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Abstract. This is a preliminary report on the work aimed at making CR-Prolog –
a version of ASP with consistency restoring rules – more suitable for use in teach-
ing and large applications. First we describe a sorted version of CR-Prolog called
SPARC. Second, we translate a basic version of the CR-Prolog into the lan-
guage of DLV and compare the performance with the state of the art CR-Prolog
solver. The results form the foundation for future more efficient and user friendly
implementation of SPARC and shed some light on the relationship between two
useful knowledge representation constructs: consistency restoring rules and weak
constraints of DLV.

1 Introduction

The paper continues work on design and implementation of knowledge representation
languages based on Answer Set Prolog (ASP) [1]. In particular we concentrate on the
extension of ASP called CR-Prolog – Answer Set Prolog with consistency restoring
rules (CR-rules for short) [2]. The language, which allows a comparatively simple en-
coding of indirect exceptions to defaults, has been successfully used for a number of
applications including planning [3], probabilistic reasoning [4], and reasoning about in-
tentions [5]. This paper is a preliminary report on our attempts to make CR-Prolog (and
hence other dialects of ASP) more user friendly and more suitable for use in teaching
and large applications. This work goes in two different, but connected, directions. First
we expand the syntax of CR-Prolog by introducing sorts. Second, we translate a basic
version of the CR-Prolog into the language of DLV with weak constraints [6] and com-
pare the efficiency of the resulting DLV based CR-Prolog solver with the CR-Prolog
solver implemented in [7]. The original hope for the second part of the work was to
obtain a substantially more efficient inference engine for CR-Prolog. This was a rea-
sonable expectation – the older engine is built on top of existing ASP solvers and hence
does not fully exploit their inner structure. However this didn’t quite work out. Each
engine has its strong and weak points and the matter requires further investigation. But
we believe that even preliminary results are of interest since they shed some light on
the relationship between two useful knowledge representation constructs: CR-rules and
weak constraints. The first goal requires a lengthier explanation. Usually, a program of
an Answer Set Prolog based language is understood as a pair, consisting of a signature
and a collection of logic programming rules formed from symbols of this signature.
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The syntax of the language does not provide any means for specifying this signature
– the usual agreement is that the signature consists of symbols explicitly mentioned in
the programming rules. Even though in many cases this provides a reasonable solution
there are also certain well-known (e.g., [8, 9]) drawbacks:

1. Programs of the language naturally allow unsafe rules which
– May lead to change of the program behavior under seemingly unrelated up-

dates. A program {p(1). q ← not p(X). ¬q ← not q.} entails ¬q, but this
conclusion should be withdrawn after adding seemingly unrelated fact r(2).
(This happens because of the introduction of a new constant 2 which leads to a
new ground instance of the second rule: q ← not p(2).)

– Cause difficulties for the implementation of ASP solvers. That is why most
implementations do not allow unsafe rules. The corresponding error messages
however are not always easy to decipher and the elimination of errors is not
always an easy task.

2. The language is untyped and therefore does not provide any protection from unfor-
tunate typos. Misspelling john in the fact parent(jone,mary) will not be detect-
ed by a solver and may cost a programmer unnecessary time during the program
testing.

There were several attempts to address these problems for ASP and some of its variants.
The #domain statements of input language of lparse [9] — a popular grounder used
for a number of ASP systems — defines sorts for variables. Even though this device is
convenient for simple programs and allows to avoid repetition of atoms defining sorts
of variables in the bodies of program’s rules it causes substantial difficulties for medi-
um size and large programs. It is especially difficult to put together pieces of programs
written at different time or by different people. The same variable may be declared as
ranging over different sorts by different #domain statements used in different pro-
grams. So the process of merging these programs requires renaming of variables. This
concern was addressed by Marcello Balduccini [10] whose system, RSig, provided
an ASP programmer with means for specifying sorts of parameters of the language
predicates3. RSig is a simple extension of ASP which does not require any shift in
perspective and involves only minor changes in existing programs. Our new language,
SPARC, can be viewed as a simple modification of RSig. In particular we propose
to separate definition of sorts from the rest of the program and use this separation to
improve the type checking and grounding procedure.

2 The Syntax and Semantics of SPARC

In this section we define a simple variant of SPARC which contains only one prede-
fined sort nat of natural numbers. Richer variants may contain other predefined sorts
with precise syntax which would be described in their manuals. The discussion will be
sufficiently detailed to serve as the basis for the implementation of SPARC reasoning
system.

3 In addition, RSig provides simple means for structuring a program into modules which we
will not consider here.
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Let L be a language defined by the following grammar rules:

<identifier> :- <small_letter> | <identifier><letter> |
<identifier><digit>

<variable> :- <capital_letter> | <variable><letter> |
<variable><digit>

<non_zero_digit> :- 1|...|9
<digit> :- 0 | <non_zero_digit>
<positive_integer> :- <non_zero_digit> |

<positive_integer><digit>
<natural_number> :- 0 | <positive_integer>
<op> :- + | - | * | mod
<arithmetic_term> :- <variable> | <natural_number> |

<arithmetic_term> <op> <arithmetic_term> |
(<arithmetic_term>)

<symbolic_function> :- <identifier>
<symbolic_constant> :- <identifier>
<symbolic_term> :- <variable> | <symbolic_constant> |

<symbolic_function>(<term>,...,<term>)
<term> :- <symbolic_term> | <arithmetic_term>
<arithmetic_rel> :- = | != | > | >= | < | <=
<pred_symbol> :- <identifier>
<atom> :- <pred_symbol>(<term>,...,<term>) |

<arithmetic_term> <arithmetic_rel> <arithmetic_term> |
<symbolic_term> = <symbolic_term> |
<symbolic_term> != <symbolic_term>

Note that relations = and != are defined on pairs of arithmetic and pairs of non-arithmetic
terms. The first is a predefined arithmetic equality, i.e. 2 + 3=5, 2 + 1!=1, etc. The sec-
ond is an identity relation4. By a ground term we mean a term containing no variables
and no symbols for arithmetic functions [11].

