History)

History Γ1 from Example 9 is consistent. Its model is the trajectory:

M = 〈 { loc in(monkey) = initial monkey , loc in(box ) = initial box , . . . },
move(initial box ),

{ loc in(monkey) = initial box , loc in(box ) = initial box , . . . }〉·

(We do not show the values of connected since they are unchanged by our actions).

Γ1 entails, for example, loc in(monkey) = initial box at time step 1.

Note that a consistent history may have more than one model if non-deterministic

actions are involved or the initial situation is not complete.

Next, we define some useful vocabulary.
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Definition 14 (Set of Literals Defining a Sequence – adapted from (Balduccini and Gelfond 2003a))

Let Γn be a history of D and A be a set of literals over signature Σ. We say that

A defines the sequence

〈σ0, a0, σ1, . . . , an−1, σn〉
if:

(a)
σi = {f (t0, . . . , tn) = t : f (t0, . . . , tn) = t ∈ A and f is a static or attribute} ∪

{f (t0, . . . , tn) = t : f (t0, . . . , tn , i) = t ∈ A and f is a fluent}
for any 0 ≤ i ≤ n, and

(b) ak = {a : occurs(a, k) ∈ A} for any 0 ≤ k < n.

Definition 15 (Program Ωtp – adapted from (Balduccini and Gelfond 2003a))

If Γn is a history of system description D up to time step n, then by Ωtp we denote

the ASP{f} program constructed as follows:

1. For every action a such that happened(a, i) ∈ Γn , Ωtp contains:

occurs(a, i)← happened(a, i)·

2. For every expression observed(f (t), v , 0) ∈ Γn , Ωtp contains:

f (t , 0) = v ← observed(f (t), v , 0)·

3. For every expression observed(f (t), v , i) ∈ Γn , i > 0, Ωtp contains the reality

check axiom:

← observed(f (t), v , i),

domf (t , i),

f (t , i) 6= v ·

Our methodology of finding trajectories by computing answer sets of a logic

program is designed for system descriptions that match the intuition that defined

functions are only shorthands, and their values are fully determined by those of

basic statics and fluents. We call such system descriptions well–founded and define

them formally as follows.

Definition 16 (Well–founded System Description – adapted from (Gelfond and Inclezan 2013))

Let D be a system description whose theory encodes the BAT theory T , and whose

structure defines a collection S of models of T . D is well–founded if, for every model

M in S, and every interpretation I in M, the program SI (defined as in Section

2.3) has at most one answer set.

The system description monkey and banana problem from Section 4.1 is well–

founded. An example of a system description that is not well–founded is n w f

shown below and adapted from (Gelfond and Inclezan 2013). The two defined fluents

of n w f are not defined in terms of basic statics or fluents but rather in terms of

one another by mutually recursive axioms.
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system description n w f

theory n w f

module main

sort declarations

c :: universe

fluent declarations

defined

f : c → booleans

g : c → booleans

axioms

f (X ) if ¬g(X ).

g(X ) if ¬f (X ).

structure n w f

instances

x in c

In the case of the non-modular action language AL, there is a known syntactic

condition that guarantees that a system description is well–founded (Gelfond and

Inclezan 2013). This condition can be easily expanded to ALM due to close con-

nections between ALM and AL.

Trajectories of a dynamic system specified by a well–founded system description

are computed using a logic program Π that consists of the ASP{f} encoding of the

system description, the system’s recorded history, and the program Ωtp connecting

the recorded history with the system description.

To simplify the presentation, in what follows we limit ourselves to well–founded

system descriptions that describe domains in which there is complete information

about the sort memberships of objects of the domain.8 Let us consider system

description D that meets this requirement, and let M be a model of D’s theory.

Then, the program PI obtained from the theory of D and some interpretation I of

M as described in section 2.3 will be used as the ASP{f} encoding of D.

Definition 17 (Program Πtp(D))

If Γn is a history of D up to step n, then Πtp(D) is the logic program defined as

Πtp(D) =def PI ∪ Γn ∪ Ωtp

such that the sort step in the signature of Πtp(D) ranges over the set {0, . . . ,n}.

Proposition 1

If Γn is a consistent history of D such that the initial situation of Γn is complete,

then M is a model of Γn iff M is defined by some answer set of program Πtp(D).

8 This is not a serious restriction; it can be easily lifted by adding to the ASP encoding of the
ALM system description rules of the type

is a(x , c) or ¬is a(x , c)

for every object x and every source node c in the hierarchy of sorts.
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This proposition can be proven using techniques similar to the ones employed in

Lemma 5 in (Balduccini and Gelfond 2003a).9

We used the above methodology of solving temporal projection tasks to cre-

ate a question answering system in the context of the Digital Aristotle project

(Inclezan and Gelfond 2011). Our system was capable of answering complex end-

of-the-chapter questions on cell division, extracted from a well-known biology text-

book.

4.2.2 Planning

In planning problems, in addition to the history of the dynamic system up to the

current time point, information about the goal to be achieved is also provided.

Given a system description of ALM whose theory describes a basic action theory

T , a goal is a collection G of ground user-defined fluent literals over the signature

of T . For instance, for the Monkey and Banana problem in Section 4.1, the goal

is Gmb = {holding(monkey , banana)}. Goals can be encoded as logic programming

rules, as described in the following definition:

Definition 18 (Goal Encoding)

Given a goal G , we call encoding of G , denoted by lp(G) the rule

goal(I ) ← body

where body is defined as follows:

body =def {f (t , I ) = v : f (t) = v ∈ G} ∪ {f (t , I ) 6= v : f (t) 6= v ∈ G}·

In order to solve planning problems, a slightly different logic programming module

will be needed than for solving temporal projection tasks. This module is defined in

CR-Prolog (Balduccini and Gelfond 2003b), an extension of ASP designed to han-

dle, among other things, rare events. In addition to regular ASP rules, programs in

CR-Prolog may contain consistency restoring rules that have the following syntax:

h1 or . . . or hk
+← l1, . . . , lm ,not lm+1, . . . ,not ln ·

Informally, this statement says that an intelligent agent who believes l1, . . . , lm and

has no reason to believe lm+1, . . . , ln may believe one of hi ’s, 1 ≤ i ≤ k , but only

if no consistent set of beliefs can be formed otherwise. For the formal semantics of

CR-Prolog, we refer the reader to (Balduccini and Gelfond 2003b). An extension of

ASP{f} by consistency restoring rules is defined in (Balduccini and Gelfond 2012).

Solvers for CR-Prolog are described in (Balduccini 2007) and (Balai et al. 2012).

Definition 19 (Planning Module (Balduccini 2004; Gelfond and Kahl 2014))

9 The proof and text of Lemma 5 appear on page 29 of the version of (Balduccini and Gelfond
2003a) available at http://arxiv.org/pdf/cs/0312040v1.pdf. Retrieved on August 3, 2014.
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Given a goal G , the planning module Ωpl extends module Ωtp from Section 4.2.1

by the following rules:

success ← goal(I ), I ≤ n

← not success

r1(A, I ) : occurs(A, I )
+← instance(A, actions)

smtg happened(I ) ← occurs(A, I )

← not smtg happened(I ),

smtg happened(I + 1)·

Ωpl computes minimal plans of maximum length n by the use of the consistency

restoring rule r1 and the two regular rules that follow it.

