
TOWARDS ANSWER SET PROGRAMMING BASED ARCHITECTURES FOR

INTELLIGENT AGENTS

by

SANDEEP CHINTABATHINA, M.S.

A Ph.D. DISSERTATION

In

COMPUTER SCIENCE

Submitted to the Graduate Faculty

of Texas Tech University in

Partial Fulfillment of

the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Approved

Dr. Richard Watson

Committee Chairman

Dr. Michael Gelfond

Dr. Yuanlin Zhang

Dr. Marcello Balduccini

Ralph Ferguson

Dean of the Graduate School

December, 2010

c©2010, Sandeep Chintabathina

Texas Tech University Sandeep Chintabathina, December 2010

To my parents.

ii

Texas Tech University Sandeep Chintabathina, December 2010

ACKNOWLEDGEMENTS

I would like to thank my adviser Richard Watson for his guidance and support

during my days as a graduate student. I am proud to be his first doctoral student. We

wrote several papers together which taught me several things about writing technical

papers. His problem solving capabilities are amazing and I benefited from that during

our discussions.

Michael Gelfond laid the foundation for this work when I started graduate school.

He is one of the best computer scientists I have ever known. His strong mathematical

background, ability to concentrate and perseverance have inspired me to become what

I am today. Working with him I have learned how to organize my research and tackle

difficult problems without getting discouraged. By attending his talks and classes I

have learned a lot about giving talks and teaching classes. I am very thankful for all

the contributions he is making in my life.

I am thankful to Marcello Balduccini for being on my committee and giving valu-

able comments on my dissertation. He is truly an inspiring and active researcher. I am

also thankful to Yuanlin Zhang for being on my committee. I enjoyed my discussions

with him during our joint work on another project.

I would like to thank all my fellow KR lab members. In some way or another they

have made a contribution towards this dissertation. We discussed several topics and

attended several seminars together which has helped me to understand a wide variety

of topics. I would especially like to thank Ricardo for being there for me since the

day I started graduate school. We had several interesting discussions that sometimes

ended up in a trip to the nearest restaurant which was a lot of fun. Besides being lab

mates we are very good friends.

I would like to thank all my family members. Especially I would like to thank

my parents, my sister and her family for their patience and support through all these

years. Next, I would like to thank my wife, Tanecia, for her constant support during

the last few years. She pushed me and inspired me to finish this dissertation. Without

iii

Texas Tech University Sandeep Chintabathina, December 2010

her moral and emotional support it would have been difficult to finish this work. I

am very glad to have her beside me.

I would like to thank the faculty and staff of the Computer Science department

for their academic and financial support over the years.

I would like to thank all my friends who have been there for me during good

times as well as difficult times. They made my stay in Lubbock very exciting. I

wish them all a bright and wonderful future. I would like to thank the staff at the

international cultural center for organizing various festivals and events that brought

me and my friends together. I would also like to thank the faculty and staff of the

Spanish department for giving me an opportunity to learn Spanish. Texas Tech and

Lubbock will surely be missed!

iv

Texas Tech University Sandeep Chintabathina, December 2010

CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . vii

LIST OF FIGURES . ix

I INTRODUCTION . 1

II SYNTAX AND SEMANTICS OF H 6

2.1 Syntax . 6

2.2 Semantics . 9

III KNOWLEDGE REPRESENTATION IN H 17

3.1 Examples . 17

3.2 Methodology . 26

IV IMPLEMENTING H . 29

4.1 Specifying history . 29

4.2 Translation into a logic program 32

4.2.1 Syntax of AC . 32

4.2.1.1 Declarations . 33

4.2.2 Semantics of AC . 34

4.2.3 Translation into AC . 34

4.2.4 Domain dependent axioms 38

4.2.5 Domain independent axioms 41

4.2.6 Translating history . 43

4.2.7 Correctness . 45

V EXISTING SYSTEMS . 47

5.1 EZCSP . 47

5.2 Luna . 52

VI RELATED WORK . 55

6.1 Timed Automata . 55

6.1.1 Relationship with H . 59

v

Texas Tech University Sandeep Chintabathina, December 2010

6.2 Situation Calculus . 63

VII PROOFS OF THEOREMS . 66

7.1 Proof of Theorem 4.1 . 66

7.2 Proof of Theorem 6.1 . 104

VIII CONCLUSIONS AND FUTURE WORK 113

8.1 Conclusions . 113

8.2 Future Work . 114

APPENDIX A . 119

APPENDIX B . 125

vi

Texas Tech University Sandeep Chintabathina, December 2010

ABSTRACT

The design of intelligent agents is an important research area in the field of Ar-

tificial Intelligence. Research in this area has led to the development of agent archi-

tectures that support various tasks such as reasoning, planning, diagnosis etc. One

such architecture is based on the agent repeatedly executing the observe-think-act

loop. In this architecture a dynamic system is viewed as a transition diagram whose

nodes represent possible physical states of the system and whose arcs are labeled

by actions. One of the approaches to describing these diagrams is a theory based

on action languages, which are high-level languages for reasoning about actions and

their effects. One such action language is AL. A theory in AL (also called an action

description) describes a transition diagram that contains all possible trajectories of

a given dynamic system. However, it was not designed to reason about properties of

a domain that change continuously with time.

In this dissertation we present action language H which extends AL with the

ability to reason about continuous change. We design this language by extending the

signature of AL with a collection of numbers for representing continuous time and a

collection of functions defined over time (processes). Like AL, H is based on transition

diagram based semantics. We model a variety of examples in H to demonstrate that

H is very useful for knowledge representation. We compared H with other approaches

and discovered that action descriptions of H are simpler, concise and elaboration

tolerant. We studied timed automata and discovered that H expands timed automata.

An action description of AL is implemented by translating it into a program of

answer set programming (ASP) and computing answer sets of the resulting program.

Thus, various tasks of the agent can be reduced to asking questions about answer sets

of programs. In this dissertation, we came up with an encoding of action descriptions

of H into a variant of ASP called AC. Using this encoding, several agent tasks can

be reduced to asking questions about answer sets of AC programs. We proved that

this encoding is correct. We are able to run our encodings using existing systems and

vii

Texas Tech University Sandeep Chintabathina, December 2010

confirm that the resulting answer sets are the ones we expected.

viii

Texas Tech University Sandeep Chintabathina, December 2010

LIST OF FIGURES

1.1 Transitions caused by drop and catch 2

2.1 Transitions caused by drop and catch 16

6.1 Timed transition table with 2 clocks 58

ix

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER I

INTRODUCTION

This dissertation is a contribution towards the design of intelligent agents acting in

a changing environment. An intelligent agent is a software entity capable of reasoning,

planning and acting on its own. The design of such agents is an important research

area in the field of artificial intelligence. Research in this area has led to development

of agent architectures that support various tasks such as planning, diagnosis, learning

etc. One such architecture is based on the agent repeatedly executing the observe-

think-act-loop [6, 23]. This architecture is applicable if the dynamic system which

includes the agent and its environment is viewed as a transition diagram whose states

correspond to possible physical states of the system and whose arcs are labeled by

actions. A transition, 〈σ, a, σ′〉, of a diagram denotes that action a is possible in

state σ and that after the execution of a the system may move to state σ′. The

diagram consists of all possible trajectories of the system. One of the approaches to

describing these diagrams is a theory based on action languages - high-level languages

for reasoning about actions and their effects [18]. A theory in an action language

(often called an action description) describes a transition diagram that contains all

possible trajectories of a given dynamic system.

Currently there are several action languages that are used to study different fea-

tures of dynamic domains. For instance action language AL [6, 42] is simply an

extension of action language A [17] by state constraints which express causal rela-

tions between fluents 1. The semantics of AL formalize McCarthy’s Principle of

inertia which says that “Things tend to stay the same unless they are changed by

actions” [33]. Let us look at an example domain and see how AL can be used to

represent knowledge in that domain.

Consider an agent holding a brick at a certain height above the ground. The agent

is capable of dropping the brick and catching it. The effects of drop and catch on

1functions whose values depend on a state and may change as a result of actions

1

Texas Tech University Sandeep Chintabathina, December 2010

boolean fluent holding are captured using statements of AL

drop causes ¬holding

catch causes holding

The first statement says that if drop is executed in some state then holding will be

false in the resulting state. The second statement says that if catch is executed in

some state then holding will be true in the resulting state. We can specify conditions

under which drop and catch are impossible using statements

impossible drop if ¬holding

impossible catch if holding

The transition diagram described by this action description is

s0#
"

!holding

-

drop

�

catch

s1#
"

!¬holding

Figure 1.1: Transitions caused by drop and catch

Now let us consider the following scenario. Suppose the agent is holding the brick

at 500 meters above the ground and wants to catch it at 300 meters above the ground.

To achieve this the agent can drop the brick and then catch it at exactly 300 meters

above the ground. In one approach the agent can compute the height of the brick

as it falls to the ground and perform catch when the desired height is reached. In

another approach the agent can determine the time it takes to descend 200 meters and

schedule the catch action. In the first approach, as the brick falls under the influence

of gravity its height changes continuously with time. Height is defined by a function

of time also called a process. However, once the brick is caught its height becomes a

constant. The height of the brick can be considered as a special kind of fluent that

changes not only as a result of actions but also continuously with time. We refer to

2

Texas Tech University Sandeep Chintabathina, December 2010

fluents whose values may change continuously with time as process fluents. Domains

consisting of both process and non-process fluents are called hybrid domains.

From the example, it is clear that AL can capture non-process fluents such as

holding. However, it was not designed to capture process fluents. There are logic-

based formalisms such as Situation Calculus and Event Calculus that are capable of

reasoning about process fluents. Situation calculus, developed by John Mccarthy in

1962, is based on classical logic and uses logical entailment for reasoning about actions.

Reiter and fellow researchers extended the language of situation calculus (sitcalc) [39]

to incorporate time, concurrency and other features. Event calculus, developed by

Kowalski and Sergot, was an alternative to situation calculus for reasoning about

actions. Shanahan [40] extended event calculus to be able to reason about process

fluents. Both approaches demonstrate via examples how their approach can be used

for reasoning about process fluents. However, it is difficult to express causal relations

between fluents in both approaches. There is an action language based approach for

reasoning about process fluents. The language is called ADC and was developed by

Baral, Son and Tuan Le. This language is based on action language A and does not

support state constraints.

In this dissertation we are interested in agents acting in hybrid domains. We

present a new action language capable of representing knowledge in such domains.

The language is called H which is an abbreviation for Hybrid. We developed this

language by extending the signature of AL with

• a collection of numbers for representing time

• a collection of functions defined over time (processes)

• fluents with non-boolean values including fluents whose values are functions of

time (process fluents).

Time can be either discrete or continuous depending upon the type of domain. The

extended signature allows us to add process fluents and processes to the statements

of H. So we end up extending AL with the ability to reason about process fluents.

3

Texas Tech University Sandeep Chintabathina, December 2010

The semantics of AL is based on the McCain-Turner equation [31]. We modify

this equation slightly to define the semantics of H. In this way both languages are

based on the same underlying intuition.

We presented an earlier version of H in [9]. However, in this dissertation we refined

the syntax of the language and enhanced the language with triggers which allows us

to specify conditions under which actions are triggered.

In this dissertation we model a variety of examples in H to demonstrate that H

is very useful for knowledge representation. We compared action descriptions of H

with logical theories of situation calculus and discovered that action descriptions of

H are simpler, concise and elaboration tolerant. We establish relationship between H

and timed automata [1] which was developed to reason about functions that change

continuously with time. However, only a particular type of function (clock) is allowed

in this formalism. We provide more details in chapter 6.

An action description of AL can be viewed as the specification of a domain. It

is implemented by translating it into a program of answer set programming (ASP)

and computing answer sets [15, 16] of the resulting program. ASP is a declarative

knowledge representation language that is well suited for difficult, primarily NP-

hard, search problems. [28]. It can be used to represent and reason with recursive

definitions, defaults and their exceptions, causal relations, beliefs and various forms

of incomplete information.

A program of ASP contains statements that represent information relevant to the

problem being solved. The answer set semantics assign a collection of answer sets to

such a program. An answer set is a possible set of beliefs which can be built by a

rational reasoner on the basis of the statements of the program and the rationality

principle which states that one shall not believe anything one is not forced to believe.

Currently, there are several inference engines (solvers) for computing answer sets

of programs. Answer sets encode solutions to the given problem. When an action

description is translated into a program of ASP, various tasks of the agent are reduced

to asking questions about answer sets of the program.

4

Texas Tech University Sandeep Chintabathina, December 2010

In this dissertation we came up with an encoding of action descriptions of H into

a variant of ASP called AC which integrates ASP and constraint logic programming

(CLP). The combination of non-monotonic logic with numerical constraint solving is

quite suitable for H. Using this encoding, agent tasks such as prediction and planning

are reduced to computing answer sets of AC programs. We proved that this encoding

is correct. With the help of new solvers such as EZCSP 2 and LUNA [37] we were

able to run our encodings and confirm that the resulting answer sets are the ones we

expected. In the past we used traditional ASP solvers to compute answers sets of

programs involving numerical computations. These solvers are very inefficient when

dealing with numbers. But thanks to the new solvers and our encoding, we are able

to compute answer sets in a reasonable amount of time.

We summarize our approach as follows. We are interested in building intelligent

agents acting in hybrid domains. To do this we represent knowledge of the agent in

some language, then encode this knowledge as a logic program and compute models

of this program. Thus, reducing various tasks of the agent to asking questions about

models of logic programs. Our choice for an action language is H and our choice for a

logic programming language is AC. Using our approach we are able to model domains

that could not be modeled properly in the past.

The dissertation is organized as follows. In chapter 2 we define the syntax and

semantics of language H. In chapter 3 we demonstrate that H can model various types

of domains and is therefore a good knowledge representation language. In chapter 4

we show how to encode action descriptions of H into AC programs. In chapter 5 we

talk about the solvers we use for computing answer sets of our encodings. In chapter

6 we compare H with existing formalisms such as timed automata and situation

calculus. In chapter 7 we present proofs of our theorems. Finally, chapter 8 contains

conclusions and future work.

2http://marcy.cjb.net/ezcsp/index.html

5

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER II

SYNTAX AND SEMANTICS OF H

In this chapter we present the syntax and semantics of language H. The first

section covers the syntax and next section covers the semantics. Towards the end of

this chapter we will give an example to illustrate the syntax and semantics.

2.1 Syntax

By sort we mean a non-empty countable collection of strings in some fixed alphabet.

A sorted signature Σ is a collection of sorts and function symbols.

A process signature is a sorted signature with special sorts time, action, and process.

Sort time is normally identified with one of the standard numerical sorts with the

exception that it contains an ordinal ω such that for any x ∈ time \ {ω}, ω > x.

No operations are defined over ω. If time is discrete, elements of time \ {ω} may be

viewed as non-negative integers, otherwise they can be interpreted as either rational

numbers, constructive real numbers, etc.

Sort process contains strings of the form λT.p where T is a variable ranging over time

and p is a mathematical expression defining function of T . A string λT.p represents a

function defined over time. The λ is said to bind T in p. If p does not contain T then

λT.p is a constant function. For simplicity we assume that all functions from process

have the same range denoted by the sort range(process). An example of a function

from sort process is λT.10− 4.9 ∗ (T − 5)2 which defines the height of a freely falling

object that was dropped from a height of 10 meters at time 5.

Sort action is divided into subsorts agent and exogenous. Elements of agent are

actions performed by an agent and elements of exogenous are actions that are not

performed by an agent. Both agent and exogenous actions will be referred to as

actions.

The collection of function symbols includes standard numerical functions and fluents.

6

Texas Tech University Sandeep Chintabathina, December 2010

Intuitively, fluents are properties that may change as a result of actions. For example,

the height of a brick held at a certain height above the ground could change when it

is dropped. Every process signature contains reserved fluents start and end of sort

time.

A term of sort s is either

1. a string y ∈ s or

2. a fluent of sort s or

3. a standard arithmetic term of sort s

Notice that if f(x̄) is a term of sort process and t is a term of sort time then f(x̄)(t) is

a term of sort range(process). For example, to represent the height of brick b we can

introduce a fluent height(b) of sort process. By height(b)(5) we denote the height of

b at time 5.

An atom of Σ is an expression of the form t = y where t is a term of some sort s

and y ∈ s. Examples of atoms are end = 10, 4 < 5, height(b)(5) = 20 etc. An

atom in which t is a fluent is called a fluent atom. An example of a fluent atom is

height(b) = λT.10− 4.9 ∗ (T − 5)2.

A literal of Σ is an atom or its negation. Negation of = will be often written as 6=.

If t is a term of boolean sort then t = true (t 6= false) is often written as t and

t = false (t 6= true) is often written as ¬t.

Language, H, is parameterized by a process signature Σ with standard interpretations

of numerical functions and relations (such as +, <,≤, 6=, etc) and the sort process.

Definition 2.1.1. An action description of H(Σ) is a collection of statements of the

form:

l0 if l1, . . . , ln. (1)

e causes l0 if l1, . . . , ln. (2)

impossible e1, . . . , em if l1, . . . , ln. (3)

l1, . . . , ln triggers e. (4)

7

Texas Tech University Sandeep Chintabathina, December 2010

where e’s are elements of action, l0’s are fluent atoms and l1, . . . , ln are literals of the

signature of H . l0 is referred to as the head of a statement and l1, . . . , ln are referred

to as the body of a statement.

A statement of the form (1) is called a state constraint. It guarantees that any state

satisfying l1, . . . , ln also satisfies l0. A statement of the form (2) is called a dynamic

causal law and it states that if action, e, were executed in a state satisfying literals

l1, . . . , ln then any successor state would satisfy l0. A statement of the form (3)

is called an executability condition and it states that actions e1, . . . , em cannot be

executed in a state satisfying l1, . . . , ln. If n = 0 then if is dropped from statements

(1), (2) and (3). A statement of the form (4) is called a trigger and it states that

action e is triggered in any state satisfying l1, . . . , ln.

Note that statements of an action description of H contain no variables other than the

variable for time T . However, we will allow other variables to occur in a statement as

long as that statement is considered as a shorthand for the collection of statements

obtained by replacing each occurrence of a variable other than T by its corresponding

ground instances.

As we can see statements of H are very similar to statements of AL. In fact, all

statements except for statements of the form (4) are similar to statements of AL.

The difference is that we allow literals such as f = 5 and p = λT.T 2 to appear in

the statements of H where f and p are fluents. The following proposition specifies

conditions under which an action description of H is syntactically equivalent to an

action description of AL.

Proposition 2.1.1. An action description of H that does not contain triggers and

whose statements contain literals involving only boolean fluents is an action descrip-

tion of AL.

8

Texas Tech University Sandeep Chintabathina, December 2010

2.2 Semantics

The semantics of language H is based on a slightly modified McCain-Turner

equation [31]. An action description, AD, of H(Σ) describes a transition diagram,

TD(AD), whose nodes correspond to possible physical states of a system and whose

arcs are labeled by actions. A transition 〈s, a, s′〉 of the diagram denotes that action

a is possible in s and as a result of execution of a the system will move to state s′. In

this section we will give a formal definition for a state and a transition of TD(AD).

We begin with interpreting symbols of Σ.

Definition 2.2.1. Given an action description AD of H(Σ), an interpretation I of

Σ is a mapping defined as follows.

• for every non-process sort, s, and every string y ∈ s, I maps y into itself i.e.

yI = y.

• standard interpretation is used for the sort process and other standard numer-

ical functions and relations.

• I maps every fluent into a properly typed function.

Often an interpretation I of Σ is identified with a collection, s(I), of atoms of the

form t = y such that tI = y where t and y are terms of some sort. In other words,

s(I) = {t = y | tI = y}.

Before we give the definition of a state of TD(AD) let us consider the following

definitions. First, let us define what it means for a literal to be true w.r.t a set of

atoms of Σ.

Definition 2.2.2. Given a consistent set, L, of atoms of Σ

• An atom t = y is true in L (symbolically L |= t = y) iff t = y ∈ L.

• A literal t 6= y is true in L (L |= t 6= y) iff L |= t = y0 and y 6= y0.

9

Texas Tech University Sandeep Chintabathina, December 2010

We will now define what it means for a set of atoms to be closed under state constraints

of AD.