From now on we assume a language Lwith a fixed collection of symbolic constants and
predicate symbols. A SPARC program parametrized by L consists of three consecutive
parts:

<program> :-
<sorts definition>
<predicates declaration>
<program rules>

The first part of the program starts with the keywords:

sorts definition

and is followed by the sorts definition:
4 In the implementation non-arithmetic identity should be restricted to comply with the syntax

of lparse and other similar grounders.
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Definition 1. By sort definition in L we mean a collection Πs of rules of the form

a0 ← a1, ..., am, not am+1, ..., not an.

such that

– ai are atoms of L and a0 contains no arithmetic relations;
– Πs has a unique answer set S5.
– For every symbolic ground term t of L there is a unary predicate s such that s(t) ∈
S.

– Every variable occurring in the negative part of the body, i.e. in at least one of the
atoms am+1, . . . , an, occurs in atom ai for some 0 < i ≤ m.

Predicate s such that s(t) ∈ S is called a defined sort of t. The language can also contain
predefined sorts, in our case nat. Both, defined and predefined sorts will be referred to
simply as sorts. (Note that a term t may have more than one sort.)

The last condition of the definition is used to avoid unexpected reaction of the pro-
gram to introduction of new constants (see example in the introduction). The condition
was introduced in [8] where the authors proved that every program Π satisfying this
condition has the following property, called language independence: for every sorted
signatures Σ1 and Σ2 groundings of Π with respect to Σ1 and Σ2 have the same an-
swer sets. This of course assumes that every rule of Π can be viewed as a rule in Σ1

and Σ2.
The second part of a SPARC program starts with a keyword

predicates declaration

and is followed by statements of the form

pred symbol(sort, . . . , sort)

We only allow one declaration per line. Predicate symbols occurring in the declaration
must differ from those occurring in sorts definition. Finally, multiple declarations for
one predicate symbol with the same arity are not allowed.

The third part of a SPARC program starts with a keyword

program rules

and is followed by a collectionΠr of regular and consistency restoring rules of SPARC
defined as follows:

regular rule:
l0 ∨ . . . ∨ lm ← lm+1, . . . , lk, not lk+1 . . . not ln (1)

5 As usual by S we mean answer set of a ground program obtained from Π by replacing it-
s variables with ground terms of L. We assume that the program has non-empty Herbrand
universe
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CR-rule:
l0

+← l1, . . . , lk, not lk+1 . . . not ln (2)

where l’s are literals6 of L. Literals occurring in the heads of the rules must not be
formed by predicate symbols occurring in Πs. In this paper,← and :- are used inter-
changeably, so are +← and :+.

As expected, program Πr is viewed as a shorthand for the set of all its ground
instances which respect the sorts defined by Πs. Here is the precise definition of this
notion.

Definition 2. Let gr(r) be a ground instance of a rule r of Πr, i.e. a rule obtained
from r by replacing its variables by ground terms of L. We’ll say that gr(r) respects
sorts of Πs if every occurrence of an atom p(t1, . . . , tn) of gr(r) satisfies the following
condition: if p(s1, . . . , sn) is the predicate declaration of p then t1, . . . , tn are terms of
sorts s1, . . . , sn respectively. By gr(Πr) we mean the collection of all ground instances
of rules of Πr which respect sorts of Πs.

Note that according to our definition gr(r) may be empty. This happens, for instance,
for a rule which contains atoms p1(X) and p2(X) where p1 and p2 require parameters
from disjoint sorts.

Let us now define answer sets of a ground SPARC program Π . We assume that the
readers are familiar with the definition of answer sets for standard ASP programs. Read-
ers unfamiliar with the intuition behind the notion of consistency restoring rules of CR-
Prolog are referred to the Appendix.

First we will need some notation. The set of regular rules of a SPARC program Π will
be denoted by R; the set of cr-rules of Π will be denoted by CR. By α(r) we denote
a regular rule obtained from a consistency restoring rule r by replacing +← by←; α is
expanded in a standard way to a set X of cr-rules, i.e. α(X) = {α(r) : r ∈ X}.

Definition 3. (Abductive Support)
A collection X of cr-rules of Π such that

1. R ∪ α(X) is consistent (i.e. has an answer set) and
2. anyR0 satisfying the above condition has cardinality which is greater than or equal

to that of R

is called an abductive support of Π .

Definition 4. (Answer Sets of SPARC Programs)
A setA is called an answer set ofΠ if it is an answer set of a regular programR∪α(X)
for some abductive support X of Π .

6 By a literal we mean an atom a or its negation ¬a. Note in this paper, we use ¬ and - inter-
changeably.
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To complete the definition of syntax and semantics of a SPARC program we need
to note that though such program is defined with respect to some language L in practice
this language is extracted from the program. We always assume that terms of L defined
by a SPARC program P are arithmetic terms and terms defined by the sorts definition7;
predicate symbols are those occurring in sorts definition and predicate declaration. Now
we are ready to give an example of a SPARC program.