The actual program for computing plans is constructed similarly as before.

Definition 20 (Program Πpl(D))

If Γn is a history of D up to step n and G is a goal over D, then Πpl(D,G) is the

logic program defined as

Πpl(D,G) =def PI ∪ Γn ∪ Ωpl ∪ lp(G)

such that the sort step in the signature of Πpl(D,G) ranges over the set {0, . . . ,n}.

The following proposition specifies how answer sets of the logic program defined

above can be mapped into plans for achieving given goals.

Proposition 2

If Γn is a consistent history of D such that the initial situation of Γn is complete

and G is a goal over D, then the collection of atoms of the form occurs(a, i) from

an answer set of Πpl(D,G) defines a minimal plan for achieving goal G , and every

such plan is represented by the occurs atoms of some answer set of Πpl(D,G).

Example 11 (Planning in the Monkey and Banana Problem)

If we consider the Monkey and Banana problem with the initial situation

Γmb = { observed(loc in(monkey), initial monkey , 0),

observed(loc in(box ), initial box , 0)

and the goal

Gmb = {holding(monkey , banana)}
defined earlier, then an answer set of program Πpl(monkey and banana problem,Gmb)

will contain the following occurs atoms:
{ occurs(move(initial box ), 0), occurs(grasp(box ), 1),

occurs(carry(box , under banana), 2), occurs(release(box ), 3),

occurs(climb(box ), 4), occurs(grasp(banana), 5) }
defining a minimal plan 〈 move(initial box ), grasp(box ), carry(box , under banana),

release(box ), climb(box ), grasp(banana) 〉 resulting in the monkey holding the ba-

nana at time step 6. The program will also find the second minimal plan in which

carry(box , under banana) at step 2 is replaced by move(under banana). Since the
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first action is more specific than the second one the first plan seems to be preferable.

This can easily be expressed by a slightly modified planning module allowing only

most specific actions.

5 Related Work

Many ideas of ALM, such as the notions of action language, module, sort hierar-

chy, attribute defined as a partial function, etc., are well-known from the literature

on programming languages and knowledge representation. Some of the basic refer-

ences to these notions were given in the text. In this section we briefly comment

on the relationship between ALM and the previously existing modular action lan-

guages MAD (Lifschitz and Ren 2006; Erdoǧan and Lifschitz 2006; Desai and Singh

2007), TAL-C (Gustafsson and Kvarnström 2004), and the earlier version of ALM
(Gelfond and Inclezan 2009).

We start with summarizing the differences between the two versions of ALM.

There are a number of changes in the syntax of the language. For instance, theories

of the new version of ALM may contain non-boolean fluents10 and constants that

substantially simplify ALM’s use for knowledge representation. Axioms of a theory,

which in the old version were included in the theory’s declarations, are now put in

a separate section of the theory. This removed the problem of deciding which fluent

or action declaration should contain an axiom, and improved the readability of the

language. There are also substantial improvements in the syntax of axioms, etc.

Another collection of changes is related to the semantics of the language. First, the

new semantics, based on the notions of basic action theory and its models, clarified

and generalized the old definition and allowed the introduction of the entailment

relation. Second, the semantics is now defined for structures with possibly under-

specified membership relations of its objects in the sort hierarchy, which simplifies

reasoning with incomplete information. Third, the semantics was initially given in

terms of action language AL (Turner 1997; Baral and Gelfond 2000), where the

AL semantics is defined by a translation into ASP; now, we give the semantics of

our language directly in ASP – in fact, in an extension of ASP with non-Herbrand

functions, ASP{f} (Balduccini 2013). We believe that decoupling ALM from AL
will allow us to combine ALM with action languages that correspond to other

intuitions.

Another modular language is TAL-C (Gustafsson and Kvarnström 2004), which

allows definitions of classes of objects that are somewhat similar to those in ALM.

TAL-C, however, seems to have more ambitious goals: the language is used to

describe and reason about various dynamic scenarios, whereas in ALM the de-

scription of a scenario and that of reasoning tasks are not viewed as part of the

language. The more rigid structure of ALM supports the separation of concerns

design principle and makes it easier to give a formal semantics of the language.

10 In the field of logic programming, an early discussion on the introduction of functions appears
in (Hanus 1994).
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These differences led to vastly distinct knowledge representation styles reflected in

these languages.

There are smaller, but still very substantial, differences betweenALM and MAD .

The two languages are based on non-modular action languages with substantially

different semantics and underlying assumptions, use very different constructs for

creating modules and for defining actions as special cases, etc. A more detailed

comparison between the two approaches can be found in the Appendix C.

6 Conclusions and Future Work

In this paper, we have presented a methodology of representing and reasoning

about dynamic systems. A knowledge engineer following this methodology starts

with finding a proper generalization of a particular dynamic system D , finds the

sorts of objects pertinent to this generalization, organizes these sorts into an inher-

itance hierarchy and uses causal laws, definitions, and executability conditions to

specify relevant properties of the sorts elements. The resulting basic action theory,

say T , gives the first mathematical model of the system. In the next step of the

development, a knowledge engineer refines this model by providing its description

in the high level action language ALM. The language has means for precisely rep-

resenting the signature of T including its sort hierarchy. It is characterized by a

modular structure, which improves readability and supports the step-wise develop-

ment of a knowledge base, reuse of knowledge, and creation of knowledge libraries.

ALM’s description of T can be used to specify multiple dynamic systems with dif-

ferent collections of objects and statics. A particular system D can be specified by

populating sorts of T by objects of D and defining values of D ’s statics. This step is

also supported by ALM, which clearly separates the definition of sorts of objects of

the domain (given in T ) from the definition of instances of these sorts (given by an

ALM structure). This, together with the means for defining objects of the domain

as special cases of previously defined ones, facilitates the stepwise development and

testing of the knowledge base and improves its elaboration tolerance.

A close relationship between ALM and Answer Set Programming allows the use

of ALM system descriptions for non-trivial reasoning problems including temporal

projection, planning, and diagnosis. This is done by an automatic translation of

an ALM system description into logic programs whose answer sets correspond to

solutions of the corresponding problems. The existence of efficient answer set solvers

that allow to compute these answer sets substantially increases the practical value

of this approach.

The above methodology has been illustrated by two examples: the well-known

benchmark Monkey and Banana problem and a more practical problem of formal-

ization of knowledge and answering questions about biological processes such as

the cell division (see Appendix B). It is possible (and even likely) that further ex-

perience with ALM will suggest some useful extensions of the language but the

authors believe that the version presented in this paper will remain relatively stable

and provide a good basis for such extensions.
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We conclude by briefly outlining a number of questions about ALM that we

believe deserve further investigation:

• Investigating mathematical properties of ALM and its entailment relation.