Definition 2.2.3. A set L of atoms is closed under the state constraints of AD if for

every state constraint

l0 if l1, . . . , ln

of AD if L |= li for every i, 1 ≤ i ≤ n then L |= l0.

Next, we define what it means for a set of atoms to satisfy a trigger of AD.

Definition 2.2.4. A set L of atoms of H satisfies a trigger

l1, . . . , ln triggers e

of AD iff L |= li for every i such that 1 ≤ i ≤ n.

Intuitively, if a set of atoms satisfies a trigger it means that the corresponding action

will take place at some time point.The next definition characterizes sets of atoms that

define the earliest possible occurrence times of triggered actions.

Definition 2.2.5. A set L of atoms of H is closed under triggers of AD iff ¬∃

L′ such that L′ satisfies at least one trigger of AD and L \ L′ = {end = t2} and

L′ \ L = {end = t1} and t1 < t2.

Now we are ready to give the definition of a state of TD(AD).

Definition 2.2.6. Given an interpretation I of Σ, s(I) is a state of TD(AD) if each

of the following holds.

• s(I) is a collection of atoms of the form t = y such that tI = y where t and y

are terms of the same sort.

• s(I) is closed under the state constraints of AD.

• if s(I) |= start = t1 and s(I) |= end = t2 then t1 ≤ t2 ∧ t1 < ω.

10

Texas Tech University Sandeep Chintabathina, December 2010

• s(I) is closed under the triggers of AD.

• if s(I) |= p = λT.f where p is a fluent of sort process then λT.f is defined over

the domain {t | startI ≤ t ≤ endI ∧ t < ω}.

• If p is a fluent of sort process and t is a term of sort time then s(I) |= p(t) = x

iff s(I) |= p = λT.f and λT.f(tI) = x.

By definition of interpretation every symbol is mapped uniquely. Therefore, states of

TD(AD) are complete and consistent. Whenever convenient the parameter I will be

dropped from s(I).

Intuitively, a state can be viewed as a collection of functions of time defined over an

interval. The endpoints of the interval are implicitly defined by the reserved fluents

start and end. The domain of each function is the set {t | start ≤ t ≤ end ∧ t < ω}.

We say that a state is defined over an interval of the form [start, end] iff end 6= ω.

There is at least one arc labeled by an action leading out of such a state. We say that

a state is defined over an interval of the form [start, end) iff end = ω. There is no arc

leading out of such a state. States that begin at time 0 are called initial states. They

define the initial conditions of a domain.

Now that we have defined what a state is we will define what is means for an action

to be possible in a state.

Definition 2.2.7. Action a is possible in state, s, if for every non-empty subset a0

of a, there is no executability condition

impossible a0 if l1, . . . , ln.

of AD such that s |= li for every i, 1 ≤ i ≤ n.

Given a state s and action e let us define what are the direct effects of executing e in

s.

11

Texas Tech University Sandeep Chintabathina, December 2010

Definition 2.2.8. Let e be an elementary action that is possible in state s. By Es(e)

we denote the set of all direct effects of e w.r.t s.

Es(e) = {l0 | e causes l0 if l1, . . . , ln ∈ AD ∧ s |= li for every i, 1 ≤ i ≤ n}

If a is a compound action then Es(a) =
⋃

e∈aEs(e).

The following definition allows us to identify set of literals with adjacent intervals.

Definition 2.2.9. Let x, y, and z be elements of sort time such that x ≤ y ≤ z∧y < ω

and s and s′ be sets of literals of H. We say that s′ follows s iff s |= {start = x, end =

y} and s′ |= {start = y, end = z}.

Given two sets of literals s and s′ we will use the notation Ts(s
′) to project the interval

of s′. Therefore,

Ts(s
′) =

{start = t1, end = t2} if s′ follows s ∧ {start = t1, end = t2} ⊆ s′.

∅ otherwise.

The consequences of a set of atoms w.r.t a set of state constraints is defined as follows.

Definition 2.2.10. Given a set S of atoms and a set Z of state constraints of AD

the set, CnZ(S), of consequences of S under Z is the smallest set of atoms (w.r.t set

theoretic inclusion) containing S and closed under Z.

Definition 2.2.11. Action a is complete w.r.t a set of literals s if for every trigger r

of the form

l1, . . . , ln triggers e

e ∈ a iff s satisfies r.

We know that a state contains arbitrary atoms of Σ. However, for the next definition

we will focus our attention on fluent atoms and atoms formed from start and end.

Other atoms belonging to a state will be ignored because they are either universally

true or could be derived from fluent atoms.

12

Texas Tech University Sandeep Chintabathina, December 2010

Definition 2.2.12. A transition diagram TD(AD) is a tuple 〈φ, ψ〉 where

• φ is the set of states.

• ψ is the set of all transitions 〈s, a, s′〉 such that each of the following holds.

– a is complete w.r.t s

– a is possible in s

– s′ follows s

– s′ is closed under the triggers of AD

–

s′ = CnZ(Es(a) ∪ (s ∩ s′) ∪ Ts(s
′)) (2.1)

where Z is the set of state constraints of AD.

The set, Es(a), consists of direct effects of a while the set, s ∩ s′, consists of facts

preserved by inertia. Ts(s
′) projects the start and end of s′. The application of CnZ

to the union of these sets adds the indirect effects.

We will revisit the brick drop example from chapter 1 to illustrate the syntax and

semantics of H. The example demonstrates how H can be used for modeling continuous

change.

Example 2.2.1 (Continuous change). Consider an agent acting in a domain consist-

ing of a brick. The brick is held above the ground by the agent. The actions available

to the agent are drop and catch. Dropping the brick causes the height of the brick to

change continuously with time as defined by Newton’s laws of motion.

Suppose that the agent prefers to catch the brick only if it is more than 100 units

above the ground. In such a situation the agent needs to determine the height of the

falling brick at various time points and decide whether or not to catch the brick. The

agent can use a formal language like H to model continuous changes in the presence

of actions.

13

Texas Tech University Sandeep Chintabathina, December 2010

Let A0 be an action description of H. Signature Σ(A0) consists of boolean fluent

holding, process fluent height, and actions drop and catch. Σ(A0) contains auxillary

fluent time changed to denote the latest time point at which the brick was either

dropped or caught. It also contains fluent ht changed to denote height of the brick at

the time indicated by time changed. All fluents are inertial. Let sort process contain

functions ranging over R.

process = {λT.20− 4.9 ∗ (T − 1)2, . . . , . . . , λT.10− 4.9 ∗ (T − 5)2, . . . , . . . }

As mentioned earlier, height ranges over process. The corresponding causal laws are

as follows.

drop causes ¬holding (1)

catch causes holding (2)

impossible drop if ¬holding (3)

impossible catch if holding (4)

impossible drop if height(end) = 0 (5)

impossible catch if height(end) = 0 (6)

drop causes ht changed = X if height(end) = X (7)

drop causes time changed = T0 if end = T0 (8)

catch causes ht changed = X if height(end) = X (9)

catch causes time changed = T0 if end = T0 (10)

height = λT.X − 4.9 ∗ (T − T0)
2 if ht changed = X,

¬holding,

time changed = T0

(11)

height = λT.X if ht changed = X,

holding

(12)

The effects of drop and catch on holding are captured by causal laws (1) and (2)

respectively. Executability condition (3) states that drop cannot be executed if the

agent is not holding the brick. Similarly, (4) states that catch cannot be executed

if the agent is already holding the brick. Executability conditions (5) and (6) state

14

Texas Tech University Sandeep Chintabathina, December 2010

that drop and catch cannot be executed if the height of the brick at the end of a state

is zero. Since every action is executed only at the end of a state, it is sufficient to

specify conditions on the height of the brick at the end of a state. Causal laws (7),

(8), (9) and (10) state the effects of drop and catch on ht changed and time changed.

Both actions reset the values of these auxillary fluents which are necessary to keep

the domain markovian. State constraint (11) states that if the brick is not held

then height is defined by a function of time which is obtained from Newton’s laws

of motion. Finally, state constraint (12) states that if the brick is held then height

remains constant.

The transition diagram, TD(A0), contains an infinite number of states and transi-

tions. We will look at a particular trajectory of this diagram with initial state s0

defined as follows.

s0 = {height = λT.500, holding, ht changed = 500,

time changed = 0, start = 0, end = 5}

Action drop is possible in s0. There are several successor states of s0 w.r.t drop all

of which differ in the value of end. Let us consider the following candidate for a

successor state.

s1 = {height = λT.500− 4.9 ∗ (T − 5)2,¬holding, ht changed = 500,

time changed = 5, start = 5, end = 8}

Let us check whether s1 satisfies the modified McCain-Turner equation. The direct

effects of drop are encoded by the set Es0
(drop).

Es0
(drop) = {¬holding, ht changed = 500, time changed = 5}

As we can see nothing is carried over by inertia from state s0 to s1. We also have

Ts0
(s1) = {start = 5, end = 8}

The consequences of the set Es0
(drop) ∪ Ts0

(s1) w.r.t state constraints (11) and (12)

15

Texas Tech University Sandeep Chintabathina, December 2010

gives the set

{height = λT.500− 4.9 ∗ (T − 5)2,¬holding, ht changed = 500,

time changed = 5, start = 5, end = 8}

which is the same as s1. So s1 satisfies the modified McCain-Turner equation. Hence,

we conclude 〈s0, drop, s1〉 is a transition of TD(A0).

Now consider the state s1. Action catch is possible in s1 and a successor of

s1 w.r.t catch is determined using the approach described above. The trajectory

〈s0, drop, s1, catch, s2〉 of TD(A0) is depicted in figure 2.1. In the diagram, we ignore

auxillary fluents and use h as an abbreviation for height.

s0

'

&

$

%
holding

h = λT.500

[0, 5]

-

drop

s1

'

&

$

%
¬holding

h = λT.500− 4.9 ∗ (T − 5)2

[5, 8]

-

catch

s2

'

&

$

%
holding

h = λT.455.9

[8, ω)

Figure 2.1: Transitions caused by drop and catch

As we can see, each state has an interval associated with it and fluents are mapped

into functions defined over this interval. This is a major difference between transition

diagrams described by H and AL.

The interval [8, ω) associated with state s2 implies that no actions take place in s2 and

the domain remains in s2 for a very long time. We also see that the end of one state

coincides with the start of the next state. For this reason when an action changes the

value of a fluent it is possible that the fluent has one value at the end of current state

and an other value at the start of the successor state. This implies that the fluent is

not uniquely defined at the shared time point. We consider these time points as the

transition points for a fluent. In figure 2.1 it is possible to see that time points 5 and

8 are transition points for holding.

16

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER III

KNOWLEDGE REPRESENTATION IN H

In this chapter we demonstrate how to represent knowledge in H. We present some

examples to demonstrate that H can be used for modeling various types of domains

involving actions with delayed effects, actions with duration, resources and so on.

Later on, we will develop a methodology for writing action descriptions of H. Our

first example involves reasoning about resources in a continuous domain.

3.1 Examples

Example 3.1.1 (Reasoning about resources). Consider a domain consisting of 2

faucets and a sink. The faucets can be opened and closed. When a faucet is open it

discharges fluid at a rate of 3 gallons a minute into the sink. If the faucet is closed

no fluid is discharged. We would like to determine the volume of fluid in the sink as

the faucets are being opened and closed.

In order to model this domain let us introduce an action description A1 of H. Let

faucet be a sort containing names f1 and f2 for faucet 1 and faucet 2 respectively.

Signature Σ(A1) consists of the sort faucet, process fluent volume, boolean fluents

opened(f1) and opened(f2), numeric fluents outflow rate(f1) and outflow rate(f2)

and actions open(f1), open(f2), close(f1), and close(f2). We also have auxillary

fluents time changed, which denotes the last time point at which a faucet position

was changed, and v changed which denotes the volume of the sink at the time denoted

by time changed. For simplicity we will assume that there is no upper limit on the

17

Texas Tech University Sandeep Chintabathina, December 2010

volume of the sink. The corresponding causal laws are as follows.

open(F) causes opened(F) (1)

impossible open(F) if opened(F) (2)

close(F) causes ¬opened(F) (3)

impossible close(F) if ¬opened(F) (4)

open(F) causes v changed = X if volume(end) = X (5)

close(F) causes v changed = X if volume(end) = X (6)

open(F) causes time changed = T0 if end = T0 (7)

close(F) causes time changed = T0 if end = T0 (8)

outflow rate(F) = 3 if opened(F) (9)

outflow rate(F) = 0 if ¬opened(F) (10)

volume = λT.X +
∫ T

T0
(Y + Z)dT if outflow rate(f1) = Y,

outflow rate(f2) = Z,

v changed = X

time changed = T0.

(11)

Causal laws (1) and (3) state the effects of open(F) and close(F) on opened(F). We

use F as a shorthand for faucets names f1 and f2. Executability condition (2) states

that a faucet which is already open cannot be opened. Similarly, (4) states that a

faucet which is already closed cannot be closed. Causal laws (5) thru (8) state the

effects of opening and closing a faucet on fluents v changed and time changed. No

other actions will alter the values of these auxillary fluents. State constraints (9) and

(10) define outflow rate of a faucet when the faucet is open and closed respectively.

Finally, state constraint (11) defines volume by adding up the contributions made by

each faucet over time to the existing volume.

As we can see, in example (2.2.1) and example (3.1.1) we use state constraints to define

process fluents. This approach leads to elaboration tolerant action descriptions. For

example, if a third faucet is added to example (3.1.1) then it will require only a

minor change to the state constraint. It must be noted that if situation calculus is

18

Texas Tech University Sandeep Chintabathina, December 2010

used to model the domain from example (2.2.1) then height will be defined using a

successor state axiom which is the counterpart of a dynamic causal law. In fact, every

process fluent is defined using a successor state axiom. The use of state constraints

is not encouraged because it may lead to unintuitive results. The problem with using

successor state axioms for everything is that the axioms can become very long and

complicated. The resulting theory may be less elaboration tolerant. For example,

imagine specifying volume, from example (3.1.1), as a direct effect of opening and

closing faucets f1 and f2. It can get very complicated. Our second example domain

contains actions with delayed effects.

Example 3.1.2 (Actions with delayed effects). Consider an agent acting in a domain

consisting of a timer. The agent is capable of setting up and turning off the timer.

The effect of setting up the timer to x units of time is that an alarm will sound after

x units of time have elapsed. The action has a delayed effect instead of an immediate

effect.

Let us see how we can use language H to model such delayed effects. We can determine

whether an alarm will sound depending upon how much time is left on the timer. Let

A2 be an action description of H. The corresponding signature Σ(A2) consists of

process fluent alarm, boolean fluent active, action set timer(X) which denotes the

action of setting the alarm to some time X and action turn off to deactivate the

timer. We have a fluent timer to denote the time to which the timer was set and

fluent time changed to denote the time at which the timer was set. The fluent alarm

denotes whether or not the alarm is sounding. Fluent active denotes whether or not

the alarm is active. Let sort process contain functions

process = {f(0, 0, T), f(0, 1, T), . . . , . . . , . . . }

Given that the timer is set to x units at time t0, function f(x, t0, T) returns true if

there is no time left on the timer at time T ≥ t0 and false otherwise. Here is the

19

Texas Tech University Sandeep Chintabathina, December 2010

definition.

f(x, t0, T) =

true if x− T + t0 ≤ 0

false otherwise

The corresponding causal laws are as follows.

set timer(X) causes active (1)

set timer(X) causes timer = X (2)

set timer(X) causes time changed = T0 if end = T0 (3)

turn off causes ¬active (4)

alarm = λT.f(X, T0, T) if timer = X,

time changed = T0,

active.

(5)

alarm = λT.false if ¬active. (6)

Dynamic laws (1) thru (3) capture the effects of set timer(X) on fluents active, timer

and time changed respectively. Dynamic law (4) captures the effect of turn off on

active. State constraint (5) states that if the alarm is active then it may or may not

sound depending upon the amount of time left on the timer. State constraint (6)

states that if the alarm is not active then it will not sound.

Our next example domain contains actions with duration.

Example 3.1.3 (Actions with durations). Consider a domain consisting of an agent

capable of driving a car. The action of driving a car is an action with duration. As

Reiter suggested in [39] an action with duration can be considered as a process that

is started and terminated by two instantaneous actions. In this example, instanta-

neous actions start car and turn off will initiate and terminate the fluent started.

The effects of these actions can be easily modeled using action languages capable of

handling discrete properties. However, if we are interested in determining how much

gas is left in the car’s tank we need language H. This is because as the car is running,

gas is being consumed continuously.

20

Texas Tech University Sandeep Chintabathina, December 2010

Let A3 be an action description of H. The corresponding signature Σ(A3) consists of

actions start car and turn off , boolean fluent started, numeric fluent consume rate

and process fluent gas volume. Fluent consume rate denotes the rate at which gas

is being consumed. We have auxillary fluent time changed to denote the last time

at which the car was started or turned off. We also have v changed to denote the

volume of gas in the car at the time denoted by time changed. The corresponding

causal laws are as follows.

start car causes started (1)

impossible start car if started (2)

impossible start car if gas volume(end) = 0 (3)

turn off causes ¬started (4)

impossible turn off if ¬started (5)

start car causes v changed = X if gas volume(end) = X (6)

start car causes time changed = T0 if end = T0 (7)

turn off causes v changed = X if gas volume(end) = X (8)

turn off causes time changed = T0 if end = T0 (9)

consume rate = 5 if started (10)

consume rate = 0 if ¬started (11)

gas volume = λT.max(0, X −
∫ T

T0
Y dT) if consume rate = Y,

v changed = X,

time changed = T0.

(12)

Dynamic laws (1) and (4) capture the effects of start car and turn off on started.

Executability conditions (2) and (3) state that start car cannot be executed if the

car is already started and there is no gas in the tank respectively. Executability

condition (5) states that it is impossible to turn off if the car is already turned

off. Dynamic laws (6) thru (9) capture the effects of start car and turn off on

auxillary fluents v changed and time changed. State constraints (10) and (11) de-

fine consume rate when the car is running and not running respectively. Finally,

state constraint (12) defines gas volume by deducting the volume consumed over

21

Texas Tech University Sandeep Chintabathina, December 2010

the interval [T0, T] from the existing volume. We can extend this action description

to determine whether the car is physically moving as follows. First, we extend the

signature to include the new process fluent moving. Let process sort contain addi-

tional functions f(0, 0, T), f(1, 1, T), Given that the volume of gas at time t0

is x, function f(x, t0, T) returns true if there is enough gas at time T ≥ t0 and false

otherwise. We assume that the consumption rate is 5. Here is the definition.

f(x, t0, T) =

true if x− 5 ∗ (T − t0) > 0

false otherwise

We then add the following state constraints to A3.

moving = λT.f(X, T0, T) if started,

v changed = X,

time changed = T0.

(13)

moving = λT.false if ¬started (14)

(12) states that if the car has been started then it may or may not move depending

upon the volume of gas in the tank. (13) states that the car is not moving if it has

not been started.

In the next example we talk about domains that exhibit resilient behavior.

Example 3.1.4 (Default or resilient behavior). Consider an agent acting in a domain

consisting of a spring door. The agent is capable of opening and releasing the door.

The default behavior of the door is to remain closed until it is opened by the agent.

Once open, the agent can release it which causes the door to revert back to its default

position. As we can see, the agent does not explicitly close the door. Instead, it is the

spring action of door that triggers the closing of the door. If we use an action language

such as AL to model this domain the corresponding theory will fail to capture the

resilient behavior of this domain. Language H on the other hand allows triggers which

can be used to capture resilient and natural behavior. We can use a trigger to specify

conditions under which the door closes. To be more realistic we can assume that once

22

Texas Tech University Sandeep Chintabathina, December 2010

the door is released it closes automatically after 10 seconds. Releasing the door can

be viewed as an action with delayed effects. Similar to example 3.1.2, releasing the

door starts a timer that counts down the time left for the door to close. Once the

timer reaches zero a close action is triggered causing the door to close.

Let A4 be an action description of H. The corresponding signature Σ(A4) consists of

multi-valued fluent door, process fluent time left, agent actions open, release and

event auto close. Fluent door denotes the status of the spring door and ranges over

{closed, open, closing}. Fluent time left denotes the time left for the door to close.

