Towards Answer Set Programming with Sorts

Evgenii Balai, Michael Gelfond, and Yuanlin Zhang

Texas Tech University, USA
{evgenii.balai, michael.gelfond, y.zhang} @ttu.edu

Abstract. Existing ASP languages lack support for conveniently specifying ob-
jects, their sorts and the sorts of the parameters of relations in an application
domain. However, such support may allow a programmer to better structure the
program, to automatically determine some syntax and semantic errors and to avoid
thinking about safety of ASP rules — non-declarative conditions on rules required
by existing ASP systems. In this paper, we define the syntax and semantics of a
knowledge representation language SRARC which offers explicit constructs to
specify objects, relations, and their sorts. The language expands CR-Prolog — an
extension of ASP by consistency restoring rules. We introduce an implementa-
tion of SRARC based on its translation to DLV with weak constraints. A syntax
checking algorithm helps to avoid errors related to misspellings as well as simple
type errors. Another type checking algorithm flags program rules which, due to
type conflicts, have no ground instantiations.

1 Introduction

A good knowledge representation methodology should allow one to:

— Identify and describe sorts (types, kinds, categories) of objects populating a given
domain.

— Identify and classify these objects.

— Identify and precisely define objects properties and relationships between them.

ASP[1] based knowledge representation languages have powerful means for describing
these properties and relationships but lack the means for conveniently specifying objects
and their sorts as well as sorts of parameters of the domain relations. There were some
attempts to remedy the problem. The #domain statements of Iparse [2] — a popular
grounder used for a number of ASP systems — define sorts for variables. Even though
this device is convenient for simple programs it causes substantial difficulties for medium
and large programs. It is especially difficult to put together pieces of programs written at
different time and/or by different people. The same variable may be declared as ranging
over different sorts by different #domain statements used in different parts of a program.
So the process of merging these parts requires renaming of variables. This concern was
addressed by Balduccini whose system, RSig[3] , provided an ASP programmer with
means for specifying sorts of parameters of the language predicates. RSig is a simple
(but very useful) extension of ASP which does not require any shift in perspective and
involves only minor changes in existing programs. In this work we further develop
the idea of RSIG by introducing a knowledge representation language SRARC. In

addition to allowing the specification of program relations and their parameters SRARC
provides a programmer with means for defining objects of the program domain and
their sorts. This allows better separation of concerns. A programmer is encouraged
to write rules which express general properties of the domain and do not necessarily
refer to particular domain objects. Such rules can be used in conjunction with different
collections of objects and/or different placement of objects into sorts. A simple syntax
checking algorithm helps a programmer to avoid errors related to misspelling as well
as simple type errors. (Despite their simplicity such errors are sometimes not easy to
identify.) Explicit declaration of sorts allows a programmer to avoid thinking about
safety conditions in program rules — a feature especially important when SRARC is
used to teach declarative programming. Finally a type checking algorithm locating rules
of the program which, because of the type restrictions on variables, do not have any
ground instantiations is useful for determining more subtle potential problems. The paper
defines the syntax and semantics of a version of SRARC defined on top of CR-Prolog
— an ASP based language with consistency-restoring rules [4]. It also describes the
corresponding syntax and type checking algorithms, and an algorithm for computing
answer sets of a SRARC program based on reduction of such a program to DLV [5]
— alanguage of disjunctive logic programs with weak constraints [6]. The preliminary
description of the language and the latter algorithm has been presented in [7] in 2012.
The new version of the language however is quite different from that presented in this
workshop. The most important improvement is the completely new definition of sorts
and domain objects of a program. An implementation of the SPARC system can be
found at [8]. The paper is organized as follows. In the next section we define syntax and
semantics of SRARC. We then present syntax and type checking algorithms in Sections
3 and 4, and an algorithm for computing answer sets of a SRARC program in Section 5.
Most of the paper can be understood by anyone familiar with logic programming under
the answer set semantics. However, full understanding of Section 5 requires knowledge
of CR-Prolog.

