A Logic Programming Approach to Aspect
Extraction in Opinion Mining

Qian Liu*f, Zhigiang Gao*', Bing Liu! and Yuanlin Zhang}

*School of Computer Science and Engineering, Southeast University, Nanjing, China 210096
TKey Laboratory of Computer Network and Information Integration (Southeast University)
Ministry of Education, Nanjing, China 210096
Email: {gianliu, zqgao} @seu.edu.cn
iDepartment of Computer Science, University of Illinois at Chicago
851 South Morgan Street Chicago, IL 60607-7053
Email: liub@cs.uic.edu
§Department of Computer Science, Texas Tech University, Lubbock, Texas 79409
Email: y.zhang @ttu.edu

Abstract—Aspect extraction aims to extract fine-grained opin-
ion targets from opinion texts. Recent work has shown that
the syntactical approach performs well. In this paper, we show
that Logic Programming, particularly Answer Set Programming
(ASP), can be used to elegantly and efficiently implement the
key components of syntax based aspect extraction. Specifically,
the well known double propagation (DP) method is implemented
using 8 ASP rules that naturally model all key ideas in the DP
method. Our experiment on a widely used data set also shows
that the ASP implementation is much faster than a Java-based
implementation. Syntactical approach has its limitation too. To
further improve the performance of syntactical approach, we
identify a set of general words from WordNet that have little
chance to be an aspect and prune them when extracting aspects.
The concept of general words and their pruning are concisely
captured by 10 new ASP rules, and a natural extension of the
8 rules for the original DP method. Experimental results show
a major improvement in precision with almost no drop in recall
compared with those reported in the existing work on a typical
benchmark data set. Logic Programming provides a convenient
and effective tool to encode and thus test knowledge needed to
improve the aspect extraction methods so that the researchers
can focus on the identification and discovery of new knowledge
to improve aspect extraction.

Keywords—aspect extraction; logic programming; answer set
programming; opinion mining; dependency relation

I. INTRODUCTION

Aspect extraction aims to extract fine-grained opinion
targets from opinion texts. An aspect is an attribute or feature
of an entity, which can be a product or service. Aspects
are important for aspect-based opinion mining (also called
sentiment analysis) [1], because without knowing them, the
opinions expressed in the texts are of limited use. There are
two kinds of aspects [2]: explicit aspects, which are explicitly
expressed as nouns or noun phases, and implicit aspects, which
are other types of aspects. For example, the sentence “The
price of this car is high” talks about the price of the car. “Price”
is an explicit aspect as it is a noun and explicitly appears in
the sentence. The sentence “This car is expensive” also talks
about the price of the car, but “price” is not in the sentence.
“Expensive” here is an implicit aspect, which indicates the
explicit aspect “price.”

In recent years, explicit aspect extraction has been studied
extensively [2]-[11]. There are two main approaches: statisti-
cal and syntactical. The former is mainly based on conditional
random fields (CRF) [12], [13] and topic modeling [14]-[24],
while the latter is mainly based on dependency relations [25].
Recent work has shown that dependency based methods such
as double propagation (DP) [26] performs better than CRF
and topic modeling. The key idea of the syntactical approach
is that opinions have targets (aspects) and there are often
explicit syntactic relations between opinion words and aspects.
By exploiting some of these relations, the DP method uses a
set of seed opinion words to extract aspects and new opinion
words and then uses them to extract more aspects and opinion
words until no new words can be extracted. Since the process
propagates information back and forth between opinion words
and aspects, it is called double propagation.

However, the discovery of effective syntactic relations and
semantic information in the extraction rules usually needs
extensive experimentation. In fact, the IBM team of system
Watson [27] observed that, to build successful and scalable
methods for natural language processing, a huge number of
experiments (5500 experiments in 3 years for system Watson)
were needed to test the ideas and help conceive new ideas and
thus new experiments. Logic Programming (LP) was used in
their system to facilitate the experimentation.

We propose to employ logic programming for effective
experimentation and building of the key components of aspect
extraction systems. Note that basic factual information on the
words in the opinion texts and some routine processing are still
implemented using traditional language. In this approach, the
syntactic relations and the knowledge on how those relations
are related to aspect and opinion words are represented natu-
rally as logical rules. The aspects will then be automatically
generated by the logic programming inference engines from
the logic rules.

To illustrate the logic programming approach, consider
a piece of knowledge used in the DP method: “if a word
T, whose part-of-speech (POS) is a singular noun (NN), is
modified by an opinion word O, then 7" is an aspect.” By this
knowledge, in the sentence “The phone has a good screen,’
“screen” is an aspect because it is a singular noun and modified

by an opinion word “good” (which is known a priori). The
knowledge can be represented by the logic rule:

depends (T, mod, O),
opinionW (O),pos (T, nn) .

aspect (T) :-

where :- is understood as logic if, aspect (T') denotes that
the word T is an aspect, opinionW (O) that the word O
is an opinion word, pos (7', nn) that the POS of 7" is NN,
depends (T, mod, O) that T' is modified by O.

The extraction process inevitably produces errors because
it uses only syntactical information. In many existing works
[21], [26], infrequent candidate aspects are pruned. However,
this method may result in significant loss in precision or recall.
Typically, a threshold is used to tell whether a frequency is
high or low. As a result, to improve the precision, we need to
raise the threshold, which will hurt the recall, and vice versa.
To improve precision and recall, methods other than simple
frequency threshold have to be used.