This includes but is not limited to studying compositional properties of ALM
modules, axiomatizing its entailment relation, and establishing a closer rela-

tionship between ALM and modular logic programming.

• Developing more efficient reasoning algorithms exploiting the modular struc-

ture of ALM’s theories and the available information about the sorts of

objects in ALM’s system descriptions. Among other things it is worth inves-

tigating the possible use of modular logic programming as well as the methods

from (Gebser et al. 2011), (Gebser et al. 2011), and (Balai et al. 2012). It may

also be interesting to see if the implementation could benefit from hybrid ap-

proaches combining description logics with ASP (e.g. (Eiter et al. 2008)) or

from typed logic programming (e.g. (Pfenning 1992)).

• Designing and implementing a development environment to facilitate the use

of ALM in applications, the creation and storage of libraries, and the testing

and debugging of theories and modules.

• Extending ALM with the capability of representing knowledge about hybrid

domains, i.e., domains that allow both discrete and continuous change. In

particular, it may be a good idea to combine ALM with action language H
(Chintabathina et al. 2005; Chintabathina 2012).

• Developing the core of an ALM library of commonsense knowledge. (In par-

ticular we would like to create an ALM library module containing a theory

of intentions in the style of (Blount et al. 2014).) This work would allow us

to extend our study on the capabilities of our language, while simultaneously

providing a tool for members of our community to use when building their

reasoning systems.
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Appendix A Grammar of ALM

〈boolean〉 :- true | false

〈non zero digit〉 :- 1 | · · · | 9

〈digit〉 :- 0 | 〈non zero digit〉
〈lowercase letter〉 :- a | · · · | z

〈uppercase letter〉 :- A | · · · | Z

〈letter〉 :- 〈lowercase letter〉 | 〈uppercase letter〉
〈identifier〉 :- 〈lowercase letter〉 | 〈identifier〉〈letter〉 | 〈identifier〉〈digit〉
〈variable〉 :- 〈uppercase letter〉 | 〈variable〉〈letter〉 | 〈variable〉〈digit〉
〈positive integer〉 :- 〈non zero digit〉 | 〈positive integer〉〈digit〉
〈integer〉 :- 0 | 〈positive integer〉 | − 〈positive integer〉
〈arithmetic op〉 :- + | − | ∗ | / | mod

〈comparison rel〉 :- > | ≥ | < | ≤
〈arithmetic rel〉 :- 〈eq〉 | 〈neq〉 | 〈comparison rel〉
〈basic arithmetic term〉 :- 〈variable〉 | 〈identifier〉 | 〈integer〉
〈basic term〉 :- 〈basic arithmetic term〉 | 〈boolean〉
〈function term〉 :- 〈identifier〉〈function args〉
〈function args〉 :- (〈term〉〈remainder function args〉)
〈remainder function args〉 :- ε | , 〈term〉〈remainder function args〉
〈arithmetic term〉 :- 〈basic arithmetic term〉〈arithmetic op〉〈basic arithmetic term〉
〈term〉 :- 〈basic term〉 | 〈arithmetic term〉
〈positive function literal〉 :- 〈function term〉 | 〈function term〉〈eq〉〈term〉
〈function literal〉 :- 〈positive function literal〉 | ¬〈function term〉 |

〈function term〉〈neq〉〈term〉
〈literal〉 :- 〈function literal〉 | 〈arithmetic term〉〈arithmetic rel〉〈arithmetic term〉
〈var id〉 :- 〈variable〉 | 〈identifier〉
〈body〉 :- ε | , 〈literal〉〈body〉
〈dynamic causal law〉 :- occurs(〈var id〉) causes 〈positive function literal〉 if

instance(〈var id〉, 〈var id〉)〈body〉·
〈state constraint〉 :- 〈sc head〉 if 〈body〉·
〈sc head〉 :- false | 〈positive function literal〉
〈definition〉 :- 〈function term〉 if 〈body〉·
〈executability condition〉 :- imposible occurs(〈var id〉) if

instance(〈var id〉, 〈var id〉)〈extended body〉·
〈extended body〉 :- ε | , 〈literal〉〈body〉 | , occurs(〈var id〉)〈extended body〉 |

, ¬occurs(〈var id〉)〈extended body〉
〈system description〉 :- system description 〈identifier〉 〈theory〉〈structure〉
〈theory〉 :- theory 〈identifier〉〈set of modules〉 | import 〈identifier〉 from 〈identifier〉
〈set of modules〉 :- 〈module〉〈remainder modules〉
〈remainder modules〉 :- ε | 〈module〉〈remainder modules〉
〈module〉 :- module 〈identifier〉〈module body〉 |

import 〈identifier〉.〈identifier〉 from 〈identifier〉
〈module body〉 :- 〈sort declarations〉〈constant declarations〉〈function declarations〉〈axioms〉
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〈sort declarations〉 :- ε | sort declarations 〈one sort decl〉〈remainder sort declarations〉
〈remainder sort declarations〉 :- ε | 〈one sort decl〉〈remainder sort declarations〉
〈one sort decl〉 :- 〈identifier〉〈remainder sorts〉 :: 〈sort name〉〈remainder sort names〉〈attributes〉
〈remainder sorts〉 :- ε | , 〈identifier〉〈remainder sorts〉
〈remainder sort names〉 :- ε | , 〈sort name〉〈remainder sorts〉
〈sort name〉 :- 〈identifier〉 | [ 〈integer〉..〈integer〉 ]

〈attributes〉 :- ε | attributes 〈one attribute decl〉〈remainder attribute declarations〉
〈one attribute decl〉 :- 〈identifier〉 : 〈arguments〉〈identifier〉
〈arguments〉 :- ε | 〈identifier〉〈remainder args〉 →
〈remainder args〉 :- ε | × 〈identifier〉〈remainder args〉
〈remainder attribute declarations〉 :- ε |
〈one attribute decl〉〈remainder attribute declarations〉

〈constant declarations〉 :- ε | object constants 〈one constant decl〉〈remainder constant declarations〉
〈one constant decl〉 :- 〈identifier〉〈constant params〉 : 〈identifier〉
〈remainder constant declarations〉 :- ε | 〈one constant decl〉〈remainder constant declarations〉
〈constant params〉 :- ( 〈identifier〉〈remainder constant params〉 )

〈remainder constant params〉 :- ε | , 〈identifier〉〈remainder constant params〉

〈function declarations〉 :- ε | function declarations 〈static declarations〉〈fluent declarations〉
〈static declarations〉 :- ε | statics 〈basic function declarations〉〈defined function declarations〉
〈fluent declarations〉 :- ε | fluents 〈basic function declarations〉〈defined function declarations〉
〈basic function declarations〉 :- ε | basic 〈one function decl〉〈remainder function declarations〉
〈defined function declarations〉 :- ε | defined 〈one function decl〉〈remainder function declarations〉
〈one function decl〉 :- 〈total partial〉〈one f decl〉
〈total partial〉 :- ε | total