2 Syntax and Semantics of SPARC

SPRARC vocabulary consists of variables, sort names, symbolic names, natural numbers,
equality (=) and inequality (!=) defined on arbitrary terms, order relations (<, <) on
numbers and on symbolic names (ordering of symbolic names is lexicographic), and
standard arithmetic functions. Variables and symbolic names are identifiers which start
with capital and lower-case letters respectively; sort name is a symbolic name preceded
by #. The vocabulary is used to define SRARC terms which are divided into arithmetic
and symbolic. An arithmetic term is defined as usual. A symbolic term is a symbolic
name, or a variable, or a string of the form f(¢1,...,t,) where f is a symbolic name
and tq, ..., t, are arithmetic or symbolic terms. A term f(¢y,...,t,) is referred to as
a record with the record name f (of arity n). A term is called ground if it contains
no variables and no arithmetic operations. A set expression of SRARC is either a sort
name,a collection of ground terms {¢1,...,%,}, or has the form (A ® B) where A and
B are set expressions and © is a set theoretic operation +, — or x. Parentheses can
be omitted and standard preference is used to determine the order of operations. We

also need two special sorts dom and nat which belong to every program of SRARC: the
former consists of all ground terms from the signature of the program, and the sort nat
of natural numbers between 0 and maxint.

Now we are ready to define the syntax of SRARC. A SRARC program is constructed
from four consecutive parts:
The first part, called directives consists of a (possibly empty) collection of statements
of the form
#const <identifier> = <natural_number>.
#maxint = <natural_number>.
The second part of the program consists of the keyword sorts followed by a list of sort
definitions — statement of the form (1) — (5) below. It is used to define

— objects of the program’s domain (often referred to as domain elements) and
— sort names and their assignments to non-empty sets of domain elements.

The list consists of statements of the form
sort_name = sort_expression
where sort expressions are expressions appearing on the right-hand side of statements
(1) — (5) below. Each such expression, F, defines a collection D(E) of ground terms
which is assigned to the sort sort _name. In addition, if {¢1, ..., t,} occurs in the sort
expression on the right then every t; together with its subterms is added to the set, dom,
of domain elements of the program.
Statement

sort_name = set_expr (D)

defines a sort, sort_-name using the set expression on the right. For example the sort
definition consisting of statements

#blocks = {bl,b2}
#locations = #blocks + {table}

defines the program domain consisting of elements {b1, b2, table}; sort #blocks is
mapped into {b1,b2}; and sort #1locations mapped into {b1,b2, table}. The sort
definition

#names = {name (bob, smith), name{mary,smith}}

defines the set names consisting of the two records on the right and expands the set of
domain elements by these records and their subterms bob, mary, and smath.

Statement of the form
sort_name = [ny..ns])

where 11 and n» are natural numbers and ny < ny defines the sort {n : n; < n < nsy}.

Similarly if ¢d; and id, are identifiers then the statement

sort_name = [id;..ids] 3)

defines the sort {id : |idi| < |id| < |ida]andidy < id < ida} where <; is the
lexicographic ordering on identifiers.

The next statement has the form
sort_-name = f(s1(vary), ..., sp(vary)) : cond 4

where f is a new symbolic name, sq, ..., s, are previously defined sorts and cond has
the form X ¢ Y, where X, Y € {variy,...var,} and ¢ € {<,<,=,#}, or C; @ (s,
where C and C5 are conditions and e € {V, A}. Both, the variables and the condition,
can be omitted. The new sort is assigned a collection of records of the form f(¢1,...,t,)
where 1, ..., t, are elements of sorts s1, .. ., s, satisfying condition cond. For instance,
a statement

#actions = put (#blocks, #locations) .

defines a new sort, actions, consisting of records of the form put (b, l) where b is a block
and [is a location. Note that, according to this definition, a record put(b1,b1) is an
action. Sometimes it is convenient to exclude this possibility. This can be achieved by
the following alternative definition of actions:

#actions = put (#blocks (X), #locations(Y)) : X != Y.

Now a record put(b, 1) belongs to the sort actions if b is a block, [is a location, and b
and [are different. The statement

sort_name = [b_expr][b_expr] ... [b_expr] ®)

defines concatenation of basic sorts, i.e., sorts consisting of identifiers and natural
numbers; b_expr is the name of a basic sort or a list ¢1, . . ., t,, of natural numbers and
symbolic names or expressions of the form n;..n, and id; ..ids where ny, no are natural
numbers and id, idy are symbolic names. These sort definitions are useful when we
want to define large basic sorts, e.g. a sort of blocks b1, . .., b1go can be defined as:

#blocks = [b][1..100]

Definition 1 (Sorts Definitions).