Example 1. [SPARC programs]
Consider a SPARC program P1:

sorts definition
s1(1).
s1(2).
s2(X+1) :-

s1(X).
s3(f(X,Y)) :-

s1(X),
s1(Y),
X != Y.

predicates declaration
p(s1)
q(s1,s3)
r(s1,s3)
program rules
p(X).
r(1,f(1,2)).
q(X,Y) :-

p(X),
r(X,Y).

The sort declaration of the program defines ground terms 1, 2, 3, f(1, 2), f(2, 1)
with the following defined sorts:

s1 = {1, 2}
s2 = {2, 3}
s3 = {f(1, 2), f(2, 1)}

Of course, 1, 2, and 3 are also of the sort nat. The sort respecting grounding of the
rules of Π is

p(1).
p(2).
r(1,f(1,2)).
q(1,f(1,2)) :-

p(1),
r(1,f(1,2)).

7 A term t is defined by Πs if for some sort s, s(t) belongs to the answer set of Πs
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q(2,f(1,2)) :-
p(2),
r(2,f(1,2)).

q(1,f(2,1)) :-
p(1),
r(1,f(2,1)).

q(2,f(2,1)) :-
p(2),
r(2,f(2,1)).

The answer set of the program is {p(1), p(2), r(1, f(1, 2)), q(1, f(1, 2))}. (We are not
showing the sort atoms.)

Consider now a SPARC program P2:

sorts definition
t(a,b).
t(c,1).
s1(X) :- t(X,Y).
s2(Y) :- t(X,Y).
s3(a).
predicates declaration
p(s1,s2).
program rules
p(X,Y) :- s3(X),t(X,Y).

The sort respecting grounding of the program is

p(a,b) :- s3(a),t(a,b).

Its answer set is {p(a, b), t(a, b)}.

Another example can be obtained by restating the CR-Prolog program from Ex-
ample 4 in the Appendix by adding sort definitions s1(a) and s2(d(a)) and predicates
declarations p(s1), q(s1), c(s1) and ab(s2). One can easily check that, as expected, the
answer set of the resulting program is {¬q(a), c(a),¬p(a))}.

3 Translation of SPARC Programs to DLV Programs

DLV [12] is one of the well developed solvers for ASP programs. We select DLV as
the target language mainly because of its weak constraints [6] which can be used to
represent cr-rules. A weak constraint is of the form

:∼ l1, . . . , lk, not lk+1 . . . not ln.

where li’s are literals. (Weak constraints of DLV allow preferences which we ignore
here.) Informally, weak constraints can be violated, but as many of them should be
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satisfied as possible. The answer sets of a program P with a set W of weak constraints
are those of P which minimize the number of violated weak constraints.

We first introduce some notations before presenting the translation algorithm.

Definition 5. (DLV counterparts of SPARC programs)
A DLV program P2 is a counterpart of SPARC program P1 if answer sets of P1 and
P2 coincide on literals from the language of P1.

Definition 6. Given a SPARC program P , we associate a unique number to each of its
cr-rules. The name of a cr-rule r of Π is a term rn(i,X1, ..., Xn) where rn is a new
function symbol, i is the unique number associated with r, and X1, ..., Xn is the list of
distinct variables occurring in r.

For instance, if rule p(X,Y ) ← q(Z,X, Y ) is assigned number 1 then its name is
rn(1, X, Y, Z).
In what follows we describe a translation of SPARC programs into their DLV counter-
parts.

Algorithm 1 (SPARC program translation)
Input: a SPARC program P1.
Output: a DLV counterpart P2 of P1.

1. Set variable P2 to ∅, and let appl/1 be a new predicate not occurring in P1.
2. Add all rules of the sorts definition part of P1 to P2.
3. For any program rule r of P1,

3.1. Let

s = {s1(t1), ..., sn(tn) | p(t1, ..., tn) occurs in r and p(s1, ..., sn) ∈ P1},

and let rule r′ be the result of adding all elements of s to the body of r.
3.2. If r′ is a regular rule, add it to P2.
3.3. If r′ is a cr-rule of the form

q
+← body.

add to P2 the rules
appl(rn(i,X1, ..., Xn))∨ ¬appl(rn(i,X1, ..., Xn)) :- body.
:∼ appl(rn(i,X1, ..., Xn)), body.
q :- appl(rn(i,X1, ..., Xn)), body.
where rn(i,X1, ..., Xn) is the name of r.

The intuitive idea behind the rules added to P2 in 3.3. is as follows: appl(rn(i,X1,
..., Xn)) holds if the cr-rule r is used to obtain an answer set of the SPARC program;
the first rule says that r is either used or not used; the second rule, a weak constraint,
guarantees that r is not used if possible, and the last rule allows the use of r when
necessary.

The correctness of the algorithm is guaranteed by the following theorem whose com-
plete proof can be found in the appendix.
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Theorem 1. A DLV program P2 obtained from a SPARC program P1 by Algorithm 1
is a DLV counterpart of P1.

The translation can be used to compute an answer set of SPARC program P .

Algorithm 2 (Computing an answer set of a SPARC program)
Input: a SPARC program P .
Output: an answer set of P .