〈one f decl〉 :- 〈identifier〉 : 〈identifier〉〈remainder args〉 → 〈identifier〉
〈remainder function declarations〉 :- ε | 〈one function decl〉〈remainder function declarations〉

〈axioms〉 :- ε | axioms 〈one axiom〉〈remainder axioms〉
〈one axiom〉 :- 〈dynamic causal law〉 | 〈state constraint〉 | 〈definition〉 | 〈executability condition〉
〈remainder axioms〉 :- ε | 〈axiom〉〈remainder axioms〉

〈structure〉 :- structure 〈identifier〉〈constant defs〉〈instance defs〉〈statics defs〉

〈constant defs〉 :- ε | constants 〈one constant def 〉〈remainder constant defs〉
〈one constant def 〉 :- 〈identifier〉 = 〈value〉
〈value〉 :- 〈identifier〉 | 〈boolean〉 | 〈integer〉
〈remainder constant defs〉 :- ε | 〈one constant def 〉〈remainder constant defs〉

〈instance defs〉 :- ε | instances 〈one instance def 〉〈remainder instance defs〉
〈one instance def 〉 :- 〈object name〉〈remainder object names〉 in

〈identifier〉〈cond〉〈attribute defs〉
〈object name〉 :- 〈identifier〉〈object args〉
〈object args〉 :- ε | (〈basic term〉〈remainder object args〉)
〈remainder object args〉 :- ε | , 〈basic term〉〈remainder object args〉
〈remainder object names〉 :- ε | , 〈object name〉〈remainder object names〉
〈cond〉 :- ε | where 〈literal〉〈remainder cond〉
〈remainder cond〉 :- ε | , 〈literal〉〈remainder cond〉
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〈attribute defs〉 :- ε | 〈one attribute def 〉〈remainder attribute defs〉
〈one attribute def 〉 :- 〈identifier〉〈object args〉 = 〈basic term〉
〈statics defs〉 :- ε | values of statics 〈one static def 〉〈remainder statics defs〉
〈one static def 〉 :- 〈function literal〉 if 〈body〉·
〈remainder statics defs〉 :- ε | 〈one static def 〉〈remainder statics defs〉
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Appendix B ALM and the Digital Aristotle

The reader may have noticed that the ALM examples included in the body of

the paper are relatively small, which is understandable given that their purpose

was to illustrate the syntax and semantics of our language and the methodology

of representing knowledge in ALM. In this section, we show how the reuse of

knowledge in ALM can potentially lead to the creation of larger practical systems.

We present an application of our language to the task of question answering, in

which ALM’s conceptual separation between an abstract theory and its structure

played an important role in the reuse of knowledge. The signature of the theory

and its structure provided the vocabulary for the logic form translation of facts

expressed in natural language while the theory axioms contained the background

knowledge needed for producing answers. The theory representing the biological

domain remained unchanged and was coupled with various structures corresponding

to particular questions and representing the domain at different levels of granularity.

In addition to demonstrating the reuse of knowledge in ALM, this application also

shows the elaboration tolerance of our language, as only minor changes to the

structure had to be made when the domain was viewed in more detail, while the

theory stayed the same. In what follows, we present the application in more detail.

After designing our language, we tested and confirmed its adequacy for knowl-

edge representation in the context of a practical question answering application:

Project Halo (2002-2013) sponsored by Vulcan Inc.11 The goal of Project Halo was

the creation of a Digital Aristotle — “an application containing large volumes of

scientific knowledge and capable of applying sophisticated problem-solving methods

to answer novel questions” (Gunning et al. 2010). Initially, the Digital Aristotle was

only able to reason and answer questions about static domains. It lacked a method-

ology for answering questions about dynamic domains, as it was not clear how to

represent and reason about such domains in the language of the Digital Aristotle.

Our task within Project Halo was to create a methodology for answering questions

about temporal projection in dynamic domains. We had two objectives. First, we

wanted to see if the use of ALM for knowledge representation facilitated the task of

encoding extensive amounts of scientific knowledge through its means for the reuse

of knowledge. Second, we investigated whether provable correct and efficient logic

programming algorithms could be developed to use the resulting ALM knowledge

base in answering non-trivial questions.

Our target scientific domain was biology, specifically the biological process of cell

division (also called cell cycle). Cell cycle refers to the phases a cell goes through

from its “birth” to its division into two daughter cells. Cells consist of a number of

parts, which in turn consist of other parts (e.g., eukaryotic cells contain organelles,

cytoplasm, and a nucleus; the nucleus contains chromosomes, and the description

can continue with more detailed parts). The eukaryotic cell cycle consists of a growth

phase (interphase) and a duplication/division phase (mitotic phase), both of which

are conventionally described as sequences of sub-phases. Depending on the level

11 http://www.allenai.org/TemplateGeneric.aspx?contentId=9
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of detail of the description, these sub-phases may be simple events or sequences of

other sub-phases (e.g., the mitotic phase is described in more detail as a sequence of

two sub-phases: mitosis and cytokinesis; mitosis, in turn, can be seen as a sequence

of five sub-phases, etc.). Certain chemicals, if introduced in the cell, can interfere

with the ordered succession of events that is the cell cycle.

In order to be useful in answering complex questions, the ALM representation

of cell cycle had to capture (1) non-trivial specialized biological knowledge about

the structure of the cell at different stages of the cell cycle and (2) the dynamics of

naturally evolving process (such as cell cycle), which consist of a series of phases

and sub-phases that follow one another in a specific order, unless interrupted. We

represented such processes as sequences of actions intended by nature and used a

commonsense theory of intentions (Baral and Gelfond 2005) to reason about them.

Our ALM cell cycle knowledge base consisted of two library modules. One of

them was a general commonsense module describing sequences, in particular se-

quences of actions. The other module was a specialized one formalizing the biolog-

ical phenomenon of cell division. We begin with the presentation of our common-

sense module describing sequences, useful in modeling naturally evolving processes

such as cell division. The equality component(S ,N ) = E appearing in the axioms of

module sequence is supposed to be read as “the N th component of sequence S is E”.

The library module sequence is stored in a general library called commonsense lib.

module sequence

sort declarations

sequences :: universe

attributes

length : positive natural numbers

component : [0..length]→ universe

action sequences :: sequences

axioms

false if component(S ,N ) = E ,

instance(S , action sequences),

¬instance(E , actions),

¬instance(E , action sequences).

The axiom ensures proper typing for the domain of an attribute component .

Next, we present our formalization of cell cycle, given in a library module called

basic cell cycle stored in a general cell cycle lib library. We started by modeling

the eukaryotic cell, consisting of various parts that in turn consist of other parts.

Together, they form a “part of ” hierarchy, say Hcell , which can be viewed as a tree.

Nodes of this hierarchy were captured by a new sort, types of parts, while links in

the hierarchy were represented by an attribute, is part of , defined on elements of

the new sort (e.g., is part of (X ) = Y indicates that Y is the father of X in Hcell).