The list of sort definitions of a program is a sequence of statements of the form (1)—(5)
such that no sort name occurs on the left-hand side of a statement more than once and no
sort name occurs on the right-hand side of a statement if it was not previously defined.

The collection of sorts of a program consists of sorts defined by sort definitions of the
program and sorts dom and nat.

Definition 2 (Domain Elements).

A ground term t of SRARC is an element of the program’s domain if
1. t is a natural number belonging to sort nat or
2. tis defined by a sort definition of the form (2)-(5) or
3. there is a sort definition containing an occurrence of {..,¢,..} or
4. tis a subterm of a term satisfying one of the above properties.

In the first two cases t belongs to at least one sort defined by the corresponding sort
definition. The domain element defined by one of the last two clauses of the definition
may or may not have such a sort. In this case it belongs to sort dom of the program.

We say that a record name is defined by a program II if it occurs in one of the
elements of 1/’s domain.

The third part of the program defines predicate symbols and sorts of their parameters.
It starts with a keyword predicates and is followed by statements of the form

pred(sort_name, . .., sort_-name)

where pred is a new identifier and sort_names are sort names defined by the sort
definitions. The statement defines predicate symbol pred and specifies its arity and the
sorts of its parameters.

The first three sections of a SRARC program I/ uniquely define the program’s signature.
To define rules of I we need the following definitions:

Definition 3 (Program Term).

A SRARC term t is called a term of SRARC program I1 if every ground subterm of ¢
is an element of the program’s domain and every record name occurring in ¢ is defined
by I1.

Let p(s1,...,s,) be a predicate declaration of II. By X'(p) we denote the sequence
(s1,...,8n). If pis a sort name, X'(p) is p.

Definition 4 (Program Atom).
A string p(t1, . .., t,), where p is a predicate symbol or sort of IT and ¢y, ... ,t, are IT’s
terms, is an atom of I7 if:

— Let X(p) be (81,82, .., 8,)
— foreachi € {1..n}:
e if {; is a ground symbolic term then ¢; belongs to s;,
e if ¢; is an arithmetic term without variables, s; must contain the value of ¢;
(denoted by val(t;)),
e if ¢; is an arithmetic term with variables and at least one arithmetic operation, s;
must contain at least one number.

An atom A of IT or its negation —A are called literals of /1.

Example 1 (Program II).
To see some examples consider a program [/ containing the following:

#const n = 1.
sorts

#s1 = {f(b)}.
#s2 = [0..n]
predicates
p(#sl, #s2).

It is easy to see that {b, f(b)} where b € dom and f(b) € #s1 are non-numerical
ground terms of ITy; p(X, X)) is an atom of IIy, while p(X, f(b)),p(X, a) and p(0, X)
are not.

Definition 5 (Program Rules).
A rule of a SRARC program [T is a regular ASP rule

loV...Vip << lpnt1,-. . lg,not lyq...not 1, (6)

or a CR-Prolog rule
lo &1y, ... L, not lyq . ..not Ly, (7)

where [’s are literals of II and [y is not formed by a sort name. We say that a rule is
ground if it is constructed from ground literals.

The fourth part of a SRARC program starts with the keyword rules and is followed
by a finite collection of rules of I1. This completes our definition of syntax of SRARC
programs. In what follows sort definitions, predicate declarations and program rules of
IT will be denoted by S(IT), P(IT), and R(II) respectively.

To define the semantics of SPARC program I we will define its answer sets. If the
rules of IT are ground then answer sets of I are answer sets of the collection of its
ground rules. To define answer sets of a program I/ with variables we need some
terminology. A ground instance of a rule r of II is a ground rule of I7 which is the result
of replacing variables of r by properly-sorted elements of the I7’s domain; ground(r)
is the collection of all such instantiations; ground(II) is the union of ground(r) for all
rules of I1.

Definition 6 (Answer Sets).
Answer sets of a SRPARC program I are answer sets of an unsorted logic program
ground(I).

Example 2 (Program Il (continued)).
Let us now complete our program I1; by adding to it the rules:

p(f(b),0).

p(X,X) .

p(f(b),¥Y+1l) :— p(f(b),Y).
ground(Ily) consists of ground rules
p(f(b),0).

p(f(b),1) := p(£(b),0).