We observed that there is a large class of words which are
so general that in very few cases they are aspects. Normally,
we will not take these words as aspects. As an example, in “I
can’t write enough good things about this camera,” “things”
is extracted as an aspect because it is modified by the opinion
word “good.” However, “things” is very unlikely to be a
product aspect and thus should be pruned. We propose to
use WordNet [28] to automatically generate a list of general
words using three typical general words ‘“thing,” “person,’
and “place” as seeds. By extending the DP method with the
knowledge that a general word is normally not an aspect, we
obtain a major improvement in the precision with almost no
drop in recall on a widely used benchmark data set.

In summary, we make two contributions: (1) We propose
to employ Answer Set Programming (ASP) — a variant of
Logic Programming — to implement syntactical approach based
aspect extraction. Our implementation of the DP method is
more elegant and efficient, and it has only 8 rules, while a
Java implementation has about 510 lines of code. The ASP
based implementation can process about 3000 sentences per
second, while the Java implementation only processes about
300 sentences per second. The preciseness and simplicity of
the logic programming rules enable the sharing of knowledge
used in aspect extraction and the reproducibility of experi-
mental results. (2) We introduce the concept of general words
based on WordNet and augment the DP method with the
knowledge that general words normally should not be taken
as aspects, which results in more accurate aspect extraction.
Again, the general words and new knowledge can be naturally
implemented using ASP.

The remaining of the paper is organized as follows: we
present background and related work in Section II and an
overview of our logic programming approach in Section III.
The ASP rules to implement the DP method for extracting
explicit aspects are described in Section IV. Our new approach
to aspect pruning is presented in Section V. We present the
experiments in Section VI and conclude the paper and discuss
future work in Section VIIL

II. BACKGROUND AND RELATED WORK

In this section we introduce the basics of aspect extraction
and Answer Set Programming.

A. Aspect Extraction

An object is an entity which can be a product, service,
person, event, organization, or topic. It is associated with a set
of components or attributes, called aspects of the object. Each
component may have its own set of aspects.

For example, a particular brand of cellular phone, say
iPhone, is an object. It has a set of components, e.g., battery
and screen, and also a set of attributes, e.g., voice quality, size,
and weight. These components and attributes are aspects of the
phone.

An opinion is simply a positive or negative view, attitude,
or emotion about an object or an aspect of the object from a
person or an organization. Given a collection of opinion texts
on an object, the aspect extraction problem is to produce the
aspects of the object from these documents.

As mentioned earlier, there are two main methods for as-
pect extraction. In this paper, we focus only on the syntactical
approach as it has been shown to perform better than the
statistical approach [26]. For related work on the statistical
approach, please refer to the recent book [1]. In the syntactical
approach, explicit aspect extraction consists of two phases:
candidate aspect extraction and incorrect aspect pruning.

For candidate aspect extraction, we focus on the double
propagation method [26] which is based on the following
observations. The first is that it is easy to identify (a priori)
a set of opinion words such as “good” and “bad,” etc. The
next is that opinion words are usually associated with aspects
(opinion targets) under certain syntactic relations. For example,
in the sentence “This camera is good,” “good” is an opinion
word. The “camera,” a noun modified by “good,” is clearly an
aspect. Therefore from a given set of opinion words, we can
derive a set of aspects in terms of syntactic relations. Similarly,
syntactic clues can help extract new aspects from the extracted
aspects, and new opinion words from the extracted aspects.
This propagation process continues until no more opinion
words or aspects can be extracted.

Dependency grammar is adopted to represent the syntactic
relations used in the propagation. See the picture below for an
example of the dependency tree for the sentence “The phone
has a good screen.”

has

sutV \obj

phone screen
det/' det / \mod
a

The good

A direct dependency indicates that one word depends on
another word without any additional words in their dependency
path or they both depend on a third word directly. The
DP method considers only direct dependencies as complex
relations can make the method vulnerable to parsing errors.
Opinion words are assumed to be adjectives and aspects nouns
or noun phrases. Thus the potential POS tags for opinion
words are JJ (adjectives), JJR (comparative adjectives) and
JJIS (superlative adjectives) while those for aspects are NN
(singular nouns) and NNS (plural nouns). The dependency

relations between opinion words and aspects include mod,
pnmod, subj, s, obj, obj2 and desc whose meaning is shown
in Table I. The relations between opinion words and between
aspect words contain only the conjunction relation conj. The
relation det means determiner.

TABLE 1. DESCRIPTION OF DEPENDENCY RELATIONS.
Relation | Description

mod the relationship between a word

and its adjunct modifier

pnmod post nominal modifier

subj subject of verbs

s surface subject

obj object of verbs

obj2 second object of ditransitive verbs
desc description

DP method employs eight rules to derive aspects from
opinion words and vice versa in terms of their dependency
relations. Details of these rules are given in Section IV.

In the incorrect aspect pruning phase, infrequent candidate
aspects are pruned in many existing works [2], [26], [29]. Al-
ternative methods, such as pointwise mutual information score
[3], pattern-based filters [26] and named entity recognition [30]
are also employed to improve the accuracy.

B. Answer Set Programming

Answer Set Programming originates from non-monotonic
logic and logic programming. It is a logic programming
paradigm based on the answer set semantics [31], [32], which
offers an elegant declarative semantics to the negation as
failure operator in Prolog. An ASP program consists of rules
of the form: ly :- Iy, ...,l;n,n0t 141, ...,n0t 1,. where each
l; for ¢ € [0..n] is a literal of some signature, i.e., expressions
of the form p(¢) or —p(t) where p is a predicate and ¢ is a
term, and not is called negation as failure or default negation.
A rule without body is called a fact.