For simplicity we will assume that it takes 10 seconds for the door to close once it is

released. We also have numeric fluent time changed to denote the last time point at

which the door was released. The corresponding causal laws are as follows.

open causes door = open (1)

impossible open if door = open (2)

release causes door = closing (3)

impossible release if door = closing (4)

release causes time changed = T0 if end = T0 (5)

time left = λT.max(0, 10− T + T0) if time changed = T0

door = closing.

(6)

time left = λT.0 if door = open (7)

time left = λT.0 if door = closed (8)

time left(end) = 0, door = closing triggers auto close (9)

auto close causes door = closed (10)

impossible release if door = closed (11)

Dynamic laws (1) and (3) capture the effects of open and release on fluent door

respectively. (2) and (4) are executability conditions for actions open and release

respectively. Dynamic law (5) captures the effect of release on time changed. State

constraint (6) defines time left as a function of time as the door is closing. State

constraints (7) and (8) state that time left is zero when the door is open and closed

23

Texas Tech University Sandeep Chintabathina, December 2010

respectively. (9) is a trigger which states that any state in which the door is closing

if time left becomes zero then auto close is triggered. (10) captures the effect of

auto close on fluent door. Finally, (11) is an executability condition for release.

A simple extension of this domain is that a latch on the door automatically locks the

door once it closes. To model this behavior we introduce a new event called latch lock

which is triggered when the door closes. We extend the domain of door to include

a new value called locked. Finally, we extend A4 by adding causal laws involving

latch lock. Therefore, we write

door = closed triggers latch lock (13)

latch lock causes door = locked (14)

impossible release if door = locked (15)

(13) is a trigger which says that latch lock is triggered when the door is closed.

Dynamic law (14) captures the effect of latch lock on door. Finally, (15) is an exe-

cutability condition for release.

Our final example demonstrates that H can model the natural behavior of a bounc-

ing ball.

Example 3.1.5 (Natural behavior). Consider an agent acting in a domain consisting

of a ball. The ball is held above the ground by the agent. The actions available to the

agent are drop and catch. Dropping the ball causes the height of the ball to change

continuously with time as defined by Newton’s laws of motion. As the ball accelerates

towards the ground it gains velocity. If the ball is not caught before it reaches the

ground it hits the ground with velocity v and bounces up into the air with velocity

r ∗ v where r is the rebound coefficient. The bouncing ball reaches a certain height

and falls back towards the ground due to gravity. Therefore, we have two natural

actions bounce and fall. Let us see how we can use language H to determine the

height of the ball as various actions take place.

Let A5 be an action description of H . The corresponding signature Σ(A5) consists of

fluent status, process fluents height and velocity, agent actions drop and catch and

24

Texas Tech University Sandeep Chintabathina, December 2010

natural actions bounce and fall. Fluent status denotes the status of the ball and

ranges over {descending, ascending, stationary}. Σ contains fluent time changed

which denotes the last time point at which the status of the ball was changed. We

also have fluents ht changed and v changed which denote the height and velocity of

the ball at the time denoted by time changed respectively. The corresponding causal

laws are as follows.

drop causes status = descending (1)

impossible drop if status = descending (2)

impossible drop if status = ascending (3)

catch causes status = stationary (4)

impossible catch if status = stationary (5)

impossible catch if height(end) = 0 (6)

impossible drop if height(end) = 0 (7)

drop causes ht changed = X if height(end) = X (8)

catch causes ht changed = X if height(end) = X (9)

drop causes time changed = T0 if end = T0 (10)

catch causes time changed = T0 if end = T0 (11)

velocity = λT.9.8 ∗ (T − T0) if status = descending,

time changed = T0

(12)

velocity = λT.0 if status = stationary (13)

velocity = λT.max(0, X − 9.8 ∗ (T − T0)) if status = ascending,

v changed = X,

time changed = T0

(14)

25

Texas Tech University Sandeep Chintabathina, December 2010

status = descending, height(end) = 0, velocity(end) > 0 triggers bounce (15)

bounce causes v changed = X ∗ 0.8 if velocity(end) = X (16)

bounce causes status = ascending (17)

bounce causes time changed = T0 if end = T0 (18)

status = ascending, velocity(end) = 0, height(end) > 0 triggers fall (19)

fall causes status = descending (20)

fall causes ht changed = X if height(end) = X (21)

fall causes time changed = T0 if end = T0 (22)

height = λT.max(0, X − 4.9 ∗ (T − T0)
2) if ht changed = X,

time changed = T0,

status = descending

(23)

height = λT.X ∗ (T − T0)− 4.9 ∗ (T − T0)
2 if v changed = X,

time changed = T0,

status = ascending

(24)

height = λT.X if ht changed = X,

status = stationary

(25)

Dynamic laws (1),(4),(17) and (20) capture the effects of actions drop, catch, bounce

and fall on status respectively. Dynamic laws (8),(9) and (21) capture the effects

of drop, catch and fall on ht changed respectively. Dynamic law (16) states that if

bounce occurs then v changed is 80% of the balls original velocity. Dynamic laws (10),

(11), (18), and (22) capture the effect of drop, catch, bounce and fall on time changed

respectively. Triggers (15) and (19) state the conditions under which actions bounce

and fall are triggered. State constraints (12), (13) and (14) define velocity when the

ball is descending, stationary and ascending respectively. Similarly, state constraints

(23), (24) and (25) define height.

3.2 Methodology

After working with a number of examples we came up with methodology for

writing action descriptions of H. Here are some guidelines to writing decent action

26

Texas Tech University Sandeep Chintabathina, December 2010

descriptions of H.

• Define every process fluent using a state constraint. This will allow us to write

simpler and elaboration tolerant action descriptions.

• Do not allow reserved fluents such as start and end to appear in the heads of

dynamic causal laws.

• Currently, there are no restrictions on the type of actions allowed in the triggers.

However, an action classified as an agent action should not be part of a trigger.

• Avoid writing action descriptions that contain both a trigger as well as an im-

possibility condition involving the same action. This is because if the bodies of

both laws are satisfied then it implies that the action is triggered and impossible

at the same time. We can avoid such situations by combining the impossibility

condition with the trigger to obtain a collection of triggers. In this way we end

up with only one type of statements and avoid conflicts with other statements.

For example, if A is an action description of H containing only the statements

l1, . . . , ln triggers e

impossible e if k1, . . . , km

then A′ is an equivalent action description of H obtained by combining these

laws into a collection of triggers

l1, . . . , ln,¬k1 triggers e

.

l1, . . . , ln,¬km triggers e

In our examples we see that triggers are very useful when dealing with natural actions.

Are triggers absolutely necessary? The answer to this question is no. For example,

it is possible to write an action description that does not contain any triggers to

27

Texas Tech University Sandeep Chintabathina, December 2010

describe the behavior of a bouncing ball. However, it is quite cumbersome to write

such a description. In the absence of triggers the functions associated with the fluents

must carry the burden of defining the fluents correctly. We may have to use meta

functions that take into account the time intervals during which the ball is falling

or ascending and assign the appropriate function. This can get quite complicated.

Therefore, for the sake of convenience and simplicity we prefer to use triggers.

28

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER IV

IMPLEMENTING H

There are two primary goals of this chapter. First, to understand how to rea-

son about properties of a domain using language H. Second, to understand how to

automate this process of reasoning using ASP.

We know that an action description of H describes a transition diagram that contains

an infinite number of paths. However, given an initial state and a history of events

that took place there are only a finite number of paths that are valid. In order to

reason about properties of a domain it is enough to identify these valid paths. In the

first section of this chapter we will see how to specify history in H and identify valid

paths.

An action description of H can be viewed as the specification of a domain. We

implement it by translating statements of H into ASP rules. Since both languages

are declarative the translation is simple and direct. Various tasks of the agent are thus

reduced to computing answer sets of the resulting ASP program. Another advantage

of using ASP is that it is not difficult to prove the correctness of the translation.

4.1 Specifying history

In addition to the action description, the agents knowledge base may contain the

domain’s recorded history - observations made by the agent together with a record of

its own actions.

The recorded history defines a collection of paths in the diagram which, from the

standpoint of the agent, can be interpreted as the system’s possible pasts. If the

agent’s knowledge is complete (e.g., it has complete information about the initial

state and the occurrences of actions) and the action description is deterministic (i.e.

for any state-action pair there is atmost one successor state [6]) then there is only

one such path. Here is a formal definition.

29

Texas Tech University Sandeep Chintabathina, December 2010

Definition 4.1.1. Given an action description AD of domain D and an integer n > 0,

the recorded history, Γn, of D upto moment n is a pair 〈O,H〉 where O is a collection

of statements of the form

obs(p, i, t, y)

where p is a fluent, y ∈ range(p), t ∈ time, and integer i ∈ [0, n] and H is a collection

of statements of the form

hpd(a, i, t)

where a is an elementary action, t ∈ time and integer i ∈ [0, n).

Integer i, often referred to as a step, denotes the order in which states and actions

appear in a trajectory. Intuitively, the statement hpd(a, i, t) means that action a was

observed to have happened at time t in step i. The statement obs(p, i, t, y) means

that fluent p was observed to have the value y at time t in step i. Observations of

the form obs(p, 0, 0, y) define the initial values of fluents.

Definition 4.1.2. Given an action description AD and a recorded history Γn of

domain D, the pair 〈AD,Γn〉 is called a domain description of D.

We know that the transition diagram described by an action description consists of

a number of paths. However, given a set of observations some of these paths are no

longer valid with respect to the observations. The following definition identifies all

those paths that are compatible with agent’s observations.

Definition 4.1.3. Given a domain description 〈AD,Γn〉 and the transition diagram,

TD(AD), described by AD, a path

〈s0, a0, s1, . . . , an−1, sn〉 ∈ TD(AD)

is a model of Γn if each of the following holds.

1. for every i, 0 ≤ i < n, ai = {a | hpd(a, i, t) ∈ Γn}

2. for every i, 0 ≤ i < n, if hpd(a, i, t) ∈ Γn then si |= end = t

30

Texas Tech University Sandeep Chintabathina, December 2010

3. for every i, 0 ≤ i ≤ n, if obs(p, i, t, y) ∈ Γn and

• p is a process fluent then ∃λT.f(T) ∈ process such that

si |= p = λT.f(T) ∧ λT.f(T)(t) = y

• p is a non-process fluent then

si |= p = y

In order to understand the above definition let us look at example 2.2.1 about an

agent acting in a domain consisting of a brick. Let Γ1 be a recorded history of this

domain consisting of statements

obs(holding, 0, 0, false).

obs(height, 0, 0, 500).

hpd(catch, 0, 5).

obs(height, 1, 6, 377.5).

According to these statements the agent observes that holding is false and height is

500 units at time 0 in the initial state. At time = 5 seconds in the initial state the

agent catches the ball. At time = 6 seconds in the resulting state the agent observes

that the height is 377.5 units.

Now consider the following trajectory P ∈ TD(A0).

〈{¬holding, height = λT.500− 4.9 ∗ T 2, ht changed = 500,

time changed = 0, start = 0, end = 5},

catch,

{holding, height = λT.377.5, ht changed = 377.5,

time changed = 5, start = 5, end = 10}〉

Upon careful observation it is possible to see that P is indeed a model of Γ1.

31

Texas Tech University Sandeep Chintabathina, December 2010

4.2 Translation into a logic program

A domain description written in language H can be viewed as a specification of

a dynamically changing system. Given such a specification a user can implement it

in several ways. One way to implement a domain description is to translate it into

an equivalent logic program such that there is a one-to-one correspondence between

models of the logic program and models of the specification. In this way various tasks

of an agent are reduced to computing models of logic programs.

In this section we will describe how to translate a domain description written in H into

an equivalent logic program. Later on, we claim that this translation is correct. For

our purposes we chose the logic programming language AC which combines answer

set programming (ASP) and constraint logic programming (CLP). The combination

of non-monotonic logic with numerical constraint solving is quite suitable for H. Here

is a brief introduction to AC.

4.2.1 Syntax of AC

AC is a typed language. Its programs are defined over a sorted signature Σ, con-

sisting of sorts, and properly typed predicate symbols, function symbols and variables.

By a sort, we mean a non-empty countable collection of strings over some fixed

alphabet. Strings of a sort S are referred as object constants of S. Each variable

takes on values of a unique sort. A term of Σ is either a constant, a variable, or an

expression f(t1, . . . , tn) where f is an n-ary function symbol, and t1, . . . , tn are terms

of proper sorts. An atom is of the form p(t1, . . . , tn) where p is an n-ary predicate

symbol, and t1, . . . , tn are terms of proper sorts. A literal is either an atom or its

negation.

Sorts of AC can be partitioned as regular and constraint. Intitively, a sort is declared

to be a constraint sort if it is a large (often numerical) set with primitive constraint

relations, e.g., ≤.

A function f : S1× . . . Sn → S, where S1, . . . , Sn are regular sorts and S is a contraint

32

Texas Tech University Sandeep Chintabathina, December 2010

sort, is called a bridge function. We introduce a special predicate symbol val where

val(f(t), y) holds if y is the value of function symbol f for argument t. For simplicity,

we write f(t) = y instead of val(f(t), y). The domain and range of a bridge function

f are denoted as domain(f) and range(f) respectively.

The partitioning of sorts induces a natural partition of predicates and literals of

AC. Regular predicates denote relations among objects of regular sorts; constraint

predicates denote primitive numerical relations on constraint sorts; predicate val is

called the bridge predicate; all the other predicates are called defined predicates.

4.2.1.1 Declarations

AC uses declarations to describe the signature. A regular/constraint sort decla-

ration consists of the keyword #rsort/#csort followed by a list of sort names, like:

#rsort sort name1, . . . , sort namen

or

#csort sort name1, . . . , sort namen

For example,

#rsort boolean, step.

#csort time,meters.

A predicate delaration is an expression of the form:

#pred name(sort name1, . . . , sort namen)

where pred name is an n-ary predicate symbol and sort name1, . . . , sort namen is a

list of sort names corresponding to the types of the arguments of pred name. For

example,

#holding(step, boolean).

A bridge function declaration is an expression of the form:

#func name(sort name1, . . . , sort namen) : sort name

33

Texas Tech University Sandeep Chintabathina, December 2010

where func name is an n-ary bridge function symbol, sort name1, . . . , sort namen is

a list of sort names corresponding to the types of the arguments of func name, and

sort name is the sort of func name. For example,

#height(step) : meters.

For simplicity, we allow multiple predicate and bridge function declarations in the

same line proceeded by a single # symbol.

A rule in AC is an expression of the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln

where l’s are literals of Σ.

A program Π of AC is a collection of rules and declarations over a signature Σ. Every

predicate and sort used in a rule of Π must appear in a declaration statement. Rules

that contain only regular literals are called regular rules. Rules whose head is a

defined literal are called defined rules and the remaining are called middle rules.

4.2.2 Semantics of AC

Terms, literals, and rules are called ground if they contain no variables and no

symbols for arithmetic functions.

A bridge assignment is a mapping from every bridge function symbol f and element

x ∈ domain(f) to a value y ∈ range(f). Such an assignment will be represented

by the set of atoms f(x) = y. A set S of ground literals is an answer set of an AC

program Π if there is a bridge assignment V such that S is an answer set of the ASP

program Π ∪ V .

4.2.3 Translation into AC

Let 〈AD,Γn〉 be a domain description of H. First, let us see how to translate action

description AD into an equivalent AC program. The corresponding signature Σ(AD)

34

Texas Tech University Sandeep Chintabathina, December 2010

contains various sorts including the sort process which is a collection of functions of

time. An AC program classifies sorts as regular and constraint. But process sort does

not fall into either category. However, it is possible to treat the sort range(process),

which is the range of all functions from process, as a constraint sort. Therefore, in

our translation we will be dealing with the sort range(process) instead of process.

Clearly, this affects the way we translate atoms such as p = λT.g(T). The corre-

sponding AC translation would be the defined predicate p(i, t, y) where i is a step,

t ∈ time and y ∈ range(process) such that λT.g(T)(t) = y. We elaborate more on

this later. However, this leads to another issue. How do we write the inertia axiom

for a process fluent? Intuitively, a process fluent will continue to stay as it is unless it

is forced to change. But when it comes to translation we are talking about value of a

process fluent at some time t instead of the function associated with it. As a result,

it is not possible to say that if a process fluent is defined by a function then it will be

defined by the same function unless it is forced to change.

We suggest a solution here. Before translating any action description, A, we will

transform it into an equivalent action description A′ such that every dynamic causal

law of A containing a process fluent in the head is replaced by a dynamic causal

law-state constraint pair. All other laws will be left untouched. For example, every

dynamic causal law of the form

a causes p = λT.g(T) if body.

will be replaced by the pair

a causes f if body.

p = λT.g(T) if f.

where f ∈ Σ(A′) \Σ(A) is an inertial fluent. The result of this transformation is that

every process fluent is defined exclusively in terms of other fluents. In other words,

process fluents become defined fluents. As a result, there is no need to write inertia

axioms for process fluents in our translation.

35

Texas Tech University Sandeep Chintabathina, December 2010

The transformation we described is pretty simple, straight forward and applicable to

any arbitrary action description of H. For the rest this chapter, whenever we say action

descriptions of H we mean action descriptions that do not contain process fluents in

the heads of dynamic causal laws. We proceed with describing the translation.

Let n be a positive integer and let sign(AD) be a set of AC statements such that

• for every sort s ∈ Σ(AD), sign(AD) contains a declaration that classifies it as

either regular or constraint.

#rsort s0.

#csort s1.

Sort s0 is defined as a regular sort while s1 is defined as a constraint sort. For

example, sort action is a regular sort whereas time is a constraint sort. We

therefore write

#rsort action.

#csort time.

The classification of sorts allows the AC compiler to ground only regular terms.

All other terms will be left ungrounded until a constraint solver processes them.

• sign(AD) contains definitions for regular sorts. This is accomplished by listing

all members of a sort as facts. For example, sign(AD) defines members of sort

action using atoms of the form

action(a).

where a ∈ action. We know that AD describes a transition diagram that

contains a number of trajectories. A trajectory is a sequence of transitions of

the form 〈si, ai, si+1〉. The indices, denoted by i, of a trajectory captures the

order in which states and actions appear in the trajectory. The indices (also

called steps) of a trajectory are denoted by positive integers. sign(AD) captures

36

Texas Tech University Sandeep Chintabathina, December 2010

these steps in an AC program by introducing a regular sort step and defining it

as follows.

#rsort step.

step(0).

step(1).

. . .

step(n).

The superscript n of sign(AD) denotes the maximum value of a step. Another

advantage of using steps is that it will allow us to talk about values of fluents

at various steps.

• sign(AD) contains declarations for predicates. sign(AD) encodes fluents of

Σ(AD) as predicates of an AC program. For every fluent p : s1 × · · · × sm →

s ∈ Σ(AD)

– if s is a regular sort then sign(AD) contains the declaration

#p(s1, . . . , sm, step, s).

where p is a regular predicate symbol.

– if s is a constraint sort then sign(AD) contains the declaration

#p(s1, . . . , sm, step) : s.

where p is a bridge function symbol.

– if s is the sort process then sign(AD) contains the declaration

#p(s1, . . . , sm, step, time, range(process)).

where p is a defined predicate symbol.

We will ignore the arguments s1, . . . , sm to make our presentation easier.

37

Texas Tech University Sandeep Chintabathina, December 2010

• sign(AD) contains the declaration

#occurs(action, step).

where occurs is a regular predicate symbol. This predicate is used to denote

actions that appear in the causal laws of AD.

• sign(AD) contains the declaration

#start(step) : time, end(step) : time

for bridge functions start and end. They denote the interval associated with

each step.

Since AC allows variables we will use (possibly indexed) I as a variable for step and

T as a variable for time.

4.2.4 Domain dependent axioms

In this section we show how causal laws of AD are translated into equivalent AC

rules. To do this we introduce some notation.

Let l be a literal of H and I be a variable ranging over step. By α(l, I) we denote a

collection of literals of AC defined as follows.

• If l is a fluent atom of the form p = y

– and p ranges over a regular sort then α(p = y, I) denotes the AC atom

p(I, y).

– and p ranges over a constraint sort then α(p = y, I) denotes the AC atom

p(I) = y.