We modeled the transitive closure of is part of by introducing a boolean function,

part of , where part of (X ,Y ) is true if X is a descendant of Y in Hcell .

In the type of questions we addressed, at any given stage of the cell cycle process,
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all cells in the experimental sample had the same number of nuclei; similarly for

the other inner components. As a result, we could assume that, at every stage

and for each link from a child X to its parent Y in Hcell , this link was assigned

a particular number indicating the number of elements of type X in one element

of type Y . The states of our domain were described by a basic fluent, num :

types of parts × types of parts → natural numbers, where num(P1,P2) = N holds

if the number of elements of type P1 in one element of type P2 is N . For instance,

num(nucleus, cell) = 2 indicates that, at the current stage of the cell cycle, each

cell in the environment has two nuclei.

To describe the cell cycle we needed two action classes: duplicate and split .

Duplicate, which acts upon an object that is an element from sort types of parts,

doubles the number of every part of this kind present in the environment. Split

also acts upon an object ranging over types of parts. An action a of this type with

object(a) = c1, where c2 is a child of c1 in Hcell , duplicates the number of elements

of type c1 in the environment and cuts in half the number of elements of type c2
in one element of type c1. For example, if the experimental environment consists

of one cell with two nuclei, the occurrence of an instance a of action split with

object(a) = cell increases the number of cells to two and decreases the number

of nuclei per cells to one, thus resulting in an environment consisting of two cells

with only one nucleus each. In addition to these two actions we had an exogenous

action, prevent duplication, with an attribute object with the range types of parts.

The occurrence of an instance action a of prevent duplication with object(a) = c

nullifies the effects of duplication and splitting for the type c of parts. We made

use of this exogenous action in representing external events that interfere with the

normal succession of sub-phases of cell cycle. All this knowledge is represented by

the following module:

module basic cell cycle

sort declarations

types of parts :: universe

attributes

is part of : types of parts

duplicate :: actions

attributes

object : types of parts

split :: duplicate

prevent duplication :: actions

attributes

object : types of parts

function declarations

statics

defined

part of : types of parts × types of parts → booleans
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fluents

basic

total num : types of parts × types of parts → natural numbers

prevented dupl : types of parts → booleans

axioms

occurs(X ) causes num(P2,P1) = N2 if instance(X , duplicate),

object(X ) = P2,

is part of (P2) = P1,

num(P2,P1) = N1,

N1 ∗ 2 = N2·
occurs(X ) causes num(P2,P1) = N2 if instance(X , split),

object(X ) = P1,

is part of (P2) = P1,

num(P2,P1) = N1,

N2 ∗ 2 = N1·
occurs(X ) causes prevented dupl(P) if instance(X , prevent duplication),

object(X ) = P ·
part of (P1,P2) if is part of (P1) = P2·
part of (P1,P2) if is part of (P1) = P3,

part of (P3,P2)·
num(P ,P) = 0·
num(P3,P1) = N if is part of (P3) = P2,

part of (P2,P1),

num(P2,P1) = N1,

num(P3,P2) = N2,

N1 ∗N2 = N ·
impossible occurs(X ) if instance(X , duplicate),

object(X ) = P ,

prevented dupl(P)·

Any model of cell cycle consists of a theory importing the two library modules pre-

sented above and a structure corresponding to the level of detail of that model. Let

us consider a first model, in which we view cell cycle as a sequence consisting of inter-

phase and the mitotic phase. This is represented in the structure by adding the at-

tribute assignments component(1) = interphase and component(2) = mitotic phase

to the definition of instance cell cycle. We remind the reader that such attribute

assignments are read as “the 1st component of cell cycle is interphase” and “the

2nd component of cell cycle is mitotic phase”. Interphase is considered an elemen-

tary action, while the mitotic phase splits the cell into two. We limit our domain

to cells contained in an experimental environment, called sample.

system description cell cycle(1)

theory

import module sequence from commonsense lib

import module basic cell cycle from cell cycle lib
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structure

instances

sample in types of parts

cell in types of parts

is part of = sample

cell cycle in action sequences

length = 2

component(1) = interphase

component(2) = mitotic phase

interphase in actions

mitotic phase in split

object = cell

This initial model of cell division is quite general. It was sufficient to answer a

number of the questions targeted by the Digital Aristotle. There were, however,

some questions which required a different model.

Consider, for instance, the following question from (Campbell and Reece 2001):

12.9. Text : In some organisms mitosis occurs without cytokinesis occurring.

Question : How many cells will there be in the sample at the end of the

cell cycle, and how many nuclei will each cell contain?

To answer it, the system needed to know more about the structure of the cell

and that of the mitotic phase. ALM facilitated the creation of a refinement of our

original model of cell division: a new system description, cell cycle(2), was easily

created by adding to the previous structure a few new instances:

nucleus in types of parts

is part of = cell

mitosis in duplicate

is part of = nucleus

cytokinesis in split

is part of = cell

and replacing the old definition of the instance mitotic phase by a new one:

mitotic phase in action sequences

length = 2

component(1) = mitosis

component(2) = cytokinesis

Similarly, various other refinements of our original model of cell division contained

the same theory as the original formalization; only the structure of our original

model needed to be modified, in an elaboration tolerant way. Matching questions

with models of cell division containing just the right amount of detail is computa-

tionally advantageous and, in most cases, the matching can be done automatically.

Our formalization of cell division illustrates ALM’s capabilities of creating large

knowledge bases for practical systems through its mechanisms for reusing knowl-

edge. In our example, the two modules that formed the theory were directly im-
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ported from the library into the system description. This shows that our main goal

for ALM – the reuse of knowledge – was successfully achieved.

Additionally, the example demonstrates ALM’s suitability for modeling not only

commonsense dynamic systems, but also highly specialized, non-trivial domains.

It shows the importance of creating and using libraries of knowledge in real-life

applications, and it demonstrates the ease of elaborating initial formalizations of

dynamic domains into more detailed ones.

Our second task in Project Halo was to develop a proof-of-concept question an-

swering system that used ALM formalizations of cell cycle in solving complex

temporal projection questions like 12.9 above. To do that, we used the methodol-

ogy described in Section 4.2, expanded by capabilities for reasoning about naturally

evolving processes. This latter part was done by incorporating a theory of intentions

(Baral and Gelfond 2005) and assuming that naturally evolving processes have the

tendency (or the intention) to go through their sequence of phases in order, unless

interrupted (e.g., we can say that a cell tends/ intends to go through its cell cycle,

which it does unless unexpected events happen).

In our question answering methodology, the structure of our ALM system de-

scription for the cell cycle domain provided the vocabulary for translating the ques-

tions expressed in natural language into a history. The theory of the system descrip-

tion contained the axioms encoding the background knowledge needed to answer

questions about the domain.

As an example, the information given in the text of 12.9 above would be encoded

by a history that contains the facts

observed(num(cell , sample), 1, 0)

observed(num(nucleus, cell), 1, 0)

intend(cell cycle, 0)

¬happened(cytokinesis, I )

for every step I . Note that, unless otherwise specified, it would be assumed that

the experimental sample consists of one cell with one nucleus.