The rule is read as: if one believes l1, ..., and [,,, and there
is no reason to believe l,,41, ..., or l,, one must believe [g.
The answer set semantics of a program P assigns to P a
collection of answer sets, i.e., interpretations of the signature
of P corresponding to possible sets of beliefs (i.e., literals).
These beliefs can be built by a rational reasoner by following
the principles that the rules of P must be satisfied and that
one shall not believe anything unless one is forced to believe.

A literal is ground if it does not contain any variables.
A ground ASP program is a program containing only ground
literals. The answer set of a ground ASP program without
negation as failure is the minimal model of the program. The
reduct of a ground ASP program IT with respect to a set .S
of ground literals, denoted by I1°, is a program obtained from
IT by removing all rules containing not [such that [€ S and
removing from the rest of the rules not and the literal following
it. Note that the reduct of a program contains no negation as
failure operators. A set S of ground literals is an answer set
of a ground ASP program II if S is the answer set of I1°.

Any rule r with variables of a program II can be taken as
a set of its ground instantiations, i.e., it can be seen as the set
of rules obtained from r by replacing its variables by ground

terms of the signature of II. Therefore, an ASP program with
variables is a shorthand of a ground ASP program.

A typical reasoning task for ASP program is to find its
answer sets while a task for a Prolog (classical LP) program
is to answer a query. Most modern inference systems for the
former, often called ASP solvers, are based on DPLL algorithm
[33] — a backtracking based search algorithm — equipped with
state-of-the-art reasoning algorithms for propositional logic
such as watched literals based unit propagation and learning
clauses [34]. The inference system for the latter is usually
based on SLD resolution.

ASP can be used to represent and reason with recursive
definitions, defaults with strong and weak exceptions [32],
causal relations, beliefs, intentions, incomplete information,
and some other constructs of natural language. ASP has a
solid mathematical theory as well as a number of efficient
ASP solvers including the popular solver CLASP [35] and
commercial solver DLV [36]. These solvers and the ASP
programming methodology have been employed to provide
competitive solutions to numerous problems from planning,
natural language processing, space shuttle control, product
configuration to bioinformatics and other areas [37].

III. A LoGIC FRAMEWORK FOR ASPECT EXTRACTION

An ASP based framework of aspect extraction consists of
the following steps:

1) Develop algorithms (usually in a conventional lan-
guage such as C) to extract the primitive relations in
terms of syntactic, semantic and other analysis, and
represent them as ASP facts;

2) Identify opinion words and opinion expressions and
represent them as ASP facts;

3) Identify extraction rules and other common sense
knowledge about the primitive relations and opinion
expressions, and represent them by ASP rules;

4) Compute the answer set of the logic program resulted
from the first three steps using existing ASP solvers.
The aspects are then extracted from the answer set.

In addition to our familiarity with ASP, we choose ASP
with the following reasons. (1) The rules used in the syn-
tactical approach can be naturally represented by ASP rules.
Furthermore, there are exceptions to these rules. The non-
monotonicity of ASP provides an excellent way to represent
and reason with exceptions. (2) The existing ASP solvers such
as DLV [36] and CLASP [35] offer very efficient reason-
ing for ASP programs. They are very well documented and
maintained, and used by a good number of researchers and/or
practitioners'. (3) The fast unit propagation mechanism [34]
employed by modern ASP solvers can efficiently handle the
ASP rules we need to represent the DP method and other
knowledge in aspect extraction.

The main objective of this paper is to examine the ef-
fectiveness of ASP in aspect extraction over the conventional
approach. There are numerous variants of Logic Programming
languages and systems (e.g., Prolog and defeasible logic [38]).

IFor DLV, see http://www.dlvsystem.com/,
http://potassco.sourceforge.net/

and for CLASP, see

Some of them may be equally good as or better than ASP. A
further investigation of other Logic Programming variants is
beyond the scope of this paper.

IV. EXPLICIT ASPECT EXTRACTION USING ASP

In this section, we discuss in detail how to use ASP to
represent the knowledge used in the DP method.

In the DP method, a list of seed opinion words are
given a priori. They are represented as facts in the form
opinionW (7T) denoting that 7" is an opinion word. The
information about the POS of words and dependency rela-
tions between pairs of words in the corpus are automatically
extracted by a parser such as Stanford Parser’. They are
represented as facts pos (7, P), which denotes that the POS
of T'is P, and depends (H, Dep,T), which denotes that T’
depends on the word H through the dependency relation Dep.
The other knowledge used in DP is the eight extraction rules
that establish relations between opinion words and aspects as
well as among opinion words and among aspects themselves
through dependency relations.

The first rule in DP [26] is R1y: if O — O-Dep — T,
such that O € {O}, O-Dep € { MR}, where {M R} = {mod,
pnmod, subj, s, obj, obj2, desc} and POS(T) € { NN}, then
T is an aspect. It means “if a word T', whose POS is NN, is
directly depended by an opinion word O through one of the
dependency relations mod, pnmod, subj, s, obj, obj2 and desc,
then 7" is an aspect.” This rule can be represented as an ASP
rule:

aspect (T) :- depends (T,0-Dep,0),
opinionW(0),pos(T,nn),

O-Dep!=conj.

where aspect (T) denotes that the word T is an aspect,
depends (T, 0-Dep, O) that O depends on T through O-
Dep (except conj), opinionW (O) that O is an opinion word,
and pos (T, nn) that the POS of T is NN. Since the depen-
dency relation in this extraction rule covers all dependency
relations except the relation conj, we have O-Dep!=conj in
the ASP rule.

