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ABSTRACT

The goal of this research is to investigate the use of Answer Set Prolog (ASP)

based languages and action languages in the design and implementation of intelligent

agents. In particular we are interested in better understanding an agent’s intentions

and how they are related to the agent’s beliefs, goals, and actions. There has been

substantial work on intentions as part of a solution to a problem that is at the center

of intelligent behavior: the problem of selecting the action to perform next. We

believe that an agent architecture that includes intentions will allow us to improve

the current methodology of ASP-based agent design. In this dissertation we will

define an architecture for the design and implementation of agents whose behavior is

determined by their intentions.

We divide this task into two parts. The first is describing a model of an inten-

tional agent and its environment. The second is to incorporate such a model into an

architecture, to formally describe reasoning tasks and behavior of intentional agents,

and to create a prototype implementation.

The domain model is a transition diagram whose nodes represent the mental state

of the agent and the physical state of the environment. The former is described by a

theory of intentions T I which is independent from the description of the environment.

Both are described using action language AL. The agent’s reasoning tasks include

explaining unexpected observations (diagnosis) and determining which of his actions

are intended at the present moment. Intuitively, an intentional agent only attempts

to perform those actions that are intended and does so without delay. We present a

prototype implementation of the architecture based on a refinement of the architecture

in which the reasoning tasks of the agent are reduced to computing answer sets of

programs constructed from the agent’s knowledge.
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CHAPTER I

INTRODUCTION

The goal of this research is to investigate the use of Answer Set Prolog (ASP) based

languages and action languages in the design and implementation of intelligent agents.

In particular, we are interested in better understanding the mental attitudes of an

agent and their relations with the physical environment and with the agent’s observa-

tions and actions. By mental attitudes we mean such fundamental concepts as belief,

knowledge, desire (goal), intention, etc. Our focus is on intention. There has been a

substantial amount of work on intentions and agents [Rao, 1996] [Wooldridge, 2000],

but the existing theories normally use complex logical formalisms which are not easy

to use for the implementation of an agent’s reasoning mechanisms. We believe that

an agent architecture that includes more elaborate intentions will allow us to improve

the current methodology of ASP-based agent design, the AAA (Autonomous Agent

Architecture) [Balduccini & Gelfond, 2008].

To simplify our investigation, we assume that the agent and its environment satisfy

the following conditions:

• the agent’s environment and the effects of occurrences of actions can be rep-

resented by a transition diagram that is described by action language AL

[Baral & Gelfond, 2000] (for definition, see section 2.4);

• the agent is capable of making correct observations, remembering the domain

history, and correctly recording the result of his attempts to perform actions 1;

• normally, the agent is capable of observing the occurrence of all relevant exoge-

nous 2 actions.

1We say attempt because though the agent hopes his action is executable, it may in fact not be,
and in this case we assume that the domain is not changed. The result of an attempt to perform an
action is either the occurrence or non-occurrence of the action.

2Actions occurring in the environment that are not performed by the agent are called exogenous.
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The following example, used throughout, contains several scenarios illustrating an

agent that observes and acts upon his domain and whose behavior is in accordance

with his intentions. In this dissertation such agents are called intentional.

Example 1. [Bob and John]

Consider an environment that contains our agent Bob, his colleague John, and a row

of four rooms, r1, r2, r3, r4 where consecutive rooms are connected by doorways,

such that either agent may move along the row from one room to the next The door

between rooms r3 and r4 is special and can be locked and unlocked by both Bob and

John. If the door is locked then neither can move between those two rooms until it

is unlocked. Bob and John meet if they are located in the same room.

Scenario 1: Planning to achieve the goal

Initially Bob knows that he is in r1, his colleague John is in r3, and the door between

r3 and r4 is unlocked. Suppose that Bob’s boss requests that he meet with John.

This causes Bob to intend to meet with John. This type of intention is referred to as

an intention to achieve a goal. Since Bob acts on his intentions, he uses his knowledge

of the domain to choose a plan to achieve his goal. Of course Bob does not waste time

and chooses the shortest plan that he expects to achieve his goal, that is to move from

r1 to r2 and then to r3. The pair consisting of a goal and the plan aimed at achieving

it is called an activity. To fulfill his intention of meeting John, Bob intends to execute

the activity consisting of the goal to meet John and the two step plan to move from

r1 to r3. The process of executing an activity begins with a mental 3 action to start

the activity. Assuming there are no interruptions, it continues with the execution of

each action in the plan (in this case, moving to r2, then to r3). After meeting John

in r3 the process concludes with an action to stop the activity.

Scenario 2: Unexpected achievement of goal

Now suppose that as Bob is moving from r1 to r2, he observes John moving from r3

to r2. In this case it will be rational for Bob to recognize the unexpected achievement

3Actions that directly affect an agent’s mental state are referred to as mental actions. While
those actions that directly affect the state of the environment are referred to as physical actions.

2
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of his goal, stop executing his activity, and not continue moving to r3.

Scenario 3: Not expected to achieve goal and replanning

Now suppose that as Bob is moving from r1 to r2 he observes John moving from

r3 to r4. Bob should recognize that in light of this new observation the continued

execution of his activity is not expected to achieve the goal, i.e. his activity is futile.

As a result, he should stop executing his activity and start executing a new one

(containing a plan to move r3 and then to r4) that is expected to achieve the goal of

meeting John.

Scenario 4: Abandon goal

During the execution of his activity, Bob’s boss may withdraw the request for Bob

to meet with John. In this case Bob no longer intends to achieve the goal of meeting

John. He should stop executing the activity with the goal to do so and not continue

moving toward John.

Scenario 5: Failure to achieve goal, diagnosis, and replanning

Suppose now that Bob moved from r1 to r2 and then to r3, but observes that John

is not there. Bob must recognize that his activity failed to achieve the goal. Further

analysis should allow Bob to conclude that, while he was executing his activity, John

must have moved to r4. Bob doesn’t know exactly when John moved and there are

three possibilities. John could have moved while Bob was 1) starting his activity, 2)

moving to r2, or 3) moving to r3. In any case since Bob is committed to achieving

his goal of meeting John his intention to do so persists. Bob will come up with a new

activity (containing a plan to move to r4) to achieve the goal of meeting John.

Scenario 6: Unexpected failure to execute, diagnosis, and replanning

We continue from scenario 5. Bob starts executing his activity (containing a plan to

move to r4). Then believing that the door is unlocked, Bob attempts to move from

r3 to r4, but is unable to perform the action. This is unexpected, but Bob realizes

that John must have locked the door after moving to r4. Bob’s new activity contains

the same goal to meet John and a plan to unlock the door before moving to r4.

Scenario 7: Revision of explanations and replanning

3
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Suppose that Bob is in r1 and has just started his activity to move to r3 in order to

meet John. Bob is then told that John is no longer in r3. Bob reasons that there are

two possible explanations. Either John moved to r2 or r4 while Bob was starting his

activity. In the first case, Bob’s activity is still expected to achieve his goal after he

moves to r2, but in the second case his activity is not. Bob is optimistic and since

there is a possibility that his activity will achieve the goal, he continues executing

it by moving to r2. Then he observes that John is not in r2 and realizes that the

explanation that John moved there is invalid. Bob’s only remaining explanation is

that John moved to r4. With this he reasons that his activity is not expected to

achieve the goal, so he stops it. Bob’s intention to meet John persists so he starts a

new activity containing a plan to move to r3 and then to r4.

Our goal is to describe an architecture for the design and implementation of inten-

tional agents capable of the reasoning illustrated in the previous scenarios. To do this

we design a formal model of intention and incorporate it into an architecture based

on a high-level agent control loop.

In formalizing the notion of intention we learn from prior studies

[Cohen & Levesque, 1990] and [Baral & Gelfond, 2005]. From the former, where the

authors model intention as a persistent commitment to both achieve a goal and to

perform some activity in order to achieve the goal, we see two types of intention.

From the latter, where the authors formalized the behavior of an agent intending to

execute a sequence of actions in ASP, we see that ASP allows the expression of such

properties of intentions as persistence and non-procrastination. We say that the agent

does not procrastinate if he executes his intended actions without delay and that he

is persistent if he normally does not give up on his intentions.

In Chapter III we present a system description of AL, referred to as intentional,

which is a model of an intentional agent and its environment. The model is a tran-

sition diagram whose nodes represent states which are a combination of the physical

state of the environment and the mental state of the agent and whose arcs are labeled

by actions. In this model the persistence property of intentions becomes a simple

4
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case of the axiom of inertia from [McCarthy & Hayes, 1969]. The mental state of

the agent is described by a theory of intentions T I that includes both intentions to

achieve goals and intentions to execute activities. To design a theory of intentions

that can be integrated with a control loop was not a trivial task. In fact our de-

sign of a theory of intentions was a two step process. We had an initial version in

[Blount & Gelfond, 2012] that we later improved to form a second version. (In this

dissertation we will focus on the second version.)

In Chapter IV we present the architecture for intentional agents (AIA) and for-

mally describe the behavior of such agents. Intuitively the architecture is based on a

high-level control loop where the agent interacts with the domain and performs rea-

soning tasks. The agent interacts with the domain by observing his environment and

attempting to perform actions. The agent’s reasoning tasks include explaining unex-

pected observations (diagnosis) and determining which of his actions are intended at

the present moment. Note that planning can be viewed as a particular case of the

latter reasoning task.

In Chapter V we present a refinement of the AIA control loop in which the

reasoning tasks of intentional agents are reduced to computing answer sets of pro-

grams constructed from the agent’s knowledge and a prototype implementation of

the AIA architecture: AIA Agent Manager. For the former, we begin by translat-

ing the intentional system description of AL into ASP and its extension CR-Prolog

[Balduccini & Gelfond, 2003b]. To this, we add rules for describing diagnostic reason-

ing and rules for determining which of the agent’s actions are intended. The resulting

program is used for both reasoning tasks. The AIA Agent Manager is written in

JAVA and given a formalization of an intentional agent and his domain allows the

user to specify observations, perform a number of iterations of the AIA control loop,

and inspect the agent’s reasoning.

This dissertation is organized as follows: in Chapter II we give some background

on Answer Set Prolog and CR-Prolog, discrete dynamic domains, action language

AL, and the AAA agent architecture. We then describe the modeling of intentional

5
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agents in Chapter III. In Chapter IV we describe an architecture for intentional

agents and formally define the behavior of such agents. In Chapter V we describe

how to design and implement intentional agents. We compare the theory of inten-

tions and architecture for intentional agents with the AAA agent architecture from

[Balduccini & Gelfond, 2008] in Chapter VI. We end with conclusions and future work

in Chapter VII.

6
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CHAPTER II

BACKGROUND

This chapter will contain background information about Answer Set Prolog (Sec-

tion 2.1) and its extension CR-Prolog (Section 2.2), the types of domains that our

agent is designed for (Section 2.3), action language AL (Section 2.4), and the AAA

architecture (Section 2.5).

2.1 Answer Set Prolog

Answer Set Prolog (ASP) [Gelfond & Lifschitz, 1988, Gelfond & Lifschitz, 1991]

is a declarative language for knowledge representation that emerged as a result

of research in logic programming and non-monotonic reasoning. It has an estab-

lished methodology of use [Baral & Gelfond, 1994, Baral, 2003]. It is particularly

suitable for the representation of dynamic domains due to its declarative and non-

monotonic features. Moreover, there are several ASP solvers nowadays (e.g., clasp

[Gebser et al., 2007], dlv [Leone et al., 2006], smodels [Niemela & Simons, 2000]).

The description of ASP appearing in this section is a short version of Chapter 2 of

[Gelfond & Kahl, 2013].

2.1.1 Syntax of Answer Set Prolog

A signature is a four-tuple Σ = 〈O,F ,P ,V〉 of disjoint sets, containing the names

of the objects, functions, predicates, and variables used in the program. Function

and predicate names are associated with an arity (i.e., a non-negative integer indi-

cating the number of parameters), which is normally determined from the context.

Elements of O, F , and P are often referred to as object, function, and predicate con-

stants, respectively. For simplicity, we assume that functions always have at least

one parameter. Often the word constant in this context will be replaced by the word

symbol. Whenever necessary we will assume that our signatures contain standard

names for non-negative integers, and for functions and relations of arithmetic, e.g.

7
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+, ∗, ≤, etc.

Sometimes it is convenient to expand the notion of signature by including in it an-

other collection of symbols called sorts. Sorts are useful in restricting the parameters

of predicates and the parameters and values of functions. Such five-tuple signatures

are called sorted signatures.

Terms (over signature Σ) are defined as follows:

1. Variables and object constants are terms.

2. If t1, . . . , tn are terms and f is a function symbol of arity n then f(t1, . . . , tn)

is a term.

For simplicity arithmetic terms will be written in the standard mathematical no-

tation; i.e. we will write 2 + 3 instead of +(2, 3).

Terms containing no variables and no symbols for arithmetic functions are called

ground. For instance, 1 + 3 is not a ground term, and neither is f(X, Y ). An atom

is an expression of the form p(t1, . . . , tn) where p is a predicate symbol of arity n and

t1, . . . , tn are terms. A literal its an atom, p(t1, . . . , tn), or its negation, ¬p(t1, . . . , tn).

An atom p(t1, . . . , tn) is called ground if every term t1, . . . tn is ground. Ground atoms

and their negations are referred to as ground literals. A program Π of ASP consists

of a signature Σ and a collection of rules of the form:

l0 or . . . or li ← li+1, . . . , lm, not lm+1, . . . , not ln.

where l’s are literals of Σ. (To make ASP programs executable, we replace ¬ with −,

← with : −, and or with |.)

The symbol not is a logical connective called default negation, (or negation as

failure); not l is often read as “It is not believed that l is true.” The disjunction or is

also a connective, sometimes called epistemic disjunction. The statement l1 or l2 is

often read as “l1 is believed to be true or l2 is believed to be true.”

The left-hand side of an ASP rule is called the head and the right-hand side is

called the body. Literals, possibly preceded by default negation not are often called

8
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extended literals. The body of a rule can be viewed as a set of extended literals

(sometimes referred to as the premises of the rule). The head or body can be empty.

A rule with an empty head is often referred to as a constraint and written as:

← li+1, . . . , lm, not lm+1, . . . , not ln.

A rule with the empty body is often referred to as a fact and written as

l0 or . . . or li.

Following the Prolog convention, non-numeric object, function, and predicate con-

stants of Σ are denoted by identifiers starting with lower-case letters; variables are

identifiers starting with capital letters. Variables of Π range over ground terms of Σ.

A rule r with variables is viewed as the set of its possible ground instantiations

– rules obtained from r by replacing r’s variables by ground terms of Σ and by

evaluating arithmetic terms (e.g. replacing 2 + 3 by 5). Let us define what it means

for a set of ground literals to satisfy a rule. We introduce the following notation.

Definition 1. [Satisfiability]

A set S of ground literals satisfies:

1. l if l ∈ S;

2. not l if l /∈ S;

3. li, or , . . . , or ln if for some 1 ≤ i ≤ n, li ∈ S;

4. a set of ground extended literals if S satisfies every element of this set;

5. rule r if , whenever S satisfies r’s body, it satisfies r’s head.

2.1.2 Semantics of Answer Set Prolog

First, we will give the informal semantics of ASP and then its formal semantics.

9
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Informal Semantics

A program Π can be viewed as a specification for answer sets – sets of beliefs that

could be held by a rational reasoner associated with Π. Answer sets will be represented

by collections of ground literals. In forming such sets the reasoner must be guided by

the following informal principles:

1. Satisfy the rules of Π. In other words, believe in the head of a rule if you believe

in its body.

2. Do not believe in contradictions.

3. Adhere to the rationality principle which says: “Believe nothing you are not

forced to believe.”

Formal Semantics

We start by defining consistent sets of literals. A set S of ground literals is called

consistent if it does not contain both an atom a and its negation ¬a. We continue

with the definition of an answer set, which is given in two parts: the first part is

for programs without default negation and the second part explains how to remove

default negation so that the first part can be applied.

Definition 2. [Answer Sets, Part I]

Let Π be a program not containing default negation, i.e. consisting of rules of the

form:

l0 or . . . or li ← li+1, . . . , lm.

An answer set of Π is a consistent set S of ground literals such that:

• S satisfies the rules of Π.

• S is minimal, i.e., there is no proper subset of S which satisfies the rules of Π.

10
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Definition 3. [Answer Sets, Part II]

Let Π be an arbitrary program and S be a set of ground literals. By ΠS we denote

the program obtained from Π by:

1. removing all rules containing not l such that l ∈ S;

2. removing all other premises containing not .

S is an answer set of Π if S is an answer set of ΠS.

2.2 CR-Prolog

In what follows we give a brief description of CR-Prolog - an extension of

ASP capable of encoding and reasoning about rare events (or unexpected ex-

ceptions to defaults). CR-Prolog was first introduced in [Balduccini, 2007] and

[Balduccini & Gelfond, 2003b]. An interesting application of CR-Prolog to plan-

ning can be found in [Balduccini, 2004]. The following description of CR-Prolog

is a slightly modified version from [Balduccini, 2007].

A signature, a term, an atom, and a literal have the same definitions as in Section

2.1.1.

A program Π of CR-Prolog is a four tuple consisting of

1. A (possibly sorted) signature Σ;

2. A collection of regular rules of the form:

l0 or . . . or li ← li+1, . . . , lm, not lm+1, . . . , not ln. (2.1)

3. A collection of cr-rules of the form:

r : l0 or . . . or li
+←− li+1, . . . , lm, not lm+1, . . . , not ln. (2.2)

where l’s are literals of Σ and r, called name, is a possible compound term

uniquely denoting the cr-rule.

11
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4. A partial order, 6, defined on sets of cr-rules. This partial order is often referred

to as a preference relation.

