
Some Properties of System Descriptions of ALd

Michael Gelfond and Daniela Inclezan

Texas Tech University, USA

Abstract. The paper discusses some properties of system descriptions in the re-
cent extension of action language AL (also known as B) by defined fluents.

1 Introduction

In this paper we study some properties of system descriptions of action language ALd.
The language, introduced in [3], expands the earlier action language AL [5, 1], (also
known as B) by fluents which are defined in terms of other fluents and are not directly
influenced by actions. The new language allows a shorter and more convenient descrip-
tion of dependencies between fluents.

In what follows, we start with a brief review of ALd. We give a sufficient condition
guarantying that a system description D of ALd is well–founded, i.e., its states are
fully determined by statics and inertial fluents. We show that, for system descriptions
satisfying this condition, the introduction of defined fluents though convenient is not
essential. To prove this, we introduce an algorithm that eliminates defined fluents from
a description without substantially changing its meaning. Finally, we show how the
sufficient condition for well–foundedness can be used to expand results from [6] to find
a common core of ALd and action language C+.

2 Action Language ALd

We start with a short review of ALd. The language is parametrized by an action sig-
nature which consists of three disjoint, non-empty sets of symbols: the set S of statics,
the set F of fluents and the set A of actions. The set F is partitioned into the set Fi of
inertial fluents and the set Fd of defined fluents. Elements of S ∪F are called atoms. A
literal is an atom p or its negation ¬p.

Definition 1. [System Description of ALd]
A system description of ALd is a collection of the following statements:

1. Dynamic Causal Law
a causes li if p (1)

which says that if action a were to be executed in a state of a dynamic system
satisfying property1 p then inertial literal li would be true in any resulting state.

1 By property we mean an arbitrary collection of literals.



2

2. State Constraint
l if p (2)

which says that every state satisfying property p must also satisfy literal l. Here l
cannot be a negative literal formed by a defined fluent.

3. Executability Condition

impossible a0, . . . , ak if p (3)

which says that actions a0, . . . , ak cannot be simultaneously executed in a state
satisfying property p.

A system description D serves as a specification of the transition diagram T (D) defin-
ing all possible trajectories of the dynamic system defined by D. Therefore, to define
the semantics of ALd, we have to precisely define the states and transitions of this dia-
gram. InAL a state is simply defined as a complete and consistent collection of literals
satisfying the state constraints of D. In ALd the situation is more subtle. To see the
problem consider

Example 1. Let D1 be a a system description with two inertial fluents, f and g and a
defined fluent h whose meaning is given by the following state constraints:

h if f
h if ¬g

In general the collection of state constraints whose head is a defined fluent h is referred
to as the definition of h. As expected, the truth of h follows from the truth of the body
of at least one of its defining rules. Otherwise, h is false. The old definition of a state
does not comply with this intuition. Clearly, {¬f, g, h} is a complete and consistent set
of literals satisfying state constraints of D but intuitively it is not a state since the truth
of h does not follow from any of its defining rules.

The definition of a state of ALd given below exploits the close relationship between
action languages and logic programs with two negations under the answer set semantics
[4, 8]. We will need the following notation. By Pc(D) (where c stands for constraints)
we denote the logic program defined as follows:

1. For every state constraint (2) program Pc(D) contains

l← p.

2. For every defined fluent f program Pc(D) contains

¬f ← not f.

For any set σ of literals σnd denotes the collection of all literals of σ formed by inertial
fluents and statics. (The nd stands for non-defined.)

Definition 2. [State]
A complete and consistent set σ of literals is a state of T (D) if σ is the unique answer
set of Pc(D) ∪ σnd.



3

It is not difficult to check that the transition diagram defined by system description D1

from Example 1 has the following states: {f, g, h}, {f,¬g, h}, {¬f,¬g,¬h}, {¬f, g,¬h}.
To check that σ0 = {f, g, h} is a state it is enough to check that σ0 is the only answer
set of Pc(D) ∪ {f, g}. Similarly for other states. To see that σ = {¬f, g, h} is not a
state it suffices to see that σ is not the answer set of Pc(D) ∪ {¬f, g}.

The next example demonstrates the importance of the uniqueness requirement of
the definition.