In the following, we will intuitively explain each rule in
English instead of giving the original rules in [26]. Rule R1,
in DP is: “if an opinion word O and a word T, whose POS is
NN, directly depend on a third word H through dependency
relations except conj, then T' is an aspect.” This rule can be
represented as follows:

aspect (T) :- depends(H,0-Dep,0),
depends (H, T-Dep, T),
opinionW(0),pos(T,nn),

O-Dep!=conj, T-Dep!=conj.

Rule R2; in DP says “if a word O, whose POS is JJ
(adjective), directly depends on an aspect T through depen-
dency relations except conj, then O is an opinion word.” It is
represented as follows:

opinionW(O) :- depends(T,0-Dep,0),
aspect (T),pos (0, JJ),

O-Dep!=conj.

Zhttp://www-nlp.stanford.edu/software/lex-parser.shtml

Rule R2; in DP, which means “if a word O, whose POS
is JJ, and an aspect 7T, directly depend on a third word H
through relations except conj, then O is an opinion word” can
be represented as follows:

opinionW (O) :- depends (H,O-Dep,O),
depends (H, T-Dep, T),
aspect (T) ,pos (0, jJ),

O-Dep!=conj, T-Dep!=conj.

Rule R3; in DP, which means “if a word T}, whose POS
is NN, directly depends on an aspect T; through conj, then T}
is an aspect” can be represented as follows:

aspect (T;) :- depends(T;,conj, T;),

aspect (T;) ,pos (T;, nn) .

Rule R3; in DP, which means “if a word 7}, whose POS
is NN, and an aspect T}, directly depend on a third word H
through the same dependency relation, then 77 is an aspect”
can be represented as follows:

aspect (T;) :- depends (H,T;-Dep, T;),
depends (H, T;-Dep, Tj) ,
aspect (T;) , pos (T;,nn),

T;—=Dep==T;-Dep.

Rule R4; in DP, which means “if a word O;, whose POS
is JJ, directly depends on an opinion word O; through conj,
then O; is an opinion word” can be represented as follows:

opinionW (0;) :- depends (0;,conj,0j),

opinionW (0;) ,pos (0j, 33) .

Rule R45 in DP, which means “if a word O;, whose POS is
JJ, and an opinion word O;, directly depend on a third word H
through the same dependance relation, then O; is an opinion
word” can be represented as follows:

depends (H, O;—Dep, 0;) ,
depends (H, Oj-Dep, O;) ,
opinionW (0;),pos (0;, 33),
O;—Dep==0,-Dep.

opinionW (O)

As we can see, all the 8 extraction rules in DP can be
represented naturally as ASP rules. Here is an example to
illustrate how our logic framework works for aspect extraction.

Example 1: From the sentences ‘“The phone has a good
screen” and “I can’t write enough good things about this
camera,” we obtain, using a parser, the following facts about
syntactical information, denoted by program P;:

fi pos (phone,nn) .
fa pos(good, jj) .
fs pos(screen,nn).
f4 pos (camera,nn) .

fs pos(things,nn).

fs depends (screen, mod, good) .
fr depends (has, subj, phone) .
fs depends (has, obj, screen) .
fo depends (write, subj, i) .

fio depends (things,mod, good) .
fi1 depends (write, obj, things) .

Next, a number of seed opinion words have been identified
(e.g., as in [2]). Let P, be the program of all rules of the form
opinionW (W) where W is a seed opinion word. In the
example sentences, “good” is a seed opinion word. P, contains

fi2 opinionW(good) .

Let P; be the program of the eight ASP rules whose
underlying knowledge is identified manually.

According to rule R1; and facts f3, fs and fio, “screen” is
an aspect, i.e., aspect (screen) is believed. According to
the same rule and facts f5, fip and fi2, aspect (things)
is also believed.

Finally, we run an ASP solver to compute answer
sets of P = P; U P, U P;. The solver will output
a unique answer set which consists of all atoms occur-
ring in P, and P, (e.g., opinionW(good) from P;
and depends (screen, mod, good) from P;), and atoms
aspect (camera) and aspect (things) 3,

It is not difficult to see that the ASP extraction rules are
a formal specification of the relations between aspects and
opinion words that are at the core of DP method. Given F, the
facts about seed opinion words and facts about the syntactical
information (e.g., program Pj;) of the words in a collection
of opinion texts, a word W is recognized as an aspect by
DP method if and only if aspect (W) is in the answer set
of the program II that consists of the ASP extraction rules
and the facts of F'. A brief explanation on why the claim
holds is as follows. All the ASP extraction rules do not have
negation as failure operator. It is a well known result in Logic
Programming that a program without not has a unique answer
set. If W is an aspect by DP method, there must be a sequence
of words Wy,---,W,, where W,, is W, such that Wj is
a seed opinion word, and W; (i € [2..n]) is an aspect (or
opinion) word with the reason that W;_; is an opinion (or
aspect) word according to the extraction rules and syntactical
information on W;_; and W; that is in F'. Therefore, the words
Wi, .-+, W, and syntactical information among them satisfy
all the ASP extraction rules and facts in II. Furthermore, since
W1 is an opinion word and thus a fact of F, we must have
W; (i € [1..n]) as an aspect or opinion word in the answer
set, i.e., the minimal model, of II according to the well known
properties of answer set programs without negation as failure.
Hence aspect (W) is in the answer set of II. Similarly, we
can prove the other direction of the claim on the aspect W.