Intuitively, a cr-rule says that if the reasoner associated with the program believes

the body of the rule, then “may possibly” believe its head; however, this possibility

may be used only if there is no way to obtain a consistent set of beliefs using only

the regular rules of the program. The partial order over sets of cr-rules will be used

to select preferred possible resolutions of the conflict. Currently the inference engine

of CR-Prolog supports two such relations. One is based on set-theoretic inclusion

(R1 61 R2 holds iff R1 ⊆ R2). Another is defined by the cardinality of the corre-

sponding sets (R1 62 R2 hold iff |R1| ≤ |R2|). In this dissertation we will use the

relation defined by cardinality, unless otherwise stated. When different cr-rules are

applicable, it is possible to specify preferences on which one should be applied (i.e.

which one should be put into the minimal set of cr-rules) by means of atoms of the

form prefer(r1, r2) where r1, and r2 are names of cr-rules. The atom informally says

“do not consider solutions obtained using r2 unless no solution can be found using

r1.” More details on preferences in CR-Prolog can be found in [Balduccini, 2007],

[Balduccini & Gelfond, 2003b], [Balduccini & Mellarkod, 2003]. To give the seman-

tics we need some terminology and notation.

The set of regular rules of a CR-Prolog program Π is denoted by Πr, the set

of cr-rules by Πcr. By α(r) we denote a regular rule obtained from a cr-rule r by

replacing
+←− by ←; α is expanded in a standard way to a set R of cr-rules, i.e.

α(R) = {α(r) : r ∈ R}. As in the case of ASP, the semantics of CR-Prolog will be

given for ground programs. A rule with variables will be viewed as a shorthand for a

schema of ground rules. A set of literals S entails prefer∗(r1, r2) (S |= prefer∗(r1, r2))

if: (i) S |= prefer(r1, r2) or (ii) S |= prefer(r1, r3) and S |= prefer∗(r3, r2). The

semantics is given in three steps.

Definition 4. Let S be a set of literals and R be a set of names of cr-rules from Π.

The pair V = 〈S,R〉 is a view fo Π if:
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1. S is an answer set of the Πr ∪ α(R), and

2. for every r1, r2 if S |= prefer(r1, r2), then {r1, r2} * R, and

3. for every r ∈ R, the body of r is satisfied by S.

We denote the elements of V by V S and V R respectively. The cr-rules of V R are said

to be applied.

For every pair of views of Π, V1 and V2, V1 dominates V2 if there exist r1 ∈ V R
1 ,

r2 ∈ V R
2 such that (V S

1 ∩ V S
2 ) |= prefer∗(r1, r2).

Definition 5. A view V , is a candidate answer set of Π if, for every view V ′ of Π,

V ′ does not dominate V .

Definition 6. A set of literals, S, is an answer set of Π if:

• there exists a set R of name of cr-rules from Π such that 〈S,R〉 is a candidate

answer set of Π, and

• for every candidate answer set 〈S ′, R′〉 of Π, R′ 6 R.

2.3 Discrete Dynamic Domains

In the rest of this dissertation we will often use the term dynamic domain to

denote an environment whose state changes in response to the execution of actions.

Dynamic domains of interest in this dissertation are those satisfying the following

conditions:

• the evolution of the environment occurs in discrete steps;

• states of the domain are characterized by an assignment of values to functions

denoting the relevant properties of the domain

• actions occur instantaneously and their effects appear at the next time step.

13
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Generally such domains are called discrete and can be modeled by a transition diagram

– a directed graph whose nodes correspond to possible states of the domain and its

arcs are labeled by actions.

A transition 〈σ0, {a1, . . . , ak}, σ1〉 of the diagram where {a1, . . . , ak} is a set of

actions executable in state σ0, indicates that state σ1 may be the result of the simul-

taneous execution of these actions in σ0. The use of the word “may” is justified by

the possible existence of non-deterministic actions: actions whose execution may take

the system into one of many states.

A path 〈σ0, a0, σ1, . . . , an−1, σn〉 of the diagram represents a possible trajectory of

the system with initial state σ0 and final state σn. The transition diagram for a system

contains all possible trajectories of that system. Action Languages, as described in

[Gelfond & Lifschitz, 1998] are formal languages that are used to describe transition

diagrams. In what follows, we briefly present action language AL.

2.4 Action Language AL

AL [Turner, 1997, Baral & Gelfond, 2000] is an action language based on previous

languages A and B [Gelfond & Lifschitz, 1998]. In [Gelfond & Inclezan, 2009a], AL

is extended by “defined fluents” – properties of the domain that are subject to the

Closed World Assumption [Reiter, 1978]. The semantics of AL incorporates the law

of inertia for inertial fluents. The description of AL that follows is based on Chapter

7 of [Gelfond & Kahl, 2013].

2.4.1 AL Syntax

We begin with some terminology. Action LangaugeAL is parametrized by a sorted

signature containing three special sorts statics, fluents, and actions. The fluents are

partitioned into two sorts: inertial and defined. Together, statics and fluents are

called domain properties. A domain literal is a domain property p or its negation ¬p.

If domain literal l is formed by a fluent, we refer to it as a fluent literal; otherwise

it is a static literal. A set S of domain literals is called complete if for any domain
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property p either p or ¬p is in S; S is called consistent if there is no p such that p ∈ S

and ¬p ∈ S.

Definition 7 (Statements of AL). Language AL allows the following types of state-

ments:

1. Causal Laws:

a causes lin if p0, . . . , pm

2. State Constraints:

l if p0, . . . , pm

3. Executability Conditions:

impossible a0, . . . , ak if p0, . . . , pm

where a is an action, l is an arbitrary domain literal, lin is a literal formed by an

inertial fluent, p0, . . . , pm are domain literals, k > 0, and m ≥ −1 1. Moreover,

no negation of a defined fluent can occur in the heads of state constraints.

The collection of state constraints whose head is a defined fluent f is referred to

as the definition of f . As in logic programming definitions, f is true if it follows from

the truth of the body of at least one of its defining rules. Otherwise, f is false.

Definition 8. [System Description]

A system description of AL is a collection of statements of AL.

2.4.2 AL Semantics – The Transition Relation

A system description SD serves as a specification of the transition diagram T (SD)

defining all possible trajectories of the corresponding dynamic system. We define the

semantics of AL by precisely defining the states and legal transitions of this diagram.

1If m = −1, keyword if is omitted.
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States

We will need the following notation. By Πc(SD) (where c stands for constraints) we

denote the logic program defined as follows:

1. for every state constraint

l if p

Πc(SD) contains:

l← p.

2. for every defined fluent f , Πc(SD) contains the CWA (Closed World Assump-

tion):

¬f ← not f.

For any set σ of domain literals let σnd denote the collection of domain literals of

σ formed by inertial fluents and statics. (The nd stands for non-defined.)

Definition 9. [State]

A complete and consistent set σ of domain literals is a state of the transition diagram

defined by a system description SD if σ is the unique answer set of program Πc(SD)∪

σnd.

In other words, a state is a complete and consistent set of literals σ that is the

unique answer set of the program that consists of the non-defined literals from σ, the

encoding of the state constraints, and the CWA for each defined fluent. Note that

(a) every state of system description SD satisfies the state constraints of SD and (b)

if the signature of SD does not contain defined fluents, a state is simply a complete,

consistent set of literals satisfying the state constraints of SD.

Transitions

The definition of the transition relation of T (SD) is based on the notion of an answer

set of a logic program. To describe a transition 〈σ0, a, σ1〉 we construct a program
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Π(SD, σ0, a) consisting of logic programming encodings of system description SD,

initial state σ0, and set of actions a, such that answer sets of this program determine

the states into which the system can move after the execution of a in σ0.

Definition 10. [Encoding System Description SD]

The encoding of Π(SD) of system description SD consists of the encoding of the

signature of SD and rules obtained from statements of SD.

• Encoding of the Signature

We start with the encoding sig(SD) of the signature of SD.

– For each constant symbol c of sort sort name other than fluent, static,

or action, sig(SD) contains

sort name(c). (2.3)

– For every static g of SD, sig(SD) contains

static(g). (2.4)

– For every inertial fluent f of SD, sig(SD) contains

fluent(inertial, f). (2.5)

– For every defined fluent f of SD, sig(SD) contains

fluent(defined, f). (2.6)

– For every action a of SD, sig(SD) contains

action(a). (2.7)
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• Encoding of Statements of SD

For this encoding we only need two steps 0 and 1, which stand for the beginning

and the end of a transition. This is sufficient for describing a single transition;

however, later, we will want to describe longer chains of events and let steps

rangw over [0, n] for some constant n. To allow an easier generalization of the

program we encode steps using constant n for the maximum number of steps,

as follows:

#const n = 1. (2.8)

step(0..n). (2.9)

We introduce a relation holds(f, i) which says that fluent f is true at step i.

To simplify the description of the encoding, we also introduce a new notation,

h(l, i) where l is a domain literal and i is a step. If f is a fluent then by h(l, i)

we denote holds(f, i) if l = f or ¬holds(f, i) if l = ¬f . If l is a static literal

then h(l, i) is simply l. We also need relation occurs(a, i) which says that action

a occurred at step i; occurs({a0, . . . , ak}, i) =def {occurs(ai) : 0 ≤ i ≤ k}.

We use this notation to encode statements of SD as follows:

– For every causal law

a causes l if p0, . . . , pm

Π(SD) contains:

h(l, I + 1) ← h(p0, I), . . . , h(pm, I),

occurs(a, I),

I < n.

(2.10)

– For every causal law

l if p0, . . . , pm
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Π(SD) contains:

h(l, I) ← h(p0, I), . . . , h(pm, I). (2.11)

– Π(SD) contains the CWA for defined fluents:

¬holds(F, I) ← fluent(defined, F ),

not holds(F, I).
(2.12)

Note – the following translation of executability conditions (2.13 and 2.14)

is non-disjunctive and is therefore slightly different from the one presented

in [Gelfond & Kahl, 2013].

– For every executability condition

impossible a1, . . . , ak if p0, . . . , pm

Π(D) contains:

impossible(a1, I) ← occurs(a2, I), . . . , occurs(ak, I),

h(p0, I), . . . , h(pm, I).

impossible(a2, I) ← occurs(a1, I), occurs(a3, I), . . . , occurs(ak, I),

h(p0, I), . . . , h(pm, I).

. . .

impossible(ak, I) ← occurs(a1), I), . . . , occurs(ak−1), I),

h(p0, I), . . . , h(pm, I).

(2.13)

– Π(SD) contains:

¬occurs(A, I) ← impossible(A, I). (2.14)

– Π(D) contains the Inertia Axioms:
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holds(F, I + 1) ← fluent(inertial, F ),

holds(F, I),

not ¬holds(F, I + 1),

I < n.

¬holds(F, I + 1) ← fluent(inertial, F ),

¬holds(F, I),

not holds(F, I + 1),

I < n.

(2.15)

– Π(SD) contains CWA for actions:

¬occurs(A, I) ← not occurs(A, I). (2.16)

This completes the encoding of Π(SD).

To continue with our definition of transition 〈σ0, a, σ1〉 we describe the two remain-

ing parts of Π(SD, σ0, a) – the encoding h(σ0, 0) of initial state σ0 and the encoding

occurs(a, 0) of action a:

h(σ0, 0) =def {h(l, 0) : l ∈ σ0}

and

occurs(a, 0) =def {occurs(ai, 0) : a1 ∈ a}.

To complete program Π(SD, σ0, a) we simple gather our description of the system’s

laws, together with the description of the initial state and actions that occur in it:

Definition 11. [Program Π(SD, σ0, a)]

Π(SD, σ0, a) =def Π(SD) ∪ h(σ0, 0) ∪ occurs(a, 0).
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Now we are ready to define the notion of transition of T (SD).

Definition 12. [Transition]

Let a be a non-empty collection of actions and σ0 and σ1 be states of transition

diagram T (SD) defined by system description SD.

A state-action-state triple 〈σ0, a, σ1〉 is a transition of T (SD) iff Π(SD, σ0, a) has an

answer set A such that σ1 = {l : h(l, 1) ∈ A}.

As an example of a system description of AL, let us consider a formalization of

the environment from Example 1.

Example 2. [Description E of the physical environment from Example 1]

There are two agents Bob and John and four rooms, which will be represented as

follows:

agent(b). agent(j). room(r1). room(r2). room(r3). room(r4). (2.17)

We use possibly indexed variables A and R to range over agents and rooms respec-

tively. The row of rooms are connected by doorways and these connections are de-

scribed by the following six statements:

connected(r1, r2). connected(r2, r3). connected(r3, r4).

connected(r2, r1). connected(r3, r2). connected(r4, r3).
(2.18)

Bob and John’s location in a room is described by inertial fluent in(A,R) which is

true when agent A is in room R. This fluent is subject to the rule of inertia that says

things normally stay as they are. The doorway between rooms r3 and r4 that may be

locked is described by Inertial fluent locked(r3, r4) which is true when the doorway

is locked. Bob and John may move between connected rooms and lock/unlock the

doorway between r3 and r4. The effects actions move(A,R1, R2), which causes agent

A’s location to change from room R1 to R2, is described by the following dynamic
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causal law:

move(A,R1, R2) causes in(A,R2). (2.19)

Similarly, the effects of actions lock(r3, r4) and unlock(r3, r4) are described by dy-

namic causal laws:

lock(A, r3, r4) causes locked(r3, r4).

unlock(A, r3, r4) causes ¬locked(r3, r4).
(2.20)

An agent can be in one room at a time. This relationship between fluents is described

by the following state constraint:

¬in(A,R2) if in(A,R1),

R1 6= R2.
(2.21)

An agent must be in a room in order to move from that room and only one agent

may move through a door at a time. These restrictions on the executability of action

move are described by the following executability conditions:

impossible move(A,R1, R2) if ¬in(A,R1).

impossible move(A1, R1, R2),move(A2, R1, R2) if A1 6= A2.

impossible move(A1, R1, R2),move(A2, R2, R1).

(2.22)

If the doorway between r3 and r4 is locked then no one may move between those two

rooms.

impossible move(A, r3, r4) if locked(r3, r4).

impossible move(A, r4, r3) if locked(r3, r4).
(2.23)

There are several natural executability conditions on actions lock and unlock: a

door cannot be locked and unlocked at the same time, an agent cannot move and

lock/unlock at the same time, and an agent must be in r3 or r4 in order to lock/unlock
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the doorway between them.

impossible lock(A1, r3, r4), unlock(A2, r3, r4). (2.24)

impossible lock(A, r3, r4),move(A, r3, r4).

impossible lock(A, r3, r4),move(A, r4, r3).

impossible unlock(A, r3, r4),move(A, r3, r4).

impossible unlock(A, r3, r4),move(A, r4, r3).

(2.25)

impossible lock(A1, r3, r4) if ¬in(A1, r3),

¬in(A1, r4).

impossible unlock(A1, r3, r4) if ¬in(A1, r3),

¬in(A1, r4).

(2.26)

Fluent meet(b, j) is true when Bob and John are in the same room and is defined as:

meet(b, j) if in(b, R),

in(j, R).
(2.27)

This concludes the system description E which models the physical environment

from Example 1.

2.5 Autonomous Agent Architecture (AAA)

The AAA architecture [Balduccini & Gelfond, 2008] is used for the design and im-

plementation of software components of intelligent agents. The architecture was sug-

gested in [Baral & Gelfond, 2000] and refined in [Balduccini & Gelfond, 2003a] and

[Balduccini et al., 2006]. The architecture shares many of the underlying assumptions

with the AIA. The AAA is applicable if:

• the agent’s environment and the effects of occurrences of actions can be rep-

resented by a transition diagram that is described by action language AL (see

Section 2.4);
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• the agent is capable of making correct observations, preforming actions, and

remembering the domain history;

• normally, the agent is capable of observing occurrences of all relevant exogenous

actions.

The AAA is based on the control loop in Figure 2.1, called the Observe-Think-Act

loop.

1. Observes the world,

explains the observations, and

updates its knowledge base;

2. Selects an appropriate goal G;

3. Finds a plan (a sequence of actions) to achieve G;

4. Executes part of the plan,

updates the knowledge base, and

go to step 1.

Figure 2.1: AAA control loop

Note that the loop assumes that there is always a goal selected in step 2, a plan

found in step 3, and that the plan is executable in step 4.
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CHAPTER III

INTENTIONAL SYSTEM DESCRIPTION OF AL

In this chapter we introduce the notion of an intentional system description of

action language AL. Such systems are formal models of intentional agents and their

physical environments and are an important part of the Architecture for Intentional

Agents (AIA) which will be described in the next chapter. In particular these system

descriptions will be capable of formally representing notions of activities, goals, and

intentions. Properties of these mental notions are formulated by a collection of axioms

T I of AL called the theory of intentions. The theory is used together with the

description of the agent’s environment to describe a transition diagram where each

state in the diagram includes the state of the environment and the agent’s mental

state.

3.1 Activity

Now we give a syntax for describing possible activities of an agent. Formally, an

activity will be represented by a triple consisting of a name, plan, and goal. A name

is a unique identifier used to refer to an activity, a goal is a physical fluent, and a plan

is a sequence where each element is either an agent’s action from the description of

the physical environment (physical agent actions), or the name of another activity.

Activities whose plans contain other activities are called nested and those that only

contain actions are called flat. For simplicity, we limit the names of activities that are

initially relevant to the agent to a collection of integers [1, 2, . . . , ir − 1], the names

of all other activities to a collection of integers [ir, ir+ 1, . . . ,max name], the length

of plans to maximum length (denoted by a positive integer max len), and fluents

that may serve as goals to those that are of sort possible goal. We also assume that

activities are unique, i.e. no two activities have the same plan. and goal, and non-
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circular i.e the plan of a nested activity does not contain 1 its own name or an activity

that shares the same goal.