Example 2. Let us consider a system description D2 with two defined fluents f and g
which are defined by the following mutually recursive laws:

g if ¬f
f if ¬g

Let us check if {f,¬g} is a state of T (D2). Program Pc(D2) from Definition 2 consists
of rules

g ← ¬f.
f ← ¬g.
¬g ← not g.
¬f ← not f.

Since all the fluents of D2 are defined, σnd = ∅ and program Pc(D2) ∪ σnd has two
answer sets, {f,¬g} and {g,¬f}. This violates the condition of Definition 2 and hence
{f,¬g} is not a state. In fact, T (D2) has no states.

Our definition of the transition relation of T (D) is also based on the notion of an-
swer set. To describe a transition 〈σ0, a, σ1〉 we construct a logic program P (D, σ0, a)
encoding system description D, initial state σ0, and set of actions a, such that answer
sets of this program determine the states the system can move into after the execution of
a in σ0. To define the encoding P (D) of D we need two steps, 0 and 1, which stand for
the beginning and the end of a transition, relations holds(f, i) – fluent f is true at step i,
and occurs(a, i) – action a occurred at step i. If l is formed by a fluent then a shorthand
h(l, i) denotes holds(f, i) if l = f and ¬holds(f, i) if l = ¬f . If l is formed by a static
then h(l, i) is simply l. If p is a set of literals, then h(p, i) =def {h(l, i) : l ∈ p}. I is a
variable ranging over steps.

– For every causal law (1) P (D) contains

h(li, 1)← h(p, 0), occurs(a, 0) (4)

– For every state constraint (2) P (D) contains

h(l, I)← h(p, I) (5)

– P (D) contains the CWA for every defined fluent f :

¬holds(f, I)← not holds(f, I) (6)

– For every executability condition (3) P (D) contains

← h(p, I), occurs(a0, I), . . . , occurs(ak, I) (7)



4

– P (D) contains the Inertia Axiom for every inertial fluent f

holds(f, 1)← holds(f, 0), not ¬holds(f, 1) (8)

¬holds(f, 1)← ¬holds(f, 0), not holds(f, 1) (9)

This completes the construction of encoding P (D) of system description D. The en-
coding h(σ0, 0) of initial state σ0 and the encoding occurs(a, 0) of action a are defined
as follows:

h(σ0, 0) =def {h(l, 0) : l ∈ σ0}

occurs(a, 0) =def {occurs(ai, 0) : ai ∈ a}.

Finally,
P (D, σ0, a) =def P (D) ∪ h(σ0, 0) ∪ occurs(a, 0).

Definition 3. [Transition]
Let σ0 be a state and a be an action. A triple 〈σ0, a, σ1〉 is a transition of T (D) iff
P (D, σ0, a) has an answer set A such that σ1 = {l : h(l, 1) ∈ A}.

3 Well–founded System Descriptions of ALd

Definition 4. [Well–founded System Descriptions]
A system description D of ALd is called well–founded if for any complete and consis-
tent set of fluent literals σ the program

Pc(D) ∪ σnd (10)

has at most one answer set.

Intuitively,D is well–founded if its states are fully determined by the statics and inertial
fluents ofD. To give a sufficient condition guarantying well–foundedness ofD we need
the following notions:

Definition 5. [Fluent Dependency Graph]
The fluent dependency graph of a system description D of ALd is the directed graph
such that

– its vertices are arbitrary literals,
– it has an edge
• from l to l′ if l is formed by a static or an inertial fluent and D contains a state

constraint with the head l and the body containing l′,
• from f to l′ if f is a defined fluent and D contains a state constraint with the

head f and the body containing l′ and not containing f .
• from ¬f to f for every defined fluent f .

Note that for system descriptions not containing defined fluents this definition coin-
cides with that given in [6].



5

Definition 6. [Weak Acyclicity]
A fluent dependency graph is weakly acyclic if it does not contain paths from defined
fluents to their negations. By extension, a system description with a weakly acyclic
fluent dependency graph is also called weakly acyclic.

Proposition 1 [Sufficient Condition for Well–foundedness]
If a system description D of ALd is weakly acyclic then D is well–founded.

It is easy to check that system descriptionD1 from Example 1 is weakly acyclic and
well–founded while D2 from Example 2 is neither weakly acyclic nor well–founded.
Here are some additional examples.