– and p ranges over process sort then α(p = λT.g(T), I) denotes the collec-

38

Texas Tech University Sandeep Chintabathina, December 2010

tion of AC atoms

p(I, T, Y),

start(I) = T1,

end(I) = T2,

T1 ≤ T ≤ T2,

T < ω,

Y = g(T)

(4.1)

where Y ranges over range(process).

• If l is end = y then α(end = y, I) denotes the atom end(I) = y. Similarly for

start.

• If l is of the form p(end) = y where p is a process fluent and y ∈ range(process)

then α(p(end) = y, I) denotes the collection of atoms p(I, t, y), end(I) = t.

Similarly for p(start) = y. Also, for any t ∈ time, α(p(t) = y, I) denotes the

atom p(I, t, y).

• If l is an arithmetic atom of H then α(l, I) = l

• If l is a literal of the form p 6= y then α(p 6= y, I) = ¬α(p = y, I)

Notice that if l is an atom involving a process fluent then the cardinality of α(l, I)

is normally greater than one. In such cases ¬α(l, I) is obtained by negating the cor-

responding defined predicate. For example, in (4.1) replace p(I, T, Y) by ¬p(I, T, Y)

to obtain ¬α(p = λT.g(T), I).

We introduce a function, τ(r), which transforms every causal law r ∈ AD into a rule

of AC. We proceed with the definition of τ(r). For every causal law r ∈ AD

• if r is of the form

e causes p = y if l1, . . . , ln

39

Texas Tech University Sandeep Chintabathina, December 2010

then τ(r) is the rule

α(p = y, I + 1) : − occurs(e, I),

α(l1, I),

. . . ,

α(ln, I).

(4.2)

• if r is of the form

p = y if l1, . . . , ln

where p is a non-process fluent then τ(r) is the rule

α(p = y, I) : −α(l1, I), . . . , α(ln, I). (4.3)

• if r is of the form

p = λT.g(T) if l1, . . . , ln

where p is a process fluent then τ(r) is the rule

p(I, T, Y) : − α(l1, I),

.

α(ln, I),

start(I) = T1,

end(I) = T2,

T1 ≤ T ≤ T2,

T < ω,

Y = g(T).

(4.4)

• if r is of the form

impossible e1, . . . , em if l1, . . . , ln

40

Texas Tech University Sandeep Chintabathina, December 2010

then τ(r) is the rule

: − occurs(e1, I),

. ,

occurs(em, I),

α(l1, I),

. ,

α(ln, I).

(4.5)

• if r is of the form

l1, . . . , lm triggers e

then τ(r) is the rule

triggered(e, I) : − α(l1, I),

. ,

α(lm, I),

I < n.

(4.6)

where n is the maximum value for steps.

In the above rules every α(l, I) will be replaced by the collection of AC literals it

denotes.

4.2.5 Domain independent axioms

Domain independent axioms are part of every AC program resulting from trans-

lating an action description of H . They define properties shared by every domain.

For instance, inertia is a very common property. Let us see how inertia axioms are

written in AC.

In language H there is no restriction on the type of fluents allowed. Fluents that

obey the principle of inertia are inertial fluents. Fluents that are defined explicitly in

terms of other fluents and are not direct consequences of actions are defined fluents.

This implies that defined fluents do not appear in the heads of dynamic causal laws.

Let β(AD) be a set of AC rules such that

41

Texas Tech University Sandeep Chintabathina, December 2010

• for every inertial (non-process) fluent p ∈ Σ(AD), β(AD) contains the rule

α(p = Y, I + 1) : − α(p = Y, I),

not ¬α(p = Y, I + 1).

where variable Y ranges over range(p). If p is a process fluent that is inertial

then β(AD) contains no inertia axiom for it. This is because all process fluents

are defined explicitly using state constraints.

• for every non-process fluent p , β(AD) contains the following uniqueness axiom.

¬α(p = Y1, I) : − α(p = Y2, I),

Y1 6= Y2.

where variables Y1 and Y2 range over range(p). Similarly, for every process

fluent p β(AD) contains

¬p(I, T, Y1) : − p(I, T, Y2),

Y1 6= Y2.

where Y1 and Y2 range over range(process).

• β(AD) contains domain independent axioms related to start and end. The first

axiom states that the first step of the trajectory always starts at time 0.

start(0) = 0.

The second axiom defines the start time for all other steps. According to this

axiom if step I ends at time T then the next step will start at time T .

start(I + 1) = T : −end(I) = T, I < n.

Here n is the maximum value for steps. This axiom captures the fact if s is a

state that ends at time t, then any state s′ following s will start at t. The next

42

Texas Tech University Sandeep Chintabathina, December 2010

two axioms ensure that for any step I if T1 is the start time and T2 is the end

time then the constraint T1 ≤ T2 ∧ T1 < ω is not violated.

: − start(I) = T1,

end(I) = T2,

T1 > T2.

: − start(I) = T1,

T1 ≥ ω.

• for every action e that appears in a trigger of AD, β(AD) contains

¬triggered(e, I) : − not triggered(e, I), I < n.

: − triggered(e, I),

not occurs(e, I),

I < n.

: − ¬triggered(e, I),

occurs(e, I),

I < n.

where n is the maximum value for steps. The above axioms ensure compliance

between triggering conditions and execution of actions. The first axiom is a

closed world assumption for triggered(e,I). The second axiom states that it is

impossible that e is not executed when it is triggered. The third axiom states

that it is impossible that e is executed when it is not triggered.

4.2.6 Translating history

In the previous section we understood how to translate statements of an action

description of H into equivalent AC rules. This translation alone is not enough.

A domain description also includes a recorded history that must be translated into

equivalent AC rules.

43

Texas Tech University Sandeep Chintabathina, December 2010

Let Γn be a recorded history upto moment n. Statements of Γn are encoded as

facts of an AC program. A statement of the form obs(p, i, t, y) is encoded as the fact

obs(p, i, t, y).

And a statement of the form hpd(a, i, t) is encoded as the fact

hpd(a, i, t).

Given a set of observations we need to ensure that the agent’s predictions match with

his observations. The reality check axiom guarantees this. Let R(AD) be a set of

rules such that

• for every fluent p ∈ Σ(AD)

– if p is a non-process fluent then R(AD) contains

: − obs(p, I, T, Y),

¬α(p = Y, I).

– if p is a process fluent then R(AD) contains

: − obs(p, I, T, Y),

¬p(I, T, Y).

• R(AD) contains the rules

occurs(A, I) : − hpd(A, I, T), I < n.

end(I) = T : − hpd(A, I, T), I < n.

(4.7)

where n is the maximum value for steps. The rules state that if action A was

observed to have happened at time T of step I then A must have occurred in

step I and I must have ended at time T respectively.

• for every fluent p ∈ Σ(AD),

44

Texas Tech University Sandeep Chintabathina, December 2010

– if p is a non-process fluent then R(AD) contains the rule

α(p = Y, 0) : −obs(p, 0, 0, Y).

which defines the initial value of p.

– if p is a process fluent then R(AD) contains the rule

p(0, 0, Y) : −obs(p, 0, 0, Y).

Given an action description AD and recorded history Γn, by ∆AD(Γn) we denote the

AC program

∆AD(Γn) = Γn ∪ R(AD)

.

By Πn(AD) we denote an AC program containing a description of the signature of

AD, translations of statements of AD and other domain independent axioms. The n

denotes the maximum value for steps. Therefore,

Πn(AD) = sign(AD) ∪
⋃

r∈AD

τ(r) ∪ β(AD) (4.8)

where sign(AD), τ(r) and β(AD) are as defined in the previous sections.

Using the above definitions we can define the translation of both AD and Γn into AC.

Given a domain description 〈AD,Γn〉, the translation of 〈AD,Γn〉 into AC, denoted

by Πn(AD,Γn), is a collection of AC rules such that

Πn(AD,Γn) = Πn(AD) ∪∆AD(Γn) ∪ {end(n) = tn} (4.9)

where tn ≥ start(n).

4.2.7 Correctness

Given a domain description 〈AD,Γn〉 how do we know that the corresponding

translation Πn(AD,Γn) is a correct translation? One way to prove correctness is to

45

Texas Tech University Sandeep Chintabathina, December 2010

establish a one-to-one relation between answer sets of Πn(AD,Γn) and models of Γn.

Here are some definitions that will be useful to establish this relationship.

Given a program Π of AC, by lit(Π) we denote the set of all ground literals of Π.

Definition 4.2.1. Let 〈AD,Γn〉 be a domain description of H andA ⊆ lit(Πn(AD,Γn)).

We say that A defines the sequence 〈s0, a0, s1, . . . , an1, sn〉 if each of the following holds.

• for every i, 0 ≤ i ≤ n, si = {l | l is literal of H ∧ α(l, i) ⊆ A}

• for every i, 0 ≤ i < n, ai = {e | occurs(e, i) ∈ A}.

Γn is complete if and only if

• for every fluent p ∈ Σ(AD), Γn contains obs(p, 0, 0, y) and

• for every i, 0 ≤ i < n, Γn contains hpd(a, i, t) where a ∈ action and t ∈ time.

Here is a theorem that establishes relationship between a domain description of H

and its corresponding translation into AC.

Theorem 4.1. Given a domain description 〈AD,Γn〉; if Γn is complete then M is a

model of Γn iff M is defined by some answer set of Πn(AD,Γn).

A proof of this theorem is available in chapter 7.

46

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER V

EXISTING SYSTEMS

In this chapter we will look at existing systems that can be used for implement-

ing action descriptions of H. As mentioned before we implement a theory of H by

translating it into a logic program. The corresponding logic program should have

two important qualities - ability to represent knowledge with ease and ability to per-

form numerical computations. In the past few years some researchers [2, 34] have

focused on integrating answer set programming(ASP) and Constraint logic program-

ming(CLP) to bring these two qualities together. They came up with new systems

that combine ASP and CLP reasoning techniques and were able to achieve significant

improvement in performance over existing ASP solvers. In this thesis we use two such

systems for implementing action descriptions of H namely EZCSP 1 and ACsolver.

In the next few sections we will understand the advantages and limitations of each

system. A third system called Clingcon 2 is also available but the underlying con-

straint solver only deals with finite domains which is a limitation when dealing with

continuous functions.

5.1 EZCSP

In [2] the author describes an approach for integrating ASP and constraint pro-

gramming in which ASP is viewed as a specification language for constraint satisfac-

tion problems. The ASP programs are written in such a way that their answer sets

encode the desired constraint satisfaction problems (CSPs). The solution to the CSPs

are then computed using constraint satisfaction techniques. The extended answer set

of such a program, Π, is a pair 〈A, α〉 such that A is an answer set of Π and α is a

solution to the CSP defined by A.

EZCSP is an inference engine for computing extending answer sets of ASP programs

1http://marcy.cjb.net/ezcsp/index.html
2http://www.cs.uni-potsdam.de/clingcon/

47

Texas Tech University Sandeep Chintabathina, December 2010

as defined in [2]. Unlike other approaches for integrating ASP and CLP, this approach

is a loose coupling of ASP and CLP. For this reason there is no need to modify

the underlying ASP and CLP solvers so that they can work together. There is no

commitment to a particular type of solver and this allows programmers to select a

solver that best fits their needs. The current version of EZCSP uses gringo+clasp 3

by default as ASP solver and SICSTUS Prolog as constraint solver. It also allows the

use of ASP solvers such as lparse+smodels 4.

CSPs are encoded in ASP using the following three types of statements.

• A constraint domain declaration is a statement of the form:

cspdomain(D)

where D is a constraint domain such as fd, r or q. By fd we mean finite domain,

r implies real numbers and q implies rational numbers. This statement specifies

the constraint domain of a CSP.

• A constraint variable declaration is a statement of the form:

cspvar(x, l, u)

where x is a ground term denoting a CSP variable and l and u are numbers

from the constraint domain. The statement says that the domain of x is [l, u].

• A constraint statement is a statement of the form:

required(γ)

where γ is a constraint involving variables specified by the cspvar statements.

Intuitively, the statement says that γ must be satisfied by any solution to the

CSP.

3http://potassco.sourceforge.net/
4http://www.tcs.hut.fi/Software/smodels/

48

Texas Tech University Sandeep Chintabathina, December 2010

When encoding action descriptions of H we need to realize that an action description

of H describes a transition diagram that contains a number of trajectories. A tra-

jectory is a sequence of transitions of the form 〈si, ai, si+1〉. The indices (also called

steps) of a trajectory are denoted by positive integers. An EZCSP encoding must

treat these steps as regular ASP predicates.

Now we will see how fluents and atoms of H are encoded into EZCSP. A fluent ranging

over a large domain is encoded as a CSP variable with step as one of its argument.

For example, the fluent ht changed from example 2.2.1 will be encoded as the CSP

variable ht changed(s) where s is a step. The corresponding atom ht changed = 20

will be encoded as required(ht changed(s) == 20). Atoms containing fluents that

range over small domains will be encoded as regular ASP predicates. For example, if

color is a fluent that ranges over {yellow, green} then the atom color = yellow will

be encoded as color(s, yellow).

Coming to process fluents, however, we encounter the same issues we encountered

with language AC. The sort process is neither regular nor constraint. For this

reason, instead of dealing with this sort, we work with range(process) which is the

range of all functions from process. In AC we translated atoms involving process

fluents as defined predicates. In EZCSP, however, there is no counter part for defined

fluents. For this reason we chose to map a process fluent into a numerical fluent such

that the value of this numerical fluent in step s is the value of the process fluent at

the end of s. We will encode this numerical fluent as a CSP variable with step as

one of its argument. For example, the process fluent height from example 2.2.1 is

mapped into the numerical fluent h which will be encoded as the CSP variable h(s).

One of the limitations of EZCSP is that it is not possible to use the solutions of CSPs

to make new inferences on the ASP side. Unlike ACsolver, an inference engine for

AC programs [34], the ASP solver does not receive any feedback from the constraint

solver. For this reason, statements of H which contain constraints in the body cannot

be encoded directly into EZCSP. In some situations we were able to come up with

49

Texas Tech University Sandeep Chintabathina, December 2010

alternative ways to encode such statements and in some situations we were unable to

do so. For example, the executability condition from example 2.2.1

impossible catch if height(end) = 0

can be encoded into the EZCSP rule

required(height(I) > 0) : −occurs(catch, I).

which says that if action catch takes places in step I then the height at the end of

I should be greater than zero. The rule captures the intuition of the executability

condition. For all other situations in which it not possible to come up with alternative

ways we introduce more rules and constructs. For example, to encode the statement

p if x < y

in EZCSP the author of EZCSP suggests that we write

1{req(lt), req(geq)}1.

required(x < y) : −req(lt).

required(x >= y) : −req(geq).

p : −required(x < y).

The author also states that from a computational perspective, having more than a

couple of these translations in a program may lead to a poor performance because

each combination of required atoms results in a separate call to the constraint solver.

We know that constraint variables appear only in required predicates. So when we

write an inertia axiom for a constraint variable we end up adding a required predicate

to the body of a rule. However, the current version of the solver does not support

required predicates in the bodies of rules. To overcome this problem, we replace re-

quired predicates in the bodies with auxillary ASP predicates. Later we add rules that

50

Texas Tech University Sandeep Chintabathina, December 2010

define these auxillary predicates. For example, the inertia axiom for the constraint

variable ht changed(I) will be written as follows.

required(ht changed(I + 1) == ht changed(I)) : −not ab(I), step(I).

ab(I) : −occurs(drop, I), step(I).

ab(I) : −occurs(catch, I), step(I).

As we can see, every action that changes the value of ht changed(I) must be taken

into account to define the inertia axiom. In spite of this inconvenience we are able to

find a solution to the frame problem.

The performance of the system is pretty good. The system is quite reliable and has

an easy syntax. There is a clear separation between constraint variables and regular

predicates because constraint variables can appear only in required predicates. For a

program containing approximately 600 rules and 50 variables, the system returns an

answer set in less than 1.5 seconds and returns all answer sets within 2.5 seconds.

A sample EZCSP code that encodes the bouncing ball example is available in ap-

pendix A. We gave an initial height for the ball and a sequence of drop-catch actions

along with their times of occurrence. The answer set of the program consists of atoms

denoting the height of the ball at various time points and the times at which the ball

bounces and falls back to the ground.

Solving a planning problem in H is similar to solving a planning problem in AL with

the exception that in addition to generating plans (sequences of actions), we also

schedule these actions in order to satisfy the goal of an agent. For example, a sample

planning problem and a corresponding plan is shown below.

Initial state : Agent holds ball at 100m

Goal state: Agent holds ball at 50m

plan: drop, catch

Schedule : drop at 5, catch at 8.194

We used EZCSP to solve such planning problems. However, further investigation is

needed before we can comment on the performance of EZCSP w.r.t planning problems.

51

Texas Tech University Sandeep Chintabathina, December 2010

5.2 Luna

Luna is an inference engine for computing answer sets ofAC programs [37]. Unlike

EZCSP, this system is a tight coupling of an ASP solver and a constraint solver.

Current implementation uses the constraint solver clp(r) and the ASP solver Surya

which is similar to Smodels. The implementation requires modifying both solvers so

that they can work together.

Luna was built over the prototype solver ACsolver [34]. The main differences be-

tween Luna and ACsolver are the organization of the main search function and some

incrementality implemented by Luna. During the computation of answer sets of an

AC program, Luna stores some intermediate results that are reused if necessary,

while ACsolver repeats the computation of these results. These differences result in

improved efficiency of Luna.

We introduced language AC in chapter 4. However, the current implementation of

Luna is based on an earlier version [36] of AC. Due to several implementation issues

there are some restrictions on the language of the solver. For this reason the language

is a strict subset of AC. In spite of this the solver has been able to solve problems

that traditional ASP solvers are unable to solve.

There are some similarities between Luna and EZCSP when it comes to encoding

atoms of H. Atoms containing fluents ranging over small domains are encoded as

regular ASP predicates. Atoms containing fluents ranging over large domains are

encoded as bridge predicates (previously called mixed). As explained in chapter 4,

atoms containing process fluents can be encoded as defined predicates. However, due

to limitations of the current version of Luna we are unable to do so. One limitation

is that bridge predicates are not allowed in the bodies of defined rules. This is vital

to defining process fluents. Alternatively, we can encode process fluents as bridge

functions of AC such that the value of the bridge function in step s is the value of

the process fluent at the end of s. This is very similar to what we do in EZCSP. In

fact, in [2] the author establishes a relationship between a subclass of AC programs

52

Texas Tech University Sandeep Chintabathina, December 2010

and EZCSP programs.

As mentioned earlier Luna allows feedback from the constraint solver to make new

inferences on the ASP side. Statements of H that contain constraints in the body can

be encoded as middle rules of AC. For example, the statement from example 2.2.1

impossible catch if height(end) = 0

can be encoded as the AC rule

: − occurs(catch, I),

height(I,X),

X == 0.

where height(I,X) is a bridge predicate which says that the height at the end of step

I is X. In general, any statement of the form

p if x < y

can be encoded as the AC rule

p : − value of(x, V1),

value of(y, V2),

V1 < V2.

: −not p.

where value of is a bridge function that determines the values of variables x and y.

In the current version of Luna the not operator cannot be applied to bridge predicates

and defined predicates. For this reason when we write defaults, such as inertia,

involving these predicates we introduce auxillary predicates. For example, atoms

containing the fluent ht changed from example 2.2.1 will be encoded as the bridge

predicate ht changed(I,X) where I is a variable for step and X ranges over meters.

53

Texas Tech University Sandeep Chintabathina, December 2010

The corresponding inertia axiom is written as follows.

: − ht changed(I,X),

next(I, I1),

ht changed(I1, X1),

¬ab(I),

X! = X1.

ab(I) : −occurs(drop, I).

ab(I) : −occurs(catch, I).

¬ab(I) : −not ab(I).

This is very similar to what we do in EZCSP for solving the frame problem.

A Luna encoding of the brick drop example from chapter 2 is available in appendix B.

The encoding is provided with an initial situation and a sequence of actions and the

answer set returned by Luna contains atoms denoting the predicted values of fluents.

We were also able to encode small size planning problems and compute answer sets

in a reasonable amount of time. We hope that further testing will help improve the

performance of the solver.