1 Translate P into its DLV counterpart P ′.
2 Use DLV to find an answer set S of P ′.
3 Drop all literals with predicate symbol appl from S and return the new set.

Example 2. To illustrate the translation and the algorithm, consider the following pro-
gram.

sorts definition
s(a).
predicates declaration
p(s)
q(s)
program rules
p(X) :- not q(X).
-p(X).
q(X) :+ .

After step 2 of Algorithm 1 , P ′ becomes:

s(a).

After the execution of the loop 3 of this algorithm for the first and second program rule,
P ′ becomes

s(a).
p(X) :- not q(X),s(X).
¬p(X):- s(X).

Assuming the only cr-rule is numbered by 1, after the algorithm is applied to the third
rule, P ′ becomes

s(a).
p(X) :- not q(X),s(X).
¬p(X):- s(X).
appl(rn(1, X)) ∨ ¬appl(rn(1, X)) :- s(X).
:∼ appl(rn(1, X)), s(X).
q(X) :- appl(rn(1, X)), s(X).

Given the program P ′, DLV solver returns an answer set

{s(a), appl(rn(1, a)), q(a),¬p(a)}

After dropping appl(rn(1, a)) from this answer set, we obtain an answer set

{s(a), q(a),¬p(a)}

for the original program.
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4 Experimental Results

We have implemented a SPARC program solver, called crTranslator (available from
the link in [13]), based on the proposed translation approach. CRModels2 [7] is the
state of the art solver for CR-prolog programs. To compare the performance of the DLV
based solver to CRModels2, we use the classical benchmark of the reaction control
system for the space shuttle [3] and new benchmarks such as representing and reasoning
with intentions [5], and the shortest path problem.

Clock time, in seconds, is used to measure the performance of the solvers. Since the time
complexity of translation is low, the recorded problem solving time does not include the
translation time.

In this experiment, we use DLV build BEN/Dec 21 2011 and CRModels2 2.0.12 [14]
which uses ASP solver Clasp 2.0.5 with grounder Gringo 3.0.4 [15]. The experiments
are carried out on a computer with Intel Core 2 Duo CPU E4600 at 2.40 Ghz, 3GB
RAM, and Cygwin 1.7.10 on Windows XP.

4.1 The First Benchmark: Programs for Representing and Reasoning with
Intentions

Recently, CR-Prolog has been employed to represent and reason with intentions [5].
We compare crTranslator with CRModels2 on the following scenarios proposed in [5]:
Consider a row of four rooms, r1, r2, r3, r4 connected by doorways, such that an agent
may move along the row from one room to the next. We say that two people meet if
they are located in the same room. Assume that initially our agent Bob is in r1 and
he intends to meet with John who, as Bob knows, is in r3. This type of intention is
frequently referred to as an intention to achieve the goal. The first task is to design a
simple plan for Bob to achieve this goal: move from r1 to r2 and then to r3. Assuming
that as Bob is moving from r1 to r2, John moves from r3 to r2, the second task is
to recognize the unexpected achievement of his goal and not continue moving to r3.
Programs to implement these two tasks are given as B0 and B1 respectively in [5].

Tasks CRModels2 crTranslator
task 1 104 11
task 2 104 101

Fig. 1. CPU time for intention reasoning benchmark using CRModels2 and crTranslator

In this experiment, crTranslator has a clear advantage over CR-Models2 on task 1 and
similar performance on task 2.
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4.2 The Second Benchmark: Reaction Control System of Space Shuttle

USA-Smart is a CR-prolog program to find plans with improved quality for the oper-
ation of the Reaction Control System (RCS) of the Space Shuttle. Plans consist of a
sequence of operations to open and close the valves controlling the flow of propellant
from the tanks to the jets of the RCS.

In our experiment, we used the USA-Smart program with four instances: fmc1 to fmc4
[16]. The SPARC variant of the USA-Smart program is written as close as possible
to USA-smart. The results of the performance of crTranslator and CRModels for these
programs are listed in Figure 2.

Instances CRModels2 crTranslator
fmc1 29.0 74.0
fmc2 11.6 34.0
fmc3 6.0 8907.0
fmc4 30.5 22790.0

Fig. 2. CPU time for reaction control system using CRModels2 and crTranslator

We note that these instances have small abductive supports (with sizes of the supports
less than 9) and relatively large number of cr-rules (with more than 1200). This can
partially explain why CRModels2 is faster because it finds the abductive support by
exhaustive enumeration of the candidate supports starting from size 0 to all cr-rules in
an increasing manner.

4.3 The Third Benchmark: Shortest Path Problem

Given a simple directed graph and a pair of distinct vertices of the graph, the shortest
path problem is to find a shortest path between these two vertices. Given a graph with
n vertices and e edges, its density is defined as e/(n ∗ (n − 1)). In our experiment,
the problem instances are generated randomly based on the number of vertices and
the density of the graph. The density of the graphs varies from 0.1 to 1 so that the
shortest paths involve abductive supports of different sizes. To produce graphs with
longer shortest path (which needs larger abductive supports), we zoom into the density
between 0 to 0.1 with a step of 0.01. To reduce the time solving the problem instances,
as density increases, we use smaller number of vertices. Given a graph, we define the
distance between a pair of vertices as the length of the shortest path between them. For
any randomly generated graph, we select any two vertices such that their distance is the
longest among those of all pairs of vertices. The problem is to find the shortest path
between these two vertices.