Example 3. System description D3 with defined fluents f and g and causal laws:

f if f,¬g
g if ¬f

is weakly acyclic and hence well–founded; T (D3) has one state, {¬f, g}.

Example 4. System description D4 with defined fluents f and g and causal laws:

f if g
g if f

D4 is weakly acyclic and hence well–founded; T (D4) has one state, {¬f,¬g}.

The next example shows that weak acyclicity is not necessary for well–foundedness.

Example 5. System description D5 with inertial fluents f and g, defined fluent d and
causal laws:

f if g
d if ¬f, g,¬d

is not weakly acyclic but well–founded.

Proof of Proposition 1 (Sketch).
To prove the proposition we will need the following well known fact: Let P be a

logic program and Q be obtained from P by removing every rule whose head occurs in
its body. Then P and Q are equivalent.
Let D be as in Proposition 1 and σ be a complete and consistent set of literals. We need
to show that the program

P =def Πc(D) ∪ σnd

has at most one answer set.

Let Q be the program obtained from P by eliminating all rules of the type “ f ← f, p ”
where f is a defined fluent. As mentioned above P and Q are equivalent, which means
that it is enough to prove that Q has at most one answer set. In what follows, we abuse
the notation and treat a negative literal ¬f of Q as a new atom.



6

Let G be the (weakly acyclic) fluent dependency graph of description D and let G′ be
the dependency graph of program Q.2 Let us mark edges of G going to a defined fluent
f from ¬f as negative and other edges as positive. It is obvious that now G′ is identical
to G. It is easy to see that any negative cycle of G′ (and hence of G) must contain a
link from ¬f to f for some defined fluent f , and hence a path from f to ¬f . Since G is
weakly acyclic this is impossible. This implies that Q is locally stratified and hence has
at most one answer set.

4 Eliminating Defined Fluents from ALd System Descriptions

In this section we show that defined fluents, though a convenient tool allowing to sub-
stantially shorten system descriptions of ADd, can be eliminated – at least in the case
of weakly acyclic system descriptions.

For a precise formulation of this result we need the following definition.

Definition 7. [Residue (from [2])]
LetD andD′ be system descriptions such that the signature ofD′ is part of the signature
of D. D′ is a residue of D if restricting the states and actions of T (D) to the signature
of D′ establishes an isomorphism between T (D′) and T (D).

The following algorithm eliminates an arbitrary defined fluent from a weakly acyclic
system description in such a way that the resulting system description is a residue of
the original one.

Definition 8. [Defined Fluent Elimination Algorithm]
Input: Let D be a system description of ALd and let f be a defined fluent from the
signature of D, defined by the following laws:

f if f, p1

. . .
f if f, pk

f if β1

. . .
f if βm

such that p1, . . . , pk and β1, . . . , βm do not contain f . (Note that they will not contain
¬f either because of the condition that D is weakly acyclic.) We call the set of rules

f if β1

. . .
f if βm

the relevant part of the f ’s definition.

2 We consider the direction of edges in the dependency graph of a logic program to be from the
head literal to body literals of a rule.



7

Output: A system description E(D, f) with the same signature as D with the exception
of defined fluent f .

Algorithm: E(D, f) is obtained from D by:

1. Removing f ’s definition from D and f from the signature
2. Replacing each law of the type α if f, Γ by the set of axioms:3

α if β1, Γ
. . .

α if βm, Γ

3. Replacing each law of the type α if ¬f, Γ by the set of axioms:

α if χ1, Γ
. . .

α if χn, Γ

where χ1, . . . , χn are sets of literals such that the set of sets {χ1, . . . , χn} is defined
as { {l1, . . . , lm} : l1 ∈ β1 ∧ . . . ∧ lm ∈ βm} where li is the literal complemen-
tary to li (i.e., {χ1, . . . , χn} is the set of all minimal sets of literals falsifying the
relevant part of f ’s definition).

We illustrate the application of this algorithm by some examples.

Example 6. Let us compute E(D3, f), where D3 is the description from Example 3.
The relevant part of f ’s definition is empty, which means that the only minimal set
falsifying it is the empty set. Thus, E(D3, f) is

g.

Consequently, E(E(D3, f), g) is an empty system description. Its transition diagram
contains one state, which is empty.