The query in 12.9 would be encoded by the ASP{f} rules:

answer(X , “cells per sample”) ← last step(I ),

num(cell , sample, I ) = X ·
answer(X , “nuclei per cell”) ← last step(I ),

num(nucleus, cell , I ) = X ·

Our system, ALMAS, would solve the question answering problem by first gener-

ating a logic program consisting of the above facts and rules encoding the history

and query, respectively; the ASP{f} translation of the ALM system description

cell cycle(2); and the temporal projection module described in Section 4.2. Then,

the system would compute answer sets of this program, which correspond to answers

to the question. For 12.9 there would be a unique answer set, containing:
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intend(cytokinesis, 2) ¬occurs(cytokinesis, 2)

intend(cytokinesis, 3) ¬occurs(cytokinesis, 3)

intend(cytokinesis, 4) ¬occurs(cytokinesis, 4)

. . .

These facts indicate that the unfulfillable intention of executing action cytokinesis

persists forever. Additionally, the answer set would include atoms:

answer(1, “cells per sample”) holds(val(num(cell , sample), 1), 2)

answer(2, “nuclei per cell”) holds(val(num(nucleus, sample), 2), 2)

last step(2) holds(val(num(nucleus, cell), 2), 2)

which indicate that at the end of the cell cycle there will be one cell in the sample,

with two nuclei. This is in fact the correct answer to question 12.9.

This question answering methodology and the methodology of reasoning about

naturally evolving processes using intentions was successfully applied to other ques-

tions about cell division.
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Appendix C Comparison between Languages ALM and MAD

In this section we give an informal discussion of the relationship between ALM
and the modular action language MAD (Lifschitz and Ren 2006; Erdoǧan and

Lifschitz 2006). Both languages have similar goals but differ significantly in the

proposed ways to achieve these goals. We believe that each language supports its

own distinctive style of representing knowledge about actions and change. The

difference starts with the non-modular languages that serve as the basis for ALM
and MAD . The former is a modular expansion of action language AL. The latter

expands action language C (Giunchiglia and Lifschitz 1998). Even though these

languages have a lot in common (see (Gelfond and Lifschitz 2012)) they differ

significantly in the underlying assumptions incorporated in their semantics. For

example, the semantics of AL incorporates the Inertia Axiom, which says that

“Things normally stay the same.” Language C is based on a different assumption

– the Causality Principle – which says that “Everything true in the world must

be caused.” Its underlying logical basis is causal logic (McCain and Turner 1997;

Giunchiglia et al. 2004a). In C the inertia axiom for a literal l is expressed by a

statement

caused l if l after l ,

read as “there is a cause for l to hold after a transition if l holds both before and

after the transition”. While AL allows two types of fluents – inertial and defined

–, C can be used to define other types of fluents (e.g., default fluents that, unless

otherwise stated, take on the fixed default values). The authors of this paper did not

find these types of fluents to be particularly useful and, in accordance with their

minimalist methodology, did not allow them in either AL or ALM. Of course,

the question is not settled and our opinion can change with additional experience.

On another hand, AL allows recursive state constraints and definitions, which are

severely limited in C. There is a close relationship between ASP and C but, in our

judgment, the distance between ASP and AL is smaller than that between ASP

and C. There is also a substantial difference between modules of ALM and MAD .

To better understand the relationship let us consider the ALM theory motion

and the system description travel from Section 3.2 and represent them in MAD .12

Example 12 (A MAD Version of the System Description travel)

The ALM system description travel is formed by the theory motion and the struc-

ture Bob and John. The theory consists of two modules, moving and carrying things,

organized into a module hierarchy in which the latter module depends on the for-

mer. Let us start with the MAD representation of ALM’s module moving .

In general, the representation of an ALM module M in MAD consists of two

parts: the declaration of sorts of M and their inclusion relation, and the collection of

MAD modules corresponding to M . (In our first example a module of ALM will be

12 Although the “Monkey and Banana” problem presented in Section 4.1 has been encoded in
MAD as well (Erdoǧan 2008), we are not considering it here because of the length of its repre-
sentation and, most importantly, because there are substantial differences in how the problem
was addressed in ALM versus MAD from the knowledge representation point of view.
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mapped into a single module of MAD .) Note that sorts can also be declared within

the module but in this case they will be local (i.e., invisible to other modules).

Declarations given outside of a module can be viewed as global.

In our case, the sorts and inclusions sections of the translation

M1 = MAD(moving) consist of the following statements (We remind the reader that

in MAD variables are identifiers starting with a lower-case letter and constants are

identifiers starting with an upper-case letter, the opposite of ALM ):

sorts

Universe; Points; Things; Agents;

inclusions

Points � Universe;

Things � Universe;

Agents � Things;

The sorts part declares the sort universe (which is pre-defined and does not require

declaration in ALM) together with the sorts of moving that are not special cases

of actions. The inclusions part describes the specialization relations between these

sorts. The definition of a MAD module starts with a title:

module M1

The body of a MAD module consists of separate (optional) sections for the declara-

tions of sorts specific to the current module, objects, fluents, actions, and variables,

in this order, together with a section dedicated to axioms (Erdoǧan 2008). Our

module M1 starts with the declarations of fluents:

fluents

Symmetric connectivity : rigid ;

Transitive connectivity : rigid ;

Connected(Points,Points) : simple;

Loc in(Things) : simple(Points);

Rigid fluents of MAD are basic statics of ALM.

To declare the action class move of moving we need to model its attributes. To

do that we introduce variables with the same names as the associated attributes

in moving . This will facilitate referring to those attributes later in axioms. We

also order attributes alphabetically as arguments of the action term to ease the

translation of special case action classes of move:

actions

Move(Agents,Points,Points);

The variable declaration and axiom part come next. We will need to add extra

axioms (and associated variables) to say that Loc in is an inertial fluent (i.e., basic

fluent in ALM terminology) and that Move(Agents,Points,Points) is an exoge-

nous action (i.e., it does not need a cause in order to occur; it may or may not

occur at any point in time).
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variables

t , t1, t2 : Things;

actor : Agents;

origin, dest : Points;

axioms

inertial Loc in(t);

exogenous Move(actor , dest , origin);

The causal law for move can now be expressed in a natural way:

Move(actor , dest , origin) causes Loc in(actor) = dest ;

Similarly for the executability conditions:

nonexecutable Move(actor , dest , origin) if Loc in(actor) 6= origin;

nonexecutable Move(actor , dest , origin) if Loc in(actor) = dest ;

nonexecutable Move(actor , dest , origin) if Loc in(actor) = origin,

¬Connected(origin, dest);

The situation becomes substantially more difficult for the definition of Connected .

The definition used in moving is recursive and therefore cannot be easily emu-

lated by MAD ’s causal laws. The relation can, of course, be explicitly specified

later together with the description of particular places, but this causes considerable

inconvenience.