Current implementation of Luna suffers from runtime errors which arise due to cou-

pling issues between solvers. We compared the performance of Luna against EZCSP

and found that EZCSP performs better in many cases. We also compared the perfor-

mance of Luna against ACsolver and found that Luna outperforms ACsolver [37].

54

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER VI

RELATED WORK

In this section we will compare language H with other formalisms that are used

for modeling real-time systems. We begin with timed automata [1]- a formalism that

came up in the early 1990s to model the behavior of real-time systems over time.

Later on we will compare H with situation calculus.

6.1 Timed Automata

During the 1980s a number of studies were dedicated towards using automata

theory for specification and verification of systems. These studies ignore time and

focus on sequences of events, also called event traces. A set of event sequences char-

acterizes the behavior of a system. Since a set of sequences is a formal language, it is

possible to use automata for the specification and verification of systems [1]. When

the systems are finite-state we can use finite automata which accepts strings of finite

length. However, if we want to model systems that could possibly run forever we

need ω-automata which is a finite automata with the acceptance condition modified

suitably to accept strings of infinite length.

When dealing with real-time systems, however, we cannot abstract away from con-

tinuous time. Verification of such systems involves reasoning about functions that

change continuously with time. The behavior of such a system is characterized not

only by sequences of events but also by sequences of times which denote the times at

which events take place. As a result, we now have timed traces which are obtained

by pairing event traces with sequences of times. If we want to define a language of

timed traces using finite automata it is difficult because it is not obvious how to trans-

form a timed traced into an ordinary formal language. For this reason Alur and Dill

developed a theory of timed languages and timed automata [1] to specify and verify

real-time systems. In the next few paragraphs we will give a formal introduction to

timed automata. The definitions in the next few paragraphs have been obtained from

55

Texas Tech University Sandeep Chintabathina, December 2010

[1].

A time sequence τ = τ1τ2... is an infinite sequence of time values τi ∈ R with τi > 0,

such that τ increases strictly monotonically i.e. τi < τi+1 for all i ≥ 1 and for every

t ∈ R, there is some i ≥ 1 such that τi > t. For any time sequence τ , τ0 = 0.

A timed word over an alphabet Σ is a pair (σ, τ) where σ = σ1σ2 . . . is an infinite

word over Σ and τ is a time sequence. A timed language over Σ is a set of timed

words over Σ.

A timed transition table is capable of defining a timed language. In this table, a

transition depends upon the input symbol as well as the time of the input symbol

relative to the times of previously read symbols. For this reason, a finite set of (real

valued) clocks are associated with each table. The set of clocks can be viewed as set

of stop-watches that can be reset and checked independently of one another, but all

of them refer to the same clock. A clock constraint is associated with each transition

and only when the current clock values satisfy this constraint will a transition be

taken.

Given a set X of clock variables, Φ(X) denotes the set of all clock constraints δ such

that

δ := x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2

where x ∈ X and c ∈ R. Constraints such as true , x = c, x ∈ [2, 5) are considered

abbreviations.

A clock interpretation v for a set X of clocks is a mapping from X to R. Clock

interpretation v for X satisfies a clock constraint δ iff δ evaluates to true using the

value given by v.

To proceed with the defintion of timed transition table we introduce some notation.

For t ∈ R, v + t denotes the clock interpretation which maps every clock x to the

value v(x)+t. For any Y ⊆ X, [Y → t]v denotes the clock interpretation for X which

assigns t to each x ∈ Y , and agrees with v over the rest of the clocks.

56

Texas Tech University Sandeep Chintabathina, December 2010

A timed transition table T is a 〈Σ, S, S0, C, E〉, where

• Σ is a finite alphabet

• S is a finite set of states

• S0 ⊆ S is a set of start states

• C is a finite set of clocks

• E ⊆ S × S × Σ× 2C × Φ(C) gives the set of transitions.

An edge 〈s, s′, a, λ, δ〉 represents transition from state s to s′ on input symbol a. The

set λ ⊆ C gives the clocks to be reset and δ is a clock constraint over C.

Given a timed word the behavior of the transition table is captured by defining runs.

A run records the state and the values of all the clocks at the transition points.

A run r, denoted by 〈s̄, v̄〉, of a timed transition table 〈Σ, S, S0, C, E〉 over a timed

word (σ, τ) is an infinite sequence of the form

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σ2−→
τ2
〈s2, v2〉

σ3−→
τ3

. . .

with si ∈ S and vi ∈ [C → R], for all i ≥ 0, satisfying the requirements

• Initiation: s0 ∈ S0, and v0(x) = 0 for all x ∈ C.

• Consecution: for all i ≥ 1, there is an edge in E of the form 〈si−1, si, σi, λi, δi〉

such that vi−1 + τi − τi−1 satisfies δi and vi equals [λi → 0](vi−1 + τi − τi−1).

Consider the following timed transition table from [1] with two clocks x and y over

alphabet {a, b, c, d}.

57

Texas Tech University Sandeep Chintabathina, December 2010

a b c

(x<1)?

d, (y>2)?

x:=0 y:=0
0
S

1
S 2S 3SFigure &' Timed transition table with 4 clocksThus to constrain the delay between two transitions e and e!8 we require a particularclock to be reset on e 8 and associate an appropriate clock constraint with e!; Note thatclocks can be set asynchronously of each other; This means that di>erent clocks canbe restarted at di>erent times8 and there is no lower bound on the di>erence betweentheir readings; Having multiple clocks allows multiple concurrent delays8 as in the nextexample;Example '() The timed transition table of Figure & uses two clocks x and y8 and acceptsthe languageL" B fCCabcdD () D j "j+ CC)#j$" ,)#j$ E FD # C)#j$# -)#j$! E 4DDg+The automaton cycles among the states s%8 s 8 s! and s"; The clock x gets set toG each time it moves from s% to s reading a; The check Cx , FDH associated with thecItransition from s! to s" ensures that c happens within time F of the preceding a; Asimilar mechanism of resetting another independent clock y while reading b and checkingits value while reading d8 ensures that the delay between b and the following d is alwaysgreater than 4;Notice that in the above example8 to constrain the delay between a and c and betweenb and d the automaton does not put any explicit bounds on the time di>erence betweena and the following b8 or c and the following d; This is an important advantage of havingmultiple clocks which can be set independently of each other; The above language L" isthe intersection of the two languages L " and L!" deKned asL " B fCCabcdD () D j "j+ C)#j$" ,)#j$ E FDg(L!" B fCCabcdD () D j "j+ C)#j$# -)#j$! E 4Dg+Each of the languages L " and L!" can be expressed by an automaton which uses just oneclockN however to express their intersection we need two clocks;We remark that the clocks of the automaton do not correspond to the local clocksof di>erent components in a distributed system; All the clocks increase at the uniformrate counting time with respect to a Kxed global time frame; They are Kctitious clocksinvented to express the timing properties of the system; Alternatively8 we can considerthe automaton to be equipped with a Knite number of stopIwatches which can be startedand checked independently of one another8 but all stopIwatches refer to the same clock;P

Figure 6.1: Timed transition table with 2 clocks

The timed transition table of figure 6.1 accepts the language

L = {((abcd)ω, τ) | ∀j.((τ4j+3 < τ4j+1 + 1) ∧ (τ4j+4 > τ4j+2 + 2))}.

Now consider the following timed word.

(a, 2), (b, 2.7), (c, 2.8), (d, 5), . . . , . . . ,

An initial segment of the run over this word is as follows.

〈s0, [0, 0]〉
a
−→

2
〈s1, [0, 2]〉

b
−→
2.7
〈s2, [0.7, 0]〉

c
−→
2.8
〈s3, [0.8, 0.1]〉

d
−→

5
〈s0, [3, 2.3]〉

Notice that the clock interpretation is represented by the pair [x, y].

A timed Buchi automaton (TBA) is a tuple 〈Σ, S, S0, C, E, F 〉, where 〈Σ, S, S0, C, E〉

is a timed transition table and F ⊆ S is set of accepting states. A run r = (s̄, v̄)

of a TBA over timed word (σ, τ) is called an accepting run iff inf(r) ∩ F 6= ∅. The

language L(A) of timed words accepted by A is the set

{(σ, τ) | A has an accepting run over (σ, τ)}

The class of timed languages accepted by TBA are called timed regular languages.

A timed transition table 〈Σ, S, S0, C, E〉 is called deterministic iff

1. it has only one start state, | S0 |= 1,and

58

Texas Tech University Sandeep Chintabathina, December 2010

2. for all s ∈ S, for all a ∈ Σ, for every pair of edges of the form 〈s,−, a,−, δ1〉

and 〈s,−, a,−, δ2〉, the clock constraints δ1 and δ2 are mutually exclusive (i.e.

δ1 ∧ δ2 is unsatisfiable).

A timed automaton is deterministic iff its timed transition table is deterministic.

6.1.1 Relationship with H

In this section we define the relationship between timed automata and language

H. As we can see both formalisms are used for modeling real-time systems. Timed

automata captures timing delays between actions and periodic behavior by introduc-

ing clock variables. Language H is capable of modeling such behavior by introducing

process fluents that keep ticking with time just like a clock. However, unlike clock

variables, process fluents can be arbitrary functions of time and hence more general.

A state of a transition diagram described by an action description of H is a collection

of atoms of H. However, a state of a timed automata is just a symbol. In language

H, we have executability conditions and triggers which allow us to express conditions

under which an action is impossible and triggered respectively. This is very useful

because properties of a domain can change over time. Timed automata, on the other

hand, describes what event sequences are valid but does not contain any constructs

that express when an action is impossible or triggered. For example, in the bouncing

ball example 3.1.5 from chapter 3 we used triggers to specify conditions under which

bounce takes place. We cannot model such behavior using timed automata for two

reasons. First, we do have such triggers and second, there is restriction on the type

of variables and constraints allowed. Timed automata allows only clock variables

and supports only a few types of constraints on these variables. Because of these

limitations it is not possible to determine the bouncing times which form a decreasing

geometric sequence [43]. If we assume that the ball keeps bouncing forever at equal

intervals of time then timed automata can be used. But this does not happen in

reality.

59

Texas Tech University Sandeep Chintabathina, December 2010

Language H also contains state constraints that capture indirect effects of actions.

There are no constructs for that purpose in timed automata. Also, only elementary

actions are allowed in the transitions of a timed automata. There are no such re-

strictions in language H. Hence we conclude that language H is more general and

expressive than timed automata.

Our claim is that every deterministic timed transition table can be mapped into an

equivalent action description of H . In the next few paragraphs we will see how this

can be accomplished.

Let T 〈Σ, S, S0, C, E〉 be a deterministic timed transition table. ByM(T) we denote

an action description of H whose signature, ψ(M(T)), is described below.

• ψ(M(T)) contains a sort action defined as follows.

action = {e | e ∈ Σ}

• ψ(M(T)) contains fluent state ranging over S

• For every x ∈ C

– ψ(M(T)) contains process fluent x

– ψ(M(T)) contains fluent cur(x) denoting the reset value of x

– ψ(M(T)) contains fluent time reset(x) denoting the time at which x was

last reset.

Next we will translate transitions of T into equivalent causal laws of H. In order to

do this we introduce some notation. Given a clock constraint δ over C, by M(δ) we

denote the constraint obtained by replacing every occurrence of x in δ by x(end). If

δ is of the form δ1 ∧ δ2 then M(δ) is the collection of atomsM(δ1),M(δ2).

We assume that every transition of the form 〈s, s′, a, λ, δ1∨ δ2〉 ∈ E is reduced to two

transitions 〈s, s′, a, λ, δ1〉 and 〈s, s′, a, λ, δ2〉 respectively.

For every transition 〈s, s′, a, λ, δ〉 ∈ E

60

Texas Tech University Sandeep Chintabathina, December 2010

• M(T) contains dynamic law

a causes state = s′ if state = s,

M(δ).

• For every x = c ∈ λ,M(T) contains dynamic laws

a causes cur(x) = c if state = s,

M(δ).

a causes time reset(x) = t if end = t,

state = s,

M(δ).

• For every x ∈ C,M(T) contains state constraints

x = λT.(T − T0) + Z if cur(x) = Z,

time reset(x) = T0.

Given a timed transition table, T , we would like to establish conditions under which

the corresponding translation, M(T), is correct. In order to do this we introduce

some definitions.

Let T 〈Σ, S, S0, C, E〉 be a deterministic timed transition table and (σ, τ) be a timed

word of the form (σ1, τ1), (σ2, τ2), . . . , . . . and so on.

Given a state s0 ∈ S0 and clock interpretation v0 such that for every x ∈ C, v0(x) = 0

we say that a set s′0 of atoms of H is compatible with the pair 〈s0, v0〉 iff

1. for every x ∈ C, s′0 |= {cur(x) = 0, time reset(x) = 0}

2. s′0 |= {state = s0, start = 0} and s′0 |= end = t such that t > 0

3. for every x ∈ C, s′0 |= x = λT.(T − t0) + c such that s′0 |= {cur(x) =

c, time reset(x) = t0}

61

Texas Tech University Sandeep Chintabathina, December 2010

4. for every x ∈ C, s′0 |= x(start) = c iff v0(x) = c

Given two sets s′i−1 and s′i of atoms of H (i ≥ 1), we say that the tuple 〈s′i−1, σi, s
′
i〉 is

compatible with the segment

〈si−1, vi−1〉
σi−→
τi

〈si, vi〉

w.r.t transition 〈si−1, si, σi, λi, δi〉 ∈ E iff

1. s′i−1 |= state = si−1 and s′i−1 |= {start = τi−1, end = τi}

2. s′i−1 |=M(deltai)

3. for every x ∈ C, s′i−1 |= x = λT.(T − t0) + c such that s′i−1 |= {cur(x) =

c, time reset(x) = t0}

4. for every x ∈ C, s′i−1 |= x(start) = c iff vi−1(x) = c

5. for every x = c ∈ λi, s
′
i |= {cur(x) = c, time reset(x) = τi}

6. s′i |= {state = si, start = τi} and s′i |= end = t such that t > τi.

7. for every x ∈ C, s′i |= x = λT.(T − t0) + c such that s′i |= {cur(x) =

c, time reset(x) = t0}

8. for every x ∈ C, s′i |= x(start) = c iff vi(x) = c.

A sequence p : 〈s′0, σ1, s
′
1, . . . , . . . 〉 is compatible with

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σ2−→
τ2
〈s2, v2〉

σ3−→
τ3

. . .

iff

• s′0 is compatible with the pair 〈s0, v0〉

• for i ≥ 1, every tuple 〈s′i−1, σi, s
′
i〉 ∈ p is compatible with a segment of r

〈si−1, vi−1〉
σi−→
τi

〈si, vi〉

w.r.t transition 〈si−1, si, σi, λi, δi〉.

62

Texas Tech University Sandeep Chintabathina, December 2010

Theorem 6.1. Given a deterministic timed transition table T 〈Σ, S, S0, C, E〉,

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σ2−→
τ2
〈s2, v2〉

σ3−→
τ3

. . .

is a run of T over timed word (σ, τ) iff 〈s′0, σ1, s
′
1, . . . , . . . 〉 is a path of TD(M(T))

such that 〈s′0, σ1, s
′
1, . . . , . . . 〉 is compatible with r.

A proof of this theorem is available in chapter 7.

6.2 Situation Calculus

Situation calculus was introduced by John McCarthy in 1963 as a way of logically

specifying dynamic systems in artificial intelligence. It is a second-order language

designed for representing actions and their effects. The tasks of simulation, control

and analysis of a dynamic system are reduced to logical entailment.

When it was first introduced it was used for investigating the frame problem. Later

on, Ray Reiter [39] and his research group extended the language to incorporate

features such as time, concurrency, probability etc. In the next few paragraphs we

will see how this approach is different from our approach based on language H.

There are several fundamental differences between the situation calculus (sitcalc) and

language H. A specification of a system in sitcalc consists of a collection of logical

formulas. These formulas along with the foundational axioms logically entail what is

true in the system. Our approach is based on action languages in which a dynamic

system is represented by a transition diagram whose nodes represent possible states

of the world and whose arcs are labeled by actions. A specification written in H

describes a transition diagram. As explained in chapter 2, a state is often identified

with the collection of literals it entails.

Sitcalc uses the term situation to capture a finite sequence of actions. The initial

situation denotes an empty sequence of actions. There is a binary function symbol

do such that do(a, s) denotes the successor situation to s resulting from performing

the action a. There is a major difference between a situation and a state. A state of

63

Texas Tech University Sandeep Chintabathina, December 2010

H is a snapshot of the world over an interval. Two states are the same if they map all

symbols to the same value. Two situations are the same iff they result from the same

sequence of actions applied to the initial situation. Two situations may be different

yet assign the same truth values to the fluents.

The language of sitcalc allows quantifiers, connectives and logical symbols, thereby,

making it powerful and expressive. However, classical logic has its own limitations

when it comes to representing knowledge. First of all it is monotonic in nature which

is the inability to withdraw conclusions in the presence of new information. Second

there are theoretical and practical difficulties when dealing with state constraints in

sitcalc. This is because in sitcalc state constraints are of the form a ⊃ b. We know

that this classical formula is equivalent to its contrapositive ¬b ⊃ ¬a. But in the

theory of action and change [32], a state constraint of the form a → b expresses the

causal dependency of b on a and ¬b → ¬a is not necessarily true. The arrow, →,

captures a form of directionality which can not be expressed in classical logic in a

straight forward way [29]. So when we use state constraints in sitcalc it is possible

to get unintuitive results. Hence, researchers in this area do not encourage the use

of state constraints. On the other hand, there are no problems with using state

constraints in H.

In both sitcalc and language H, properties of a domain are represented by fluents.

However, there are some differences. Language H contains a process sort which is

a collection of functions of time. Process fluents are assigned functions from this

sort. In sitcalc all fluents are either boolean or real. For properties that change

continuously with time, the value of the corresponding fluent is its value at the start

of a situation. For example, in sitcalc the height of a falling ball is denoted by the

fluent height(s) where s is a situation. By height(s) = 300 we mean that height is

300m at the start of s. In H, height is a function of time.

In both approaches actions are instantaneous. However, in language H because of

instantaneous effects it is possible that fluents are not uniquely defined at time points

64

Texas Tech University Sandeep Chintabathina, December 2010

shared between states. In figure 2.1 from chapter 2 it is possible to see that when the

brick is dropped at time 5 in state s0, holding is true at time 5 but then it becomes

false at time 5 in the resulting state s1. We have a similar situation when the brick

is caught at time 8. This does not happen in sitcalc.

In [39] Reiter introduced natural actions in sitcalc. These actions obey natural laws

and will occur at their predicted times, provided no earlier actions prevent them

from occurring. In order to determine the occurrence times of such actions Reiter

uses action precondition axioms which are equivalent to triggers of H. However, Reiter

restricts his worlds to natural worlds where every action is a natural action. Language

H does not have such restrictions.

A logical theory of sitcalc is implemented by translating the corresponding axioms

into rules of Prolog. Whenever the resulting Prolog program succeeds on a sen-

tence, then that sentence is logically entailed by the theory and whenever it fails on

a sentence, then the negation of that sentence is entailed by the theory. However,

Prolog in general has several limitations that make it inadequate for reasoning about

dynamic systems. Prolog cannot generate multiple models and as a result cannot

deal with uncertainty or incomplete information which is very common in dynamic

systems. Negation as failure (not) operator was introduced in Prolog as a way to

achieve non-monotonicity. But the procedural semantics of not gives incorrect re-

sults when reasoning about defaults [4]. Non monotonic logics such as answer set

programming(ASP) are capable of generating multiple models and reasoning about

defaults. We implement theories of H by translating them into ASP programs and

reap the benefits of this approach.

65

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER VII

PROOFS OF THEOREMS

In this chapter we present proofs for theorem 4.1 and theorem 6.1. We begin with

theorem 4.1.

7.1 Proof of Theorem 4.1

This theorem is similar to theorem 1 from [3]. Both theorems establish relation-

ship between action theories and logic programming. However, the underlying action

languages and logic programming languages are different. Therefore, in some situa-

tions we use ideas from the proof of theorem 1 to prove some of our own results while

in other situations we came up with our own approach. Here is the statement of our

theorem.

Given a domain description 〈AD,Γn〉; if Γn is complete then M is a model of Γn iff

M is defined by some answer set of Πn(AD,Γn).