Let us now compute E(D3, g). The relevant part of g’s definition is g if ¬f , which
means that the only minimal set falsifying it is {f}. Thus, E(D3, g) is

f if f,¬g

and E(E(D3, g), f) is again the empty system description.

Example 7. Let us compute E(D4, f), where D4 is the description from Example 4.
The relevant part of f ’s definition is f if g, which means that the occurrence of f in
the body of g if f should be replaced by g. Thus, E(D4, f) is

g if g

Also, E(E(D4, f), g) is an empty system description. Its transition diagram contains
one state, which is empty.

3 α can be an expression of the form (1) or (2) or (3):
(1) a causes li
(2) l
(3) impossible a0, . . . , ak.



8

Example 8. Let D6 be a system description with one defined fluent f , five inertial flu-
ents, a, b, c, d, e, and the laws:

f if a, b d if f
f if c e if ¬f

Both laws in f ’s definition are relevant. There are two minimal sets falsifying f ’s defi-
nition: {¬a,¬c} and {¬b,¬c}. Hence, E(D6, f) is the system description consisting of
the laws:

d if a, b e if ¬a,¬c
d if c e if ¬b,¬c

The contribution of this algorithm to the elimination of defined fluents is described
by the following lemma.

Lemma 1. If the fluent dependency graph of D is weakly acyclic and f is a defined
fluent then E(D, f) is a residue of D.

Proof (Sketch). In order to prove that E(D, f) is a residue of D, we have to show that:

(1) There is a one-to-one correspondence between states of E(D, f) and states of D,
i.e., for any complete and consistent set σ of literals, there is a one-to-one corre-
spondence between answer sets of Pc(D) ∪ σnd and answer sets of Pc(E(D, f)) ∪
σnd.

(2) There is a one-to-one correspondence between transitions of E(D, f) and transi-
tions of D, i.e., for any state σ0 and action a, there is a one-to-one correspondence
between answer sets of P (D, σ0, a) and answer sets of P (E(D, f), σ0, a).

In what follows, we expand the proof of (1); (2) is proven using similar techniques. Let
σ be an arbitrary complete and consistent set of literals and let

P1 =def Pc(D) ∪ σnd

P2 =def Pc(E(D, f)) ∪ σnd.

We want to show that:

(a) If A1 is an answer set of P1 and A2 is defined as

A2 =def A1 \ {f,¬f}

then A2 is an answer set of P2.
(b) If A2 is an answer set of P2 and A1 is defined as

A1 =def

{
A2 ∪ {f} if ∃βi, 1 ≤ i ≤ m such that βi ⊂ A2

A2 ∪ {¬f} otherwise

then A1 is an answer set of P1.

Based on D’s weak-acyclicity, Proposition 1, and Definition 4, if A1 is an answer set of
P1 then it is its unique answer set. Hence, the above conditions (a) and (b) are enough to



9

prove the one-to-one correspondence between answer sets of P1 and P2. We give here
only the proof of (a); (b) is proven using the same standard approach.

To prove (a), we need to show that A2 is a minimal set closed under the rules of PA2
2 .

First, we compute the reducts PA1
1 and PA2

2 . By P we denote their common part, which
consists of rules not containing f nor ¬f .

PA1
1 consists of P and

• rules encoding the definition of f

f ← f, p1.
. . .

f ← f, pk.
f ← β1.
. . .

f ← βm.

(11)

• ¬f if f /∈ A1, and
• rules of the type

l← f, p. (12)

and
l← ¬f, p. (13)

where l 6= f and l 6= ¬f . To simplify the presentation, we can assume that f /∈ p
and ¬f /∈ p.

PA2
2 consists of P and

• the rules
l← β1, p.
. . .
l← βm, p.

(14)

for every rule of the form (12) in PA1
1 and

• the rules
l← χ1, p.
. . .
l← χn, p.

(15)

for every rule of the form (13) in PA1
1 , with χ1, . . ., χn defined as in Definition 8.

Part I. A2 is closed under the rules of PA2
2 .

Case 1: A2 is closed under rules from P .
Such rules also appear in PA1

1 . As A1 is an answer set of P1, A1 must be closed under
rules of this type. Based on how A2 is constructed from A1 and the fact that the rules
of P do not contain f nor ¬f , A2 is also closed under such rules.