To represent module carrying things from the theory motion we need a new

(global) sort:

sorts

Carriables;

inclusions

Carriables � Things;

The module M2 that corresponds to carrying things contains declarations of the

new action Carry and the corresponding variables.

module M2;

actions

Carry(Agents,Carriables,Points,Points);

variables

t : Things;

actor : Agents;

dest , origin, p : Points;

carried object , c : Carriables;

Next we need to define axioms of the module. Clearly we need to say that the action

Carry(actor , carried object , dest , origin) is a special case of the action

Move(actor , dest , origin). Since ALM allows action sorts, no new mechanism is

required to do that in carrying things. In MAD , while there is a built-in sort ac-

tion, special case actions are not sorts and the special constructs import and is are
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introduced to achieve this goal. Special case actions are declared in MAD by im-

porting the module containing the original action and renaming the original action

as the special case action as follows:

import M1;

Move(actor , dest , origin) is Carry(actor , carried object , dest , origin);

Intuitively, this import statement says that the action Carry(actor , carried object ,

dest , origin) has all properties that are postulated for the action Move(actor , dest ,

origin) in the module M1. We also need an additional axiom declaring the action to

be exogenous, and state constraints, and executability conditions similar to those

in carrying things:

axioms

exogenous Carry(actor , carried object , dest , origin);

% State constraints:

Is held(c) if Holding(t , c);

% Executability conditions:

nonexecutable Carry(actor , carried object , dest , origin) if

¬Holding(actor , carried object);

nonexecutable Move(actor , dest , origin) if Is held(actor);

Note, however, that the ALM module carrying things also contained the recursive

state constraints below, saying that agents and the objects they are holding have

the same location:
loc in(C ) = P if holding(T ,C ), loc in(T ) = P ·
loc in(T ) = P if holding(T ,C ), loc in(C ) = P ·

Since this is not allowed in MAD , we have to use a less elaboration tolerant repre-

sentation by adding an explicit causal law saying

Move(actor , dest , origin) causes Loc in(c) = dest if Holding(actor , c);

In MAD additional axioms will be needed to rule out certain initial situations

(e.g., “John is holding his suitcase. He is in Paris. His suitcase is in Rome.”) or to

represent and reason correctly about more complex scenarios (e.g., “Alice is in the

kitchen, holding her baby who is holding a toy. Alice goes to the living room.”).

This completes the construction of M2.

In general, special case actions are declared in MAD by importing the mod-

ule containing the original action and renaming the original action as the special

case action. That is why we needed to place the MAD representation of carry in

a new module that we call M2, in which we import module M1 while renaming

Move(actor , dest , origin) as Carry(actor , carried object , dest , origin). In ALM the

declarations of move and its specialization carry could be placed in the same mod-

ule – the decision is up to the user – whereas in MAD they must be placed in

separate modules. This potentially leads to a larger number of smaller modules in

MAD than in ALM representations.

Finally, we consider the structure of our ALM system description. It contains

two types of actions go(Actor ,Dest) and go(Actor ,Dest ,Origin). Let us expand the
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structure by a new object, suitcase, and a new action carry(Actor , suitcase,Dest).

For illustrative purposes, let us assume that we would like the MAD representation

to preserve these names.

To represent this in MAD , we introduce a new module S . It has the local defini-

tions of objects:

module S ;

objects

John,Bob : Agents;

New York ,Paris,Rome : Points;

Suitcase : Carriables;

and those of actions. The latter can be defined via the renaming mechanism of

MAD . This requires importing the modules in which the action classes were de-

clared. Thus, module S imports modules M1 and M2.

actions

Go(Agents,Points);

Go(Agents,Points,Points);

Carry(Agents,Carriables,Points);

variables

actor : Agents;

origin, dest : Points;

import M1;

Move(actor , dest , origin) is Go(actor , dest , origin);

import M1;

Move(actor , dest , origin) is Go(actor , dest);

import M2;

Carry(actor ,Suitcase, dest , origin) is Carry(actor ,Suitcase, dest)

This completes the construction of the MAD representation of the system descrip-

tion travel .

Even this simple example allows to illustrate some important differences between

ALM and MAD . Here is a short summary:

• Recursive definitions

The representation of state constraints of an ALM system description is not

straightforward if the set of state constraints defines a cyclic fluent dependency

graph (Gelfond and Lifschitz 2012). For instance, the ALM state constraint:

p if p·

is not equivalent to the same axiom in MAD . The ALM axiom can be elim-

inated without modifying the meaning of the system description; it says that

“in every state in which p holds, p must hold.” Eliminating the same axiom

from a MAD action description would not produce an equivalent action de-

scription; in MAD , the axiom says that “p holds by default.” This difference
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between ALM and MAD is inherited from the similar difference between AL
and C.

• Separation of Sorts and Instances

One of the most important features of ALM is its support for a clear separa-

tion of the definition of sorts of objects of the domain (given in the system’s

theory) from the definition of instances of these sorts (given by the system’s

structure). Even though it may be tempting to view the first two modules,

M1 and M2 above as a MAD counterpart of the ALM theory motion, the

analogy does not hold. Unlike ALM where the corresponding theory has a

clear semantics independent of that of the structure, no such semantics exists

in MAD . Modules M1 and M2 only acquire their meaning after the addi-

tion of module S that corresponds to the ALM’s structure. We believe that

the existence of the independent semantics of ALM theories facilitates the

stepwise development and testing of the knowledge base and improves their

elaboration tolerance.

• Action Sorts

In ALM, the pre-defined sort actions is part of the sort hierarchy, whereas in

MAD actions are not considered sorts. Instead, MAD has special constructs

import and is (also known as bridge rules), which are used to define actions

as special cases of other actions. No such special constructs are needed in

ALM.

Moreover, in ALM, an action class and its specialization can be part of the

same module. This is not the case in MAD where a special case of an action

class must be declared in a separate module by importing the module contain-

ing the original action class and using renaming clauses. As a consequence,

the MAD representation of ALM system descriptions will generally contain

more modules that are smaller in size than the ALM counterpart. On the

other hand, note that ALM modules are not required to be large; they can

be as small as a user desires.

ALM allows the definition of fluents on (or ranging over) specific action

classes only, and not necessarily the whole pre-defined actions sort, for in-

stance:

intended : agent actions → booleans

where agent actions is a special case of actions. There is no equivalent concept

in MAD , where fluents must be defined on, and range over, either primitive

sorts or the built-in sort action, but not specific actions.

• Variable Declarations

In ALM, we do not define the sorts of variables used in the axioms. This

information is evident from the atoms in which they appear. In MAD , vari-

ables need to be defined, which may lead to larger modules and cause errors

related to use of variables of wrong types.

• Renaming Feature of MAD

In MAD , sorts can be renamed by importing the module containing the orig-

inal declaration of a sort and using a renaming clause. The meaning of such a
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renaming clause is that the two sorts are synonyms. There is no straightfor-

ward way to define this synonymy in ALM. The closest thing is to use the

specialization construct of our language and declare the new sort as a special

case of the original one. The reverse (i.e., the original sort being a special

case of the renamed sort) cannot be added, as sort hierarchies of ALM are

required to be DAGs. This leads to further problems when the renamed sorts

appear as attributes in renamed actions of MAD .