To find the answer set of an ASP program is an NP-
complete problem. The worst case complexity of ASP solvers
is exponential. However, given that the ASP extraction rules
and facts on syntactical information do not have negation as
failure operators, the watched literals based unit propagation
of ASP solvers is sufficient to find an answer set of those rules
and facts. Watched literals based unit propagation has a linear
complexity. Hence a modern ASP solver can find the answer
set of the ASP program for DP method in linear time.

It is also worth noting the difference between a tradi-
tional approach — DP method — to aspect abstraction and the
declarative approach by ASP. DP method has to describe both
the propagation algorithm and the extraction rules while ASP
program contains only the rules. The propagation mechanism
of DP method is implied by the answer set semantics of the
ASP program for aspect extraction.

3As one can imagine, the answer set can be very big. In fact, special
language constructs in e.g., CLASP allow us to hide all other literals that
were used during the computation.

V. INCORRECT ASPECT PRUNING

The extracted aspects inevitably have errors, i.e., incorrect
aspects. For example, in “I can’t write enough good things
about this camera,” by rule R1;, “things” is an aspect because
it is modified by the opinion word “good.” However, “things”
is very unlikely to be a product aspect and should be pruned.
The precision of the DP method is expected to be improved if
it is augmented with incorrect aspect pruning. In this section,
we present a new method to identify incorrect aspects and ASP
rules for the augmented DP method.

A. Incorrect Aspect Identification

Many incorrect aspects are domain independent, and they
are usually general words such as “situation,” “someone” and
“day,” etc. The question we try to answer is how to produce a
reasonable set of general words. Explicit aspects are nouns or
noun phrases. The definition of “noun” in WordNet 2.0 is “a
word that can be used to refer to a person or place or thing.”
Our intuition is to take person, place, and thing as the seeds for
general words and expand them automatically. This intuition
is formalized by the following inductive definition.

Words “thing,” “person” and “place” are general words;
given a general word T', if the first sense of 7" in WordNet
has synonyms, every noun synonym of 7T is a general word,
otherwise every noun in the definition of 7’s first sense is a
general word. A word may have many senses; we use the first
one to avoid over propagation of general words. In the rest of
the paper, the definition of a word refers to the definition of
its first sense in WordNet for simplicity.

Normally, a word is an incorrect aspect if it is or its
definition contains a general word. For example, the word
“user,” whose definition is “a person who makes use of a
thing,” is an incorrect aspect as the definition includes a general
word “person.” However, there are two types of exceptions.
The first type includes the words whose definition contains
“aspect,” “attribute,” “property,” or “component.” They are
very likely to be product aspects. For example, the word
“quality,” whose definition is “an essential and distinguishing
attribute of something or someone,” is an aspect despite the
definition contains the general word “someone.” The second
type includes the candidate aspects with high frequency in the
collection of opinion texts of concern, obtainable from the DP
method, which is described in Section IV, and the words whose
definition contains one of the frequent candidate aspects.

Given a word T, if T has noun synonyms in its first sense
in WordNet, we obtain the facts syn (W,T') denoting W is
a synonym of 7" in T”s first sense in WordNet, otherwise we
obtain the facts noun (W, T') denoting that W is a noun in 7”s
definition. We can also obtain the facts highFrequent (T')
denoting T is a candidate aspect with high frequency obtain-
able from a collection of opinion texts by the DP method.

Now we are in a position to write the ASP program for
our knowledge on incorrect aspects (denoted by predicate
non_aspect).

non_aspect (T) :- generalWord(T),

not exception(T).

non_aspect (T) :- noun(Ww,T),
generalWord (W),
not exception(T).
highFrequent (T) .
noun (W, T),
highFrequent (W) .
noun (W, T),
isIndicator (W) .

exception (T) -
exception (T) -

exception (T) -

where not is used to exclude the exceptions (exception),
and isIndicator (W) holds if W is a word “aspect,”
“attribute,” “property,” or “component.”

Our definition of general word can be naturally represented
by the following ASP rules.

generalWord (thing) .
generalWord (place) .
generalWord (person) .

generalWord (T) : syn(W,T),
generalWord (W) .
noun (W, T),

generalWord (W) .

generalWord (T) :-

Some examples of general words are shown in Table II.

TABLE II. EXAMPLES OF DOMAIN INDEPENDENT GENERAL WORDS
EXTRACTED FROM WORDNET 2.0.
thing person place date sun
state people region day event
situation someone world earth brain
occasion importance woman time mind
instance significance location month calendar

As in Example 1, “things” in “I can’t write enough good
things about this camera” is extracted as a candidate aspect.
Since “things” is a general word with no exceptions, we can
get the fact non_aspect (things) according to the above
logic rules.

B. DP Augmented with Non-aspect Pruning

There are three steps in our ASP-based aspect extraction.
First, run the logic program of the DP method to produce
candidate aspects from a given collection of opinion texts. A
conventional program is then used to identify high frequent
candidate aspects from the texts. Second, run the logic program
for non-aspect identification in this subsection together with
the facts on high frequent candidate aspects, to get non-aspect
facts. Third, run the augmented logic program with non-aspect
pruning to obtain the final aspects.