The SPARC programs and CR-prolog programs are written separately due to the d-
ifference between these two languages, but we make them as similar as possible and
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use exactly the same cr-rules in both programs. The experimental results are listed in
Figure 3.

From the results, CRModels2 is faster on a majority of cases. Again, crTranslator is
faster when the size of the abductive support is large. The graphs with density between
0.02 and 0.03 have support size of 16 while the other graphs (except the one of density
0.01) have support sizes not more than 12. Further investigation is needed to have a
better understanding of the performance difference between the two solvers.

Number of vertices Density CRModels2 crTranslator
60 0.01 4.0 0.2
60 0.02 5.1 0.4
60 0.03 5.7 0.8
60 0.04 9.1 66.5
60 0.05 29.2 337.0
60 0.06 235.7 4451.8
40 0.07 7.4 19.9
40 0.08 8.4 154.6
40 0.09 7.0 32.6
30 0.1 6.0 16.8
30 0.2 39.9 9711.4
20 0.3 7.6 54.9
20 0.4 9.3 52.2
20 0.5 16.4 234.8
20 0.6 9.6 51.7
20 0.7 14.3 52.0
20 0.8 17.6 58.8
20 0.9 22.2 69.1
20 1.0 5.5 55.6

Fig. 3. CPU time for solving shortest path problem using CRModels2 and crTranslator

5 Conclusion and Future Work

This paper describes a sorted version of CR-Prolog called SPARC, presents a transla-
tion of consistency restoring rules of the language into weak constraints of DLV, and
investigates the possibility of building efficient inference engines for SPARC based on
this translation. This is a preliminary report. There is a number of steps which should
be made to truly develop SPARC into a knowledge representation language of choice
for teaching and applications. In particular we plan the following:

– Expand SPARC to include a number of useful language constructs beyond the
original language of ASP such as aggregates and optimization constructs. In this
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expansion, instead of committing to a particular syntax, we are planning to allow
users to select their favorite input language such as that of DLV or LPARSE or
GRINGO and provide the final system with support for the corresponding language.

– Provide SPARC with means to specify different preference relations between sets
of cr-rules, define and investigate answer sets minimal with respect to these prefer-
ence relations, and implement the corresponding SPARC solvers.

– Design and implement SPARC grounders to directly use the sort information pro-
vided by definitions and declaration of a program. The emphasis will be on error
checking and incrementality of the grounders.

– Investigate more efficient reasoning algorithms for SPARC. DLV uses a more ad-
vanced technique of branch and bound to process weak constraints while CRMod-
els employs a more primitive search algorithm. However, our experiments show
that the latter is not necessarily slower. Further understanding of these two ap-
proaches is expected to inspire new techniques for building more efficient solvers
for SPARC programs.

– Expand SPARC and its solvers to other extensions of ASP including ACC [17]
and P-log [4].
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Appendix: CR-Prolog

This Appendix contains a short informal introduction to CR-Prolog. The version dis-
cussed here is less general than the standard version — in particular it omits the treat-
ment of preferences which is a task orthogonal to the goals of this paper. One of the
original goals of the CR-Prolog was to provide a construct allowing a simple repre-
sentation of exceptions to defaults, sometimes referred to as indirect exceptions. Intu-
itively, these are rare exceptions that come into play only as a last resort, to restore the
consistency of the agent’s world view when all else fails. The representation of indi-
rect exceptions seems to be beyond the power of “pure” ASP [1] which prompted the
introduction of cr-rules. To illustrate the problem let us consider the following example.

Example 3. [Indirect Exception in ASP]
Consider an ASP representation of the default “elements of class c normally have prop-
erty p”:

p(X)← c(X), not ab(d(X)), not ¬p(X).

(where d(X) is used as the name of the default) together with the rule

q(X)← p(X).

and two observations:
c(a).
¬q(a).



14

It is not difficult to check that this program is inconsistent. No rules allow the reasoner
to prove that the default is not applicable to a (i.e. to prove ab(d(a))) or that a does not
have property p. Hence the default must conclude p(a). The second rule implies q(a)
which contradicts the observation.

There, however, seems to exist a commonsense argument which may allow a reasoner
to avoid inconsistency, and to conclude that a is an indirect exception to the default. The
argument is based on the Contingency Axiom for default d(X) which says that Any
element of class c can be an exception to the default d(X) above, but such a possibility
is very rare and, whenever possible, should be ignored. One may informally argue that
since the application of the default to a leads to a contradiction, the possibility of x being
an exception to d(a) cannot be ignored and hence a must satisfy this rare property.

The CR-Prolog is an extension of ASP capable of encoding and reasoning about such
rare events. In addition to regular logic programming rules the language allows consis-
tency restoring rules of the form

l0
+← l1, . . . , lk, not lk+1, . . . , not ln (3)

where l’s are literals. Intuitively, the rule says that if the reasoner associated with the
program believes the body of the rule, then it “may possibly” believe its head. However,
this possibility may be used only if there is no way to obtain a consistent set of beliefs
by using only regular rules of the program.

The following Example shows the use of CR-Prolog for representing defaults and their
indirect exceptions.

Example 4. [Indirect Exception in CR-Prolog]
The CR-Prolog representation of default d(X) may look as follows

p(X)← c(X), not ab(d(X)), not ¬p(X).

¬p(X)
+← c(X).