Activities are represented by a collection of statics:

• component(M, I, C) which holds when a physical action or activity C is the Ith

component of the plan of activity M ;

• length(M,L) which holds when the length of M ’s plan is L;

• goal(M,G) which holds when the goal of M is G.

For example, Bob’s activity from Scenario 1(see Example 1 from Chapter I) consisting

of a plan to move to r2 and then to r3 in order to meet John is given by the following

statics where 1 is the name of the activity:

component(1, 1,move(b, r1, r2)).

component(1, 2,move(b, r2, r3)).

length(1, 2).

goal(1,meet(b, j)).

(3.1)

As a more convenient shorthand for the collection of statics, we will use:

〈1, [move(b, r1, r2),move(b, r2, r3)],meet(b, j)〉 (3.2)

An intentional system description D contains a collection of pre-defined nested

activities and all possible flat activities. Of course the latter may result in a very large

number of activities. In Chapter V where we automate the behavior and reasoning

of intentional agents by translating D into ASP and CR-Prolog, we only initially

translate those activities that are deemed to be initially relevant, and add additional

activities as they are needed.

1The plan of an activity m is said to contain an activity m1 if (i) m1 is a component of m’s plan
or (ii) there is an activity m3 such that the plan of m3 contains m1 and the plan of m contains m3.
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Now we are ready to start the description of the vocabulary of our theory of

intentions. The fluents and actions of the theory of intentions are mental while those

from the description of the environment are physical. Intuitively, Bob’s mental state

is primarily described by two inertial fluents: active goal(g) that holds when the

agent intends to achieve goal g, and status(m, k) that describes the agent’s intent to

execute activity m and the current state of the process of execution. More precisely

status(m, k) where L is the length of m and 0 ≤ k ≤ L holds when k is the index of

the component of m that has most recently been executed, and status(m,−1) holds

when the agent does not intend to execute m 2. The inertial property of these two

fluents is important and allows for the agent’s intentions (both to achieve a goal and

to execute an activity) to persist.

The two mental actions start(m) and stop(m) directly affect the mental state

of the agent by initiating and terminating the agent’s intent to execute activity m.

A special mental exogenous action select(g), which can be thought of as being per-

formed by the agent’s controller, causes the agent’s intent to achieve goal g. Similarly

special mental exogenous action abandon(g) causes the agent to abandon his intent to

achieve g. The agent has a special action wait, which has no affects or executability

conditions, and can be seen as doing nothing. Since action wait has no affects, it is

neither a mental or physical action. All other agent and exogenous actions are said to

be physical. While the agent’s mental actions and special exogenous mental actions

do not affect the state of the physical environment, some physical actions may affect

the agent’s mental state (see Example 3).

Before we formally describe the theory of intentions, consider the following exam-

ple of the evolution of the physical and mental state from Scenario 1.

Example 3. [Evolution of physical and mental state from Scenario 1]

For simplicity the states shown in Figure 3.1 include only mental fluents about activity

1 (3.2) and all static fluents (e.g. describing activity 1, connections between rooms,

etc.) and fluent locked(r3, r4) are omitted from the figure. The initial state σ0

2The agent’s mental state also includes the static fluents which describe his activities
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Figure 3.1: The evolution of physical and mental state from Scenario 1 (see Example
3.

contains the initial locations of Bob and John and the inactive status of activity

1. As a result of action select(meet(b, j)), the goal of meeting John becomes active

in σ1. Because of Bob’s intent to achieve the goal, he starts activity 1. Mental

action start(1) causes the status of 1 to change from −1 to 0, i.e. Bob commits to its

execution as a way to achieve his goal but has not yet executed its first component.

The subsequent occurrence of move(b, r1, r2) affects both the physical and mental

state in σ3. Physically, Bob’s location changes to r2, and mentally the status of

1 is incremented. Similarly, the occurrence of action move(b, r2, r3) changes Bob’s

location and increments the status, but also results in the achievement of the goal

of meeting John. Because the goal is achieved it is no longer active in σ4. Finally,

action stop(1) returns 1 to an inactive status in σ5.

3.2 Theory of Intentions

The theory of intentions can be viewed as a collection of axioms of AL defining the

transformation of the agent’s mental state. In what follows we use possibly indexed

variables M to range over activity names. Similarly for indices K, possible goals G,

agent actions AA, mental agent actions MAA, physical agent actions PAA, special

mental exogenous actions SEA, and physical exogenous actions PEA.

We restrict the possible length of its activities by some constant, say max len,

and define a new sort.

index(−1..max len). (3.3)

Inertial fluent status(M,K) describes the intent to execute activityM and the current

state of the process of execution. If 0 ≤ K ≤ L where L is the length of M then K is
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the index of the component of M that has most recently been successfully executed;

K = −1 indicates that activity M is inactive. Axiom (3.4) says that the fluent

status(M,K) is a function of M .

¬status(M,K1) if status(M,K2),

K1 6= K2.
(3.4)

Defined fluent active(M) is true when M has a status that is not equal to −1.

active(M) if ¬status(M,−1). (3.5)

Action start sets the value of status to 0, and action stop returns the activity to a

status of −1.

start(M) causes status(M, 0).

stop(M) causes status(M,−1).
(3.6)

There are natural executability conditions for these actions. An agent can neither

start and active activity, nor stop and inactive one.

impossible start(M) if active(M).

impossible stop(M) if ¬active(M).
(3.7)

To simplify our theory we assume that an agent cannot execute a physical and mental

action or multiple mental actions simultaneously.

impossible PAA,MAA.

impossible MAA1,MAA2 if MAA1 6= MAA2.
(3.8)

An agent cannot execute a physical agent action and wait simultaneously. Similarly

for a mental agent action.

impossible PAA,wait if physical agent action(PAA).

impossible MAA,wait if mental agent action(MAA).
(3.9)
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Defined fluent immediate child(M1,M) is true when M1 is the current component

of M and defined fluent immediate child goal(G1, G) is true when G and G1 are the

goals of M and M1.

immediate child(M1,M) if component(M,K + 1,M1),

status(M,K).
(3.10)

immediate child goal(G1, G) if immediate child(M1,M),

goal(M,G),

goal(M1, G1).

(3.11)

Defined fluent descendant(M1,M) is defined recursively in terms of defined fluent

immediate child.

descendant(M1,M) if immediate child(M1,M).

descendant(M2,M) if descendant(M1,M),

descendant(M2,M1).

(3.12)

Defined fluent minor(M) is true when M is an immediate child and defined fluent

minor(G) is true when G is the goal of a minor activity. We refer to those activities

and goals that are not minor as top-level.

minor(M1) if immediate child(M1,M). (3.13)

minor(G1) if immediate child goal(G1, G). (3.14)

Special exogenous actions select and abandon activate and deactivate a goal respec-

tively.

select(G) causes active goal(G).

abandon(G) causes ¬active goal(G).
(3.15)

There are natural executability conditions for select and abandon. A goal that is

active or already achieved cannot be selected and an inactive or minor goal cannot
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be abandoned.

impossible select(G) if active goal(G).

impossible abandon(G) if ¬active goal(G).

impossible abandon(G) if minor(G).

(3.16)

We assume that no physical exogenous action PEA, physical agent action PAA or

mental agent action MAA occur concurrently with special exogenous actions SEA.

impossible PEA, SEA.

impossible PAA, SEA.

impossible MAA,SEA.

(3.17)

Top-level goals that are achieved are no longer active.

¬active goal(G) if ¬minor(G),

G.
(3.18)

The following four axioms describe the propagation of the intent to achieve a goal to

its immediate child goal (i.e. goals that are minor). Of course, the parent goal may

be a top-level goal or it may also be minor. Note too that the four rules are disjoint,

that is for a particular minor goal G1 at most one of these axioms will be applicable.

An unachieved minor goal G1 of an activity M1 becomes active when M1 is the next

component of an ongoing activity M .

active goal(G1) if minor(G1),

immediate child goal(G1, G),

active goal(G),

goal(M1, G1),

¬G1,

status(M1,−1).

(3.19)
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A minor goal G1 is no longer active when it is achieved.

¬active goal(G1) if minor(G1),

immediate child goal(G1, G),

active goal(G),

G1.

(3.20)

A minor goal G1 is no longer active its parent is no longer active

¬active goal(G1) if minor(G1),

immediate child goal(G1, G),

¬active goal(G).

(3.21)

A minor goal G1 of an activity M1 is no longer active when M1 has been executed.

¬active goal(G1) if minor(G1),

immediate child goal(G1, G),

active goal(G),

¬G1,

goal(M1, G1),

status(M1, K1),

length(M1, K1).

(3.22)

Defined fluent in progress(M) is true when M is an active activity whose goal G

is active, and defined fluent in progress(G) is true when G is the active goal of an
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active activity M .

in progress(M) if active(M),

goal(M,G),

active goal(G).

in progress(G) if active(M),

goal(M,G),

active goal(G).

(3.23)

Defined fluent next action(M,AA) is true if agent action AA is the next action of the

ongoing execution of activity M . Since this fluent describes the ongoing execution, the

initial starting and stopping of a top-level activity are never next actions. However

the starting or stopping of a sub-activity can be the next action of the parent activity.

Axiom (3.24) describes when this action is a physical agent action of M .

next action(M,PAA) if status(M,K),

component(M,K + 1, PAA),

in progress(M).

(3.24)

When the first not yet executed component of M is a sub-activity M1, then the next

action of M is to start M1.

next action(M, start(M1)) if status(M,K),

component(M,K + 1,M1),

in progress(M),

¬active(M1).

(3.25)
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The next action of an active sub-activity M1 propagates up to its parent M .

next action(M,AA) if status(M,K),

component(M,K + 1,M1),

in progress(M),

in progress(M1),

next action(M1, AA).

(3.26)

The next action of activity M after the completion of sub-activity M1 is to stop M1.

next action(M, stop(M1)) if status(M,K),

component(M,K + 1,M1),

in progress(M),

active(M1),

goal(M1, G1),

¬active goal(G1).

(3.27)

Executing the next physical action (rule 3.24) that is the current component of activity

M increments the status of activity M .

PAA causes status(M,K + 1) if next action(M,PAA),

status(M,K),

component(M,K + 1, PAA).

(3.28)

Executing the next action of stopping a sub-activity M1 (rule 3.29) increments the

status of parent M .

stop(M1) causes status(M,K + 1) if status(M,K),

component(M,K + 1,M1),

next action(M, stop(M1)).

(3.29)
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Stopping an activity returns its descendants to an inactive status.

stop(M) causes status(M1,−1) if descendant(M1,M). (3.30)

Finally we introduce inertial fluent next name(M). This fluent will allow the trans-

lation of D into ASP to contain only those activities that are relevant (i.e. those

with names and not all of the possible flat activities contained in D). Intuitively,

next name is the first name that is not yet relevant. As activities are deemed to be

relevant and started, the value of next name increments. We give more detail on this

in Chapter V.

¬next name(M) if next name(M1),

M 6= M1.
(3.31)

start(M) causes next name(M + 1) if next name(M),

¬minor(M).
(3.32)

This completes the theory of intentions. An intentional system description D

consists of a description of the agent’s physical environment, a collection of activities,

and the theory of intentions. Paths in the transition diagram T (D) correspond to

possible trajectories of the domain. Now we precisely define the notion of mental

state.

Definition 13. [Mental state]

Let σ be a state in T (D). The collection of all literals formed by mental fluents in σ

is the mental state of σ.

In the next chapter we describe an architecture for intentional agents and formally

define the behavior of such agents.
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CHAPTER IV

THE ARCHITECTURE FOR INTENTIONAL AGENTS (AIA)

In this chapter we describe an architecture for the design and implementation of

intentional agents and demonstrate how the architecture is capable of the behavior

and reasoning illustrated in Example 1. The architecture for intentional agents is

applicable if the following conditions are satisfied:

Applicability Conditions (4.1)

1. The domain can be modeled by an intentional system description of AL (Chap-

ter III).

2. (Ability to observe) The agent’s observations of the truth values of fluents and

of the occurrences of actions are correct.

3. (Ability to act) The agent’s attempts 1 to perform his actions result in either the

occurrence of the action when the action is executable or the non-occurrence

of the action when the action is not executable. All occurrences of the agent’s

actions are due to his attempts to perform them.

4. (Ability to remember) The agent remembers all of his observations and his

attempts to perform actions.

5. (Observation strategy)

(a) Normally, the agent observes all occurrences of relevant exogenous actions.

(b) The agent always observes the results of his attempts to perform actions,

occurrences of actions performed by his controller (i.e. actions select and

abandon (rule 3.15)), and the truth value of his goal.

6. (Focus on a single goal) The agent’s controller expects the agent to focus his

efforts toward achieving a single goal and therefore does not simultaneously

select multiple goals and only selects a goal when the agent has neither an

1We say attempt because though the agent believes that his action is executable it may in fact
not be and in this case we assume that the world is not changed.
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intended goal or activity. Initially the agent has no intended goal or activity

and the controller is the only source of goal selection.

To describe an architecture for intentional agents one needs to specify:

1. The information maintained by an agent in his knowledge base and a language

in which this information is represented.

2. The description of an agent’s capabilities for interacting with his domain and the

reasoning algorithms including that for diagnostics and for determining which

action to attempt to perform in order to achieve his goal.

3. The control strategy which provides a way to use this knowledge and these

capabilities to achieve intelligent behavior.

4.1 Knowledge Base

According to our architecture, the agent’s knowledge base is written in AL and

consists of two parts. The first part is a model of the domain in the form of an

intentional system description (defined in Chapter III) that includes a description of

the physical environment, a collection of activities, and the theory of intentions T I.

The second part, called a recorded history, is a collection of the agent’s observations

of the domain and a record of his attempts to perform actions. Now we precisely

describe the notion of a recorded history.

4.1.1 Recorded History - Syntax and Semantics

Definition 14. [Recorded History - syntax]

A recorded history Γn of intentional system description D up to time step n is a

collection of statements of the three following forms:

1. obs(f, true/false, i) - fluent f was observed to be true/false at step i, where

0 ≤ i ≤ n;

2. hpd(e, true/false, i) - action e was observed to have happened or to have not

happened at step i, where 0 ≤ i < n.
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3. attempt(e, i) - agent attempts to perform action e at step i, where 0 ≤ i < n.

We introduce the following notation. Let On be a collection of observations of fluents

at step n and of occurrences (or non-occurrences) of actions at n − 1, and An−1 be

the agent’s attempt to perform an action at n − 1. A history Γn−1 can be extended

by On and An−1 to form history Γn = Γn−1 ◦ An−1 ◦On.

An agent’s recorded history Γn of D defines a collection of trajectories in transition

diagram T (D), which from the agent’s point of view, can be viewed as possible pasts

of the domain. leading to possible current states. Such trajectories are the semantics

of a history and are referred to as models. Intuitively models are trajectories that

satisfy all of the Applicability Conditions (4.1). The following definitions describe

the semantics of a recorded history Γn.

We begin by describing trajectories that are compatible with the agent’s ability

to observe and act (2 and 3 from 4.1), and then describe a subset of those that are

also compatible with both the agent’s observation strategy and focus on a single goal

(5 and 6 from 4.1). Intuitively, a trajectory Pn = 〈σ0, a0, . . . σn〉 is compatible with

the agent’s ability to observe and act if every observation in Γn is reflected in Pn and

every occurrence of an agent’s action in Pn is the result of an attempt to perform it.

Definition 15. [Satisfy]

A trajectory Pn = 〈σ0, a0, σ1, . . . , an−1, σn〉 is said to satisfy a history Γn if for any

0 ≤ i ≤ n:

1. if obs(f, true, i) ∈ Γn then f ∈ σi;

2. if obs(f, false, i) ∈ Γn then ¬f ∈ σi;

3. if hpd(e, true, i) ∈ Γn then e ∈ ai;

4. if hpd(e, false, i) ∈ Γn then e /∈ ai;

5. if attempt(e, i) ∈ Γn, then either
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• e ∈ ai or

• e /∈ ai and there is no transition 〈σi, ai∪{e}, σ′〉 (i.e. action e cannot occur

at i), and

6. if agent action e ∈ ai then attempt(e, i) ∈ Γn.

We now describe trajectories that in addition to satisfying the history are also

compatible with both the agent’s observation strategy and focus on a single goal (5

and 6 from 4.1). We proceed by first describing trajectories called pre-models that

are intuitively compatible with both the agent’s focus on a single goal (6 from 4.1)

and part (b) of the agent’s observation strategy (5 from 4.1). Finally we describe a

subset of those that are also compatible with part (a) of (5 from 4.1).

Before we formally define the notion of pre-model, we describe informally the

agent’s observation strategy for goals. The agent will always observe his top-level

goal to see if it has been achieved or not, but the agent only observes his minor goals

when the minor goals parent goal is active. This weaker strategy for observing minor

goals is justified since if the minor goals parent is not active the minor goal is also

not active (see axiom 3.2) and therefore is not relevant to the agent.

Definition 16. [Pre-model]

A trajectory Pn = 〈σ0, a0, σ1, . . . , an−1, σn〉 is a pre-model of history Γn if Pn satisfies

Γn, and for any 0 ≤ i < n:

1. there is at most one select action e ∈ ai and

if active(g) or active(m) ∈ σi then there is no select action e ∈ ai;

2. if {¬minor(g), active(g)} ⊆ σi then obs(g, true/false, i+ 1) ∈ Γn; and

if {minor(g2), immediate child goal(g2, g1), active goal(g1)} ⊆ σi then

obs(g2, true/false, i) ∈ Γn;

3. if attempt(e, i) ∈ Γn then hpd(e, true/false, i) ∈ Γn;

4. if select or abandon action e ∈ ai then hpd(e, true, i) ∈ Γn.
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We say that a history Γn is consistent if it has a pre-model.