After identifying non-aspect facts, we then need to revise
the ASP extraction rules to take into account the impact of
non-aspects using default negation. For example, the ASP rule
for R1; is modified as:

aspect (T) :- depends (T,0-Dep,0),
opinionW(0),pos(T,nn),
O-Dep!=conij,

not non_aspect (T) .

which reads “a word 71" with POS of NN is believed to be an
aspect if 7" is depended by an opinion word O through O-
Dep (except conj) and there is no reason to believe T is an
incorrect aspect.”

All other ASP extraction rules that define predicate
aspect/1 should be modified by adding, to their bodies, not
non_aspect (T) or not non_aspect (T;) depending
on the variable (1" or 7)) used in the head of the rules.

When we look back at Example 1, we now have the
new fact non_aspect (things) (intuitively meaning that
“things” is not extracted as a candidate aspect), i.e., “things”
is pruned naturally, using the above augmented logic rules.

Note that our approach of modifying the ASP extraction
rules is different from simply removing the non-aspect words
from the aspects resulted from original ASP extraction rules,
due to the propagation effect. For example, in the sentence
“I like to take pictures of beautiful people and buildings,”
“people” is pruned as it is a known non-aspect, “buildings”
is also pruned although it is not a known non-aspect word
thanks to the propagation effect.

VI. EXPERIMENTS

Experiments are designed to examine the effectiveness of
the proposed logic programming approach to aspect extraction
in terms of the effort needed to develop aspect extraction
systems and their efficiency, and the evaluation of the new
aspect pruning method.

We use the customer review collection built by [2] in
our experiments, which contains review data sets for five
products: two digital cameras (D1, D2), one cell phone (D3),
one MP3 player (D4), and one DVD player (D5). Explicit
aspects in these review data sets are already labeled. The
detailed information about each data set is shown in Table
III. For the seed opinion words, we use those provided by [2].
The average number of facts, including POS facts, dependency
relation facts and opinion word facts, for a data set is 11,985.
The logic program for each dataset has a unique answer set.

TABLE . DETAILED INFORMATION OF THE DATA SETS.

Data Product #of Sentences #of Labeled aspects

DI Canon 597 237

D2 Nikon 346 174

D3 Nokia 546 302

D4 Creative 1716 674

D5 Apex 740 296
Avg 789 337

A. Development Effort Comparison

The main difference between the traditional implementa-
tion [26] and the logic programming implementation of the
DP method lies in the implementation of extraction rules. To
implement DP, our java code has about 510 lines. In contrast,
only 8 rules are used in our ASP implementation of the DP
method.

To identify incorrect aspects, we only use 10 additional
rules. To augment the DP method with non-aspect pruning,
we simply modify the original 8 rules. Clearly, ASP programs
are much smaller and yet every ASP rule is simple and
has a natural interpretation, which significantly shortens the
development time and improves the maintainability of the
system. Another immediate benefit is that it is much easier
to reproduce the logic-based system than the traditional one.

B. Efficiency of Aspect Extraction Systems

We use the ASP solver CLASP 3.0.4 to run our ASP
program of the DP method on a Windows 7 desktop computer
with 3.30 GHz Intel (R) Core (TM) i3-2120 CPU and 4 GB
RAM to test the efficiency. Our program is able to process
3,000 sentences per second. On the same computer, our Java
implementation of the DP method extracts the same candidate
aspects, but it is 10 times slower. The efficiency of our ASP
implementation can be explained as follows. Given the nature
of the DP method, the watched literals based unit propaga-
tion [34], [35] underlying CLASP offers fast implementation
(linear complexity) of our ASP program. In contrast, our Java
implementation is not equipped with the advanced propagation
methods (e.g., watched literals) due to their complexity.

C. Quality of DP with New Aspect Pruning Method

We compare the DP method with infrequent candidate
aspect pruning method used in [26], denoted by DP, with
the DP method augmented with new aspect pruning method
presented in this paper, denoted by DPAP. Table IV shows
the precision (the positive predictive value), recall (fraction
of retrieved relevant aspects), and F-score of DP and DPAP.
DPAP has the highest F-score. We can observe that DPAP
has much higher precision than DP thanks to the proposed
pruning method, i.e., candidate aspects that are general words
can be pruned in DPAP while cannot be guaranteed in DP. The
recall of DPAP is slightly lower than DP because some correct
aspects are also pruned (for details, see the later discussion in
this subsection). On average over the 5 data sets, the precision
of DPAP is 16% higher than that of DP. The average recall of
DPAP only drops by 2% compared with DP. These show that
the proposed pruning is effective. In terms of F-score, DPAP
consistently outperforms DP on every data set. On average,
DPAP’s F-score is 8% higher than that of DP.

TABLE IV. PRECISION, RECALL AND F-SCORE OF DP AND DPAP FOR
EXPLICIT ASPECT EXTRACTION.
Data Precision Recall F-score
DP DPAP DP DPAP DP DPAP

D1 070 0.90 090 0.83 0.79 0.86
D2 074 0.87 0.89 0.86 0.80 0.87
D3 077 0.90 090 0.90 0.83 0.90
D4 069 0.84 0.89 0.86 0.78 0.85
D5 063 0.89 0.89 0.88 0.74 0.88
Avg 0.71 0.88 0.89 0.87 0.79 0.87

We note that the results of DP shown in Table IV are
not exactly the same as those reported in [26] because of
the following reasons. First, we use different syntactic parsers
(Minipar4 is used in [26] while Stanford Parser is used in
our experiments, both in DP and DPAP), which may produce
slightly but not essentially different parsing results. Second, the
authors of [26] mainly use frequency-based pruning method in
their experiments. However, they also use a heuristic method to
prune domain-specific candidate aspects, which is not always
desirable as it trades recall for precision as reported in [26].
We do not use this heuristic method in our experiments and
thus the recall of our DP implementation is much higher than
that reported in [26]. The thresholds we use to prune infrequent

“http://webdocs.cs.ualberta.ca/~lindek/minipar/

aspects for DP are not exactly the same as those used in [26],
which may also contribute to the differences.