Note that there is no subsitution of X in p(X, X) which respects the sorts of p. Hence, the
rule p(X, X) has no ground instantiations; {p(f(b),0),p(f(b),1)} is the only answer
set of ground(Ily) and hence of ITy. Notice that according to this definition we cannot
expand I/, by the statement

p(X, £(b)).

since, according to our sort and predicate declarations, it would not be a rule of the
resulting program.

2.1 Discussion

Notice that the above definition of ground(II) involves a non-obvious choice. We do
not require the set ground(r) to be non-empty. The alternative would be to prohibit
such rules. Under this alternative definition I7; would not be a program of SPARC.
(Note that 1Ty U {p(X,a)} is not a program under any of these definitions). Our choice
is based on the methodology for writing SRARC programs which attempts to make
them elaboration tolerant. We assume that normally programmers will be fully aware
of sort, function, and predicate symbols of the program’s signature but not necessarily
about actual content of the sorts. As an example one may think about a programmer
representing “blocks world” domain. He may structure the world in terms of sorts steps,
blocks, locations, actions and fluents, and predicate symbols holds(fluents, steps)
and occurs(actions, steps), and write causal laws representing the domain, e.g.
holds(on(B, L), I + 1) < occurs(put(B, L), I). Later he may define the sorts of the
program including that of actions. Suppose this is done using the first definition of
actions from page 4. If the programmer later wants to use this knowledge for planning
he may decide to exclude generating an action put(B, B) by a constraint

+ occurs(put(B, B),I).

After further consideration the definition of actions can be changed to the second
version, which would leave our constraint without ground instantiations. Should this
result in error? Our answer is “no”. The rule will simply automatically disappear during
the grounding process. We will however have an option of warning the programmer
about such an event (see section 4).

3 Checking the Program Syntax

In this section we define a syntax checking algorithm for SRARC programs. Given
program 1, the syntax check of directives and predicate declarations of I7 is straightfor-
ward. Checking correctness of sort expressions involves checking their syntax, including
non-emptiness of the sorts which can be done by a simple recursive algorithm. In the
process we also mark all sorts which contain at least one number and create the list of
names of all the program records. The rule part of the program is syntactically correct
iff each of its rules is correct, i.e. if each rule is properly constructed from program
atoms. The main work is performed by functions IsAtom(A, IT) and IsTerm(T', IT) which
return frue iff A and T are atom and term of I7 respectively. Another important function,
ReduceTerm uses sort definitions of I7, a ground term ¢ and a sort s to construct a formula
which evaluates to true iff ¢ € s. To be more precise we need the following definitions:

Definition 7 (Formula).

— T € D, where T is a variable, a ground term or an arithmetic term, and D is a set
of ground terms, is a formula,

— t1 © tg, where t1 and to are terms and © € {=, #, <, <}, is a formula, and

— if A and B are formulas then (A A B), (A V B), and —A are formulas.

Formula F' is called ground if it does not contain variables.

Relation < is defined on arbitrary terms; X < Y iff X and Y are both symbolic names
or both integers and X < Y. Otherwise X < Y is false. Similarly for <.

Definition 8 (Satisfiability). A formula F is satisfied by a substitution 6 of variables
of F by ground SPARC terms if the result, 7 (6), of this substitution is true.

Now we are ready to describe IsAtom and IsTerm:

Algorithm 1: IsAtom

1
2

A U AR W

10

11
12

13

Input: a string of the form p(t1,...,t,), where t1,. .., t, are SRARC terms, and
a SRARC program I1.
Output: true if p(tq, ..., t,) is an atom of IT and false otherwise.
if p is not a sort or a predicate name of 11 then
| return false

Let X' (p) be (s1,52,.-.,n)
for eacht; of p(t1,...,t,) do
if ¢; is a ground term and ReduceTerm(t;, s;, IT) is false then
| return false
if t; is an arithmetic term without variables and ReduceTerm(val(t;), s;, IT)
is false then
| return false
if t; is an arithmetic term with variables and at least one arithmetic operation
and s; does not contain a number then
| return false
if ¢; is not a ground term and I1sTerm(t;, IT) is false then
| return false
return true

Algorithm 2: IsTerm

1
2

9

Input: a SPARC term ¢ and a program I1.