Note the following relationship between pre-models of histories Γn−1 and Γn = Γn−1 ◦

An−1◦On. The prefix Pn−1 of a pre-model Pn of Γn is always a pre-model of Γn−1, but

every pre-model of Γn−1 is not always the prefix of a pre-model of Γn. A pre-model of

Γn by definition satisfies all observations of Γn−1 (i.e. contains all of the unobserved

occurrences of exogenous actions necessary to satisfy Γn−1), but a pre-model of Γn−1

may not necessarily contain all of the unobserved occurrences of exogenous actions

necessary to satisfy the last observations On recorded in Γn.

A pre-model of a history may still contain an arbitrary collection of exogenous

actions that are unobserved (i.e. not recorded in the history). Such pre-models are

not compatible with the remaining part of the agent’s observation strategy (5 (a) from

4.1), which says that the agent is normally capable of observing relevant occurrences of

exogenous actions. Pre-models satisfying this condition are called models. Intuitively,

the number of unobserved exogenous actions in a model is limited to the minimal

number necessary to satisfy the observations. Such unobserved occurrences explain

unexpected observations and we refer to the collection of all unobserved occurrences

of exogenous actions in a model as an explanation. Now we formally define the notion

of a model of a history.

Definition 17. [Model - semantics]

A pre-model Pn of Γn is a model of Γn if there is no pre-model P ′n with fewer

occurrences of exogenous actions.

We assume that the agent initially has no intended goals or activities and that the

addition of new observations do not make the history inconsistent. Such observations

are referred to as legal.

Definition 18. [Legal observations]

A collection of observations On is said to be legal if

• n = 0: O0 contains obs(status(m,−1), true, 0) and obs(active goal(g), false, 0)
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for every activity m and possible goal g, and obs(next name(ir), true, 0) 2, and

Γ0 = O0 is consistent;

• n > 0: Γn−1 is a consistent history, An−1 is a record of the agent’s attempt to

perform an action at n− 1, and Γn = Γn−1 ◦ An−1 ◦On is consistent.

From now on we restrict ourselves to histories with legal observations.

It is important to notice that a history that is consistent (i.e. has a model) may

not necessarily describe the behavior of an agent that acts in accordance with his

intentions. In what follows we will define histories in which such unintended behavior

is impossible. To better see the problem let us consider the following scenario from

the domain from Example 1. Recall that the domain consists of our agent Bob, his

colleague John, a row of four rooms, r1, r2, r3, r4 connected by doorways, such that

both Bob and John may move along the row from one room to the next.

Example 4. Initially Bob knows that he is in r1, his colleague John is in r3, and the

door between r3 and r4 is unlocked. Suppose that he receives a request from his boss

to meet with John 3. This is described by the following history 4. Note that since

Bob doesn’t do anything at step 1 (i.e. he waits).

Γ1 =



Γ0 =


obs(in(b, r1), true, 0),

obs(in(j, r3), true, 0),

obs(locked(r3, r4), false, 0)

A0 =
{
wait

O1 =
{
hpd(select(meet(b, j)), true, 0)

We expect Bob to commit to achieving the goal of meeting John, i.e. to attempt

to perform the intended action of starting activity 1 (3.2) which contains a plan

2All activities with names less than positive integer ir are initially relevant to the agent (see
Section (3.1) and axiom (3.32).

3 Note that the agent’s initial knowledge about the state of his domain, and information from
direct observation and being told are all represented as observations in the history.

4For space the observations that initially there are no intended goals or activities and that
next name has the value of ir are omitted.
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[move(b, r1, r2),move(b, r2, r3)], and is expected to achieve the intended goal. But

suppose that Bob procrastinates and he waits instead of performing the intended

action. This is described by the following history:

Γ′2 =


Γ1,

A1 =
{
wait

O2 =
{
obs(meet(b, j), false, 2)

History Γ′2 is consistent and has a model of the form:

〈σ0, {select(meet(b, j), wait)}, σ1, {wait}, σ2〉, where Bob does not act in accor-

dance with his intention to meet with John. This is of course expected since such a

behavior is physically possible.

An intentional agent’s capabilities and behavior (i.e. acting in accordance with

intentions) are best understood in the context of the agent’s control strategy.

4.2 Control Strategy

According to our control strategy the agent begins by observing his domain. Ob-

servations may not be consistent with the agent’s expectations. In this case the agent

preforms diagnostic reasoning to explain unexpected observations. An observation of

an occurrence of special exogenous action select(g) (3.15), which initiates the agent’s

intent to achieve goal g, is particularly important to the agent. Our agent is motivated

to change his domain 5 by the intention to achieve a goal. Because of his intention

to achieve a goal, the agent finds an activity which may lead to achieving the goal,

commits to this activity, and proceeds with its execution. At the center of this process

is a task of deciding the intended action that the agent should attempt to perform

at the current step in order to fulfill his intention to achieve the goal. Intuitively, an

agent’s behavior is compatible (i.e. is in accordance) with his intentions when at each

step he attempts to perform only those actions that are intended and does so without

5Without the intention to achieve a goal he is not motivated to change his domain and does
nothing (i.e. he waits).
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delay. To precisely define such behavior and to formulate and prove correctness of

the architecture we will introduce notions of intended model and intentional history.

4.2.1 AIA Control Loop

In our architecture this behavior is specified by the following AIA control loop.

Observe the world and initialize history with observations;

1. interpret observations;

2. find an intended action e;

3. attempt to perform e and

update history with a record of the attempt;

4. observe the world,

update history with observations, and

go to step 1.

Figure 4.1: AIA control loop

The agent begins by observing his domain and initializing his history with the ob-

servations. In general the observations need not be complete. Let us assume however

for simplicity that the agent’s initial observations are complete. After initializing the

history, the agent enters a loop consisting of four steps. In step 1 the agent uses

diagnostic reasoning to explain unexpected observations. The agent explains these

observations by hypothesizing that some exogenous actions occurred unobserved in

the past. In step 2 the agent finds an intended action. An intended action is intu-

itively either to continue executing an ongoing activity that is expected to achieve

its goal; to stop an ongoing activity whose goal is no longer active (either achieved

or abandoned); to stop an activity that is no longer expected to achieve its goal; or

to start a chosen activity that is expected to achieve his goal. Of course, there may

be no way for the agent to achieve his goal or he may have no goal. In either case

the agent’s intended action is to wait. Step 3 corresponds to an output operation

where the agent attempts to perform an intended action and updates his history with
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a record of his attempt. Step 4 corresponds to an input operation where the agent

observes his domain. This includes not only values of fluents, but also occurrences

or non-occurrences of exogenous actions and the result of his attempt to perform his

intended action. This step concludes when the agent updates his history with the

observations and returns to step 1. For clarity we may refer to steps 1, 2, 3, and

4 of the AIA control loop as the interpret, determine action, act, and observe step,

respectively.

To precisely describe agents that always act in accordance with their intentions

(i.e agents that perform intended actions and do so without delay), we first precisely

define the notion of an intended action.

4.2.2 Determining which actions are intended

The reasoning task of determining which of the agent’s actions are intended at

his current step n is done in step 3 of the agent loop. This task depends on the

agent’s recorded history Γn, and more precisely on the possible current states and the

current mental state of Γn. Before we define these notions we introduce the following

important and interesting property of the pre-models of a history. Intuitively, the

corresponding states of all pre-models of a history differ only on values of physical

fluents and therefore coincide on values of mental fluents. This leads to the following

Lemma. We say that a fluent literal l is in the ith state of a trajectory P = 〈σ0, . . . , σn〉

if l ∈ σi in P .

Lemma 1. [Mental states]

Let Γn be a history of D. For every mental fluent literal l, if l is in the ith state of a

pre-model of Γn then l is in the ith state of every pre-model of Γn.

As we have mentioned before the models of the agent’s history Γn describe, from

the agent’s point of view, his possible pasts leading to possible current states at step

n. Such states can be partitioned into a state of the physical environment and the

agent’s mental state, which by Lemma 1 is the same in all possible current states.
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Now we precisely describe the notions of possible current state and current mental

state of a history.

Definition 19. [Possible current state and current mental state of a history]

A state σn is called a possible current state of history Γn if there is a model 〈σ0, . . . , σn〉

of Γn which ends in this state.

We refer to the mental state of a possible current state σn as the current mental state

cmn of Γn.

Before we describe the categories that histories, based on their current mental

state, can be partitioned into we introduce the following vocabulary. We say an

activity m or goal g is active in a current mental state cm if status(m, k) ∈ cm where

k 6= −1 or active goal(g) ∈ cm, respectively. We say that m or g are top-level in cm

if ¬minor(m) ∈ cm or ¬minor(g) ∈ cm, respectively. We say an action a is the next

action of m in cm if next action(m, a) ∈ cm.

Definition 20. [Categories of histories]

Let cmn be the current mental state of history Γn.

category 1 - there are no activities or goals that are active in cmn;

category 2 - there is an activity m such that m is top-level and active in cmn but

its goal g is no longer active in cmn (i.e the goal is either achieved (3.18) or

abandoned (3.15));

category 3 - there is an activity m such that m and its goal g are both top-level and

active and a is the next action of m in cmn;

category 4 - there is a goal g that is active in cmn but no activity with goal g is active

in cmn;

Now we consider which of the agent’s actions are intended when his history is of

each category. For categories 1 and 2, the determination depends only on the current

mental state of the history.
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Definition 21. [Intended action of a history of category 1 ]

Action wait is the intended action of category 1 history.

Definition 22. [Intended action of a history of category 2]

Action stop(m) is the intended action of category 2 history Γn if m is top-level in the

current mental state of Γn.

For category 3, it may seem that our agent’s intended action is his next action a, but

this is not always the case. The agent is careful and before intending to execute a,

he considers whether the continued execution of m is expected to achieve his goal g.

Intuitively a continued execution of an activity m is a trajectory such that the arcs

are labeled by the remaining actions of m. The outcome of the continued execution

depends on the state from which it begins, e.g for one state the continued execution

of m may be successful in achieving g, but for another it may not. Intuitively action

a is intended if there is at least one possible current state of Γn from which the

continued execution of m is said to be successful. The agent is not blindly committed

to executing m and if there is no possible current state from which the continued

execution of m is successful action stop(m) is intended. In the latter case the activity

m is said to be futile.

Now we formally define the notions of continued execution and intended action of

a history of category 3.

Definition 23. [Continued execution]

Let activity m and its goal g both be active and top-level in a state σn.

A trajectory 〈σn, an, . . . , σl〉 is called a continued execution of m from σn if

for any k, n ≤ k < l, ak = {a} where next action(m, a) ∈ σk.

A continued execution 〈σn, . . . , σl〉 is successful if g ∈ σl.

Definition 24. [Intended action of a history of category 3]

• Action a is the intended action of category 3 history Γn if

– a is the next action of top-level activity m in current mental state of Γn

and
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– there is a successful continued execution of m from a possible current state

of Γn;

• stop(m) is the intended action of Γn otherwise.

For category 4, the agent should either start an activity whose execution is expected

to achieve his intended goal g or wait when there is no such activity. Intuitively a

total execution of m is a trajectory that begins with the starting of m followed by a

successful continued execution of m. Our agent doesn’t want to waste time and since

he assumes that his mental actions occur very quickly he chooses an activity that he

expects to achieve his goal in as few occurrences of physical actions as possible. Such

activities are said to have total executions that are minimal. We call the activities

with goal g that are under consideration candidates. Intuitively starting a candidate

m is an intended action if there is a minimal total execution of m. Note also that

there may be more than one or no such candidate. In the former case, the agent has

more than one intended action, but only attempts to perform one of them in step 3.

In the latter case the goal g is said to be futile and action wait is the intended action.

Now we formally define the notions of total execution, minimal total execution, and

intended action of a history of category 4.

Definition 25. [Total execution]

Let goal g be active and top-level in a possible current state σn of category 4 history

Γn and m be an activity with goal g.

A trajectory 〈σn, {start(m)}, σn+1, . . . , σl〉 is called a total execution of m from Γn if

〈σn+1, . . . , σl〉 is a successful continued execution of m from σn+1.

Definition 26. [Minimal total execution]

A total execution Q of m from Γn is said to be minimal if there is no total execution

Q′ with fewer occurrences of physical actions.

Definition 27. [Intended action of a history of category 4]

1. Action start(m) is an intended action of category 4 history Γn if there is a total

execution of m from Γn that is minimal;
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2. Action wait is the intended action of Γn otherwise.

Note that it follows from the definition of categories and intended action for each

category that every history has an intended action (see Definitions 20-27).

4.2.3 Intentional History and Intended Model

Now we describe the behavior of intentional agents by describing histories that

reflect the behavior of an agent that acts in accordance with his intentions. Such

histories are called intentional. Intuitively intentional histories describe trajectories

called intended models where at each step the agent attempts to perform only actions

that are intended and does so without delay.

The definition of intentional history will be given by induction on its length n.

Definition 28. [Intentional history]

1. If n = 0 then Γ0 = O0 is an intentional history.

2. If n > 0 (i.e. Γn = Γn−1 ◦An−1 ◦On) and Γn−1 is an intentional history, then Γn

is an intentional history if the following condition is satisfied:

• An−1 contains a statement of the form: attempt(e, n − 1) and e is an

intended action of Γn−1.

Definition 29. [Intended model]

A model of an intentional history Γn is an intended model.

This concludes the description of the architecture for intentional agents (AIA).

In the next section we illustrate the architecture for intentional agents by describing

our agent Bob from Example 1 as an intentional agent designed according to the

architecture. The implementation/automation of the architecture will be described

in detail in a later chapter.

48



Texas Tech University, Justin Blount, December 2013

4.3 Examples of intentional agent reasoning and behavior

In this section we show how an agent designed according to the architecture for

intentional agents displays the reasoning and behavior illustrated in Example 1. Let

us begin by assuming that our agent Bob’s knowledge base contains an intentional

system description D consisting of:

• the system description E (see Example 2) that models the environment consist-

ing of our agent Bob, his colleague John, a row of four rooms, r1, r2, r3, r4

connected by doorways, such that both Bob and John may move along the row

from one room to the next. The door between r3 and r4 can be locked/unlocked

by both Bob and John;

• Initially Bob has no activities are deemed to be relevant (i.e. ir has a value of

1 (see Section 3.1)));

• the theory of intentions T I (Section 3.2);

In each of the following examples, we first give a summary of a scenario followed by

a trace of the agent loop that illustrates that our intentional agent Bob is capable of

the reasoning and behavior from the scenario. Specifically, Example 5 is of scenario

1 which illustrates planning (i.e. determining which activity has a minimal total

execution) and Example 6 is of scenario 2 which illustrates diagnosis and replanning.

The remaining scenarios from Example 1 are similar.

Example 5. [Scenario 1 revisited]

Summary:

Initially Bob knows that he is in r1, his colleague John is in r3, and the door between

r3 and r4 is unlocked. Suppose Bob’s boss requests that he meet with John and as a

result Bob’s intends to do so. To fulfill his intention of meeting John, Bob intends to

execute the activity consisting of the two step plan to move from r1 to r3. The process

of executing an activity begins with a mental action to start the activity. Assuming

there are no interruptions, he continues with the execution of each action in the
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plan (in this case, moving to r2, then to r3). After meeting John in r3, the process

concludes with an action to stop the activity.

Trace of AIA control loop:

Bob initially knows that he is r1, his colleague John is in r3, and that the door

between r3 and r4 is unlocked 6:

O0 =


obs(in(b, r1), true, 0),

obs(in(j, r3), true, 0),

obs(locked(r3, r4), false, 0)

and creates his initial history Γ0 = O0 with his initial observations. After initializing

the history, the agent enters a loop consisting of four steps:

1. Interprets his observations and determines that his observations are not incon-

sistent with his expectations (i.e no diagnosis is needed).

2. Determines that his intended action is to wait. History Γ0 is of category 1.

3. Attempts to perform wait, and

updates history with A0 = attempt(wait, 0).

4. Receives request from his boss to meet with John and observes the result of his

attempt to wait:

O1 =

 hpd(select(meet(b, j)), true, 0),

hpd(wait, true, 0)

and updates history with his observation:

Γ1 = Γ0 ◦ A0 ◦O1 (4.2)

1. Interprets his observations and determines that no diagnosis is needed.

2. Determines that his intended action is start(1) where activity 1 has plan

6The agent’s initial observations O0 are legal (see Definition 18), and therefore also contain:
obs(status(m,−1), true, 0) for every activity m, obs(active goal(g), false, 0) for every possible goal
g, and obs(next name(1), true, 0). For space these observations are omitted.
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[move(b, r1, r2),move(b, r2, r3)] and goal meet(b, j). History Γ1 is of category

4 and the total execution of activity 1 is minimal. Note that the planning is a

special case of determining which action is intended.

3. Attempts to perform start(1), and

updates history with A1 = attempt(start(1), 1).

4. Due to his observation strategy (4.1), the agent always observes the result of

his attempt to perform an action and the truth value of his goal. The agent

observes that start(1) did occur and that his goal is not achieved:

O2 =

 hpd(start(1), true, 1),

obs(meet(b, j), false, 2)

and updates history with the observations:

Γ2 = Γ1 ◦ A1 ◦O2 (4.3)

1. Interprets his observations and determines that no diagnosis is needed.

2. Determines that move(b, r1, r2) is the intended action. History Γ2 is of category

3, move(b, r1, r2) is the next action of 1, and there is a successful continued

execution.

3. Attempts to perform move(b, r1, r2), and

updates history with A2 = attempt(move(b, r1, r2), 2).

4. Observes that his move to r2 occurred and that he and John did not meet:

O3 =

 hpd(move(b, r1, r2), true, 2),

obs(meet(b, j), false, 3)

and updates history with the observations:

Γ3 = Γ2 ◦ A2 ◦O3 (4.4)
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1. Interprets his observations and determines that no diagnosis is needed.

2. Determines that move(b, r2, r3) is the intended action. History Γ2 is of category

3, move(b, r2, r3) is the next action of 1, and there is a successful continued

execution.