By our definition of general words, a total of 5,338 general
words are found from WorldNet 2.0. Examples of general
words are given in Section V. To illustrate the effectiveness
of our proposed incorrect aspect identification method, we list
some examples of non-aspects identified from the data sets
by our ASP program in Table V. All words, except “format,”
“life” (such as in “battery life”) and “function,” in Table V
are true incorrect product aspects, which explains the better
precision of DPAP that prunes these non-aspects. Note that,
general words such as “people,” “thing,” “reviews,” “process,’
“purchase,” “money” and ‘“protection” in Table V are not
infrequent candidate aspects in the data sets so that it is hard
for frequency-based pruning method to get rid of them. Other
general words in the table are infrequent candidate aspects,
they can be pruned by both DPAP and DP.

TABLE V. EXAMPLES OF NON-ASPECTS IN THE DATA SETS. BOLD
WORDS ARE WRONGLY EXTRACTED, AND UNDERLINED WORDS ARE TRUE
INCORRECT ASPECTS THAT ARE NOT INFREQUENT IN THE DATA SETS.

person friend life money luxury
people thing line company care
summary move manager headache habit
succession cable matter protection health
brightness method title chance array
journey kind state piece pain
proof vacation process scratch aim
kitchen format purchase benefit charm
organization place stuff fortune band
construction reviews relation function model
upgrade list sort difficulty sheep

The words “format,” “life” and “function” in the table are
wrongly identified as incorrect aspects, which explains the
slight drop of recall of DPAP shown in Table IV.

VII. CONCLUSION

This paper has shown that Answer Set Programming has
provided an elegant, natural and concise implementation of the
DP method for aspect extraction systems. The new approach
significantly reduces the efforts to implement the extraction
algorithm. It is also 10 times faster than a Java implementation
on a collection of widely used data sets. We also proposed
to augment the DP method with new knowledge for pruning
aspects from the candidate ones. Experiments on 5 benchmark
review data sets show that the augmented DP method outper-
forms the state-of-the-art DP method by a large margin. In
future work, we plan to investigate more syntactic extraction
rules, to refine knowledge for identifying incorrect aspects,
and to conduct experiments on more data sets. We also plan
to explore if other LP systems provide better performance (in
terms of both modeling effectiveness and efficiency) than ASP.

ACKNOWLEDGMENT

We would like to thank Zhisheng Huang, Yaocheng Gui
who contribute to this work. Yuanlin Zhang’ work was partially
supported by NSF grant IIS-1018031. Zhigiang Gao’s work
was supported by the National Science Foundation of China
under grant 61170165.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

B. Liu, Sentiment Analysis and Opinion Mining, ser. Synthesis Lectures
on Human Language Technologies. Morgan & Claypool Publishers,
2012.

M. Hu and B. Liu, “Mining and summarizing customer reviews,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, ser. KDD ’04, 2004, pp. 168—
177.

A.-M. Popescu and O. Etzioni, “Extracting product features and
opinions from reviews,” in Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language
Processing, ser. HLT 05, 2005, pp. 339-346.

G. Carenini, R. T. Ng, and E. Zwart, “Extracting knowledge from
evaluative text,” in Proceedings of the 3rd international conference on
Knowledge capture, ser. K-CAP °05, 2005, pp. 11-18.

L.-W. Ku, Y.-T. Liang, and H.-H. Chen, “Opinion extraction, sum-
marization and tracking in news and blog corpora,” in AAAI Spring
Symposium: Computational Approaches to Analyzing Weblogs, 2006,
pp. 100-107.

N. Kobayashi, K. Inui, and Y. Matsumoto, “Extracting aspect-evaluation
and aspect-of relations in opinion mining,” in Proceedings of the
2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning (EMNLP-
CoNLL), June 2007, pp. 1065-1074.

S. Blair-Goldensohn, T. Neylon, K. Hannan, G. A. Reis, R. Mcdonald,
and J. Reynar, “Building a sentiment summarizer for local service
reviews,” in Proceedings of WWW-2008 workshop on NLP in the
Information Explosion Era, 2008.

Y. Wu, Q. Zhang, X. Huang, and L. Wu, “Phrase dependency parsing for
opinion mining,” in Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, ser. EMNLP ’09, 2009, pp.
1533-1541.

T. Ma and X. Wan, “Opinion target extraction in chinese news
comments,” in Proceedings of the 23rd International Conference on
Computational Linguistics: Posters, ser. COLING 10, 2010, pp. 782—
790.

J. Yu, Z.-J. Zha, M. Wang, and T.-S. Chua, “Aspect ranking: Identifying
important product aspects from online consumer reviews,” in Proceed-
ings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume 1, ser. HLT ’11,
2011, pp. 1496-1505.

K. Liu, L. Xu, and J. Zhao, “Opinion target extraction using word-based
translation model,” in Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, ser. EMNLP-CoNLL ’12, 2012, pp. 1346—
1356.

N. Jakob and I. Gurevych, “Extracting opinion targets in a single- and
cross-domain setting with conditional random fields,” in Proceedings
of the 2010 Conference on Empirical Methods in Natural Language
Processing, ser. EMNLP 10, 2010, pp. 1035-1045.