The first rule is the standard ASP representation of the default, while the second rule
expresses the Contingency Axiom for default d(X). Consider now a program obtained
by combining these two rules with an atom c(a).
Assuming that a is the only constant in the signature of this program, the program’s
answer set will be {c(a), p(a)}. Of course this is also the answer set of the regular
part of our program. (Since the regular part is consistent, the Contingency Axiom is
ignored.) Let us now expand this program by the rules

q(X)← p(X).
¬q(a).

The regular part of the new program is inconsistent. To save the day we need to use the
Contingency Axiom for d(a) to form the abductive support of the program. As a result
the new program has the answer set {¬q(a), c(a),¬p(a))}. The new information does
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not produce inconsistency as in the analogous case of ASP representation. Instead the
program withdraws its previous conclusion and recognizes a as a (strong) exception to
default d(a).

The possibility to encode rare events which may serve as unknown exceptions to de-
faults proved to be very useful for various knowledge representation tasks, including
planning, diagnostics, and reasoning about the agent’s intentions.

Appendix: Proof of Theorem 1

Given a SPARC program Π , let Πsparc be a SPARC program where every program
rule r of Π is replaced by r′ as defined in 3.2 of Algorithm 1; Πasp be the resulting
DLV program from Algorithm 1; Answersasp+ be the set of all answer sets of Πasp;
Answersasp be Answersasp+ with appl literals removed; Answerssparc be the set
of all answer sets of Πsparc. Sappl− denotes a set of literals after removing all “appl”
literals occurrences from a set of literals named S.

To prove the Theorem 1, it is sufficient to show the following claim: given a programΠ ,
Answersasp = Answerssparc. Before proving this claim, we first prove the following
lemma.

Lemma 1. Given a SPARC programΠ , let S be an answer set ofΠasp. AssumeΠasp is
grounded. For any rule r containing a ground literal appl(ri, t1, ..., tn), if appl(ri, t1, ..., tn)
∈ S, then S satisfies the body and the head of r.

Proof. To prove this lemma we use the following proposition.

Proposition 1 Let S be an answer set of logic program Π . If literal l ∈ S then there is
a rule r from the ground instantiation of Π such that the body of r is satisfied by S and
l is the only literal in the head of r satisfied by S.

We have that

* there is only one rule such that it has appl(ri,constants) in its head :

appl(r1, X)or ¬ appl(r1, X)← body+ (4)

That is why body+ is satisfied by S.
* there is only one rule such that there is appl(ri,constants) in it’s body :

head ← body+, appl(ri,constants) (5)

And from above it follows immediately that the head and the body of the rule are
satisfied.

�
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Our next step is to introduce one denotation.

If Asparc is an answer set of Πsparc R is an abductive support such that Asparc is an
answer set of Πr

sparc ∪ α(R) , then define Asparc=>asp as
{Asparc} ∪ {appl(ri,constants)|ri,constants ∈ R} ∪
∪{−appl(ri,constants)|ri,constants /∈ Rwhere body(ri,constants) is satisfied by Asparc}

Statement 1 Asparc=>asp is an answer set of Πasp with its weak constraints removed.

Proof. Let Asparc=>asp be S and Π ′ be the result of removing weak constraints from
Πasp. We first show that S satisfies all the rules of Π ′S (in 1).Then we prove that S is
a minimal model for Π ′(in 2).

1. Lets divide the rules of Π ′S into two types (1.1) and (1.2) and prove the rules of
each type are satisfies by S.

1.1. Rules translated from the rules inΠr
sparc. These rules are satisfied because they

are not changed during the translation,and S contains the same literals asAsparc, except
for appl literals.

1.2 Rules translated from all CR-Rules of Πsparc. For each CR-Rule rule

r : l0 :- l1, . . . , lk

of ΠS
sparc, we have two corresponding rules in Π ′S :

r1 : l0 :- body, appl(r)

and
r2 : appl(r) or ¬ appl(r) :- body.

where body is l1, . . . , ln. We will show that S satisfies r1 (in 1.2.1) and r2 (in 1.2.2).
1.2.1 Consider two cases:
1.2.1.1 appl(r) ∈ S. It means that there is a rule (lets name it as rr)

l0 :- body.

(constructed from r1 with appl atoms removed), rr ∈ α(R)S=α(R)Asparc (R is abduc-
tive support for Πsparc ). That’s why rr is satisfied by Asparc. Since Asparc ⊆ S,S
satisfies rr and consequently r1 .

1.2.1.2 appl(r) /∈ S. In this case, the body of r1 is not satisfied, and the rule itself
is satisfied.

1.2.2 There are also two cases.
1.2.2.1 The body is satisfied.
1.2.2.1.1 appl(r) ∈ S. r2 is satisfied because it’s body and head are satisfied.
1.2.2.1.2 appl(r) /∈ S. r2 is satisfied because ¬appl(r) was added into S by defini-

tion of Asparc=>asp

1.2.2.2 The body is not satisfied. It follows immediately that r2 is satisfied.
2. We prove by contradiction. Lets assume there is a set of literals S∗ ⊂ S that S∗

satisfies all rules in Π ′S . To get a contradiction we first prove that

6 ∃l | l ∈ S, l /∈ S∗, l′s name is not appl
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(in 2.1) and after that we prove

6 ∃l | ∈ S, l /∈ S∗, l′s name is appl

(in 2.2).
2.1 6 ∃l|l ∈ S, l /∈ S∗, l′s name is not appl. Again,we prove by contradiction. Lets

assume ∃l|l ∈ S, l /∈ S∗, l′s name is not appl.
Let S∗∗ be S∗ with appl atoms removed. Clearly, S∗∗ ⊂ Asparc. Assuming such l
exists, we prove that S∗∗ satisfies all rules from (Πr

sparc ∪ α(R))S (in 2.1.1). Having
(Πr

sparc ∪ α(R))S = (Πr
sparc ∪ α(R))Asparc we get a contradiction,because Asparc,

being an answer set of Πsparc should be inclusively minimal set to satisfy the reduct’s
rules.