3. Attempts to perform move(b, r2, r3), and

updates history with A3 = attempt(move(b, r2, r3), 3).

4. Observes that his move to r3 occurred and that he and John meet.

O4 =

 hpd(move(b, r2, r3), true, 3),

obs(meet(b, j), true, 4)

and updates history:

Γ4 = Γ3 ◦ A3 ◦O4

1. Interprets his observations and determines that no diagnosis is needed.

2. Determines that stop(1) is the intended action. History Γ4 is of category 2 (i.e.

activity 1 is active but meet(b, j) is not).

3. Attempts to perform stop(1), and

updates history with A4 = attempt(stop(1), 1).

4. Observes that stop(1) has occurred.

O5 =
{
hpd(stop(1), true, 4)

and updates history:

Γ5 = Γ4 ◦ A4 ◦O5

Example 6. [Scenario 5 revisited]

Summary:

Suppose now that Bob moved from r1 to r2 and then to r3, but observes that John

is not there. Bob must recognize that his activity failed to achieve the goal. Further

analysis should allow Bob to conclude that, while he was executing his activity, John
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must have moved to r4. Bob doesn’t know exactly when John moved and there are

three possibilities. John could have moved while Bob was 1) starting his activity, 2)

moving to r2, or 3) moving to r3. In any case since Bob is committed to achieving

his goal of meeting John his intention to do so persists. Bob starts a new activity

(containing a plan to move to r4) to achieve the goal of meeting John.

Trace of AIA control loop:

We omit the first three iterations that result in Γ3 (4.4) and begin this example at

the fourth iteration from Example 5:

1. Interprets his observations and determines that no diagnosis is needed.

2. Determines that move(b, r2, r3) is the intended action. History Γ3 is of category

3, move(b, r2, r3) is the next action of 1, and there is a successful continued

execution.

3. Attempts to perform move(b, r2, r3), updates history Γ3 with A3 =

attempt(move(b, r2, r3), 3).

4. Observes that his move to r3 occurred but that he and John did not meet and

that John is not in r3.

O4 =


hpd(move(b, r2, r3), true, 3),

obs(in(j, r3), false, 4),

obs(meet(b, j), false, 4)

and updates history with his observations:

Γ4 = Γ3 ◦ A3 ◦O4 (4.5)

1. Interprets his observations and determines that an explanation of John’s ab-

sence from r3 is required. History Γ4 has three models. One for each possible

explanation of the unexpected observation of John not being in r3. John must

have moved to r4 unobserved at step 1, 2, or 3.

2. Determines that stop(1) is the intended action. The history Γ4 is of category 2.
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3. Attempts to perform stop(1), and

updates history with A4 = attempt(stop(1), 4).

4. Observes that stop(1) has occurred and that he and John did not meet:

O5 =

 hpd(stop(1), true, 4),

obs(meet(b, j), false, 5)

and updates history with his observations:

Γ5 = Γ4 ◦ A4 ◦O5 (4.6)

1. Interprets his observations and determines that no additional diagnosis is

needed.

2. Determines that start(2), where 2 contains plan [move(b, r3, r4)], is the intended

action. History Γ5 is of category 4 and the total execution of activity 2 is

minimal.

3. Attempts to perform start(2), and

updates history with A5 = attempt(start(2), 5).

4. Observes that start(2) has occurred and that he and John did not meet.

O6 =

 hpd(start(2), true, 5),

obs(meet(b, j), false, 6)

and updates history with his observations.

Γ6 = Γ5 ◦ A5 ◦O6
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CHAPTER V

AUTOMATING BEHAVIOR OF INTENTIONAL AGENTS

In this chapter we present a refinement of the AIA control loop (4.1) in which

reasoning tasks are reduced to computing answer sets of programs constructed from

the agent’s knowledge and a prototype implementation of the architecture. Consider

an intentional agent whose domain is given by an intentional system description D

and whose history is Γn.

As mentioned before there are two major reasoning tasks in the control loop:

interpreting observations in step 1 and finding an intended action in step 2. Before

we describe the CR-Prolog program Π(D,Γn), which allows for the automation of

both reasoning tasks, we first outline the process of how the program is used in terms

of the control loop. Recall that we will use the preference relation on cardinality of

sets of cr-rules (Section 2.2).

In step 1 the first reasoning task is accomplished by finding a model of

Γn. Recall that models of a history include any necessary explanations of unex-

pected observations. A model of Γn is found by computing an answer set A1 of

Π(D,Γn). The number x of unobserved exogenous actions is extracted from the atom

number unobserved(x, n) from A1, and is used to form the atom interpretation(x, n).

Such an atom is called a flag and indicates that the agent has interpreted his observa-

tions (i.e. completed step 1 of the loop) and determined that x unobserved occurrences

of exogenous actions are necessary to satisfy his history. Note that we do not need to

record the actual unobserved occurrences of exogenous actions, but only the number

of such occurrences necessary at the current step n. In step 2 for the second reason-

ing task, an intended action e is found by computing an answer set A2 of program

Π(D,Γn) ∪ {interpretation(x, n).} and extracting the intended action e from the

atom intended action(e, n) from A2. The addition of the flag for the second reason-

ing task is important. The flag primarily serves as a means of using the same program

for both different reasoning tasks. We accomplish this by including the flag in the
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bodies of the rules for determining intended actions (described in Section 5.1.3). The

result is that those rules may fire only when the flag is present and otherwise will be

ignored (i.e. when interpreting observations).

5.1 Construction of Π(D,Γn)

Now we are ready to describe program Π(D,Γn) which consists of the following

parts:

1. Π(D) - the translation of D into ASP rules;

2. Π(Γn) - a collection of rules for computing models of Γn.

3. IA(n) - a collection of rules for determining intended actions at n.

These parts will described in Sections 5.1.1, 5.1.2, and 5.1.3, respectively. In Section

5.2 we describe the algorithm iterate(Γn) in which reasoning tasks are reduced to

computing answers sets. Finally in Section 5.3, we introduce a prototype implemen-

tation of the AIA architecture called the AIA Agent Manager.

5.1.1 Translation of intentional system description D into ASP

In this section we construct a program Π(D). Except for the translation of activ-

ities the translation of D into ASP is given in Section 2.4.2. Recall that D contains

a collection of pre-defined nested activities and all possible flat activities. The latter

may result in a very large number of activities and therefore only those activities that

are deemed to be relevant are included in Π(D). The collection of relevant activities

includes at a minimum all of the nested activities of D and all of the flat activities

that are components of nested activities. A description of a flat activity (which is

not already in the program) is added to Π(D) whenever the agent chooses to execute

the activity to achieve his goal. See Subsection 5.1.3 for more details of the process

of adding activities to Π(D).
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5.1.2 Rules for computing models of Γn

In this section we construct ASP program Π(Γn). We begin by describing the

encodings of the statements of Γn in ASP. Then we describe the ASP rules that

correspond to the conditions required by the definition of a model of Γn (see Definition

17). Finally we precisely describe the relationship between answer sets of program

Π(D) ∪ Π(Γn) and models of Γn.

In what follows we use possibly indexed variables I to range over steps. Similarly

for fluents F , boolean values B, indices K, activity names M , possible goals G,

components C, actions E, agent actions AA, mental agent actions MAA, physical

agent actions PAA, special mental exogenous actions SEA, and physical exogenous

actions PEA.

Π(Γn) contains:

all statements in Γn each followed by “.”

and a statement: current step(n).
(5.1)

Activities must be unique i.e there are no two activities with the same goal and plan.

comp(PAA). comp(M).

equal(M,M1) ← goal(M,G), goal(M1, G),

equal plan(M,M1).

equal plan(M,M1) ← length(M,L), length(M1, L),

not different component(M,M1).

different component(M,M1) ← component(M,K,C),

component(M1, K, C1),

C 6= C1.

← equal(M,M1),

M 6= M1.

(5.2)
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The next two remaining axioms are auxiliary.

h(F, 0) ← obs(F, true, 0).

¬h(F, 0) ← obs(F, false, 0).
(5.3)

The following rules (5.4, 5.5, and 5.6) correspond to the conditions in the definition

of satisfy (see Definition 15). The first two axioms are the Reality Check axioms

from [Balduccini & Gelfond, 2003a] which guarantee the agent’s observations do not

contradict his expectations.

← current step(I1),

I ≤ I1,

obs(F, false, I),

h(F, I).

← current step(I1),

I ≤ I1,

obs(F, true, I),

¬h(F, I).

(5.4)

The next two rules guarantee that occurrences of actions that are observed to

have happened or not to have happened actually occur or do not occur, respectively.

occurs(E, I) ← current step(I1),

I < I1,

hpd(E, true, I).

¬occurs(E, I) ← current step(I1),

I < I1,

hpd(E, false, I).

(5.5)

The following two rules guarantee that an observation that an agent action did not
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occur is due to the violation of an executability condition for that action.

occurs(AA, I) ← current step(I1),

I < I1,

attempt(AA, I),

not impossible(AA, I).

← current step(I1),

I < I1,

occurs(AA, I),

not attempt(AA, I).

(5.6)

The following rules (5.7 - 5.11) correspond to the conditions in the definition of

pre-model (see Definition 16).

The first three rules guarantee that the agent’s controller does not simultaneously

select multiple goals and only selects a goal when the agent has neither an active goal

or activity.

impossible(select(G), I) ← current step(I1),

I < I1,

occurs(select(G1), I),

G 6= G,

impossible(select(G), I) ← current step(I1),

I < I1,

h(active(M), I).

impossible(select(G), I). ← current step(I1),

I < I1,

h(active goal(G), I).

(5.7)

The following two rules guarantee that the initial observations are legal (see Defi-

nition 18) (i.e. that initially all goals and activities are inactive and that next name
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has value of ir).

h(status(M,−1), 0).

¬h(active goal(G), 0).

h(next name(ir), 0).

(5.8)

The following eight rules guarantee that the agent always observes the results of

his attempts to perform actions, occurrences of actions performed by his controller,

and the truth value of his goal.

observed result(AA, I) ← current step(I1),

I ≤ I1,

hpd(AA,B, I).

← current step(I1),

I ≤ I1,

attempt(AA, I),

not observed result(AA, I).

(5.9)

← current step(I1),

I < I1,

occurs(select(G), I),

not hpd(select(G), true, I).

← current step(I1),

I < I1,

occurs(abandon(G), I),

not hpd(abandon(G), true, I).

(5.10)
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need to obs goal(G, I) ← current step(I1),

I ≤ I1,

h(active goal(G), I − 1),

need to obs goal(G1, I) ← current step(I1),

I ≤ I1,

goal(M1, G1),

h(immediate child goal(G1, G), I).

h(active goal(G), I).

(5.11)

observed goal(G, I) ← current step(I1),

I ≤ I1,

obs(G,B, I).

← current step(I1),

I ≤ I1,

need to obs goal(G, I),

not observed goal(G, I).

(5.12)

The next rule corresponds to the condition from the definition of model (see defi-

nition 17), which limits the number of unobserved occurrences of exogenous actions

to the minimal number necessary to satisfy the observations. This is found by the

following cr-rule.

diag(PEA, I2, I1) : occurs(PEA, I2)
+← current step(I1),

I2 < I1.
(5.13)

The last two rules are for determining the value of the flag by simply counting the

number of unobserved occurrences of physical exogenous actions. The first describes
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such occurrences and the second is an aggregate that counts them.

unobserved(PEA, I) ← current step(I1),

I < I1,

occurs(PEA, I),

not hpd(PEA, true, I).

(5.14)

number unobserved(N, I) ← current step(I),

N = #count{unobserved(EX, IX)}.
(5.15)

Relationship between answer sets and models

Now we describe the relationship between answer sets of Π(D) ∪ Π(Γn) and models

of Γn. The following terminology from [Balduccini & Gelfond, 2003a] will be useful

for describing such relationships. Let lit(Π) be the collection of all literals occurring

in the rules of program Π.

Definition 30. [Defines a sequence]

Let Γn be a history of D and A be a set of literals over lit(Π(D) ∪ Π(Γn)).

We say that A:

• defines a sequence: 〈σ0, a0, σi, . . . , an−1, σn〉

if σi = {l|h(l, i) ∈ A} for any 0 ≤ i ≤ n and ak = {a|occurs(a, i) ∈ A} for any

0 ≤ i < n;

Lemma 2. [Computing models of Γn]

If Γn is an intentional history of D then Pn is a model of Γn iff Pn is defined by some

answer set A of Π(D) ∪ Π(Γn).

Lemma 3. [Determining the flag]

If Γn is an intentional history of D then for every answer set A of Π(D) ∪ Π(Γn)

number unobserved(x, n) ∈ A iff there are x unobserved occurrences of exogenous

actions in A.
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In the next section we define the rules for determining which actions are intended

at the current step.

5.1.3 Rules for finding intended actions of Γn

In this section we complete the description of Π(D,Γn) by describing the collection

of rules IA(n) which are for determining which of the agent’s actions are intended

at the current step n. This reasoning is done in step 2 of the loop after the agent

has created a flag interpretation(x, n). Finally we precisely describe the relationship

between answer sets Π(D,Γn) ∪ interpretation(x, n) and intended actions of Γn.

We begin with the following constraint which requires the agent to adhere to

the outcome of the reasoning completed in step 1. While the agent is determining

which of his actions are intended, he must assume exactly the number of unobserved

occurrences of exogenous actions that is recorded in the flag. This constraint prevents

the agent from assuming additional occurrences of exogenous actions.

← current step(I),

number unobserved(N, I),

interpretation(X, I),

N 6= X.

(5.16)

Now we give the rules which describe the categories of the history (see Definition

20). The flag interpretation(x, n) is included in the bodies of these rules so that they

may fire only when the flag is present (i.e. when in step 2 of the loop). Note also

that, other than the constraint (5.16), the number x from the flag is not used and

that the presence of the flag is all that is needed.
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The following two rules are auxiliary.

active goal or activity(I) if current step(I),

interpretation(N, I),

h(active goal(G), I).

active goal or activity(I) if current step(I),

interpretation(N, I),

h(active(M), I).

(5.17)

The history is of category 1 when there are no active goals or activities.

category 1 history(I) ← current step(I),

interpretation(N, I),

not active goal or activity(I).

(5.18)

The history is of category 2 when a top-level activity is active but the goal of the

activity is not.

category 2 history(M, I) ← current step(I),

interpretation(N, I),

¬h(minor(M), I),

h(active(M), I),

goal(M,G),

¬active goal(G).

(5.19)

The history is of category 3 when a top-level activity and its goal are both active
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(i.e. the activity is in progress, rule (3.23)).

category 3 history(M, I) ← current step(I),

interpretation(N, I),

¬h(minor(M), I),

h(in progress(M), I).

(5.20)

The history is of category 4 when a top-level goal is active but no activity with

the goal is active (i.e the goal is not in progress, rule (3.23)).

category 4 history(G, I) ← current step(I),

interpretation(N, I),

¬h(minor(G), I),

h(active goal(G), I),

¬h(in progress(G), I).

(5.21)

Now we give rules that describe the agent’s intended actions for each category.

Recall that the agent’s intended action is to wait or stop his activity when his history

is of category 1 or category 2, respectively (see Definitions 21 and 22). This is described

by the following rules.

intended action(wait, I) ← current step(I),

interpretation(N, I),

category 1 history(I).

(5.22)

intended action(stop(M), I) ← current step(I),

interpretation(N, I),

category 2 history(M, I).

(5.23)

Before we give the ASP definition of the intended action when the history is of

category 3, we first formalize the notion of a continued execution of an activity from
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the current step (see Definition 23). Recall that a continued execution of an activity

is a trajectory whose arcs are labeled by the remaining actions of the activity. This

is described by the following rule.

occurs(AA, I1) ← current step(I),

category 3 history(M, I),

interpretation(N, I),

I ≤ I1,

¬h(minor(M), I1),

h(in progress(M), I1),

h(next action(M,AA), I1),

not impossible(AA, I1).

(5.24)

The following rule describes the successful outcome of a continued execution and

the second is a CWA (Closed World Assumption).

projected success(M, I) ← currrent step(I),

interpretation(N, I),

¬h(minor(M), I),

I < I1,

h(active(M), I1),

goal(M,G),

h(G, I1).

¬projected success(M, I) ← current step(I),

interpretation(N, I),

not projected success(M, I).

(5.25)

Recall that the intended action of a history of category 3 is the next action of

the top-level activity when there is a successful continued execution from a possible

current state, and to stop the activity otherwise (see Definition 24). The first case is
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described by the following rule.

intended action(AA, I) ← current step(I),

interpretation(N, I),

category 3 history(M, I),

h(next action(M,AA), I),

projected success(M, I).

(5.26)

The second case says that the intended action is to stop the top-level activity

when there is no possible current state from which there is a successful continued

execution. The next five rules describe this case.

The following constraint (5.27) forbids all answer sets where ¬projected success

(i.e. the continued execution of the activity is not successful). If some are left (i.e.

there is a successful continued execution) then the intended action is given by rule

(5.26); however if there is no such answer set then the activity is futile and the intended

action is defined by rules (5.28 and 5.29). This type of requirement is referred to as

a soft requirement [Balduccini, 2004].

← current step(I),

interpretation(N, I),

category 3 history(M, I),

¬projected success(M, I),

not futile(M, I).

(5.27)

futile activity(M, I) : futile(M, I)
+← current step(I),

interpretation(N, I),

category 3 history(M, I),

¬projected success(M, I).

(5.28)
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intended action(stop(M), I) ← current step(I),

interpretation(N, I),

category 3 history(M, I),

futile(M, I).

(5.29)

Now we give the ASP definition of the intended action of a history of category

4. Recall that the intended action is to either start an activity whose execution is

expected to achieve the goal g in as few occurrences of physical actions as possible or

to wait when there is no such activity (see Definition 27). The activities with goal g

that are under consideration are called candidates. Those candidates that are already

described in the program are called existing candidates while all others are called new

candidates.