10

Case 2: A2 is closed under rules of the type l← βi, p where 1 ≤ i ≤ m.
We have to show that, if βi ⊆ A2 and p ⊆ A2, then l ∈ A2.
If p ⊆ A2 then p ⊆ A1. If βi ⊆ A2 then βi ⊆ A1 and, based on the definition of f in
PA1

1 and the fact that A1 is closed under the rules of PA1
1 , f ∈ A1.

PA1
1 must contain a rule

l← f, p.

and A1 is closed under this rule. As we have shown that f ∈ A1 and p ⊆ A1, this
means that l ∈ A1. Since l 6= f , l 6= ¬f , l ∈ A2.
Case 3: A2 is closed under rules of the type l← χi, p. where 1 ≤ i ≤ n.
We have to show that, if χi ⊆ A2 and p ⊆ A2, then l ∈ A2.
If p ⊆ A2 then p ⊆ A1. If χi ⊆ A2 then χi ⊆ A1. Hence, none of the rules in the
definition of f in PA1

1 is satisfied, which means that f /∈ A1 and ¬f ∈ A1.
PA1

1 must contain a rule
l← ¬f, p.

and A1 is closed under this rule. As we have shown that ¬f ∈ A1 and p ⊆ A1, this
means that l ∈ A1. Since l 6= f , l 6= ¬f , l ∈ A2.

Part II. A2 is minimal.
We prove this by assuming that there exists a set S ⊆ A2 such that S is closed under
the rules of PA2

2 and showing that A2 ⊆ S, i.e., ∀l ∈ A2, l ∈ S.

We assume that, for every predicate pr in the signature of P1, ¬pr is a new symbol.
Hence, PA1

1 is a definite program. Let N be the T
P

A1
1

operator. For every l ∈ lit(PA1
1 ),

let
δ(l) = n if l /∈ Nn−1(∅) and l ∈ Nn(∅).

Since PA1
1 is definite,

∃ω such that ∀l ∈ lit(PA1
1 ), δ(l) ≤ ω.

We want to prove that

∀l ∈ A2, if δ(l) = n ≤ ω then l ∈ S.

We prove this by induction of n.

Base Case: n = 0 (Trivially true)
Induction Step: We assume that 0 < n ≤ ω and that

∀l ∈ A2, if δ(l) < n then l ∈ S.

We want to show that
∀l ∈ A2, if δ(l) = n then l ∈ S.

Let l ∈ A2 such that δ(l) = n. We will show that l ∈ S.
Case 1: l was derived from a rule l← p. in P .



11

Since P ⊂ PA1
1 and δ(l) = n, then δ(p) < n and, based on the inductive hypothesis,

p ⊆ S. Since S is closed under the rules of PA2
2 , which includes the rules in P , then

l ∈ S.
Case 2: l was derived from a rule l← f, p. in PA1

1 .
Since δ(l) = n, then δ(p) < n and, based on the inductive hypothesis, p ⊆ S. Also, we
obtain that δ(f) < n, which means that ∃βi, 1 ≤ i ≤ m, such that δ(βi) < n − 1 and
hence βi ⊆ S. PA2

2 must contain a rule l ← βi, p. and, since p ⊆ S, βi ⊆ S, and S is
closed under the rules of PA2

2 , then l ∈ S.
Case 3: l was derived from a rule l← ¬f, p. in PA1

1 .
First, let us notice that δ(x) = 0 if x is an inertial literal such that x ∈ σ or x is a
negative defined literal such that x ∈ A1.
Since δ(l) = n, then δ(p) < n and, based on the inductive hypothesis, p ⊆ S. From
δ(l) = n, we also obtain that δ(¬f) < n. In fact, as noticed above δ(¬f) = 0. Since
¬f is derived, then ¬f ∈ A1, which means that ∃χi, 1 ≤ i ≤ n such that χi ⊆ A1.
PA2

2 must contain the rule l← χi, p. From here there are two possibilities:
(i) ∀x ∈ χi, δ(x) < n and hence χi ⊆ S. Based on the fact that S is closed under

the rules of PA2
2 , l ∈ S.