2.1.1 We first show that S∗∗ satisfies all the rules from (Πr
sparc)

S (in 2.1.1.1) and
after that we show that S∗∗ satisfies all the rules from α(R)S(2.1.1.2).

2.1.1.1 S∗∗ satisfies (Πr
sparc)

S . Since S∗ satisfies all the rules from ΠS
asp, and S∗∗

contains the same non-appl atoms as S∗ and ordinary rules (rules without appl atoms)
of ΠS

asp are the same as in (Πr
sparc)

S , S∗∗ satisfies ΠS
asp and thus, (Πr

sparc)
S .

2.1.1.2 S∗∗ satisfies α(R)S . For instance, lets take a CR-Rule from α(R)S :

r : l0 :- body.

There are two corresponding rules in ΠS
asp:

r1 : l0 :- body, appl(r).

and
r2 : appl(r)or¬appl(r) :- body.

There are two cases:
2.1.1.2.1 body is satisfied by S∗∗.
2.1.1.2.1.1 appl(r) ∈ S∗. Here we have that l0 ∈ S∗ (because S∗ satisfies all rules

in ΠS
asp). Since S∗∗ is S∗ with appl atoms removed, we have that l0 ∈ S∗∗, and S∗∗

satisfies body and l0, i.e, satisfies r.
2.1.1.2.1.2 appl(r) /∈ S∗.
2.1.1.2.1.2.1 appl(r) ∈ S Since S∗∗ ⊆ S∗ ⊂ S and ¬appl(r) /∈ S, ¬appl(r) /∈ S∗

and this contradicts the fact that r2 is satisfied by S∗.
2.1.1.2.1.2.2 appl(r) /∈ S this means that rule r is not a part of R.
2.1.1.2.2 body is not satisfied by S∗∗. In this case r : l0 :- body. is satisfied.
2.2 6 ∃l|l ∈ S, l /∈ S∗, l′s name is appl. We prove by contradiction. Assume

∃l|l ∈ S, l /∈ S∗, l′s name is appl. There is at least one CR-rule in α(R)S :

r : l0 :- body.

and two corresponding rules in ΠS
asp:

r1 : l0 :- body, appl(r).

and
r2 : appl(r)or¬appl(r) :- body.
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such that appl(r) ∈ S and appl(r) /∈ S∗. There are two cases: the body is satisfied by
S and the body is not satisfied by S. In 2.2.1 and 2.2.2 below, we get contradiction for
both cases.

2.2.1 body is satisfied by S. In 2.1 it was proved that S and S∗ do not differ in some
not appl atoms. It means that body is satisfied by S∗, and if appl(r) /∈ S∗, then S∗ does
not satisfy r2. It contradicts the fact S∗ satisfies all the rules from Π ′S .

2.2.2 body is not satisfied by S. This means that neither appl(r) (2.2.2.1) nor
¬appl(r)(2.2.2.2) is a part of S. Since Asparc ⊆ S, Asparc doesnt satisfy body. so
the rule r is not in the abductive support, which contradicts the minimality of abductive
support. �

Claim. Answersasp = Answerssparc.

Proof. 1. Answersasp ⊆ Answerssparc.
For any Aasp ∈ Answersasp, we will show Aasp ∈ Answerssparc.
Lets construct a set R of CR-rules: R = {r|appl(r) ∈ Aasp+}. To show Aasp is

an answer set of Πsparc, we need to show that R is an abductive support of Πsparc and
Aasp is an answer set of Πr

sparc ∪ α(R).
We first show that Aasp is an answer set of Πr

sparc ∪ α(R) by showing that (in 1.1)
Aasp satisfies all rules of (Πr

sparc ∪α(R))Aasp , and (in 1.2) Aasp is the minimal model
of (Πr

sparc ∪ α(R))Aasp . In 1.3, we show R is an abductive support of Πr
sparc.

1.1 Aasp satisfies all rules of (Πr
sparc ∪ α(R))Aasp .

1.1.1 Since Πr
sparc ⊆ Πasp and Aasp+ is an answer set of Πasp, Aasp+ satisfies all

rules of Πr
sparc. Since Πr

sparc contains no appl atoms and Aasp is Aasp+ with literals
of appl removed, Aasp satisfies all rules of Πr

sparc. So, Aasp satisfies (Πr
sparc)

Aasp .
1.1.2 We show Aasp satisfies α(R)Aasp . For each rule l0 :- l1, . . . , lk of α(R)Aasp ,

we show Aasp satisfies it. Assume it is obtained from the rule
r : l0 :- l1, . . . , lk, not lk+1, , not ln of α(R). The corresponding CR-rule of r is trans-
lated into rules of Πasp:

l0 :- body, appl(r).

and
appl(r) or ¬ appl(r) :- body.