Proof

Given a recorded history, Γl, upto moment l we will refer to l as the length of Γl. We

will give a proof by induction on the length of a recorded history, denoted by l.

From now onwards, whenever we refer to an AC program we refer to the ground

version of it. This is because answer sets are defined only for ground programs.

Therefore, by Πn(AD,Γn) we mean a ground AC program that contains all possible

instantiations for time. If time is continuous then this program is infinitely large.

Base case: for l = 1.

If Γ1 is complete then M = 〈s0, a0, s1〉 is a model of Γ1 iff M is defined by some

answer set of Π1(AD,Γ1).

left to right :

We must show that if M = 〈s0, a0, s1〉 is a model of Γ1 then M is defined by some

answer set of Π1(AD,Γ1).

66

Texas Tech University Sandeep Chintabathina, December 2010

Since M is a model of Γ1, M is a path of TD(AD) such that

a0 = {a | hpd(a, 0, t0) ∈ Γ1}

and s0 |= {start = 0, end = t0}.

Since s1 follows s0, we have s1 |= {start = t0, end = t1} where t0 ≤ t1.

By Π1(AD,Γ1) we denote the AC program

Π1(AD,Γ1) = sig1(AD) ∪
⋃

r∈AD

τ(r) ∪ β(AD) ∪ Γ1 ∪R(AD) ∪ {end(1) = t1}

where t1 is the end time of s1.

Let

occurs(a0, 0) = {occurs(a, 0) | a ∈ a0}

and

α(s0, 0) =
⋃

s0|=l

α(l, 0)

α(s1, 1) =
⋃

s1|=l

α(l, 1)

These sets represent the AC encoding of a0, s0 and s1 respectively.

Let triggered(s0) be the set of all atoms of the form triggered(e, 0) such that s0

satisfies the trigger for e. Therefore,

triggered(s0) = {triggered(e, 0) | s0 satisfies l1, . . . ln triggers e ∈ AD}

We also have ¬triggered(s0) which is defined as follows.

¬triggered(s0) = {¬triggered(e, 0) | triggered(e, 0) /∈ triggered(s0)∧

e appears in a trigger}

Let def(AD) ⊆ sig1(AD) be the collection of statements of sig1(AD) that define

sorts of Π1(AD,Γ1).

67

Texas Tech University Sandeep Chintabathina, December 2010

Let A be the set

A = def(AD) ∪ α(s0, 0) ∪ α(s1, 1) ∪ occurs(a0, 0)∪

Γ1 ∪ triggered(s0) ∪ ¬triggered(s0)

(7.1)

By construction of A it is clear that A defines M = 〈s0, a0, s1〉. We will show that A

is an answer set of Π1(AD,Γ1).

We will begin by showing that A is closed under rules of Π1(AD,Γ1). Let us denote

this program by P . The corresponding reduct PA contains

• sig1(AD) which contains declarations and definitions for various sorts of the

program. The declarations are directives to the complier and therefore can be

safely ignored. However, by construction, A is closed under def(AD) which

contains definitions for various sorts.

• Γ1 which is the recorded history. By construction A is closed under Γ1.

• the fact end(1) = t1. Since s1 |= end = t1, from(7.1) it is true that α(end =

t1, 1) ∈ A. In other words, end(1) = t1 ∈ A. Hence A is closed under this rule.

• rules of the form

occurs(a, 0) : − hpd(a, 0, t).

which are part of R(AD). If hpd(a, 0, t) ∈ A then by(7.1) it is true that

hpd(a, 0, t) ∈ Γ1. Since M is a model of Γ1, a0 = {a | hpd(a, 0, t) ∈ Γ1}.

Consequently, occurs(a, 0) ∈ occurs(a0, 0). By construction of A, occurs(a, 0) ∈

A and therefore A is closed under such rules.

• rules of the form

end(0) = t : − hpd(a, 0, t).

which are part of R(AD). If hpd(a, 0, t) ∈ A then by 7.1 it is true that

hpd(a, 0, t) ∈ Γ1. Since M is a model of Γ1, s0 |= end = t. Consequently,

α(end = t, 0) ∈ α(s0, 0). By construction end(0) = t ∈ A. Hence A is closed

under such rules.

68

Texas Tech University Sandeep Chintabathina, December 2010

• rules of the form

α(p = y, 0) : − obs(p, 0, 0, y).

where p is a non-process fluent and rules of the form

p(0, 0, y) : − obs(p, 0, 0, y).

where p is a process fluent. Since Γ1 is complete the body of these rules is

contained in A. Since M is a model of Γ1, for every non-process fluent p, if

obs(p, 0, 0, y) ∈ Γ1 then s0 |= p = y. By construction of A, α(p = y, 0) ∈ A.

Similarly, for every process fluent p, if obs(p, 0, 0, y) ∈ Γ1 then s0 |= p(0) = y.

By construction of A, α(p(0) = y, 0) ∈ A. In other words, p(0, 0, y) ∈ A. Hence

A is closed under both forms of rules.

• rules of the form

: − obs(p, i, t, y),

¬α(p = y, i).

where p is a non-process fluent and rules of the form

: − obs(p, i, t, y),

¬p(i, t, y).

where p is a process fluent and i is an integer from [0, 1]. If obs(p, i, t, y) /∈ Γ1

then A is closed under both rules. Since M is a model of Γ1, for every non-

process fluent p, if obs(p, i, t, y) ∈ Γ1 then si |= p = y. By construction of A,

α(p = y, i) ∈ A. Since states are consistent sets of literals, si 6|= ¬p = y. By

construction of A, ¬α(p = y, i) /∈ A. Similarly, for every process fluent p, if

obs(p, i, t, y) ∈ Γ1 then si |= p(t) = y. By construction of A, α(p(t) = y, i) ∈ A.

Using the same argument ¬α(p(t) = y, i) /∈ A. In other words, ¬p(i, t, y) /∈ A.

Hence A is closed under both rules.

• rules of the form

¬α(p = y1, i) : − α(p = y2, i),

y1 6= y2.

69

Texas Tech University Sandeep Chintabathina, December 2010

where p is a non-process fluent and rules of the form

¬p(i, t, y1) : − p(i, t, y2),

y1 6= y2.

where p is a process fluent and i is an integer from [0, 1]. If α(p = y2, i) /∈ A

then A is closed under the first rule. Similarly, if p(i, t, y2) /∈ A then A is closed

under the second rule. On the other hand if α(p = y2, i) ∈ A then from (7.1)

it is true that si |= p = y2. Since states are consistent sets of literals, for

any y1 ∈ range(p) such that y1 6= y2, si |= p 6= y1. By construction of A,

¬α(p = y1, i) ∈ A. We use a similar argument to deduce that ¬p(i, t, y1) ∈ A.

Hence A is closed under both rules.

• rules of the form

α(p = y, 1) : −α(p = y, 0).

for every α(p = y, 1) ∈ A. These rules are the reduced inertia axioms from

β(AD). Our reasoning is that by construction of A, for every non-process

fluent p, ∃y ∈ range(p) such that α(p = y, 1) ∈ A. And for any y1 ∈ range(p)

such that y1 6= y, ¬α(p = y1, 1) ∈ A. Hence A is closed under such rules.

• the fact

start(0) = 0.

Since s0 |= start = 0 it is true that start(0) = 0 ∈ A. Hence A is closed under

this rule.

• rules of the form

start(1) = t : − end(0) = t.

which are part of β(AD). If end(0) = t /∈ A then A is closed under such rules.

If end(0) = t ∈ A then from (7.1) it is true that s0 |= end = t. Since M is a

path, it is true that s1 follows s0 and s1 |= start = t. By construction of A,

start(1) = t ∈ A. Hence A is closed under such rules.

70

Texas Tech University Sandeep Chintabathina, December 2010

• rules of the form

: − start(i) = t1,

end(i) = t2,

t1 > t2.

: − start(i) = t1,

t1 ≥ ω.

where i is an integer from [0, 1]. Since si is a state it is true that if si |= start = t1

and si |= end = t2 then t1 ≤ t2 ∧ t1 < ω. By construction of A, the body of

these rules is never satisfied. Hence A is closed under such rules.

• rules of the form

α(p = y, 1) : − occurs(a, 0),

α(l1, 0),

. . . ,

α(ln, 0).

that are obtained by translating dynamic causal laws of AD. If the body is not

contained in A then A is closed under such rules. If the body is contained in A

then from (7.1) it is true that a ∈ a0 and s0 |= li for every i such that 1 ≤ i ≤ n.

As we can see s0 satisfies the preconditions of the dynamic causal law and we

are given that s1 is the successor state w.r.t s0 and a0. From equation (2.1) we

conclude that s1 |= p = y. By construction of A, α(p = y, 1) ∈ A. Hence A is

closed under such rules.

• rules of the form

α(p = y, i) : −α(l1, i), . . . , α(ln, i). (7.2)

71

Texas Tech University Sandeep Chintabathina, December 2010

where p is a non-process fluent and rules of the form

p(i, t, y) : − α(l1, i),

.

α(ln, i),

start(i) = t1,

end(i) = t2,

t1 ≤ t ≤ t2,

t < ω,

y = g(t).

(7.3)

where p is a process fluent and i is an integer from [0, 1]. If the bodies of these

rules are not contained in A then A is closed under such rules. We know that

rules of the form (7.2) encode state constraints of the form

p = y if l1, . . . , ln

If the body of (7.2) is contained in A then from (7.1) it is true that si |= lk for

every k such that 1 ≤ k ≤ n. Since s0 and s1 are states, they are closed under

state constraints of AD. From equation (2.1) we conclude that si |= p = y. By

construction of A, α(p = y, i) ∈ A. Hence A is closed under (7.2). Now suppose

that the body of (7.3) is contained in A. From (7.1) it is true that si |= lk for

every k such that 1 ≤ k ≤ n and si |= {start = t1, end = t2}. We know that

rules of the form (7.3) encode state constraints of the form

p = λT.g(T) if l1, . . . , ln

Since si is a state, it is closed under state constraints of AD. From equation (2.1)

we conclude that si |= p = λT.g(T). By construction of A, α(p = λT.g(T), i) ⊆

A. In other words, p(i, t, y) ∈ A. Hence A is closed under (7.3).

72

Texas Tech University Sandeep Chintabathina, December 2010

• rules of the form

: − occurs(e1, 0),

. ,

occurs(em, 0),

α(l1, 0),

. ,

α(ln, 0).

(7.4)

which encode executability conditions of the form

impossible e1, . . . , em if l1, . . . , ln

Since 〈s0, a0, s1〉 ∈ TD(AD), a0 is possible in s0. This implies that either

{e1, . . . , em} 6⊆ a0 or s0 6|= lk for some k in [1, n]. By construction of A, the

body of (7.4) is not satisfied. Hence A is closed under such rules.

• rules of the form

: − occurs(e1, 1),

. ,

occurs(em, 1),

α(l1, 1),

. ,

α(ln, 1).

Since A does not contain any atoms of the form occurs(a, 1), the body of these

rules is never satisfied. Hence A is closed under such rules.

• rules of the form

triggered(e, 0) : − α(l1, 0),

. ,

α(lm, 0).

which encode triggers of the form

l1, . . . , lm triggers e

73

Texas Tech University Sandeep Chintabathina, December 2010

If the bodies of these rules are not contained in A then A is closed under such

rules. If the bodies are contained in A then by (7.1) it is true that s0 |= lk

for every k such that 1 ≤ k ≤ m. This implies that s0 satisfies the trigger.

From (7.1) we conclude that triggered(e, 0) ∈ A. Hence A is closed under such

rules.

• rules of the form

¬triggered(e, 0).

for every ¬triggered(e, 0) ∈ A. It is obvious that A is closed under such rules.

• rules of the form

: −triggered(e, 0).

for every occurs(e, 0) /∈ A such that e appears in a trigger. This implies that e /∈

a0 and by definition of completeness of actions, s0 does not satisfy any trigger

for e. From (7.1) it is true that triggered(e, 0) /∈ A and ¬triggered(e, 0) ∈ A.

Hence A is closed under such rules.

• rules of the form

: − ¬triggered(e, 0),

occurs(e, 0).

where e appears in a trigger. We will show that A does not satisfy the body

of these rules. In the first case, if occurs(e, 0) ∈ A then from (7.1) it is true

that e ∈ a0 and by definition of completeness of actions, s0 satisfies a trigger

for e. From (7.1) it is clear that triggered(e, 0) ∈ A and ¬triggered(e, 0) /∈ A.

Hence A is closed under such rules. If ¬triggered(e, 0) ∈ A then from (7.1) it

is true that s0 does not satisfy any trigger for e. By definition of completeness

of action, e /∈ a0. By construction of A, occurs(e, 0) /∈ A. Hence A is closed

under such rules. Finally, if neither ¬triggered(e, 0) nor occurs(e, 0) belong to

A then it is obvious that A is closed under such rules.

74

Texas Tech University Sandeep Chintabathina, December 2010

Our next step is to prove that A is the minimal set closed under rules of PA. We

will prove this by assuming that ∃B such that B ⊂ A and B is closed under the rules

of PA which later leads to a contradiction.

Proof by contradiction:

Assume that ∃B such that B ⊂ A and B is closed under the rules of PA. Let σ be a

set of literals of H such that σ ⊂ s1. By α(σ, 1) we denote the set

α(σ, 1) =
⋃

σ|=l

α(l, 1)

Let

B = def(AD) ∪ α(s0, 0) ∪ α(σ, 1) ∪ occurs(a0, 0) ∪ Γ1∪

triggered(s0) ∪ ¬triggered(s0)

(7.5)

such that B is closed under rules of PA. As we can see B ⊂ A.

We know that s1 satisfies the modified McCain-Turner equation

s1 = CnZ(Es0
(a0) ∪ (s0 ∩ s1) ∪ Ts0

(s1))

Since σ ⊂ s1, we have

σ ⊂ CnZ(Es0
(a0) ∪ (s0 ∩ s1) ∪ Ts0

(s1))

Let us see how each component of this equation is related to σ.

Let D ⊆ PA be the set of all dynamic causal laws of the form

a causes p = y if l1, . . . , lm

such that s0 |= li for every i, 1 ≤ i ≤ m, and a ∈ a0. From (7.5) it is true that
⋃

i α(li, 0) ⊆ B and occurs(a, 0) ∈ B. For every d ∈ D, we know that B is closed

under the rule τ(d)

α(p = y, 1) : − occurs(a, 0),

α(l1, 0),

. ,

α(ln, 0).

75

Texas Tech University Sandeep Chintabathina, December 2010

Since the body is contained in B we conclude that α(p = y, 1) ∈ B. From (7.5) it is

true that σ |= p = y. Therefore, Es0
(a0) ⊆ σ.

We know that PA contains the reduced inertia axiom

α(p = y, 1) : −α(p = y, 0).

for every α(p = y, 1) ∈ A. From 7.1 it is true that p = y ∈ s1. If p = y ∈ s0 ∩ s1

then by (7.5) it is true that α(p = y, 0) ∈ B. Since B is closed under rules of PA

we conclude that α(p = y, 1) ∈ B. From (7.5) it is true that σ |= p = y. Therefore,

s0 ∩ s1 ⊆ σ.

Since 〈s0, a0, s1〉 ∈ TD(AD) it is true that s1 follows s0. Therefore, if s0 |= end = t0

then s1 |= start = t0. From (7.5) it is true that α(end = t0, 0) ∈ B. In other words,

end(0) = t0 ∈ B. We know that PA contains the rule

start(1) = t0 : −end(0) = t0.

Since B is closed under this rule, we conclude that start(1) = t0 ∈ B. From (7.5) it

is true that

σ |= start = t0 (7.6)

Secondly, it is true that PA contains the fact end(1) = t1 such that s1 |= end = t1.

Since B is closed under rules of PA, it must be true that end(1) = t1 ∈ B. From 7.5

it is true that

σ |= end = t1 (7.7)

As we can see Ts0
(s1) = {start = t0, end = t1} and from (7.6) and (7.7) we conclude

that Ts0
(s1) ⊆ σ.

We know that PA contains rules of the form

α(p = y, 1) : −α(l1, 1), . . . , α(lm, 1).

which encode state constraints of the form

p = y if l1, . . . , lm

76

Texas Tech University Sandeep Chintabathina, December 2010

where p is a non-process fluent. Since B is closed under such rules, if
⋃

1≤i≤m α(li, 1) ⊆

B then α(p = y, 1) ∈ B. From (7.5) it is true that σ |= p = y whenever σ |= li for

every i, 1 ≤ i ≤ m. We use a similar line of reasoning if p is a process fluent. Hence

σ is closed under state constraints of AD.

We have shown that Es0
(a0) ⊆ σ, s0 ∩ s1 ⊆ σ, Ts0

(s1) ⊆ σ and that σ is closed under

state constraints of AD. Therefore, it is impossible that

σ ⊂ CnZ(Es0
(a0) ∪ (s0 ∩ s1) ∪ Ts0

(s1))

Contradiction. Therefore, our assumption that ∃B such that B ⊂ A and B is closed

under the rules of PA is false. We conclude that A is the minimal set closed under

the rules of PA.

Hence we proved that A is an answer set of Π1(AD,Γ1). 2

Right to left.

We will show that if 〈s0, a0, s1〉 is a defined by an answer set of Π1(AD,Γ1) then

〈s0, a0, s1〉 is a model of Γ1.

Let A be an answer set of Π1(AD,Γ1) such that

si = {l | α(l, i) ⊆ A} (7.8)

for every integer i ∈ [0, 1] and

a0 = {a | occurs(a, 0) ∈ A}

From definition 4.2.1, A defines the sequence 〈s0, a0, s1〉.

Let us denote 〈s0, a0, s1〉 by M and Π1(AD,Γ1) by P . We must show that M ∈

TD(AD) and that M is a model of Γ1.

To begin we will show that s0 and s1 are complete and consistent. Later on, we will

show that s0 is a state and that s1 is a successor state w.r.t s0 and a0.

77

Texas Tech University Sandeep Chintabathina, December 2010

s0 and s1 are consistent.

We know that A is a consistent set of literals. From (7.8) it is obvious that si is a

consistent set of literals for every integer i ∈ [0, 1].

s0 and s1 are complete.

We know PA contains rules of the form

α(p = y, 0) : −obs(p, 0, 0, y).

where p is a non-process fluent. Since Γ1 is complete and Γ1 ⊆ A, A contains α(p =

y, 0) for every non-process fluent p. From (7.8), p = y ∈ s0, for every non-process

fluent p. Therefore, s0 is complete w.r.t non-process fluents. Next, we will prove that

s0 is complete w.r.t process fluents.

Proof by contradiction. Let p be a process fluent such that ∀y ∈ range(process) and

∀t ∈ [start(0), end(0)], p(t) = y /∈ s0. P
A contains rules of the form

p(0, t, y) : − α(l1, 0),

.

α(ln, 0),

start(0) = t1,

end(0) = t2,

t1 ≤ t ≤ t2,

t < ω,

y = g(t).

for every process fluent p. Let us suppose that the body consists of atoms involving

only non-process fluents. Since s0 is complete w.r.t non-process fluents, the body

of this rule is satisfied by A. Since A is closed under such rules, we conclude that

p(0, t, y) ∈ A. From (7.8), p(t) = y ∈ s0. Contradiction. Hence s0 is complete w.r.t

process fluents. Therefore, s0 is complete.

We will now prove that s1 is complete. Proof will be given in two parts. First we will

prove that s1 is complete w.r.t non-process fluents.

78

Texas Tech University Sandeep Chintabathina, December 2010

Proof by contradiction. Let p be a non-process fluent such that p = y ∈ s0 and

∀y ∈ range(p), p = y /∈ s1. P
A contains rules of the form

α(p = y, 1) : −α(p = y, 0).

Since p = y ∈ s0, α(p = y, 0) ∈ A. Since A is closed under such rules, we conclude

that α(p = y, 1) ∈ A. From (7.8), p = y ∈ s1. Contradiction. Hence s1 is complete

w.r.t non-process fluents. Next, we will prove that s1 is complete w.r.t process fluents.

Proof by contradiction. Let p be a process fluent such that ∀y ∈ range(process) and

∀t ∈ [start(1), end(1)], p(t) = y /∈ s1. P
A contains rules of the form

p(1, t, y) : − α(l1, 1),

.