Output: rrue if ¢ is a term of I and false otherwise.

if there exists a record name in t that is not defined by 11 then
| return false

for each maximum ground subterm u of t do
if w is a natural number such that u > #mazxint then
| return false

if u is a symbolic term not occurring in the sort definitions of 11 then
if there is no sort s such that ReduceTerm(u, s, IT) is true then
| return false

return true

The only thing left is to define function ReduceTerm(t, s, IT) mentioned above.

Note that for our purpose it is sufficient to define it for a ground term ¢ only. But we

introduce a more general algorithm which allows ¢ to be non-ground. This will be useful
in the next section.

Algorithm 3: ReduceTerm
Input: a term ¢ and a sort expression F of a SRARC program I1.
Output: a formula C which is satisfiable if and only if there exists a substitution 6,
such that td € D(E).
1 if E is a sort name defined by a statement F = F; then
2 L C := ReduceTerm(t, E1,II)

3 else if E is of the form Ey © Es, where ® € {4, —, x} then
4 C := (ReduceTerm(t, E1, 1)) 7 (ReduceTerm(t, Es, IT)), where A 7 B
is AV B,AAN-B,or AA B when © is +, —, or x respectively

5 else if E is of the form f(s1[X1],...,sn[Xn]) : cond(Xq,..., X,)
6 where the condition cond(X1, . .., X,,) is optional then

7 if ¢ is not a variable and is not formed by a record name f then
8 | return false

9 Let X7,... X/ be new variables

10 if ¢ is of the form f(t1,...t,) then
1 LC:Z(X{ZM)/\“'/\(X;L:%))

12 else if ¢ is a variable then

13 LC:: (t=f(X1,...X}))

14 if condition cond(X, ..., X,,) is present in E then

15 C:=CAcond (Xj,...,X]) where cond (X1, ..., X]) is obtained from
cond(X1,...,X,) by replacing X; with X/ and <, < with <, <
respectively.

16 | C:=CA(ReduceTerm(X{,s1,II)) A ...\ (ReduceTerm(X),, sn, IT))

17 else

18 if ¢ is not ground term of the form f(t1,...t,) then

19 | C=V{(ta =) A A (b = t)|f(t), ..., 1),) € D(E)}
20 else

2 | C=teD(E)

22 return C

“empty disjunction is interpreted as false

Note that the algorithm ReduceT erm comes to line 17 when expression E is of the
form {t¢1,...,t,} or is defined by statements of the form 2,3 or 5. In this case the
corresponding D(FE) is computed explicitly. The correctness of ReduceT erm algorithm
is guaranteed by the following claim:

Claim. Given a SRARC term t, a sort expression E of a program I and a substitution
0, 0 is a solution of the formula ReduceTerm(t, E, IT) if and only if t6 € D(E).

10

Example 3 (Tracing the Algorithm).
Now let us trace our syntax checker on arule p (£ (b) ,Y+1) :— p(f(b),Y) of
program [I; from Examples 1 and 2. To check the rule’s syntax we use IsAtom to
establish that p(f(b),Y + 1) and p(f(b),Y") are atoms of I1y. IsAtom(p(f(b),Y +
1), Iy) calls ReduceT erm(f(b), s1, IIy) which returns true (see line 21). After that we
have the following two calls: IsTerm(Y + 1, I1y) and ReduceTerm(1, sa, I1y). The
latter, and hence the former, return true. Hence, the head of our rule is an atom of 1.
Similarly for the body. Therefore, the rule p (£ (b) , Y+1) :— p(f (b),Y) isindeed
arule of I1.

Now let IT; = ITo U {p(X, f(b)).}. This time IsAtom(p(X, f(b)), II1) will return
false, because f(b) is a ground term which is not an element of corresponding sort s2
(therefore, ReduceTerm(f(b), s2, IT;) returns false).

4 Empty Rule Checking

In this section we introduce an algorithm, IsEmptyRule, which checks if a rule r of IT is
empty, i.e. has no ground instantiations. This is done by applying a standard constraint
satisfaction algorithm to a constraint formula over finite domains[9] produced by function
ReduceRule.