In the first case the intended action is to start a candidate that has a total execu-

tion that is minimal (see Definitions 25 and 26). Of course there may be more than

one candidate with a minimal total execution and in this case the agent has more

than one intended action, but only attempts to perform one of them. Intuitively there

is an answer set for each possible current state σ and candidate m for which there is a

minimal total execution of m from σ. Each of these answer sets describe an intended

action start(m).

In the second case there is no candidate that is expected to achieve g (i.e g is futile).

Intuitively there is an answer set for each possible current state σ and candidate m for

which the execution of m from σ is not expected to achieve g. Each of these answer

sets describe an intended action.

The following rules give the ASP definitions of new and existing candidate activi-

ties. Intuitively activities with names before the next name (see rule 3.32) are existing.

Of course, initially the activities whose names are less than ir are existing candidates.

All new candidates are provisionally given the name m where next name(m) holds

in the current state. If the starting of a new candidate m is the intended action, the

description of m is added to Π(D) (i.e. the new candidate is now relevant). After m
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is started the value of fluent next name is incremented (see rule 3.32).

existing candidate(M, I) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

h(next name(M1), I),

M < M1,

goal(M,G).

new candidate(M, I) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

h(next name(M), I).

candidate(M, I) ← new candidate(M, I).

candidate(M, I) ← existing candidate(M, I).

(5.30)

The following rules guarantee that each answer set contains at most the starting

of a single candidate activity.

occurs(start(M), I) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

candidate(M, I),

goal(M,G),

not impossible(start(M), I).

(5.31)
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impossible(start(M), I) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

goal(M1, G),

occurs(start(M1), I),

M 6= M1.

(5.32)

The following rule (5.33) guarantees that candidates that are started by rule (5.31)

achieve the goal by forbidding all answer sets where ¬projected success (i.e. the

execution of the candidate is not successful). If none are left then the goal is futile

and the intended action is defined by rules (5.34 and 5.35); however if there are some

left then the intended action to start a candidate is given by rules (5.37 - 5.44).

← current step(I),

interpretation(N, I),

category 4 history(G, I),

occurs(start(M), I),

¬projected success(M, I),

not futile(G, I).

(5.33)

futile goal(G, I) : futile(G, I)
+← current step(I),

interpretation(N, I),

category 4 history(G, I),

occurs(start(M), I),

¬projected success(M, I).

(5.34)

intended action(wait, I) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

futile(G, I).

(5.35)
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The following rule is auxiliary.

some action occurred(I1) ← current step(I),

interpretation(N, I),

I ≤ I1,

occurs(E, I1).

(5.36)

Now we give the rules for reasoning about new candidates. To describe a new

candidate we must give it a name, goal, and plan. Recall that the name is generated

by fluent next name at the current step. The goal of the new activity is given by the

following rule.

goal(M,G) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M), I).

(5.37)

The plan of a new candidate is defined by the following four rules. The first rule

generates a minimal uninterrupted sequence of occurrences of physical actions and

the second rule creates component statements based on those occurrences. The third

rule guarantees that multiple actions do not have the same index. Finally the fourth

rule describes the length of the new candidate.

plan new(PAA, I1) : occurs(PAA, I1)
+← current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M), I),

I < I1,

some action occurred(I1− 1).

(5.38)
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component(M, I1− I, PAA) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M),

occurs(PAA, I1).

(5.39)

← current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

component(M,K,PAA1),

component(M,K,PAA2),

PAA1 6= PAA2.

(5.40)

has comp(M,K) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M),

component(M,K,C).

length(M,K) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M),

has comp(M,K),

not has comp(M,K + 1).

(5.41)

The following two rules are for generating the occurrences of the actions defined
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by the plan of an existing activity. The following rule generates the minimal number

of occurrences of physical actions defined by the plan of the existing candidate. Note

that not all of the actions will occur (i.e. be generated) if the plan achieves the goal

early.

plan existing(PAA, I1) : occurs(PAA, I1)
+← current step(I),

interpretation(N, I),

category 4 history(G, I),

existing candidate(M, I),

occurs(start(M), I),

I < I1,

h(next action(M,PAA), I1),

some action occurred(I1− 1).

(5.42)

The following rule generates the occurrences of mental agent actions, MAA, that may

be a part of the total execution of an existing activity. Note that this rule is required

for existing activities because they may be nested 1.

occurs(MAA, I1) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

existing candidate(M, I),

occurs(start(M), I),

I < I1,

h(in progress(M), I1),

h(next action(M,MAA), I1).

(5.43)

The next rule describes the intended action to start a candidate activity (new or

existing) whose execution is expected to achieve the goal in as few occurrences of

1Such a rule is not necessary for new candidates because they are always flat
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physical actions as possible.

intended action(start(M), I) ← current step(I),

interpretation(N, I),

category 4 history(G, I),

candidate(M, I),

occurs(start(M), I),

projected success(M, I).

(5.44)

The last two rules are preference statements of CR-Prolog and ensure that a goal

is futile (i.e. rule 5.34 fires) only if there is no candidate that is expected to achieve

the goal. The syntax of these rules is prefer(r1, r2) where r1 and r2 are names of

cr-rules. The preferences say to consider answer sets found by using cr-rule named

futile goal(G, I) (5.34) only if there is no answer set found by using either cr-rules

named plan new(PAA, I) (5.38), or plan existing(PAA, I) (5.42).

prefer(plan new(PAA, I1), futile goal(G, I)). (5.45)

prefer(plan existing(PAA, I1), futile goal(G, I)). (5.46)

This concludes the description of IA(n) and completes the description of program

Π(D,Γn) = Π(D) ∪ Π(Γn) ∪ IA(n).

5.2 Refinement of AIA Control Loop

In this section we present a refinement of the AIA Control Loop (4.1) in which

reasoning tasks are reduced to computing answer sets of programs constructed from

the agent’s knowledge. Finally we present a theorem which guarantees that histories

constructed by the AIA control loop are intentional (see Definition 28).

Recall that an intentional agent’s knowledge base initially only contains intentional

system description D. The agent begins by making initial observations O0 of his
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environment. The agent uses O0 to create his initial history Γ0 = O0. With his initial

history Γ0 the agent performs steps 1, 2, 3, and 4, called an iteration on Γ0, which

results in a new history Γ1. The agent continues to perform subsequent iterations on

his history Γn, each time creating the new history Γn+1.

Now we give a brief narrative of the entire process of going through an iteration on

Γn. In step 1, the agent computes a model of the history Γn by computing an answer

set A1 of the program Π(D,Γn). The number x of unobserved exogenous actions is

extracted from the atom number unobserved(x, n) from A1, and is used to form the

flag interpretation(x, n). The flag indicates that at step n the agent has interpreted

his observations and determined that x unobserved occurrences of exogenous actions

are necessary to satisfy his history. In step 2, the agent finds an intended action by

computing an answer set of Π(D,Γn) ∪ {interpretation(x, n).}. In step 3, the agent

attempts to perform an intended action and updates the history Γn with a record of

the attempt. In step 4, the agent makes observations On+1 of his domain at the new

current step n+1 and forms history Γn+1 by updating Γn with the observations On+1.

Before we present the algorithm iterate(Γn), we introduce two auxiliary functions

which correspond to input from the agent’s sensors and outputs to the agent’s actua-

tors. The first function observe(n) returns a collection of the agent’s observations of

values of physical fluents at n, occurrences or non-occurrences of exogenous actions

at n − 1, and the result of his attempt to perform an action at n − 1. The second

function attempt to perform(e, n) corresponds to a command to the agent’s actua-

tors to perform action e at n and returns a record of the agent’s attempt to perform

e at n. The lines of the function that correspond to step 1 of the AIA control loop

are labeled with (1a), (1b), etc. Similarly for steps 2, 3, and 4.

function iterate(Γn) (5.47)

Input: an intentional history Γn.

Output: an intentional history Γn+1.

var Γ, Γn+1 : history
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(1a) Γ := Γn;

(1b) Compute an answer set A1 of Π(D,Γn);

(1c) Extract x such that number unobserved(x, n) ∈ A1;

(2a) Compute an answer set A2 of Π(D,Γn) ∪ {interpretation(x, n).};

(2b) Extract e such that intended action(e, n) ∈ A2;

(3a) Γ := Γn ◦ attempt to perform(e, n) 2;

(4a) Γn+1 := Γ ◦ observe(n+ 1);

(4b) return Γn+1;

end

Now we give our correctness condition of the algorithm.

Theorem 1. [Correctness of iterate(Γn) algorithm]

If Γn is an intentional history of D and On+1 are the observations made by the agent

at step n+ 1 then a history Γn+1 that is the result of iterate(Γn), contains On+1 and

is an intentional history.

In the next section we describe a prototype implementation of the AIA.

5.3 AIA Agent Manager: A prototype implementation

The AIA Agent Manager, is implemented in JAVA and allows the user to specify

observations (Figures 5.1 and 5.2), execute a number of iterations of the AIA control

loop, and to inspect the agent decisions and expectations of the future (Figure 5.3).

When using the AIA Agent manager, the user must provide a formalization of

the domain written in ASP and CR-Prolog.

2If e = start(m) where m is new candidate, the description of m from A2 is added to Π(D).
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Figure 5.1: Initial observations from Scenario 1 of Example 1: Initially Bob is in
room r1 and John is in r3 and the special door between r3 and r4 is unlocked.
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Figure 5.2: Observations of the occurrence of select(meet(b, j)) at step 0 and of the
value of fluent meet(b, j) at step 1.
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Figure 5.3: The intended action is start the activity 1 (3.2) to achieve the goal of
meeting John.
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CHAPTER VI

RELATED WORK

The AIA is an implementation of the belief-desire-intention (BDI) model of

agency [Bratman et al., 1988] which is based on a BDI theory of human reasoning

[Bratman, 1987]. It can be viewed as a special case of a more general abstract BDI

architecture [Rao & Georgeff, 1991], [Rao, 1996], and [Wooldridge, 2000]. These BDI

systems are grounded in declarative logics for reasoning about an agent’s beliefs, de-

sires, and intentions. These logics are not executable and not clearly connected to

executable systems. In our approach we remedy this problem.

The AIA is based on two recent and substantial works. The overall structure

and underlying assumptions of the AIA are based on the Autonomous Agent Archi-

tecture (AAA) [Balduccini & Gelfond, 2008] (see Section 2.5) which assumes that the

world can be viewed as a discrete dynamic system, models the agent’s knowledge and

reasoning methods in declarative knowledge representation languages based on the

answer set semantics [Gelfond & Lifschitz, 1991], and organizes the agent’s behavior

by a simple observe-think-act loop. AAA agents also maintain a recorded history

of their observations and actions, and reasoning methods of planning and diagnosis

share the same domain model and are reduced to computing answer sets of programs

constructed from the agent’s knowledge. The AAA is primarily focused on the rea-

soning tasks that occur at steps of the loop, and lacks the ability to represent and

reason about behavior over multiple iterations of the loop (e.g. persistence in the

commitment to (i) execute a plan and (ii) achieve a goal). In [Wooldridge, 2000], we

see that intentions play the following important roles in intelligent behavior:

• Intention drive means-end reasoning. If I have an intention, then I will attempt

to achieve the intention, which involves, among other things, deciding how to

achieve it. Moreover, if one course of action fails to achieve an intention, then

I will attempt others.

• Intentions persist. I will not usually give up on my intentions without good
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reason – they will persist, typically until I believe I have successfully achieved

them, I believe I cannot achieve them, or I believe the reason for the intention

is no longer present.

In formalizing the notion of intention we borrow some basic intuition

about such properties of intentions as persistence and non-procrastination from

[Baral & Gelfond, 2005], where the authors formalized the behavior of an agent

intending to execute a sequence of actions in ASP. While the theory from

[Baral & Gelfond, 2005] has been used for question answering from natural language

[Inclezan, 2010], for activity recognition [Gabaldon, 2009], and for other intelligent

tasks, it is not sufficient for the goal-oriented reasoning of intentional agents. The

technical features of our theory of intentions are quite different and substantially more

advanced.

We expand and modify AAA in the following ways:

1. We extend the model of the domain to include a model of the agent’s mental

state (i.e. the theory of intentions (Section 3.2)), and provide an algorithm

which, given a domain description and a recorded history, determines the in-

tended action of the agent. With these two extensions, we add the notion of

intended behavior to our architecture.

2. We relax the condition on the ability of the agent to perform actions. In the

AAA, an agent is assumed to be able to perform actions. While an AAA agent

does not necessarily have complete knowledge of the state of the domain, this

assumption does imply that the agent knows if an executability condition of one

of his actions is violated. We noticed that it may be the case that the agent does

not have such information, and that he may therefore attempt to perform an

action when it is not executable. As a result, we extend the notion of a history

to include records of the agent’s attempts to perform actions. Such attempts

may be successful or not based on whether the executability conditions of the

action are violated.
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3. We noticed that it would be natural to be able to observe that an action (agent or

exogenous) did not occur. The extension of the language of histories to include

observations that an action did not occur was to our knowledge first made in

[Inclezan & Gelfond, 2011]. This extension not only allows for observations of

the non-occurrence of exogenous actions, but also is the means to record the

agent’s failed attempts to perform his own actions (illustrated in Scenario 6

from Example 1).

4. We allow an agent to refine his collection of possible explanations in light of

new information (illustrated in Scenario 7 of Example 1).

5. The agent does not plan, i.e. find a sequence of actions to achieve the goal,

in every iteration through the loop. Instead the agent’s plans are stored in

the description of the diagram, as activities, and the state of the execution of

his activities are part of his mental state. Both of these allow the agent to

remember the sequence he was executing in the previous iteration of the loop,

to check whether the plan is still expected to be successful, and to continue

executing it without having to generate a new sequence.

6. Goal selection is simplified. Instead of being a separate step, it is part of the

observation step via observations of occurrences of special exogenous actions

select and abandon (See axioms 3.15).
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

In this dissertation, we have presented the AIA architecture for the design and

implementation of intentional agents.

We presented a formal model of an intentional agent and its environment that

includes the mental state of the agent along with the state of the physical environment.

Such a model was capable of representing activities, goals, and intentions.

We presented an AIA control loop which given such a model describes an AIA

agent that is able to:

• explain unexpected observations by hypothesizing that some exogenous action

occurred unobserved in the past;

• recognize the unexpected success of a goal and the futility of a goal or activity;

• determine which of his actions are intended;

• behave in accordance with his intentions.

We believe that the combination is new in literature.

7.2 Future Work

We see several directions in which the work presented in this dissertation can be

extended:

• More work needs to be done on goal selection and abandonment. Currently these

are performed by the agent’s controller and are seen as inputs to the agent. In

particular it will be interesting to see how and to what extent goal selection

and abandonment can be guided by a policy from [Gelfond & Lobo, 2008] a

collection or by a collection of triggers and/or preferences and soft constraints

of CR-Prolog.
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• We believe that the theory of intentions (Section 3.2) should become

a module of ALM [Gelfond & Inclezan, 2009b],[Gelfond & Inclezan, 2010],

[Inclezan & Gelfond, 2011], [Inclezan, 2012]. This implies that the notion of

intentional system description would become a theory of ALM comprised of

a theory of intentions module and a collection of modules that describe the

physical environment.

• We believe that the theory of intentions could serve as a basis of a solution to

the Activity/Plan Recognition problem [Kautz & Allen, 1986], [Kautz, 1987],

[Ramırez & Geffner, 2009].

• We would like to allow multiple top-level goals and to expand planning to allow

for the creation of new candidate activities that are nested.
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APPENDIX A: Programs

The appendix contains all of the ASP/CR-Prolog rules for the theory of intentions,

rule for computing models, and rules for determining the intended action.

% Inertial fluents :

fluent(active goal(G), inertial).

f luent(status(M,K), inertial).

f luent(next name(M), inertial).

% Defined fluents :

fluent(active(M), defined).

f luent(immediate child(M1,M), defined) : − M1 ! = M.

fluent(immediate child goal(G1, G), defined).

f luent(descendant(M1,M), defined) : − M1 ! = M.

fluent(in progress(G), defined).

f luent(in progress(M), defined).

f luent(minor(M), defined).

f luent(minor(G), defined).

f luent(next action(M,AA), defined).
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% Actions :

mental agent action(start(M)).

mental agent action(stop(M)).

agent action(wait).

special exogenous action(select(G)).

special exogenous action(abandon(G)).

% Domain statements

#domain activity(M). #domain activity(M1). #domain activity(M2).

#domain possible goal(G) #domain possible goal(G1).

#domain fluent(F ). #domain fluent(F1). #domain fluent(F2).

#domain comp(C). #domain comp(C1).

#domain step(I). #domain step(I1). #domain step(I2).

#domain index(K). #domain index(K1). #domain index(K2).

#domain bool(B).

#domain action(E).

#domain exogenous action(EA).

#domain physical exogenous action(PEA).

#domain special exogenous action(SEA).

#domain agent action(AA).

#domain physical agent action(PAA).

#domain mental agent action(MAA).

#domain mental agent action(MAA1).

#domain mental agent action(MAA2).
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% Rules describing types for fluents and actions

bool(true). bool(false).

#const ir = 3.

#const n = 13.

step(0..n).

#const max len = 4.

index(−1..max len).

#const max name = 5.

activity name(1..max name).

activity(X) : − activity name(X).

f luent(X) : − fluent(X, inertial).

f luent(X) : − fluent(X, defined).

agent action(X) : − physical agent action(X).

agent action(X) : − mental agent action(X).

exogenous action(X) : − physical exogenous action(X).

exogenous action(X) : − special exogenous action(X).

action(X) : − agent action(X).

action(X) : − exogenous action(X).