α(ln, 1),

start(1) = t1,

end(1) = t2,

t1 ≤ t ≤ t2,

t < ω,

y = g(t).

for every process fluent p. Let us suppose that the body of such a rule does not contain

atoms involving process fluents. Since s1 is complete w.r.t non-process fluents, the

body of this rule is satisfied by A. Since A is closed under such rules, we conclude

that p(1, t, y) ∈ A. From (7.8), p(t) = y ∈ s1. Contradiction. Hence s1 is complete

w.r.t process fluents. Thus, s1 is complete.

A set, B, of AC literals is complete if for every integer i ∈ [0, n], and for every non-

process fluent p, ∃y ∈ range(p) such that α(p = y, i) ∈ B, and for every process

fluent p, ∃y ∈ range(process) such that α(p(t) = y, i) ∈ B where start(i) ≤ t ≤

end(i) ∧ t < ω.

Since both s0 and s1 are complete we conclude that A is complete.

79

Texas Tech University Sandeep Chintabathina, December 2010

s0 is a state

We will show that s0 is closed under state constraints of AD. The reduct PA contains

rules of the form

α(p = y, 0) : −α(l1, 0), . . . , α(ln, 0).

Since A is closed under such rules, if
⋃

1≤i≤n α(li, 0) ⊆ A then α(p = y, 0) ∈ A.

From (7.8) it is true that p = y ∈ s0 whenever {l1, . . . , ln} ⊆ s0. Hence s0 is closed

under state constraints of AD.

PA contains the fact start(0) = 0. Since A is closed under rules of PA, start(0) =

0 ∈ A. From (7.8) we conclude that start = 0 ∈ s0. P
A contains rules of the form

end(0) = t : −hpd(a, 0, t).

Since Γ1 is complete, hpd(a, 0, t) ∈ A. Since A is closed under such rules it is true that

end(0) = t ∈ A. From (7.8) we conclude that end = t ∈ s0. Since A is a consistent

set of literals closed under rules of the form

: − start(0) = t1,

end(0) = t2,

t1 > t2.

: − start(0) = t,

t ≥ ω

the bodies of these rules are never satisfied by A. As a result the constraint t1 ≤

t2 ∧ t1 < ω, where start = t1 and end = t2, is not violated. Since s0 |= start = 0 and

s0 |= end = t we conclude that t > 0.

Next, we will show that s0 is closed under triggers of AD. We know that PA contains

rules of the form

end(0) = t0 : −hpd(a, 0, t0).

Since Γ1 is complete and Γ1 ⊆ A, we conclude that end(0) = t0 ∈ A. From (7.8),

end = t0 ∈ s0.

80

Texas Tech University Sandeep Chintabathina, December 2010

We know that the agent is capable of making correct observations including observa-

tions about triggered actions. If an action was triggered earlier than t0 then it must

have been observed. Since such an observation is not part of Γ1 we conclude that

¬∃L such that L satisfies atleast one trigger of AD and s0 \ L = {end = t2} and

L \ s0 = {end = t1} and t1 < t2. Therefore, s0 is closed under triggers of AD.

Since A is an answer set of P , for every process fluent p ∈ Σ(AD) and integer

i ∈ [0, 1], ∃λT.g(T) ∈ process such that {start(i) = t1, end(i) = t2} ⊆ A and for

every t, t1 ≤ t ≤ t2 ∧ t < ω, λT.g(T)(t) = y and p(i, t, y) ∈ A. From (7.8) it is

true that p = λT.g(T) ∈ si. It is possible to see that the λT.g(T) is defined over the

domain {t | t1 ≤ t ≤ t2 ∧ t < ω}.

Hence we conclude that s0 is a state.

a0 is possible in s0.

Proof by contradiction. Assume that AD contains an executability condition

impossible e1, . . . , em if l1, . . . , ln

such that {e1, . . . , em} ⊆ a0 and {l1, . . . , ln} ⊆ s0. This implies that

{occurs(e1, 0), . . . , occurs(em, 0)} ⊆ A

and
⋃

1≤i≤n α(li, 0) ⊆ A. We know that PA contains the rule

: − occurs(e1, 0),

. . . ,

occurs(em, 0),

α(l1, 0),

. . . ,

α(ln, 0).

which is the AC encoding of the executability condition. As we can see, the body

of this rule is satisfied by A and A is not a consistent set of literals. Contradiction.

Hence our assumption is false. We conclude that a0 is possible in s0.

81

Texas Tech University Sandeep Chintabathina, December 2010

a0 is complete w.r.t s0.

For every action e that appears in a trigger, we know that PA contains the rule

: −triggered(e, 0).

such that occurs(e, 0) /∈ A. This implies that e /∈ a0. Since A is an answer set of PA

it is impossible that triggered(e, 0) ∈ A. Therefore, for every rule of PA containing

triggered(e, 0) in the head

triggered(e, 0) : − α(l1, 0),

. . . , . . . ,

α(ln, 0).

⋃

1≤i≤n α(li, 0) 6⊆ A. This implies that {l1, . . . , ln} 6⊆ s0. Therefore, s0 does not satisfy

any trigger for e. This is indeed true because e /∈ a0.

For every action e that appears in a trigger, PA contains the rule

: − ¬triggered(e, 0),

occurs(e, 0).

Consider the case when occurs(e, 0) ∈ A. As we can see, this implies that e ∈ a0.

Since A is an answer set of PA, ¬triggered(e, 0) /∈ A. Since we assume closed world

assumption for triggered atoms, it is true that triggered(e, 0) ∈ A. Therefore, there

must be atleast one rule of PA containing triggered(e, 0) in the head

triggered(e, 0) : − α(l1, 0),

. . . , . . . ,

α(ln, 0).

such that
⋃

1≤i≤n α(li, 0) ⊆ A. This implies that {l1, . . . , ln} ⊆ s0. Therefore, s0

satisfies a trigger for e.

Now consider the case when ¬triggered(e, 0) ∈ A which implies that occurs(e, 0) /∈ A

(since A is an answer set). This implies that e /∈ a0. Therefore, for every rule of PA

82

Texas Tech University Sandeep Chintabathina, December 2010

containing triggered(e, 0) in the head

triggered(e, 0) : − α(l1, 0),

. . . , . . . ,

α(ln, 0).

⋃

1≤i≤n α(li, 0) 6⊆ A. This implies that {l1, . . . , ln} 6⊆ s0. Therefore, s0 does not satisfy

any trigger for e. From all our cases we conclude that e ∈ a0 iff s0 satisfies a trigger

for e. Hence, a0 is complete w.r.t s0.

s1 follows s0.

We know that PA contains rules of the form

start(1) = t0 : −end(0) = t0.

Since Γ1 is complete, we concluded earlier that end(0) = t0 ∈ A. Since A is closed

under such rules we conclude that start(1) = t0 ∈ A. From (7.8) it is true that

start = t0 ∈ s1. PA also contains the fact end(1) = t1 such that t1 ≥ t0. Since A

is closed under rules of PA we conclude that end(1) = t1 ∈ A. From (7.8) it is true

that end = t1 ∈ s1. As we can see, {start = 0, end = t0} ⊆ s0 and {start = t0, end =

t1} ⊆ s1. Therefore, s1 follows s0.

s1 satisfies the modified McCain-Turner equation.

We will show that

s1 = CnZ(Es0
(a0) ∪ (s0 ∩ s1) ∪ Ts0

(s1))

We will begin by proving that Es0
(a0) ⊆ s1. We know that PA contains rules of the

form

α(p = y, 1) : − occurs(a, 0),

α(l1, 0),

. . . ,

α(ln, 0).

Since A is closed under such rules, if
⋃

1≤i≤n α(li, 0) ⊆ A and occurs(a, 0) ∈ A then

α(p = y, 1) ∈ A. From (7.8) it is true that p = y ∈ s1. Therefore, Es0
(a0) ⊆ s1.

83

Texas Tech University Sandeep Chintabathina, December 2010

s0 ∩ s1 ⊆ s1 is trivially true.

Since s1 follows s0, Ts0
(s1) = {start = t0, end = t1}. Since {start = t0, end = t1} ⊆

s1, we conclude that Ts0
(s1) ⊆ s1.

Next, we will show that s1 is closed under state constraints of AD. We know that

PA contains rules of the form

α(p = y, 1) : −α(l1, 1), . . . , α(ln, 1).

where p is a non-process fluent. Since A is closed under such rules, if
⋃

1≤i≤n α(li, 1) ⊆

A then α(p = y, 1) ∈ A. From (7.8) it is true that p = y ∈ s1 whenever {l1, . . . , ln} ⊆

s1. We will use a similar line of reasoning if p is a process fluent. Hence, s1 is closed

under state constraints of AD.

We must also show that s1 is minimal.

Proof by contradiction.

Assume that ∃σ ⊂ s1 such that Es0
(a0)∪ (s0∩s1)∪Ts0

(s1) ⊆ σ and σ is closed under

state constraints of AD.

Let A′ be obtained from A by removing atoms of the form α(l, 1) such that l ∈ s1 \σ.

Since σ ⊂ s1, A
′ ⊂ A. Both σ and s1 agree upon atoms fromEs0

(a0)∪(s0∩s1)∪Ts0
(s1).

Therefore, for every l ∈ s1 \ σ, ∃ a state constraint, r, containing l in the head

l if l1, . . . , ln

such that {l1, . . . , ln} ⊆ s1 and {l1, . . . , ln} 6⊆ σ. From construction of A′ it is true

that A′ does not satisfy the body of τ(r)

α(l, 1) : −α(l1, 1), . . . , α(ln, 1).

which is the AC encoding of the state constraint. Hence A′ is closed under rules of

PA. This implies that A is not an answer set of P . Contradiction. Therefore, our

assumption is false and we conclude that s1 is minimal.

84

Texas Tech University Sandeep Chintabathina, December 2010

s1 is closed under triggers of AD.

We know that PA contains the fact end(1) = t1. Since A is closed under such rules,

end(1) = t1 ∈ A. From (7.8), end = t1 ∈ s1. From construction of P , t1 is indeed the

end time of s1. Therefore, ¬∃L such that L satisfies atleast one trigger of AD and

s1 \ L = {end = t2} and L \ s1 = {end = t1} and t1 < t2. Therefore, s1 is closed

under triggers of AD.

At this point we proved that M = 〈s0, a0, s1〉 ∈ TD(AD). We must show that M is

a model of Γ1.

We will show that a0 = {a | hpd(a, 0, t) ∈ Γ1}. P
A contains rules of the form

occurs(a, 0) : −hpd(a, 0, t).

Since Γ1 is complete and Γ1 ⊆ A, we conclude that occurs(a, 0) ∈ A for every

hpd(a, 0, t) ∈ Γ1. From (7.8) it is true that a0 = {a | hpd(a, 0, t) ∈ Γ1}.

PA contains rules of the form

end(0) = t : −hpd(a, 0, t).

Since Γ1 ⊆ A and A is closed under such rules, we conclude that end(0) = t ∈ A.

From (7.8), end = t ∈ s0.

PA contains rules of the form

: − obs(p, i, t, y),

¬α(p = y, i).

where p is a non-process fluent and rules of the form

: − obs(p, i, t, y),

¬p(i, t, y).

where p is a process fluent and i is an integer from [0, 1]. Let us consider the first rule.

Since A is an answer set of P , if obs(p, i, t, y) ∈ Γ1 then ¬α(p = y, i) /∈ A. Therefore,

85

Texas Tech University Sandeep Chintabathina, December 2010

the body of every rule containing ¬α(p = y, i) in the head

¬α(p = y, i) : − α(p = y1, i),

y 6= y1.

is not satisfied by A. Since A is complete we conclude that α(p = y, i) ∈ A.

From (7.8), p = y ∈ si.

We use a similar argument for the second rule. Since A is an answer set of P , if

obs(p, i, t, y) ∈ Γ1 then ¬p(i, t, y) /∈ A. Therefore, the body of every rule containing

¬p(i, t, y) in the head

¬p(i, t, y) : − p(i, t, y1),

y 6= y1.

is not satisfied by A. Since A is complete we conclude that p(i, t, y) ∈ A. In other

words, α(p(t) = y, i) ∈ A. From (7.8), p(t) = y ∈ si. This is possible only if

∃λT.g(T) ∈ process such that λT.g(T)(t) = y and p = λT.g(T) ∈ si.

Therefore, M is a model of Γ1. 2

Inductive step.

We assume that the theorem holds for recorded histories upto moment n− 1. There-

fore, if Γn−1 is complete then M = 〈s0, a0, s1, . . . , an−2, sn−1〉 is a model of Γn−1 iff M

is defined by some answer set of Πn−1(AD,Γn−1).

We must prove that the theorem holds for recorded histories upto moment n. We

must show that if Γn is complete then M = 〈s0, a0, s1, . . . , an−1, sn〉 is a model of Γn

iff M is defined by some answer set of Πn(AD,Γn).

Left to right :

We must show that if M = 〈s0, a0, s1, . . . , an−1, sn〉 is a model of Γn then M is defined

by some answer set of Πn(AD,Γn).

Since M is a model of Γn, M is a path of TD(AD) such that for every i, 0 ≤ i < n,

ai = {a | hpd(a, i, t) ∈ Γn}

86

Texas Tech University Sandeep Chintabathina, December 2010

and for every i, 0 ≤ i ≤ n, si |= {end = t | hpd(a, i, t) ∈ Γn}.

Since sn follows sn−1, if sn−1 |= {start = tn−2, end = tn−1} then sn |= {start =

tn−1, end = tn} where tn−1 ≤ tn.

By Πn(AD,Γn) we denote the AC program

Πn(AD,Γn) = sign(AD) ∪
⋃

r∈AD

τ(r) ∪ β(AD) ∪ Γn ∪ R(AD) ∪ {end(n) = tn}

where tn is the end time of sn.

For 0 ≤ i < n let

occurs(ai, i) = {occurs(a, i) | a ∈ ai}

and for 0 ≤ i ≤ n let

α(si, i) =
⋃

si|=l

α(l, i)

These sets represent the AC encoding of actions and states.

For i < n, let triggered(si) be the set of all atoms of the form triggered(e, i) such

that si satisfies the trigger for e. Therefore,

triggered(si) = {triggered(e, i) | si satisfies l1, . . . ln triggers e ∈ AD}

We also have ¬triggered(si) which is defined as follows.

¬triggered(si) = {¬triggered(e, i) | triggered(e, i) /∈ triggered(si)∧

e appears in a trigger}

Let def(AD) ⊆ sign(AD) be the collection of statements of sign(AD) that define

sorts of Πn(AD,Γn).

Let A be the set

A = def(AD) ∪
⋃

0≤i≤n α(si, i) ∪
⋃

0≤i<n occurs(ai, i)

∪ Γn ∪
⋃

0≤i<n triggered(si) ∪
⋃

0≤i<n ¬triggered(si)

(7.9)

By construction of A it is clear that A defines M = 〈s0, a0, s1, . . . , an−1, sn〉. We will

show that A is an answer set of Πn(AD,Γn).

87

Texas Tech University Sandeep Chintabathina, December 2010

We will begin by showing that A is closed under rules of Πn(AD,Γn). Let us denote

this program by P . The corresponding reduct PA contains

• sign(AD) which contains declarations and definitions for various sorts of the

program. The declarations are directives to the complier and therefore can be

safely ignored. However, by construction, A is closed under def(AD) which

contains definitions for various sorts.

• Γn which is the recorded history. By construction A is closed under Γn.

• the fact end(n) = tn. Since sn |= end = tn, from 7.9 it is true that α(end =

tn, n) ∈ A. In other words, end(n) = tn ∈ A. Hence A is closed under this rule.

• rules of the form

occurs(a, i) : −hpd(a, i, t).

where i < n. If hpd(a, i, t) ∈ A then by 7.9 it is true that hpd(a, i, t) ∈ Γ1. Since

M is a model of Γn, ai = {a | hpd(a, i, t) ∈ Γn}. Consequently, occurs(a, i) ∈

occurs(ai, i). By construction of A, occurs(a, i) ∈ A and therefore A is closed

under such rules.

• rules of the form

end(i) = t : −hpd(a, i, t).

where i < n. If hpd(a, i, t) ∈ A then by 7.9 it is true that hpd(a, i, t) ∈ Γn.

Since M is a model of Γn, si |= end = t. Consequently, α(end = t, i) ∈ α(s0, 0).

By construction end(i) = t ∈ A. Hence A is closed under such rules.

• rules of the form

α(p = y, 0) : −obs(p, 0, 0, y).

where p is a non-process fluent and rules of the form

p(0, 0, y) : −obs(p, 0, 0, y).

88

Texas Tech University Sandeep Chintabathina, December 2010

where p is a process fluent. Since Γn is complete the body of these rules is

contained in A. Since M is a model of Γn, for every non-process fluent p, if

obs(p, 0, 0, y) ∈ Γn then s0 |= p = y. By construction of A, α(p = y, 0) ∈ A.

Similarly, for every process fluent p, if obs(p, 0, 0, y) ∈ Γn then s0 |= p(0) = y.

By construction of A, α(p(0) = y, 0) ∈ A. In other words, p(0, 0, y) ∈ A. Hence

A is closed under both forms of rules.

• rules of the form

: − obs(p, i, t, y),

¬α(p = y, i).

where p is a non-process fluent and rules of the form

: − obs(p, i, t, y),

¬p(i, t, y).

where p is a process fluent and i is an integer from [0, n]. If obs(p, i, t, y) /∈ Γn

then A is closed under both rules. Since M is a model of Γn, for every non-

process fluent p, if obs(p, i, t, y) ∈ Γn then si |= p = y. By construction of A,

α(p = y, i) ∈ A. Since states are consistent sets of literals, si 6|= ¬p = y. By

construction of A, ¬α(p = y, i) /∈ A. Similarly, for every process fluent p, if

obs(p, i, t, y) ∈ Γn then si |= p(t) = y. By construction of A, α(p(t) = y, i) ∈ A.

Using the same argument ¬α(p(t) = y, i) /∈ A. In other words, ¬p(i, t, y) /∈ A.

Hence A is closed under both rules.

• rules of the form

¬α(p = y1, i) : − α(p = y2, i),

y1 6= y2.

where p is a non-process fluent and rules of the form

¬p(i, t, y1) : − p(i, t, y2),

y1 6= y2.

89

Texas Tech University Sandeep Chintabathina, December 2010

where p is a process fluent and i is an integer from [0, n]. If α(p = y2, i) /∈ A

then A is closed under the first rule. Similarly, if p(i, t, y2) /∈ A then A is closed

under the second rule. On the other hand if α(p = y2, i) ∈ A then from 7.9

it is true that si |= p = y2. Since states are consistent sets of literals, for

any y1 ∈ range(p) such that y1 6= y2, si |= p 6= y1. By construction of A,

¬α(p = y1, i) ∈ A. We use a similar argument to deduce that ¬p(i, t, y1) ∈ A.

Hence A is closed under both rules.

• rules of the form

α(p = y, i) : −α(p = y, i− 1).

for every α(p = y, i) ∈ A and i ∈ [1, n]. These rules are the reduced inertia

axioms from β(AD). Our reasoning is that by construction of A, for every

non-process fluent p, ∃y ∈ range(p) such that α(p = y, i) ∈ A. And for any

y1 ∈ range(p) such that y1 6= y, ¬α(p = y1, i) ∈ A. Hence A is closed under

such rules.

• the fact

start(0) = 0.

Since s0 |= start = 0 it is true that start(0) = 0 ∈ A. Hence A is closed under

this rule.

• rules of the form

start(i) = t : −end(i− 1) = t.

where i ∈ [1, n]. If end(i − 1) = t /∈ A then A is closed under such rules. If

end(i − 1) = t ∈ A then from 7.9 it is true that si−1 |= end = t. Since M is a

path, it is true that si follows si−1 and si |= start = t. By construction of A,

start(i) = t ∈ A. Hence A is closed under such rules.

90

Texas Tech University Sandeep Chintabathina, December 2010

• rules of the form

: − start(i) = t1,

end(i) = t2,

t1 > t2.