• Axioms of MAD that have no equivalent in ALM
Some axioms, allowed in MAD , are not directly expressible in ALM. For

instance, MAD axioms of the type:

formula may cause formula [ if formula ]

or

default formula [ if formula ] [ after formula ]

belong to this group. The first axiom allows to specify non-deterministic ef-

fects of actions, while the second assignes default values to fluents (and more

complex formulas). As discussed above, we are not yet convinced that the lat-

ter type of axioms needs to be allowed in ALM. Non-determinism, however,

is an important feature that one should be able to express in an action formal-

ism. It may be added to ALM (and to AL) in a very natural manner, but it

is not allowed in AL and the mathematical properties of “non-deterministic”

AL were not yet investigated. Because of this we decided to add this feature

in the next version of ALM.

We hope that this section gives the reader some useful insight in differences be-

tween ALM and MAD . We plan to extend the comparison between ALM and

MAD in the future. Formally investigating the relationship between the two lan-

guages can facilitate the translation of knowledge modules from one language to

another, and can identify situations when one language is preferable to the other.

Readers interested in a formal translation of system descriptions of ALM to action

descriptions of MAD can consult (Inclezan 2012).
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Erdoǧan, S. and Lifschitz, V. 2006. Actions as special cases. In Principles of Knowledge
Representation and Reasoning: Proceedings of the International Conference. 377–387.

Erdoǧan, S. T. 2008. A Library of General-Purpose Action Descriptions. Ph.D. thesis,
University of Texas at Austin, Austin, TX, USA.

Fodor, P. and Kifer, M. 2011. Modeling Hybrid Domains Using Process Description
Language. In Proceedings of the 27th International Conference on Logic Programming
(ICLP).

Gebser, M., Grote, T., Kaminski, R., and Schaub, T. 2011. Reactive answer set pro-
gramming. In LPNMR, J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer
Science, vol. 6645. Springer, 54–66.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2012. Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
and Claypool Publishers.

Gebser, M., Sabuncu, O., and Schaub, T. 2011. An incremental answer set program-
ming based system for finite model computation. AI Commun. 24, 2, 195–212.

Gelfond, M. and Inclezan, D. 2009. Yet Another Modular Action Language. In
Proceedings of SEA-09. University of Bath Opus: Online Publications Store, 64–78.

Gelfond, M. and Inclezan, D. 2013. Some properties of system descriptions in ALd.
Journal of Applied Non-Classical Logics 23, 105–120.

Gelfond, M. and Kahl, Y. 2014. Knowledge Representation, Reasoning, and the Design
of Intelligent Agents. Cambridge University Press.

Gelfond, M. and Lifschitz, V. 1988. The Stable Model Semantics for Logic Program-
ming. In Proceedings of ICLP-88. 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical Negation in Logic Programs and Dis-
junctive Databases. New Generation Computing 9, 3/4, 365–386.

Gelfond, M. and Lifschitz, V. 1993. Representing Action and Change by Logic Pro-
grams. Journal of Logic Programming 17, 2–4, 301–321.

Gelfond, M. and Lifschitz, V. 1998. Action languages. Electronic Transactions on
AI 3, 16, 193–210.

Gelfond, M. and Lifschitz, V. 2012. The Common Core of Action Languages B and
C. In Proceedings of the 14th International Workshop on Non-Monotonic Reasoning
(NMR’2012).

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. 2004a. Non-
monotonic Causal Theories. Artificial Intelligence 153, 1–2, 105–140.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., and Turner, H. 2004b. Non-
monotonic causal theories. Artificial Intelligence 153, 105–140.

Giunchiglia, E. and Lifschitz, V. 1998. An Action Language Based on Causal Ex-
planation: Preliminary Report. In Proceedings of National Conference on Artificial
Intelligence (AAAI). AAAI Press, 623–630.

Grosof, B., Dean, M., and Kifer, M. 2009. The SILK System: Scalable Higher-Order
Defeasible Rules. In International RuleML Symposium on Rule Interchange and Appli-
cations.

Gunning, D., Chaudhri, V. K., Clark, P., Barker, K., Chaw, S.-Y., Greaves,
M., Grosof, B., Leung, A., McDonald, D., Mishra, S., Pacheco, J., Porter, B.,
Spaulding, A., Tecuci, D., and Tien, J. 2010. Project Halo–Progress Toward Digital
Aristotle. AI Magazine 31, 3, 33–58.

Gustafsson, J. and Kvarnström, J. 2004. Elaboration tolerance through object-
orientation. Artificial Intelligence 153, 239–285.

Hanus, M. 1994. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming , 583–628.



64 Daniela Inclezan and Michael Gelfond

Henschel, A. and Thielscher, M. 1999. The LMW traffic world in the fluent calculus.

Inclezan, D. 2010. Computing Trajectories of Dynamic Systems Using ASP and Flora-2.
Paper presented at NonMon@30: Thirty Years of Nonmonotonic Reasoning Conference,
Lexington, Kentucky, 22-25 October.

Inclezan, D. 2012. Modular Action Language ALM for Dynamic Domain Representation.
Ph.D. thesis, Texas Tech University, Lubbock, TX, USA.

Inclezan, D. and Gelfond, M. 2011. Representing Biological Processes in Modular
Action Language ALM. In Proceedings of the 2011 AAAI Spring Symposium on For-
malizing Commonsense. AAAI Press, 49–55.

Kakas, A. and Miller, R. 1997. A simple declarative language for describing narratives
with actions. Journal of Logic Programming 31, 1–3, 157–200.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scar-
cello, F. 2006. The DLV system for knowledge representation and reasoning. ACM
Transactions on Computational Logic 7, 3, 499–562.

Lierler, Y. and Truszczynski, M. 2013. Modular answer set solving. In Proceedings
of the 27th AAAI Conference on Artificial Intelligence(AAAI-13).

Lifschitz, V. 2012. Logic programs with intensional functions. In Proceedings of Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR).
24–31.

Lifschitz, V. and Ren, W. 2006. A Modular Action Description Language. Proceedings
of the Twenty-First National Conference on Artificial Intelligence (AAAI). 853–859.

Marek, V. W. and Truszczynski, M. 1999. Stable models and an alternative logic
programming paradigm. The Logic Programming Paradigm: a 25-Year Perspective.
Springer Verlag, Berlin, 375–398.

McCain, N. and Turner, H. 1997. Causal Theories of Action and Change. In Proceed-
ings of AAAI-97. 460–465.

McCarthy, J. 1963. Situations, actions, and causal laws. Tech. Rep. Memo 2, Stanford
University.

McCarthy, J. 1968. Programs with common sense. In Semantic Information Processing.
MIT Press, 403–418.

McCarthy, J. 1998. Elaboration Tolerance. In Proceedings of Commonsense Reasoning.
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