Algorithm 4: IsEmptyRule

Input: rule r of a program 1.

Output: true if r is a non-empty rule of I and false otherwise.
t C = ReduceRule(r, IT)
2 return satis fiable(C')

Algorithm 5: ReduceRule

Input: a rule and a SPARC program I1.
Output: a formula C, which is satisfiable if and only if 7 is not empty rule of II.

1 C:=true

2 for each t; of each atom p(t1, ... ,t,) occurring in r do
3 Let (s1,...,8,) be X(p)

4 L C :=C A ReduceTerm(t;, s;, IT)

5 return C

In ReduceRule, we extract constraints, using ReduceTl erm, for every term of every
atom of r and connect them by conjunctions. The function ReduceTlerm takes a term ¢
and a sort expression F of a program /7 and returns a formula which is satisfiable if and
only if there is an instance of ¢ which belongs to D(E).

Claim. Given a SRARC program IT and a program rule r of IT, IsEmptyRule(II, 1)
returns true if and only if 7 is not empty.

Example 4 (Empty rule).
Consider the rule p (X, X) of program I1y. Reduce Rule(r, Ily) returns formula X €
{f(b)} N X € {1,2} which is clearly unsatisfiable. Therefore, the rule is an empty rule.

5 Computing Answer Sets of a SPARC Program

Answer sets of a SRARC program 11y, will be computed by translating the program
into a program in the language of DLV with weak constraints. First we need some
notation: every cr-rule r of Il Will be assigned a unique number i. An expression
rn(i, X1, ..., X;,) where X7, ..., X,, is the list of distinct variables occurring in will
be referred to as the name of r. For instance, if rule p(X,Y") + ¢(Z, X,Y) is assigned
number 1 then its name is rn(1, X, Y, Z). We also need the following definition:

Definition 9 (DLV counterparts of SRARC programs). A DLV program 11y, is a
counterpart of a SRARC program Il pqrc if

— the signature of 14, is an extension of the signature of I1;,q,c, and
— the answer sets of 1,4, and I 4, coincide on literals from the language of I1spqrc.

The translation is performed by Algorithm 6. The basic idea is to explicitly add the
necessary sorts in the bodies of the DLV rules (which will eliminate possible problems
with the safety of variables) and to replace cr-rules by a collection of weak constraints.
The latter requires introduction of some new predicate symbols which explains the first
requirement in definition 9.

Algorithm 6: Translate
Input: a SRARC program Ilp,qpc
Output: a DLV counterpart 11, of Ilgpqrc.
1 Set variable 114, to directives of I1spqrc
2 Let appl1/1 be a new predicate not occurring in I1gpqrc
3 for each rule r in Il 4, do
S := {s(t) | there exists p(t1, ..., tn), occurring in r, such that
P(S1s- -+, 8n) € P(Isparc); forsome i, t =t;, s = s;;
and ¢ is not ground}
for each distinct sort name s occurring in S do
L Mgy = g, U{s(t).|t € D(s)}
9 Let rule 7/ be the result of adding all elements of .S to the body of r
10 if v’ is a regular rule then
11 L Add r’ to 1y,

w N & s

12 if v’ is a cr-rule of the form q & body then

13 Add to 11y, the following rules

appl (rn(i, X1, ..., Xp))V —appl (rn(i, X1, ..., X,)) :— body.
:~ appl (rn(i, X1,...,Xn)), body.

q :— appl (rn(i, X1, ..., X)), body.

14 where rn(i, X1, ..., X,,) is the name of r

The intuitive idea behind the rules added to 11, for a cr-rule at line 12 is the following:
appl (rn(i, X1, ..., X;,)) holds if the cr-rule r is used to obtain an answer set of the
SPARC program; the first of the added rules says that r is either used or not used; the
second rule, a weak constraint, guarantees that r is not used if possible, and the last rule

12

allows the use of » when necessary. The correctness of the algorithm is guaranteed by
the following theorem whose complete proof can be found in our technical report [10].

Theorem 1. A DLV program Py, obtained from a SRARC program Psparc by the
algorithm Translate is a DLV counterpart of Psparec.

The translation can be used to compute answer set of SRARC program 11, by using
the DLV solver to compute answer sets of I1,,,.’s DLV counterpart and removing from
them all auxiliary literals introduced in Translate.