(ii) ∃x ∈ χi such that δ(x) ≥ n. We will show that this leads to a contradiction.
Based on our initial observation, δ(x) ≥ n implies that x must be a positive defined
literal. Also, as δ(l) = n ≤ δ(x), x must depend on l, i.e., there must be a path from
x to l in the fluent dependency graph of D. Since the fluent dependency graph must
contain edges from l to ¬f , from ¬f to f , from f to x = ¬x, and from ¬x to x, this
would mean that there is a path from f to ¬f in the fluent dependency graph, which
contradicts the fact that D is weakly acyclic.

This concludes the brief presentation of the proof of Lemma 1.

We can now formulate the following result.

Proposition 2 For every weakly acyclic system descriptionD there is a system descrip-
tion D′ whose signature does not contain defined fluents, such that D′ is a residue of
D.

Proof (Sketch). Let π = (f1, . . . , fn) be a possible enumeration of the set Fd of defined
fluents ofD. LetD′ be the system description resulting from the successive elimination
of defined fluents, i.e.

D′ =def E(. . . E(E(D, f1), f2) . . . , fn)

By applying Lemma 1 successively, we obtain that D′ is a residue of D.

5 Common Core of ALd and C+

In this section we use the results from the previous sections to investigate the rela-
tionship between ALd and another popular action language C+ [9]. In particular we
describe their common core – a subset of ALd which allows a simple equivalent trans-
formation into C+. This generalizes recent results identifying such a common core for
AL and C [5] of which ALd and C+ are extensions.



12

We start with briefly describing a subset of C+ sufficient for our purpose. It has sym-
bols for actions, statics (called rigid constants), inertial and (statically) defined fluents,
and causal laws of the form

caused li if p′ after a, p (16)

caused l if p (17)

where li is an inertial fluent literal, l is an arbitrary literal, a is an action, and p′, p
are collections of literals. A system (or action) description of our fragment of C+ is a
collection of statements of the form 16 and 17 above, including statements

caused f if f after f
caused ¬f if ¬f after ¬f

for every inertial fluent f and
caused ¬f if ¬f

for every statically defined fluent f . The semantics of C+ is based on the distinction
between what is true and what has a cause. The law (16) says that if action a were to
be executed in a state satisfying property p then there would be a cause for li in any
resulting state. The law (17) says that there is a cause for l to hold in a state which
satisfies p. The semantics of this fragment will be given directly in terms of logic pro-
gramming. Readers interested in the original semantics and the proof of equivalence of
both approaches are referred to [9]. To define states of a system descriptionD of C+ we
need a program, Rc(D), defined as follows:

– For every static law (17) with p = l1, . . . , ln, the program Rc(D) contains

l← not l1, . . . , not ln

where li is the literal complimentary to li.

Definition 9. [State]
A complete and consistent set σ of domain literals is a state of T (D) if σ is an answer
set of Rc(D) ∪ σnd.

A transition 〈σ0, a, σ1〉 is defined by constructing a program R(D):

– For every causal law (16) with p′ = l1, . . . , ln, R(D) contains

h(l, 1)← not h(l1, 1), . . . , not h(ln, 1), occurs(a, 0), h(p, 0). (18)

– For every static law (17) where p = l1, . . . , ln, R(D) contains

h(l, I)← not h(l1, I), . . . , not h(ln, I) (19)

Definition 10. [Transition]
A transition 〈σ0, a, σ1〉 of a system description D of C+ is in T (D) iff R(D, σ0, a) has
an answer set A such that σ1 = {l : h(l, 1) ∈ A}.



13

To identify a common core of ALd and C+ we define the C+–image of action de-
scription D of ALd, which is obtained by

– replacing statements (1) by

caused li if true after a, p (20)

– replacing statements (2) by
caused l if p (21)

– replacing statements (3) by

caused ⊥ if true after a0, . . . , ak, p (22)

– adding inertia axioms

caused f if f after f
caused ¬f if ¬f after ¬f (23)

for every inertial fluent f
– adding closed world assumption for defined fluents

caused ¬f if ¬f (24)

for every defined fluent f .

The C+–image of D is not always equivalent to D, i.e., the two system descriptions
do not always represent the same transition diagram. However, as shown in [6], the
equivalence holds ifD contains no defined fluents and has an acyclic fluent dependency
graph. System description D2 from Example 2 shows that this result does not hold for
system descriptions containing defined fluents. The transition diagram of C+–image of
D2 has two states, {f,¬g} and {¬f, g}, while the transition diagram of D2 has none.
The difference is caused by the absence of the uniqueness requirement in Definition 9.