where body is l1, . . . , lk, not lk+1, . . . , not ln. Consider two cases:
1.1.2.1 appl(r) ∈ Aasp. By Lemma 1, Aasp satisfies body and l0 of the rule

l0 :- body, appl(r) of Πasp.
1.1.2.2 appl(r) /∈ Aasp. In such case r /∈ α(R).
1.2 Aasp is the minimal model of (Πr

sparc ∪ α(R))Aasp . We prove it by contradic-
tion. Assume there is a subset B of Aasp such that B satisfies (Πr

sparc ∪ α(R))Aasp .
LetB′ beB∪{appl(r)|appl(r) ∈ Aasp+}∪{¬appl(r)|¬appl(r) ∈ Aasp+}. In the

rest of the proof, let P = (Πasp − {weak constraints}). We will show below that B′

satisfies PAasp+ (note here we need to remove weak constraints here so that we can use
the answer set definition of logic program without weak constraints), which contradicts
the fact that Aasp+ is an answer of P and B′ ⊂ Aasp+.

To show B′ satisfies PAasp+ , since

PAasp+ = PAasp
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it is sufficient to show B′ satisfies PAasp in cases 1.2.1 and 1.2.2 below.
1.2.1 B′ satisfies all rules of PAasp that do not contain atoms appl(r). It’s true

because B ⊆ B′ , B satisfies Πr
sparc (by our construction) and rules in PAasp that do

not contain atoms appl(r) coincide with the rules in ΠAasp
sparc.

1.2.2 B′ satisfies all rules of PAasp that contain atom appl(r). We prove this for
each of the following two cases.

1.2.2.1 Rules of the form l0 :- body, appl(r) (r1). Clearly, this rule is obtained from
a CR-rule r : l0 : +body. We show B′ satisfies r1 for each of the following two cases:

1.2.2.1.1 appl(r) ∈ Aasp+. By definition of R, r1 ∈ R. Since r1 is in PAasp ,
l0 :- body must be in α(R)Aasp . Since B satisfies (Πr

sparc ∪ α(R))Aasp and B ⊆ B′,
B′ satisfies all rules of α(R)Aasp and thus the rule l0 :- body. Since B′ ⊆ Aasp+,
appl(r) ∈ B′. Hence, B′ satisfies l0 :- body, appl(r), i.e., r1.

1.2.2.1.2 appl(r) /∈ Aasp+. Since B′ is B ∪ {appl(r)|appl(r) ∈ Aasp+} we have
that appl(r) /∈ B′, that’s why l0 :- body, appl(r) is satisfied by B′, because it’s body
is not satisfied.

1.2.2.2 Rules of the form r2 : appl(r) or ¬appl(r) :- body.
There are also two cases:
1.2.2.2.1 body is satisfied by B′. Since B′ differs from B only in some appl atoms,

B also satisfies the body. We know that B ⊂ Aasp, that’s why the body is also satisfied
by Aasp. (Note that r2 belongs to the reduct PAasp , and by definition of reduct there
are no literals with default negation in the body). Since PAasp = PAasp+ , Aasp+ must
contain one of the atoms appl(r) or ¬appl(r) to satisfy r2 (becauseAasp+ is an answer
set of Πasp). Therefore, B′ also contains one of the atoms appl(r) or ¬appl(r) and
that’s why it satisfies r2.

1.2.2.2.2 body is not satisfied by B′. This means that the rule is satisfied vacuously.
1.3 We show that R is an abductive support of Πsparc.
Since Πr

sparc ∪ α(R) has an answer set (i.e., consistent) by 1.1 and 1.2, we only
need to show that R is minimal.

We prove this by contradiction. Assume there is a set of CR-rules R′ such that
|R′| < |R| and Πsparc ∪ α(R′) is consistent.

LetA∗sparc be an answer set ofΠr
sparc∪α(R′), andAsparc an answer set ofΠr

sparc∪
α(R).

From Statement 1, we get A∗sparc=>asp is an answer set of P , and Asparc=>asp is
an answer set of P . In fact, Asparc=>asp is Aasp+. So, the former is an answer set of
the DLV program Πasp. |R′| < |R| contradicts the fact that Asparc=>asp is an answer
set of Πasp.

2. Answerssparc ⊆ Answersasp.
For any Asparc ∈ Answerssparc, we will show Asparc ∈ Answersasp.
For a given answer set Asparc, lets construct a set of literals S = Asparc=>asp. We

will show that S is an answer set of P (in 2.1) and that S satisfies the weak constraints
ofΠasp (in 2.2). So, we get that S is an answer set ofΠasp. After removing appl atoms
from S we get Aasp.

2.1 It follows immediately from Statement 1 that S is answer set of P
2.2 Lets prove by contradiction. Assume there is an answer set S∗ of P that has

less number of elements than S. Lets construct abductive supports for Πsparc: R =
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{r|appl(r) ∈ S} and R∗ = {r|appl(r) ∈ S∗}. In 1.1 and 1.2, it was shown that S with
appl literals removed is an answer set of (Πr

sparc ∪ α(R)) and S∗ without appl literals
is an answer set of (Πr

sparc ∪ α(R∗)) . In 1.3 it was shown that R and R∗ are correct
abductive supports for Πsparc. Using the fact S∗ has less number of weak constraints
than S and lemma 1, we get that S∗ contains less appl literals then S, which implies
that |R| < |R∗|. It contradicts the fact that |R| is a correct abductive support forΠsparc.

3. From Answerssparc ⊆ Answersasp and Answersasp ⊆ Answerssparc we get
Answerssparc = Answersasp �
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