Example 5 (Computing answer sets of a SRARC program,).

To illustrate the translation and the computation of an answer set of a SRARC program,
consider the input program I1; obtained from I/, by changing the type of one of its rules
to consistency restoring:

#const n = 1.
sorts

#s1 = f(b).

#s2 = [0..n].
predicates

p (#sl,#s2).

rules

p(f(b),0).

:— not p(f(b),1).
p(X,X).
p(f(b),¥Y+1l) :+ p(f(b),Y).

After the execution of the loop at line 3 of algorithm Translate, the first three
regular program rules will be translated into

p(f(b),0).

- not p(f(b),1)
p(X,X):=-sl(X),s2(X).
s2(0). s2(1) 1(f£(b))

Assuming the only cr-rule is numbered by 0, it is translated as':

appl (rn(0, Y))| -appl(rn(0, Y)) :- p(f(b),Y),s2(Y),s2(Y+1).
:~ appl(rn(0, Y)),p(f(b),Y),s2(Y),s2(Y+1).
p(f(b),Y+1) :—appl (rn(0, Y)),p(f(b),Y),s2(Y),s2(Y+1).

Given the program resulted from T'ranslate, DLV solver returns an answer set
{52(0), s2(1), s1(f (b)), p(f(b), 0), appl(rn(0,0)), p(f (b), 1)}-

After dropping appl(rn(0,0)), s2(0), s2(1), s1(f(b)) from this answer set, we obtain
an answer set {p(f(b),0),p(f (), 1)} for the original program.

!The actual output result of the implemented version may be different because of variable
renaming, change of the order of rules and shifting arithmetic terms.

6 Conclusion

As ASP has been employed to solve more and more problems, we believe constructs
are needed to improve the productivity of ASP programmers. Particularly, constructs
are needed to allow a programmer to better structure the program, to automatically
determine some syntax and semantic errors and to avoid thinking about safety of ASP
rules — non-declarative conditions on rules required by existing ASP systems. We
define the syntax and semantics of a knowledge representation language SRARC which
offers explicit constructs to specify objects, relations, and their sorts. The new language
expands CR-Prolog — an extension of ASP by consistency restoring rules. We introduce
an implementation of SRARC based on its translation to DLV with weak constraints.
A simple syntax checking algorithm helps a programmer to avoid errors related to
misspelling the names of objects and predicates as well as simple type errors. Another
type checking algorithm flags program rules which, due to type conflicts, have no ground
instantiations. We hope that the sort related algorithms presented in this paper will be
eventually used to make SRARC a front-end for other ASP based systems (including
CR-Prolog system CR-models [11]).

7 Acknowledgements

This work was partially supported by NSF grant IIS-1018031.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings
of ICLP-88. (1988) 1070-1080

2. Syrjdnen, T.: Lparse 1.0 user’s manual (2000)

3. Balduccini, M.: Modules and signature declarations for a-prolog: Progress report. In: Software
Engineering for Answer Set Programming Workshop (SEAQ7). (2007)

4. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: Interna-
tional Symposium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring
Symposium Series. Volume 102., The AAAI Press (2003)

5. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic (TOCL) 7(3) (2006) 499-562

6. Buccafurri, F., Leone, N., Rullo, P.: Strong and weak constraints in disjunctive datalog. In:
Logic Programming And Nonmonotonic Reasoning. Springer (1997) 2-17

7. Balai, E., Gelfond, M., Zhang, Y.: SPARC - sorted ASP with consistency restoring rules. In:
Answer Set Programming and Other Computing Paradigms. (2012)

8. SPARC system, http://www.depts.ttu.edu/cs/research/krlab/#software

9. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Francisco, CA (2003)

10. Balai, E., Gelfond, M., Zhang., Y.: SPARC - sorted ASP with consistency restoring rules.
http://www.depts.ttu.edu/cs/research/krlab/#papers, Technical Report, Texas Tech University,
USA (2012)

11. Balduccini, M.: CR-MODELS: An Inference Engine for CR-Prolog. In Baral, C., Brewka,
G., Schlipf, J., eds.: Proceedings of the 9th International Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR’07). Volume 3662 of Lecture Notes in Artificial
Intelligence., Springer (2007) 18-30