To guarantee that states ofD and its C+–image coincide we introduce the following
definition.

Definition 11. [Common Core]
A system descriptionD ofALd belongs to the common core ofALd and C+ if its fluent
dependency graph G satisfies the following conditions:

– G is weakly acyclic.
– The extension of G by edges from f to l′ for every defined fluent f and literal l′

such that f if Γ ∈ D, f ∈ Γ , and l′ ∈ Γ is an acyclic graph.

Proposition 3 A system description of ALd that belongs to the common core of ALd

and C+ is equivalent to its C+–image.



14

Proof (Sketch). LetD be anALd system description that belongs to the common core of
ALd and C+. By the first bullet of Definition 11, D is weakly acyclic. By Proposition
1, D is well–founded. As D is well–founded, it is clear that the transition diagrams
described by D and its C+–image have the same states. We only need to show that they
also have the same transitions. This can be shown by applying techniques used in [6].

Clearly the system descriptions D2, D3, and D4 from Examples 2, 3 and 4 do not
belong to the common core. One can easily check that the above transformation does
not maintain the systems’ equivalence; D1 belongs to the core and hence its C+–image
is equivalent to D1. Equivalence is also preserved for D5 but this does not follow from
our proposition.

6 Conclusions and Future Work

In this paper, we have given a sufficient condition guarantying that states of anALd sys-
tem description are fully determined by statics and inertial fluents. In system descrip-
tions satisfying this condition, defined fluents are not essential and can be eliminated;
they simply facilitate the description of dynamic domains. We have shown how our
sufficient condition can be used to identify a common-core of action languages ALd

and C+. This is an expansion of the work in [6] where a common-core of languages
B and C was identified. We hope that our result will contribute to a future comparison
between modular action languages ALM [3] and MAD [7], which extend ALd and
C+, respectively.

Our sufficient condition for well–foundedness can be further relaxed to include, for
instance, system descriptions like the one in Example 5. The system description D5 in
this example is well–founded, but it is not weakly acyclic because of the state constraint

d if ¬f, g,¬d

defining d. Let us note, however, that the definition of d is in fact a constraint saying
that ¬f and g cannot both be true in a state. Similarly for the system description D7

consisting of the laws
f if g.
h if ¬d.
d if ¬f, g, h.

where d is a defined fluent and f, g, h are inertial.

6.1 Acknowledgements

We would like to acknowledge the support of NASA grant #NNX1OAI86G and NSF
grant IIS-1018031 and thank the anonimous referee for useful comments. But most
of all we would like to thank David Pearce whom this Festrshrift is honoring. Both
authors learned a lot from David’s wonderful work and both hope to continue doing
that for many years. The older author also like to thank David for the privilige of his
friendship and for wonderful time he spent with David and his family. Happy Birthday
David!



15

References

1. Chitta Baral and Michael Gelfond. Reasoning Agents In Dynamic Domains. In Workshop on
Logic-Based Artificial Intelligence. Kluwer Academic Publishers, Jun 2000.

2. Selim Turhan Erdoǧan. A Library of General-Purpose Action Descriptions. PhD thesis,
University of Texas at Austin, Austin, TX, USA, 2008.

3. Michael Gelfond and Daniela Inclezan. Yet another modular action language. In In Proceed-
ings of the Second International Workshop on Software Engineering for Answer Set Program-
ming10, pages 64–78, 2009.

4. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

5. Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on AI,
3(16):193–210, 1998.

6. Michael Gelfond and Vladimir Lifschitz. The common core of the action languages B
and C. In Proceedings of the 14th International Workshop on Non-Monotonic Reasoning
(NMR’2012), 2012.

7. Vladimir Lifschitz and Wanwan Ren. A modular action description language. Proceedings
of the Twenty-First National Conference on Artificial Intelligence (AAAI), pages 853–859,
2006.

8. David Pearce and Gerd Wagner. Logic programs with strong negation. In Extensions of Logic
Programming, volume 475 of Lecture Notes in Computer Science, pages 311–326, 1991.

9. Hudson Turner, Vladimir Lifschitz, Norman McCain, Joohyung Lee, and E. Giunchiglia. Non-
monotonic causal theories. Artificial Intelligence, 2003.