% Causal laws

% Mental and physical agent actions

h(status(M, 0), I + 1) : − o(start(M), I). (0.1)
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h(status(M,−1), I + 1) : − o(stop(M), I). (0.2)

h(status(M,K + 1), I + 1) : − o(PAA, I),

h(next action(M,PAA), I),

h(status(M,K), I),

component(M,K + 1, PAA).

(0.3)

h(status(M,K + 1), I + 1) : − o(stop(M1), I),

h(status(M,K), I),

component(M,K + 1,M1),

h(next action(M, stop(M1)), I).

(0.4)

h(status(M1,−1), I + 1) : − o(stop(M), I),

h(descendant(M1,M), I).
(0.5)

h(next name(M + 1), I) : − o(start(M), I),

h(next name(M), I),

−h(minor(M), I).

(0.6)

% Special exogenous actions

h(active goal(G), I + 1) : − o(select(G), I). (0.7)

−h(active goal(G), I + 1) : − o(abandon(G), I). (0.8)

% Executability conditions

% Agent actions

impossible(start(M), I) : − h(active(M), I). (0.9)

impossible(stop(M), I) : − −h(active(M), I). (0.10)
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impossible(PAA, I) : − o(MAA, I).

impossible(MAA, I) : − o(PAA, I).

impossible(MAA1, I) : − o(MAA2, I),MAA1 ! = MAA2.

impossible(MAA2, I) : − o(MAA1, I),MAA2 ! = MAA1.

(0.11)

impossible(PAA, I) : − o(wait, I).

impossible(wait, I) : − o(PAA, I).

impossible(MAA, I) : − o(wait, I).

impossible(wait, I) : − o(MAA, I).

(0.12)

% Special exogenous action

impossible(select(G), I) : − h(active goal(G), I). (0.13)

impossible(abandon(G), I) : − −h(active goal(G), I).

impossible(abandon(G), I) : − h(minor(G), I).
(0.14)

% Special exogenous, physical agent and mental agent actions

impossible(PEA, I) : − o(SEA, I).

impossible(SEA, I) : − o(PEA, I).

impossible(MAA, I) : − o(SEA, I).

impossible(SEA, I) : − o(MAA, I).

impossible(PAA, I) : − o(SEA, I).

impossible(SEA, I) : − o(PAA, I).

(0.15)

% State constraints

% Inertial fluents

−h(status(M,K1), I) : − h(status(M,K2), I),

K1 ! = K2.
(0.16)
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−h(next name(M), I) : − h(next name(M1), I),

M ! = M1.
(0.17)

−h(active goal(G), I) : − −h(minor(G), I),

h(G, I).
(0.18)

h(active goal(G1), I) : − h(immediate child goal(G1, G), I),

h(active goal(G), I),

goal(M,G),

goal(M1, G1),

−h(G1, I),

h(status(M1,−1), I).

(0.19)

−h(active goal(G1), I) : − h(minor(G1), I),

h(immediate child goal(G1, G), I),

−h(active goal(G), I).

(0.20)

−h(active goal(G1), I) : − h(minor(G1), I),

h(G1, I),

h(immediate child goal(G1, G), I),

h(active goal(G), I).

(0.21)

−h(active goal(G1), I) : − h(minor(G1), I),

goal(M1, G1),

h(status(M1, K1), I),

length(M1, K1),

−h(G1, I),

h(immediate child goal(G1, G), I),

h(active goal(G), I).

(0.22)
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% Defined fluents

h(active(M), I) : − −h(status(M,−1), I). (0.23)

h(immediate child(M1,M), I) : − component(M,K + 1,M1),

h(status(M,K), I).
(0.24)

h(descendant(M1,M), I) : − h(immediate child(M1,M), I).

h(descendant(M2,M), I) : − h(descendant(M1,M), I),

h(descendant(M2,M1), I).

(0.25)

h(immediate child goal(G1, G), I) : − h(immediate child(M1,M), I),

goal(M,G),

goal(M1, G1).

(0.26)

h(minor(M1), I) : − h(immediate child(M1,M), I). (0.27)

h(minor(G1), I) : − h(immediate child goal(G1, G), I). (0.28)

h(in progress(M), I) : − h(active(M), I),

h(active goal(G), I),

goal(M,G).

(0.29)

h(in progress(G), I) : − h(active(M), I),

h(active goal(G), I),

goal(M,G).

(0.30)

h(next action(M,PAA), I) : − h(status(M,K), I),

component(M,K + 1, PAA),

h(in progress(M), I).

(0.31)
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h(next action(M, start(M1)), I) : − h(status(M,K), I),

component(M,K + 1,M1),

h(in progress(M), I),

−h(active(M1), I).

(0.32)

h(next action(M,AA), I) : − h(status(M,K), I),

component(M,K + 1,M1),

h(in progress(M), I),

h(inprogress(M1), I),

h(next action(M1, AA), I).

(0.33)

h(next action(M, stop(M1)), I) : − h(status(M,K), I),

component(M,K + 1,M1),

h(in progress(M), I),

h(active(M1), I),

goal(M1, G1),

−h(active goal(G1), I).

(0.34)

% Rules for defining transition (see Section 2.4.2)

% Inertia axioms

holds(F, I + 1) ← fluent(inertial, F ),

holds(F, I),

not ¬holds(F, I + 1),

I < n.

¬holds(F, I + 1) ← fluent(inertial, F ),

¬holds(F, I),

not holds(F, I + 1),

I < n.

(0.35)

97



Texas Tech University, Justin Blount, December 2013

% CWA for defined fluents

¬holds(F, I) ← fluent(defined, F ),

not holds(F, I).
(0.36)

% Definition of impossible and CWA for actions

¬occurs(E, I) ← impossible(E, I). (0.37)

¬occurs(E, I) ← not occurs(E, I). (0.38)

0.1 Program Π(Γn)

Π(Γn) contains:

all statements in Γn each followed by ”.”

and a statement: current step(n).
(0.39)

comp(PAA). comp(M).

equal(M,M1) : − goal(M,G), goal(M1, G),

equal plan(M,M1).

equal plan(M,M1) : − length(M,L), length(M1, L),

not different component(M,M1).

different component(M,M1) : − component(M,K,C),

component(M1, K, C1),

C ! = C1.

: − equal(M,M1),

M ! = M1.

(0.40)

h(F, 0) : − observed(F, true, 0).

−h(F, 0) : − observed(F, false, 0).
(0.41)

98



Texas Tech University, Justin Blount, December 2013

: − current step(I1),

I <= I1,

observed(F, false, I),

h(F, I).

: − current step(I1),

I <= I1,

observed(F, true, I),

−h(F, I).

(0.42)

occurs(E, I) : − current step(I1),

I < I1,

happened(E, true, I).

−occurs(E, I) : − current step(I1),

I < I1,

happened(E, false, I).

(0.43)

occurs(AA, I) : − current step(I1),

I < I1,

attempt(AA, I),

not impossible(AA, I).

: − current step(I1),

I < I1,

occurs(AA, I),

not attempt(AA, I).

(0.44)
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impossible(select(G), I) : − current step(I1),

I < I1,

occurs(select(G1), I),

G ! = G,

impossible(select(G), I) : − current step(I1),

I < I1,

h(active(M), I).

impossible(select(G), I). : − current step(I1),

I < I1,

h(active goal(G), I).

(0.45)

h(status(M,−1), 0).

−h(active goal(G), 0).

h(next name(ir), 0).

(0.46)

observed result(AA, I) : − current step(I1),

I <= I1,

happened(AA,B, I).

: − current step(I1),

I <= I1,

attempt(AA, I),

not observed result(AA, I).

(0.47)
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: − current step(I1),

I < I1,

occurs(select(G), I),

not happened(select(G), true, I).

: − current step(I1),

I < I1,

occurs(abandon(G), I),

not happened(abandon(G), true, I).

(0.48)

need to obs goal(G, I) : − current step(I1),

I <= I1,

−h(minor(G), I − 1),

h(active goal(G), I − 1).

need to obs goal(G1, I) : − current step(I1),

I <= I1,

h(minor(G1), I),

h(immediate child goal(G1, G), I),

h(active goal(G), I).

observed goal(G, I) : − current step(I1),

I <= I1,

observed(G,B, I).

: − current step(I1),

I <= I1,

need to obs goal(G, I),

not observed goal(G, I).

(0.49)

diag(PEA, I2, I1) : occurs(PEA, I2)
+

: − current step(I1),

I2 < I1.
(0.50)
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unobserved(PEA, I) : − current step(I1),

I < I1,

occurs(PEA, I),

not happened(PEA, true, I).

(0.51)

number unobserved(N, I) : − current step(I),

N = #count{unobserved(EX, IX)}.
(0.52)

0.2 Collection of rules IA(n)

: − current step(I),

number unobserved(N, I),

interpretation(X, I),

N ! = X.

(0.53)

active goal or activity(I) : − current step(I),

interpretation(N, I),

h(active goal(G), I).

active goal or activity(I) : − current step(I),

interpretation(N, I),

h(active(M), I).

(0.54)

category 1 history(I) : − current step(I),

interpretation(N, I),

not active goal or activity(I).

(0.55)
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category 2 history(M, I) : − current step(I),

interpretation(N, I),

−h(minor(M), I),

h(active(M), I),

goal(M,G),

−active goal(G).

(0.56)

category 3 history(M, I) : − current step(I),

interpretation(N, I),

−h(minor(M), I),

h(in progress(M), I).

(0.57)

category 4 history(G, I) : − current step(I),

interpretation(N, I),

−h(minor(G), I),

h(active goal(G), I),

−h(in progress(G), I).

(0.58)

intended action(wait, I) : − current step(I),

interpretation(N, I),

category 1 history(I).

(0.59)

intended action(stop(M), I) : − current step(I),

interpretation(N, I),

category 2 history(M, I).

(0.60)
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occurs(AA, I1) : − current step(I),

category 3 history(M, I),

interpretation(N, I),

I <= I1,

−h(minor(M), I1),

h(in progress(M), I1),

h(next action(M,AA), I1),

not impossible(AA, I1).

(0.61)

projected success(M, I) : − currrent step(I),

interpretation(N, I),

−h(minor(M), I),

I < I1,

h(active(M), I1),

goal(M,G),

h(G, I1).

−projected success(M, I) : − current step(I),

interpretation(N, I),

not projected success(M, I).

(0.62)

intended action(AA, I) : − current step(I),

interpretation(N, I),

category 3 history(M, I),

h(next action(M,AA), I),

projected success(M, I).

(0.63)
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: − current step(I),

interpretation(N, I),

category 3 history(M, I),

−projected success(M, I),

not futile(M, I).

(0.64)

futile activity(M, I) : futile(M, I)
+

: − current step(I),

interpretation(N, I),

category 3 history(M, I),

−projected success(M, I).

(0.65)

intended action(stop(M), I) : − current step(I),

interpretation(N, I),

category 3 history(M, I),

futile(M, I).

(0.66)

existing candidate(M, I) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

h(next name(M1), I),

M < M1,

goal(M,G).

new candidate(M, I) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

h(next name(M), I).

candidate(M, I) : − new candidate(M, I).

candidate(M, I) : − existing candidate(M, I).

(0.67)
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occurs(start(M), I) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

candidate(M, I),

goal(M,G),

not impossible(start(M), I).

(0.68)

impossible(start(M), I) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

goal(M1, G),

occurs(start(M1), I),

M ! = M1.

(0.69)

: − current step(I),

interpretation(N, I),

category 4 history(G, I),

occurs(start(M), I),

−projected success(M, I),

not futile(G, I).

(0.70)

futile goal(G, I) : futile(G, I)
+

: − current step(I),

interpretation(N, I),

category 4 history(G, I),

occurs(start(M), I),

−projected success(M, I).

(0.71)

intended action(wait, I) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

futile(G, I).

(0.72)
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some action occurred(I1) : − current step(I),

interpretation(N, I),

I <= I1,

occurs(E, I1).

(0.73)

goal(M,G) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M), I).

(0.74)

plan new(PAA, I1) : occurs(PAA, I1)
+

: − current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M), I),

I < I1,

some action occurred(I1− 1).

(0.75)

component(M, I1− I, PAA) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M),

occurs(PAA, I1).

(0.76)
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: − current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

component(M,K,C),

component(M,K,C1),

C1 ! = C.

(0.77)

has comp(M,K) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M),

component(M,K,C).

length(M,K) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

new candidate(M, I),

occurs(start(M),

has comp(M,K),

not has comp(M,K + 1).

(0.78)
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plan existing(PAA, I1) : occurs(PAA, I1)
+

: − current step(I),

interpretation(N, I),

category 4 history(G, I),

existing candidate(M, I),

occurs(start(M), I),

I < I1,

h(next action(M,PAA), I1),

some action occurred(I1− 1).

(0.79)

occurs(MAA, I1) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

existing candidate(M, I),

occurs(start(M), I),

I < I1,

h(in progress(M), I1),

h(next action(M,MAA), I1).

(0.80)

intended action(start(M), I) : − current step(I),

interpretation(N, I),

category 4 history(G, I),

candidate(M, I),

occurs(start(M), I)

projected success(M, I).

(0.81)

prefer(plan new(PAA, I1), futile goal(G, I)). (0.82)

prefer(plan existing(PAA, I1), futile goal(G, I). (0.83)
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APPENDIX B: Proofs

We restate Lemma 1 from Chapter IV.

Lemma 1. [Mental states]

Let Γn be a history of D. For every mental fluent literal l, if l is in the ith state of a

pre-model of Γn then l is in the ith state of every pre-model of Γn.

Proof. To prove this lemma it is sufficient to show that:

(?) for every two pre-models Pn = 〈σ0, . . . , σn−1, an−1, σn〉 and Qn =

〈δ0, . . . , δn−1, a
′
n−1, δn〉 of Γn the mental states of σn and δn are the same. The proof

is by induction on n.

[1] Base case n = 0. By the definition of pre-model and legal observations (Definitions

16 and 18) states σ0 and δ0 of pre-models P0 and Q0 of Γ0 contain status(m,−1) for

every activity m, ¬active goal(g) for every possible goal g, and next name(ir). By

axioms of uniqueness (0.16) and (0.17) they also contain ¬status(m, k) for every

activity m and index k 6= −1, and ¬next name(m1) for every activity m1 6= ir,

respectively. Note that these are the only inertial mental fluents of our theory. All

other mental fluents are (possibly recursively) defined in terms of these inertial fluents

and statics. By Definition 9 the values of these defined fluents in σ0 and δ0 are uniquely

determined by the values of inertial mental fluents and statics in these states. Hence

the mental states of σ0 and δ0 are the same.

[2] Inductive step. Suppose (?) holds for n = k. We will show that (?) holds for

n = k + 1. Let Pk+1 = 〈σ0, . . . , σk, ak, σk+1〉 and Qk+1 = 〈δ0, . . . , δk, a′k, δk+1〉 be

pre-models of Γk+1.

Recall that prefixes Pk = 〈σ0, . . . , σk〉 and Qk = 〈δ0, . . . , δk〉 of Pk+1 and Qk+1,

respectively, are pre-models of Γk. By the inductive hypothesis the mental states at

k in Pk and Qk are the same. The mental state at k + 1 can only be made different

from that at k by the occurrence of a mental state changing action at k in Pk or Qk.
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Mental state changing actions are those actions whose occurrence may directly or

indirectly affect inertial mental fluents (next name, status, and active goal). Note

that the occurrence of a mental state changing action at k may affect the value of

more than one inertial mental fluent at k + 1, and that the values of mental fluents

not affected by the occurrence of a mental state changing action are unchanged and

persist from k to k + 1, by axioms (2.15). We proceed by showing that the changes

to the mental state from k to k+ 1 in Pk and Qk are the same. First we consider the

only action, start(m), that affects mental fluent next name. Then we consider the

actions that affect fluents status and active goal, respectively.

[2.1] [next name is incremented by start.] Suppose ak from Pk contains action

start(m) and mental fluent literals next name(m) and ¬minor(m) belong to σk of

Pk. By the inductive hypothesis [2] the mental fluent literals next name(m) and

¬minor(m) also belong to δk in Qk. By clause 6 of definition of satisfy (Definition

15), Γk+1 contains attempt(start(m), k). By clause 3 of the definition of pre-model

(Definition 16), Γk+1 contains either hpd(start(m), true, k) or hpd(start(m), false, k).

By clause 4 of Definition 15, Γk+1 does not contain hpd(start(m), false, k), so Γk+1

contains hpd(start(m), true, k). By clause 3 of Definition 15, a′k from Qk contains

start(m). By causal law (0.6), next name(m+1) belongs to both final states. By the

axiom of uniqueness (0.17), ¬next name(m1) for every activity m1 6= m+ 1 belongs

to both final states.

[2.2] [next name is the same in both final states.] Since no other action affects

the value of next name, both final states have the same values of fluent next name.

Next we consider the actions that affect mental fluent status.

[2.3] [starting an activity affects its status.] Suppose ak contains mental agent

action start(m). Again this implies that Γk+1 contains hpd(start(m), true, k) and

that a′k contains start(m). By causal law (0.1) status(m, 0) belongs to both final

states. By the axiom of uniqueness (0.16) both final states contain ¬status(m, j) for

every index j 6= 0.
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[2.4] [stopping an activity affects status - 3 cases.] Suppose ak contains mental

agent action stop(m). Again this implies that Γk+1 contains hpd(stop(m), true, k) and

a′k contains stop(m). There may be three direct effects of this action on the status of

m, its descendants, and the activity to which m is a component (i.e. m’s parent).

[2.4.1] [stopping an activity affects its own status.] By causal law (0.2),

status(m,−1) belongs to both final states. By axiom (0.16), both final states contain

¬status(m, j1) for every index j 6= −1.