F. Li, C. Han, M. Huang, X. Zhu, Y.-J. Xia, S. Zhang, and H. Yu,
“Structure-aware review mining and summarization,” in Proceedings of
the 23rd International Conference on Computational Linguistics, ser.
COLING ’10, 2010, pp. 653-661.

Q. Mei, X. Ling, M. Wondra, H. Su, and C. Zhai, “Topic sentiment
mixture: Modeling facets and opinions in weblogs,” in Proceedings of
the 16th international conference on World Wide Web, ser. WWW °07,
2007, pp. 171-180.

1. Titov and R. McDonald, “A joint model of text and aspect ratings for
sentiment summarization,” in Proceedings of ACL-08: HLT, June 2008,
pp. 308-316.

C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis,”
in Proceedings of the 18th ACM conference on Information and
knowledge management, ser. CIKM ’09, 2009, pp. 375-384.

Y. Lu, C. Zhai, and N. Sundaresan, “Rated aspect summarization of
short comments,” in Proceedings of the 18th international conference
on World wide web, ser. WWW ’09, 2009, pp. 131-140.

H. Wang, Y. Lu, and C. Zhai, “Latent aspect rating analysis on review
text data: A rating regression approach,” in Proceedings of the 16th

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

ACM SIGKDD international conference on Knowledge discovery and
data mining, ser. KDD ’10, 2010, pp. 783-792.

S. Brody and N. Elhadad, “An unsupervised aspect-sentiment model for
online reviews,” in Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for
Computational Linguistics, ser. HLT *10, 2010, pp. 804-812.

W. X. Zhao, J. Jiang, H. Yan, and X. Li, “Jointly modeling aspects
and opinions with a maxent-lda hybrid,” in Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing,
ser. EMNLP ’10, 2010, pp. 56-65.

S. Moghaddam and M. Ester, “ILDA: interdependent lda model for
learning latent aspects and their ratings from online product reviews,”
in Proceedings of the 34th international ACM SIGIR conference on
Research and development in Information Retrieval, ser. SIGIR ’11,
2011, pp. 665-674.

C. Sauper, A. Haghighi, and R. Barzilay, “Content models with atti-
tude,” in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies - Volume 1,
ser. HLT ’11, 2011, pp. 350-358.

Y. Jo and A. H. Oh, “Aspect and sentiment unification model for
online review analysis,” in Proceedings of the fourth ACM international
conference on Web search and data mining, ser. WSDM ’11, 2011, pp.
815-824.

A. Mukherjee and B. Liu, “Aspect extraction through semi-supervised
modeling,” in Proceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics: Long Papers - Volume 1, ser. ACL
’12, 2012, pp. 339-348.

L. Zhuang, F. Jing, and X.-Y. Zhu, “Movie review mining and sum-
marization,” in Proceedings of the 15th ACM international conference
on Information and knowledge management, ser. CIKM ’06, 2006, pp.
43-50.

G. Qiu, B. Liu, J. Bu, and C. Chen, “Opinion word expansion and target
extraction through double propagation,” Computational Linguistics,
vol. 37, no. 1, pp. 9-27, Mar. 2011.

D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek,
A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg, J. M. Prager,
N. Schlaefer, and C. A. Welty, “Building watson: An overview of the
DeepQA project,” Al Magazine, vol. 31, no. 3, pp. 59-79, 2010.

G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 3941, Nov. 1995.

S. Moghaddam and M. Ester, “Opinion digger: an unsupervised opinion
miner from unstructured product reviews,” in Proceedings of the 19th
ACM international conference on Information and knowledge manage-
ment, ser. CIKM 10, 2010, pp. 1825-1828.

Q. Su, X. Xu, H. Guo, Z. Guo, X. Wu, X. Zhang, B. Swen, and
Z. Su, “Hidden sentiment association in chinese web opinion mining,”
in WWW, 2008, pp. 959-968.

M. Gelfond and V. Lifschitz, “The stable model semantics for logic pro-
gramming,” in Proceeding of the Fifth Logic Programming Symposium
(ICLP/SLP), 1988, pp. 1070-1080.

M. Gelfond, Answer Sets, ser. Handbook of Knowledge Representation.
Elsevier, 2008.

M. Davis, G. Logemann, and D. W. Loveland, “A machine program for
theorem-proving,” Commun. ACM, vol. 5, no. 7, pp. 394-397, 1962.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in Proceedings of the 38th
annual Design Automation Conference, ser. DAC *01, 2001, pp. 530—
535.

M. Gebser, B. Kaufmann, and T. Schaub, “Conflict-driven answer set
solving: From theory to practice,” Artif. Intell., vol. 187-188, pp. 52-89,
Aug. 2012.

W. Faber, G. Pfeifer, N. Leone, T. Dell’armi, and G. Ielpa, “Design
and implementation of aggregate functions in the dlv system,” Theory
Pract. Log. Program., vol. 8, no. 5-6, pp. 545-580, Nov. 2008.

E. Erdem, J. Lee, and Y. Lierler, “Theory and practice of answer set pro-
gramming — aaail2 tutorial,” http://http://reu.uncc.edu/cise-reu-toolkit.
G. Antoniou and A. Bikakis, “Dr-prolog: A system for defeasible

reasoning with rules and ontologies on the semantic web,” IEEE Trans.
Knowl. Data Eng., vol. 19, no. 2, pp. 233-245, 2007.