[2.4.2] [stopping an activity affects the status of its descendants.] Suppose

σk also contains descendant(m1,m). By causal law (0.5), status(m1,−1) belongs to

both final states. By axiom (0.16), both final states contain ¬status(m1, j1) for every

index j 6= −1.

[2.4.3] [stopping an activity affects status of its parent.] Suppose that σk

contains status(m1, j), next action(m1, stop(m)) and component(m1, j + 1,m). By

causal law (0.4), status(m, j + 1) belongs to both final states. By axiom(0.16) both

final states contain ¬status(m, j1) for every index j1 6= j + 1.

[2.5] [status is incremented.] Suppose ak contains a physical agent action a and

status(m, j), next action(m, a), and component(m, j + 1, a) belong to σk. Again

this implies that Γk+1 contains hpd(a, true, k) and a′k contains a. By causal law (0.3),

status(m, j+1) belongs to both final states. By axiom (0.16) both final states contain

¬status(m, j1) for every index j1 6= j + 1.

[2.6] [status is the same in both final states.] Since no other action directly or

indirectly affects the value of status, both final states have the same values of status.

[2.7] [fluents defined in terms of status and statics.] There are defined mental

fluents active, immediate child, immediate child goal, and minor (see axioms 0.23

- 0.27), which are defined (possible recursively) in terms of status and statics. By

[2.6] and Definition 9, the values of these defined fluents are the same in both final

states.

Finally we consider the actions that affect inertial mental fluent active goal. To

accurately consider this we introduce the notion of the depth of a goal in a state.
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[2.8] [depth of a goal in a state.] A goal g has a depth of 0 in σ if ¬minor(g)

belongs to σ. A goal g2 has a depth of d + 1 in σ if g1 has a depth of d in σ and

immediate child goal(g2, g1) belongs to σ. We will show that the value active goal

is the same in both final states by induction on depth.

[2.9] Base case: depth is 0. Suppose g has a depth of 0 in σk+1.

[2.9.1] [non-minor goal is selected.] Suppose σk+1 contains ¬minor(g) and ak

contains special exogenous action select(g). By clause 4 of the Definition 16, Γk+1

contains hpd(select(g), true, k). Again a′k contains select(g). By causal law (0.7),

active goal(g) belongs to both final states.

[2.9.2] [non-minor goal is abandoned.] Suppose σk+1 contains ¬minor(g),

and ak contains special exogenous action abandon(g). Again Γk+1 contains

hpd(abandon(g), true, k) and a′k contains abandon(g). By causal law (0.8),

¬active goal(g) belongs to both final states.

[2.9.3] [non-minor goal is achieved.] Suppose σk+1 contains ¬minor, and ak

contains a physical exogenous or physical agent action which made g, which was

an active goal in σk, true in σk+1. By clause 2 of Definition 16, Γk+1 contains

obs(g, true, k + 1). By clause 1 of Definition 15, g is true in δk+1. By [2.7] and

state constraint (0.18), ¬active goal(g) belongs to both final states.

[2.9.4] [active goal for goals of depth 0 are the same.] Since no other actions

affect the value of active goal for goal of depth 0 (i.e. for non-minor goals), the values

of active goal for such goals are the same in both final states.

[2.10] [Inductive case.] Suppose that both finals states have the same values of

active goal(g) where g has depth of d. We will show that the value of active goal(g1)

where g1 has a depth of d+ 1 is the same in both final states. Suppose that in σk+1,

g1 of an activity m1 has a depth of 1, g of m has a depth of 0, and that g1 is the

immediate child goal of g. This implies that immediate child goal(g1, g), ¬minor(g),

and minor(g) belong to σk+1, and by [2.7] they also belong to δk+1.

[2.10.1] [minor goal, whose parent is active, is achieved.] Suppose

active goal(g) belongs to σk+1 and ak contains some action which made goal g1 true
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in σk+1. By induction hypothesis [2.10], active goal(g) also belongs to δk+1. By clause

2 of Definition 16, Γk+1 contains obs(g1, true, k+ 1), and by clause 1 of Definition 15

g1 is true in δk+1. By state constraint (0.21), ¬active goal(g1) is in both final states.

[2.10.2] [minor goal is not achieved after its activity is executed.] Suppose

active goal(g) and ¬g1 belong to σk+1 and ak contains some agent action a which

made status(m1, l1), where l1 is the length of m1, to be true in σk+1. By [2.7] and

[2.10], status(m1, l1) and active goal(g), respectively, belong to δk+1. By clause 2 of

Definition 16, Γk+1 contains obs(g1, false, k + 1), and by clause 2 of Definition 15

g1 is false in δk+1. By state constraint (0.22), ¬active goal(g1) belongs to both final

states.

[2.10.3] [parent of minor goal is no longer active.] Suppose ak contains

some action which caused active goal(g) to be false in σk+1. As was shown

above, ¬active goal(g) belongs to both final states. By state constraint (0.20),

¬active goal(g1) belongs to both final states.

[2.10.4] [minor goal becomes active.] Suppose status(m1,−1), active goal(g),

and ¬g1 belong to σk+1 and ak contains some agent action a, which caused

status(m, j), where component(m, j + 1,m1) to be true in σk+1. Again Γk+1 con-

tains obs(g1, false, k + 1) and ¬g1 belongs to δk+1. By [2.6], [2.7], and [2.10],

status(m1,−1), minor(g1), and active goal(g) belong to δk+1. By state constraint

(0.19), active goal(g1) belongs to both final states.

[2.10.5] [active goal for goals of depth d + 1 are the same.] Since no other

actions directly or indirectly affect the value of active goal(g1), for a goal g1 of depth

d+ 1, the values of active goal(g1) are the same in both final states.

[2.10.6] [fluents defined in terms of active goal, status, and statics] There are

defined mental fluents in progress and next action (see axioms 0.29 - 0.34) which

are defined (possible recursively) in terms of inertial mental fluents active goal and

status and statics. By [2.6], [2.7], and [2.10.5], and Definition 9 the values of these

defined fluents are the same in both final states.

2
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We restate Lemma 2 from Section 5.1.2.

Lemma 2. [computing models of Γn]

If Γn is an intentional history of D then Pn is a model of Γn iff Pn is defined by some

answer set A of Π(D) ∪ Π(Γn).

This lemma can be proven with methods from [Balduccini & Gelfond, 2003a] and

[Balduccini, 2005].

Lemma 4. [describing categories of Γn]

Let Γn be an intentional history, x be the number of unobserved occurrences

of exogenous actions in a model of Γn, and A be an answer set of Π(D,Γn) ∪

{interpretation(x, n).}.

1. Γn is of category 1 iff A contains an atom category 1 history(n);

2. Γn is of category 2 iff A contains an atom category 2 history(m,n) for some

activity m;

3. Γn is of category 3 iff A contains an atom category 3 history(m,n) for some

activity m;

4. Γn is of category 4 iff A contains an atom category 4 history(g, n) for some

goal g;

Proof. Suppose x is the number of unobserved occurrences of exogenous actions in

a model of Γn, cmn is the current mental state of Γn, and A is an answer set of

Π = Π(D,Γn) ∪ {interpretation(x, n).}.

Clause 1) [left-to-right] Suppose Γn is a history of category 1. We will show that

A contains category 1 history(n).

By Lemma 2 and definition of categories (Definition 20), cmn contains

status(m,−1) for every activity m and ¬active goal(g) for every possible goal g.

By rule 0.23, ¬active(m) ∈ cmn for every activity m. These two imply that

the bodies of both rules of (5.17) are not satisfied. Since no other rule in Π has
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active goal or activity(n) in the head, A does not contain active goal or activity(n).

Note that current step(n) and interpretation(x, n) are facts in Π and are therefore

in A. Since the body of the rule (5.18) is satisfied, A contains category 1 history(n).

Clause 1) [right-to-left] Suppose A contains category 1 history(n). We will show

that Γn is of category 1.

Since rule (5.18) is the only rule with category 1 history(n) in the head, its body

must have been satisfied. Rule (5.17) guarantees that this only occurs when there are

no active goals or activities in cmn which by Definition 20 is when Γn is of category

1.

Similarly for clauses 2, 3, and 4.

2

We restate Lemma 3 from Section 5.1.2.

Lemma 3. [determining the flag]

Let Γn be an intentional history of D and A be an answer set of Π(D) ∪ Π(Γn).

number unobserved(x, n) ∈ A iff there are x unobserved occurrences of exogenous

actions in A.

Proof. Suppose A is an answer set of Π(D) ∪ Π(Γn). Rule (5.14) guarantees that

A contains an atom of the form unobserved(ex, i) for every unobserved occurrence

of an exogenous action ex in A. By Lemma 2, A defines a model of Γn. This

implies that the number of statements of the form unobserved(ex, i) in A is ex-

actly the number of unobserved occurrences of exogenous actions in the model of

Γn that is defined by A. This number is calculated by an aggregate. By the se-

mantics of aggregates (see [Gebser et al., 2008]), rule (5.15) guarantees that A con-

tains number unobserved(x, n) where x is the number of statements of the form

unobserved(ex, i) in A.

Lemma 5. [computing intended actions of Γn]

Let Γn be an intentional history and x be the number of unobserved occurrences of
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exogenous actions in a model of Γn.

Action e is an intended action of Γn iff some answer set A of Π(D,Γn) ∪

{interpretation(x, n).} contains the atom intended action(e, n).

Proof. The proof follows directly from the following four Corollaries (1 - 4) which

guarantee that intended actions of Γn are defined by answer sets of Π(D,Γn) ∪

{interpretation(x, n).}.

Corollary 1. [computing the intended action for history of category 1]

Let Γn be of category 1, x be the number of unobserved occurrences of exogenous

actions in a model of Γn, and A be an answer set of Π(D,Γn)∪{interpretation(x, n).}.

Action wait is the intended action of Γn iff intended action(wait, n) ∈ A.

Proof. Suppose Γn is of category 1, x is the number of unobserved occurrences of

exogenous actions in a model of Γn, and A is an answer set of Π = Π(D,Γn) ∪

{interpretation(x, n).}.

[left-to-right] Suppose wait is the intended action of a category 1 history Γn. We

will show that intended action(wait, n) ∈ A.

By Lemma 4, A contains category 1 history(n). By definition of Π,

current step(n) and interpretation(x, n) are facts in Π and are therefore in A. Rule

(5.22) guarantees that A contains intended action(wait, n).

[right-to-left] Suppose intended action(wait, n) ∈ A. We will show that wait is

the intended action of category 1 history Γn.

This follows directly from the definition of intended action of a history of category

1 (Definition 21).

Corollary 2. [computing the intended action for history of category 2]

Let Γn be of category 2, x be the number of unobserved occurrences of exogenous

actions in a model of Γn, A be an answer set of Π(D,Γn) ∪ {interpretation(x, n).},

and category 2 history(m,n) ∈ A.

117



Texas Tech University, Justin Blount, December 2013

Action stop(m) is the intended action of Γn iff A contains an atom

intended action(stop(m), n).

Proof. The proof is similar to that of Corollary 1.

Corollary 3. [computing the intended action for history of category 3]

Let Γn be of category 3, x be the number of unobserved occurrences of exogenous

actions in a model of Γn, A be an answer set of Π(D,Γn) ∪ {interpretation(x, n).},

and category 3 history(m,n), h(next action(m, e), n) ∈ A.

1. Next action e is the intended action of Γn iff intended action(e, n) ∈ A.

2. Action stop(m) is the intended action of Γn iff intended action(stop(m), n) ∈ A.

Proof. Suppose Γn is of category 3, x is the number of unobserved occur-

rences of exogenous actions in a model of Γn, A is an answer set of Π =

Π(D,Γn) ∪ {interpretation(x, n).}, and A contains category 3 history(m,n) and

h(next action(m, e), n).

Clause 1) [left-to-right] Suppose physical action e is the intended action of category

3 history Γn and A contains category 3 history(m,n) and h(next action(m, e), n).

We will show that intended action(e, n) ∈ A.

By definition of Π, current step(n) and interpretation(x, n) are facts in Π and

are therefore in A. Now we show that A also contains projected success(m,n). By

definition of intended action of a history of category 3 (see Definition 24) there is

successful continued execution of m from a possible current state of Γn (i.e. a tra-

jectory that begins at n, whose arcs are labeled by the remaining actions of m,

and that ends at some step k > n with the achievement of the goal). Rules (5.24)

and (5.25) guarantee that A contains the occurrences of the remaining actions of m

and projected success(m, k), respectively. Rule (5.26) guarantees that A contains

intended action(e, n).
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Clause 1) [right-to-left] Suppose A contains next action(e, n) and

intended action(e, n). We will show that e is the intended action of category

3 history Γn.

Rule (5.26) is the only rule with intended action(e, n) in the head where e is the

next action. Therefore A must also contain projected success(m,n). Rules (5.24) and

(5.25), guarantee that A contains projected success(m,n) only when A also contains

a collection of statements describing the successful continued execution of m. By the

definition of intended action of a history of category 3 this is exactly when e is the

intended action of Γn.

Clause 2) [left-to-right] Suppose stop(m) is the intended action of Γn. We will

show that intended action(stop(m), n) ∈ A.

We will show that the body of rule (5.29) is satisfied and therefore

A contains intended action(stop(m), n). The body of this rule contains

category 3 history(m,n), current step(n), interpretation(x, n), and futile(m,n).

By Lemma 4, A contains category 3 history(m,n), current step(n), and

interpretation(x, n).

Now we show that A contains futile(m,n). Recall that the definition of intended

action of a history of category 3 (see Definition 24) says that stop(m) is the intended

action when there is no successful continued execution of m from any possible current

state or equivalently that the continued execution of m from every possible current

state is not successful in achieving the goal. Constraint (5.27) forbids all answer sets

where ¬projected success(m,n) (i.e. the continued execution of m is not success-

ful). Without cr-rule (5.28) the program would be inconsistent by constraint (5.27).

By semantics of CR-Prolog (see Section 2.2), cr-rule (5.28) is allowed to fire when

the program without rule (5.28) would be inconsistent and the program with the

cr-rule would be consistent. Rule (5.28) restores consistency by guaranteeing that

futile(m,n) is in A. The presence of futile(m,n) prevents the constraint (5.27)

from causing the program to be inconsistent.
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Clause 2) [right-to-left] Let us show that if intended action(wait, n) ∈ A then

wait is the intended action of category 3 history Γn.

By Lemma 4, A contains category 3 history(m,n). Rule (5.28) is the only rule

with intended action(wait, n) in the head and category 3 history(m,n) in the body.

It follows that this rule must have been satisfied in order for intended action(wait, n)

to be in A. This implies that Amust also contain futile(m,n). Rules (5.27) and (5.34)

guarantee that A contains futile(m,n) only when there is no successful continued

execution of m. By the definition of intended action of a history of category 3 this is

exactly when wait is the intended action of Γn.

Corollary 4. [computing an intended action for history of category 4] Let Γn be

of category 4, x be the number of unobserved occurrences of exogenous actions in a

model of Γn, and Π = Π(D,Γn) ∪ {interpretation(x, n).}.

1. action start(m) is the intended action of Γn iff there is an answer set A of Π

such that intended action(start(m), n) ∈ A

2. action wait is the intended action of Γn iff there is an answer set A of Π such

that intended action(wait, n) ∈ A

Proof. Suppose Γn is of category 4 and x is the number of unobserved occurrences of

exogenous actions in a model of Γn.

Clause 1) [left-to-right] Suppose action start(m), where g is the goal of m, is an

intended action of category 4 history Γn. We will show that there is an answer set of

Π that contains intended action(start(m), n).

By definition program Π, every answer set of Π contains current step(n)

and interpretation(x, n). By Lemma 4, every answer set of Π contains

category 4 history(g, n).

Recall that by Definition 27, there is minimal total execution of candidate activity

m from a possible current state of Γn (i.e. a trajectory that begins with start(m) and
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is followed by a successful continued execution of m that ends at some step k > n+ 1

with the achievement of the goal g). Rules (5.30 - 5.43) guarantee there is an answer

set A of Π that defines a minimal total execution of m. It follows that A contains

o(start(m), n), candidate(m), and projected success(m,n). Rule (5.44) guarantees

that A contains intended action(start(m), n).

Clause 1) [right-to-left]

Proof. The proof is similar to the proof of Clause 1) [right-to-left] of Corollary 3.

Clause 2)

Proof. The proof is similar to the proof of Clause 2) of Corollary 3.

We restate Theorem 1 from Section 5.2.

Theorem 1. [Correctness of iterate(Γn) algorithm]

If Γn is an intentional history of D and On+1 are the observations made by the agent

at step n+ 1 then a history Γn+1 that is the result of iterate(Γn), contains On+1 and

is an intentional history.

Proof. Suppose Γn is an intentional history of D and On+1 are the observations

made by the agent at step n + 1. We will show that a Γn+1 that is the result of

iterate(Γn), contains On+1 and is an intentional history.

First we show that Π = Π(D,Γn) must answer set and that the number x extracted

from it in line (1b) of iterate(Γn) is the number of unobserved occurrences of exoge-

nous actions in a model of Γn. Then we show that Π1 = Π ∪ {interpretation(x, n)}

must have answer set and that the action e extracted from it in line (2b) of iterate(Γn)

is an intended action of Γn.

By definition of intentional history (Definition 28), Γn is consistent. By Lemma

2, answer sets of Π define models of Γn. This implies that Π has an answer set.

By Lemma 3, the number x extracted in line (1b) is the number of occurrences of

exogenous actions in a model of Γn.

By definition of categories (Definition 20) and definitions of intended action for
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each category (Definitions 21, 22, 24, 27), Γn has an intended action. By Lemma

5, answer sets of Π1 contain an atom intended action(e, n) where e is an intended

action of Γn.

Lines (3b) and (4b) of iterate(Γn) guarantee that Γn+1 extends Γn by attempt(e, n)

and On+1. By Definition 28, Γn+1 is an intentional history.

2
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