: − start(i) = t1,

t1 ≥ ω.

where i is an integer from [0, n]. Since si is a state it is true that if si |= start = t1

and si |= end = t2 then t1 ≤ t2 ∧ t1 < ω. By construction of A, the body of

these rules is never satisfied. Hence A is closed under such rules.

• rules of the form

α(p = y, i) : − occurs(a, i− 1),

α(l1, i− 1),

. . . ,

α(ln, i− 1).

where integer i ∈ [1, n] . If the body is not contained in A then A is closed

under such rules. If the body is contained in A then from 7.9 it is true that

a ∈ ai−1 and si−1 |= {l1, . . . , ln}. As we can see si−1 satisfies the preconditions

of the dynamic causal law and we are given that si is the successor state w.r.t

si−1 and ai−1. From equation 2.1 we conclude that si |= p = y. By construction

of A, α(p = y, i) ∈ A. Hence A is closed under such rules.

• rules of the form

α(p = y, i) : −α(l1, i), . . . , α(ln, i). (7.10)

91

Texas Tech University Sandeep Chintabathina, December 2010

where p is a non-process fluent and rules of the form

p(i, t, y) : − α(l1, i),

.

α(ln, i),

start(i) = t1,

end(i) = t2,

t1 ≤ t ≤ t2,

t < ω,

y = g(t).

(7.11)

where p is a process fluent and i is an integer from [0, n]. If the bodies of these

rules are not contained in A then A is closed under such rules. We know that

rules of the form 7.10 encode state constraints of the form

p = y if l1, . . . , ln

If the body of 7.10 is contained in A then from 7.9 it is true that si |= {l1, . . . , ln}.

Since s0 and s1 are states, they are closed under state constraints of AD. From

equation 2.1 we conclude that si |= p = y. By construction ofA, α(p = y, i) ∈ A.

Hence A is closed under 7.10. Now suppose that the body of 7.11 is contained

in A. From 7.9 it is true that si |= {l1, . . . , ln} and si |= {start = t1, end = t2}.

We know that rules of the form 7.11 encode state constraints of the form

p = λT.g(T) if l1, . . . , ln

Since si is a state, it is closed under state constraints of AD. From equation 2.1

we conclude that si |= p = λT.g(T). By construction of A, α(p = λT.g(T), i) ⊆

A. In other words, p(i, t, y) ∈ A. Hence A is closed under 7.11.

92

Texas Tech University Sandeep Chintabathina, December 2010

• rules of the form

: − occurs(e1, i),

. ,

occurs(em, i),

α(l1, i),

. ,

α(ln, i).

(7.12)

where integer i ∈ [0, n]. These rules encode executability conditions of the form

impossible e1, . . . , em if l1, . . . , ln

Since 〈s0, a0, s1, . . . , sn〉 ∈ TD(AD), ai is possible in si (i < n). This implies

that either {e1, . . . , em} 6⊆ ai or si 6|= lk for some k ∈ [1, n]. By construction of

A, the body of 7.12 is not satisfied. Hence A is closed under such rules.

• rules of the form

triggered(e, i) : − α(l1, i),

. ,

α(lm, i).

where integer i ∈ [0, n). These rules encode triggers of the form

l1, . . . , lm triggers e

If the bodies of these rules are not contained in A then A is closed under

such rules. If the bodies are contained in A then by 7.9 it is true that si |=

{l1, . . . , lm}. This implies that si satisfies the trigger. From 7.9 we conclude

that triggered(e, i) ∈ A. Hence A is closed under such rules.

• rules of the form

¬triggered(e, i).

for every ¬triggered(e, i) ∈ A and i < n. It is obvious that A is closed under

such rules.

93

Texas Tech University Sandeep Chintabathina, December 2010

• rules of the form

: −triggered(e, i).

for every i < n and occurs(e, i) /∈ A such that e appears in a trigger. This

implies that e /∈ ai and by definition of completeness of actions, si does not

satisfy any trigger for e. From 7.9 it is true that triggered(e, i) /∈ A and

¬triggered(e, i) ∈ A. Hence A is closed under such rules.

• rules of the form

: − ¬triggered(e, i),

occurs(e, i).

where e appears in a trigger and i < n. We will show that A does not satisfy the

body of these rules. In the first case, if occurs(e, i) ∈ A then from 7.9 it is true

that e ∈ ai and by definition of completeness of actions, si satisfies a trigger

for e. From 7.9 it is clear that triggered(e, i) ∈ A and ¬triggered(e, i) /∈ A.

Hence A is closed under such rules. If ¬triggered(e, i) ∈ A then from 7.9 it is

true that si does not satisfy any trigger for e. By definition of completeness of

action, e /∈ ai. By construction of A, occurs(e, i) /∈ A. Hence A is closed under

such rules. Finally, if neither ¬triggered(e, i) nor occurs(e, i) belong to A then

it is obvious that A is closed under such rules.

Our next step is to prove that A is the minimal set closed under rules of PA. We

will prove this by assuming that ∃B such that B ⊂ A and B is closed under the rules

of PA which later leads to a contradiction.

Proof by contradiction:

Assume that ∃B such that B ⊂ A and B is closed under the rules of PA. Let σ be a

set of literals of H such that σ ⊂ sn. By α(σ, n) we denote the set

α(σ, n) =
⋃

σ|=l

α(l, n)

94

Texas Tech University Sandeep Chintabathina, December 2010

Let

B = def(AD) ∪
⋃

0≤i<n α(si, i) ∪ α(σ, n) ∪
⋃

0≤i<n occurs(ai, i)

∪ Γn ∪
⋃

0≤i<n triggered(si) ∪
⋃

0≤i<n ¬triggered(si)

(7.13)

such that B is closed under rules of PA. As we can see B ⊂ A.

We know that sn satisfies the modified McCain-Turner equation

sn = CnZ(Esn−1
(an−1) ∪ (sn−1 ∩ sn) ∪ Tsn−1

(sn))

Since σ ⊂ sn, we have

σ ⊂ CnZ(Esn−1
(an−1) ∪ (sn−1 ∩ sn) ∪ Tsn−1

(sn))

Let us see how each component of this equation is related to σ.

Let D ⊆ PA be the set of all dynamic causal laws of the form

a causes p = y if l1, . . . , lm

such that sn−1 |= {l1, . . . , lm}, and a ∈ an−1. From 7.13 it is true that
⋃

1≤k≤m α(lk, n−

1) ⊆ B and occurs(a, n− 1) ∈ B. For every d ∈ D, we know that B is closed under

the rule τ(d)

α(p = y, n) : − occurs(a, n− 1),

α(l1, n− 1),

. ,

α(lm, n− 1).

Since the body is contained in B we conclude that α(p = y, n) ∈ B. From 7.13 it is

true that σ |= p = y. Therefore, Esn−1
(an−1) ⊆ σ.

We know that PA contains the reduced inertia axiom

α(p = y, n) : −α(p = y, n− 1).

for every α(p = y, n) ∈ A. From 7.9 it is true that p = y ∈ sn. If p = y ∈ sn−1 ∩ sn

then by 7.13 it is true that α(p = y, n− 1) ∈ B. Since B is closed under rules of PA

95

Texas Tech University Sandeep Chintabathina, December 2010

we conclude that α(p = y, n) ∈ B. From 7.13 it is true that σ |= p = y. Therefore,

sn−1 ∩ sn ⊆ σ.

Since 〈sn−1, an−1, sn〉 ∈ TD(AD) it is true that sn follows sn−1. Therefore, if sn−1 |=

end = tn−1 then sn |= start = tn−1. From 7.13 it is true that α(end = tn−1, n−1) ∈ B.

In other words, end(n− 1) = tn−1 ∈ B. We know that PA contains the rule

start(n) = tn−1 : −end(n− 1) = tn−1.

Since B is closed under this rule, we conclude that start(n) = tn−1 ∈ B. From 7.13

it is true that

σ |= start = tn−1 (7.14)

Secondly, it is true that PA contains the fact end(n) = tn such that sn |= end = tn.

Since B is closed under rules of PA, it must be true that end(n) = tn ∈ B. From 7.13

it is true that

σ |= end = tn (7.15)

As we can see Tsn−1
(sn) = {start = tn−1, end = tn} and from 7.14 and 7.15 we

conclude that Tsn−1
(sn) ⊆ σ.

We know that PA contains rules of the form

α(p = y, n) : −α(l1, n), . . . , α(lm, n).

These rules encode state constraints of the form

p = y if l1, . . . , lm

where p is a non-process fluent. Since B is closed under such rules, if

⋃

1≤k≤m

α(lk, n) ⊆ B

then α(p = y, n) ∈ B. From 7.13 it is true that σ |= p = y whenever σ |= {l1, . . . , lm}.

We use a similar line of reasoning if p is a process fluent. Hence σ is closed under

state constraints of AD.

96

Texas Tech University Sandeep Chintabathina, December 2010

We have shown that Esn−1
(an−1) ⊆ σ, sn−1 ∩ sn ⊆ σ, Tsn−1

(sn) ⊆ σ and that σ is

closed under state constraints of AD. Therefore, it is impossible that

σ ⊂ CnZ(Esn−1
(an−1) ∪ (sn−1 ∩ sn) ∪ Tsn−1

(sn))

Contradiction. Therefore, our assumption that ∃B such that B ⊂ A and B is closed

under the rules of PA is false. We conclude that A is the minimal set closed under

the rules of PA.

Hence we proved that A is an answer set of Πn(AD,Γn). 2

Right to left.

We will show that if 〈s0, a0, s1, . . . , sn〉 is a defined by an answer set of Πn(AD,Γn)

then 〈s0, a0, s1, . . . , sn〉 is a model of Γn.

Let A be an answer set of Πn(AD,Γn) such that

si = {l | α(l, i) ⊆ A} (7.16)

for every i ∈ [0, n] and

ak = {a | occurs(a, k) ∈ A}

for every k ∈ [0, n). From definition 4.2.1, A defines the sequence 〈s0, a0, s1, . . . , sn〉.

Let us denote 〈s0, a0, s1, . . . , sn〉 by M and Πn(AD,Γn) by P . We must show that

M ∈ TD(AD) and that M is a model of Γn.

We already know that M ′ = 〈s0, a0, s1, . . . , sn−1〉 ∈ TD(AD) and that M ′ is a model

of Γn−1. It is enough to show that sn is a successor state w.r.t sn−1 and an−1. We

begin by showing that sn is complete and consistent.

sn is consistent.

We know that A is a consistent set of literals. From 7.16 it is obvious that sn is a

consistent set of literals.

sn is complete.

Proof will be given in two parts. First we will prove that sn is complete w.r.t non-

process fluents.

97

Texas Tech University Sandeep Chintabathina, December 2010

Proof by contradiction. Let p be a non-process fluent such that p = y ∈ sn−1 and

∀y ∈ range(p), p = y /∈ sn. PA contains rules of the form

α(p = y, n) : −α(p = y, n− 1).

Since p = y ∈ sn−1, α(p = y, n − 1) ∈ A. Since A is closed under such rules, we

conclude that α(p = y, n) ∈ A. From 7.16, p = y ∈ sn. Contradiction. Hence sn

is complete w.r.t non-process fluents. Next, we will prove that sn is complete w.r.t

process fluents.

Proof by contradiction. Let p be a process fluent such that ∀y ∈ range(process) and

∀t ∈ [start(n), end(n)], p(t) = y /∈ sn. PA contains rules of the form

p(n, t, y) : − α(l1, n),

.

α(lm, n),

start(n) = t1,

end(n) = t2,

t1 ≤ t ≤ t2,

t < ω,

y = g(t).

for every process fluent p. Let us suppose that the body of a such a rule does not

contain atoms involving process fluents. Since sn is complete w.r.t non-process fluents,

the body of this rule is satisfied by A. Since A is closed under such rules, we conclude

that p(n, t, y) ∈ A. From 7.16, p(t) = y ∈ sn. Contradiction. Hence sn is complete

w.r.t process fluents. Therefore, sn is complete.

We have proved that for every i, 0 ≤ i ≤ n, si is complete. Hence, we conclude that

A is complete. Next, we will show that an−1 is possible in sn−1.

an−1 is possible in sn−1.

Proof by contradiction. Assume that AD contains an executability condition

impossible e1, . . . , em if l1, . . . , lk

98

Texas Tech University Sandeep Chintabathina, December 2010

such that {e1, . . . , em} ⊆ an−1 and {l1, . . . , lk} ⊆ sn−1. This implies that

{occurs(e1, n− 1), . . . , occurs(em, n− 1)} ⊆ A

and
⋃

1≤i≤k α(li, n− 1) ⊆ A. We know that PA contains the rule

: − occurs(e1, n− 1),

. . . ,

occurs(em, n− 1),

α(l1, n− 1),

. . . ,

α(lk, n− 1).

which is the AC encoding of the executability condition. As we can see, the body

of this rule is satisfied by A and A is not a consistent set of literals. Contradiction.

Hence our assumption is false. We conclude that an−1 is possible in sn−1.

an−1 is complete w.r.t sn−1.

For every action e that appears in a trigger, we know that PA contains the rule

: −triggered(e, n− 1).

such that occurs(e, n− 1) /∈ A. This implies that e /∈ an−1. Since A is an answer set

of PA it is impossible that triggered(e, n− 1) ∈ A. Therefore, for every rule of PA

containing triggered(e, n− 1) in the head

triggered(e, n− 1) : − α(l1, n− 1),

. ,

α(lm, n− 1).

⋃

1≤i≤m α(li, n− 1) 6⊆ A. This implies that {l1, . . . , lm} 6⊆ sn−1. Therefore, sn−1 does

not satisfy any trigger for e. This is indeed true because e /∈ an−1.

For every action e that appears in a trigger, PA contains the rule

: − ¬triggered(e, n− 1),

occurs(e, n− 1).

99

Texas Tech University Sandeep Chintabathina, December 2010

Consider the case when occurs(e, n − 1) ∈ A. As we can see, this implies that

e ∈ an−1. Since A is an answer set of PA, ¬triggered(e, n− 1) /∈ A. Since we assume

closed world assumption for triggered atoms, it is true that triggered(e, n− 1) ∈ A.

Therefore, there must be atleast one rule of PA containing triggered(e, n− 1) in the

head

triggered(e, n− 1) : − α(l1, n− 1),

. ,

α(lm, n− 1).

such that
⋃

1≤i≤m α(li, n− 1) ⊆ A. This implies that {l1, . . . , lm} ⊆ sn−1. Therefore,

sn−1 satisfies a trigger for e.

Now consider the case when ¬triggered(e, n−1) ∈ A which implies that occurs(e, n−

1) /∈ A (since A is an answer set). This implies that e /∈ an−1. Therefore, for every

rule of PA containing triggered(e, n− 1) in the head

triggered(e, n− 1) : − α(l1, n− 1),

. ,

α(lm, n− 1).

⋃

1≤i≤m α(li, n− 1) 6⊆ A. This implies that {l1, . . . , lm} 6⊆ sn−1. Therefore, sn−1 does

not satisfy any trigger for e. From all our cases we conclude that e ∈ an−1 iff sn−1

satisfies a trigger for e. Hence, an−1 is complete w.r.t sn−1.

sn follows sn−1.

We know that PA contains rules of the form

start(n) = tn−1 : −end(n− 1) = tn−1.

Since Γn is complete, it is true that end(n − 1) = tn−1 ∈ A such that hpd(a, n −

1, tn−1) ∈ A. Since A is closed under such rules we conclude that start(n) = tn−1 ∈ A.

From 7.16 it is true that start = tn−1 ∈ sn. PA also contains the fact end(n) = tn such

that tn ≥ tn−1. Since A is closed under rules of PA we conclude that end(n) = tn ∈ A.

100

Texas Tech University Sandeep Chintabathina, December 2010

From 7.16 it is true that end = tn ∈ sn. As we can see, {start = tn−2, end = tn−1} ⊆

sn−1 and {start = tn−1, end = tn} ⊆ sn. Therefore, sn follows sn−1.

sn satisfies the modified McCain-Turner equation.

We will show that

sn = CnZ(Esn−1
(an−1) ∪ (sn−1 ∩ sn) ∪ Tsn−1

(sn))

We will begin by proving that Esn−1
(an−1) ⊆ sn. We know that PA contains rules of

the form

α(p = y, n) : − occurs(a, n− 1),

α(l1, n− 1),

. . . ,

α(lm, n− 1).

Since A is closed under such rules, if
⋃

1≤i≤m α(li, n−1) ⊆ A and occurs(a, n−1) ∈ A

then α(p = y, n) ∈ A. From 7.16 it is true that p = y ∈ sn. Therefore, Esn−1
(an−1) ⊆

sn.

sn−1 ∩ sn ⊆ sn is trivially true.

Since sn follows sn−1, Tsn−1
(sn) = {start = tn−1, end = tn}. Since {start = tn−1, end =

tn} ⊆ sn, we conclude that Tsn−1
(sn) ⊆ sn.

Next, we will show that sn is closed under state constraints of AD. We know that

PA contains rules of the form

α(p = y, n) : −α(l1, n), . . . , α(lm, n).

where p is a non-process fluent. Since A is closed under such rules, if
⋃

1≤i≤m α(li, n) ⊆

A then α(p = y, n) ∈ A. From 7.16 it is true that p = y ∈ sn whenever {l1, . . . , lm} ⊆

sn. We will use a similar line of reasoning if p is a process fluent. Hence, sn is closed

under state constraints of AD.

We must also show that sn is minimal.

101

Texas Tech University Sandeep Chintabathina, December 2010

Proof by contradiction.

Assume that ∃σ ⊂ sn such that Esn−1
(an−1) ∪ (sn−1 ∩ sn) ∪ Tsn−1

(sn) ⊆ σ and σ is

closed under state constraints of AD.

Let A′ be obtained from A by removing atoms of the form α(l, n) such that l ∈ sn \σ.

Since σ ⊂ sn, A
′ ⊂ A.

Both σ and sn agree upon atoms from Esn−1
(an−1)∪(sn−1∩sn)∪Tsn−1

(sn). Therefore,

for every l ∈ sn \ σ, ∃ a state constraint, r, containing l in the head

l if l1, . . . , lm

such that {l1, . . . , lm} ⊆ sn and {l1, . . . , lm} 6⊆ σ. From construction of A′ it is true

that A′ does not satisfy the body of τ(r)

α(l, n) : −α(l1, n), . . . , α(lm, n).

which is the AC encoding of the state constraint. Hence A′ is closed under rules of

PA. This implies that A is not an answer set of P . Contradiction. Therefore, our

assumption is false and we conclude that sn is minimal.

sn is closed under triggers of AD.

We know that PA contains the fact end(n) = tn. Since A is closed under such rules,

end(n) = tn ∈ A. From 7.16, end = tn ∈ sn. From construction of P , tn is indeed

the end time of sn. Therefore, ¬∃L such that L satisfies atleast one trigger of AD

and sn \L = {end = t2} and L \ sn = {end = t1} and t1 < t2. Therefore, sn is closed

under triggers of AD.

At this point we proved that M = 〈s0, a0, s1, . . . , sn〉 ∈ TD(AD). We must show that

M is a model of Γn.

We will show that for every i, 0 ≤ i < n, ai = {a | hpd(a, i, t) ∈ Γn}. P
A contains

rules of the form

occurs(a, i) : −hpd(a, i, t).

102

Texas Tech University Sandeep Chintabathina, December 2010

Since Γn is complete and Γn ⊆ A, we conclude that occurs(a, i) ∈ A for every

hpd(a, i, t) ∈ Γn. From 7.16 it is true that ai = {a | hpd(a, i, t) ∈ Γn}.

PA contains rules of the form

end(i) = t : −hpd(a, i, t).

for every i ∈ [0, n). Since Γn ⊆ A and A is closed under such rules, we conclude that

end(i) = t ∈ A. From 7.16, end = t ∈ si.

PA contains rules of the form

: − obs(p, i, t, y),

¬α(p = y, i).

where p is a non-process fluent and rules of the form

: − obs(p, i, t, y),

¬p(i, t, y).

where p is a process fluent and i is an integer from [0, n]. Let us consider the first rule.

Since A is an answer set of P , if obs(p, i, t, y) ∈ Γn then ¬α(p = y, i) /∈ A. Therefore,

the body of every rule containing ¬α(p = y, i) in the head

¬α(p = y, i) : − α(p = y1, i),

y 6= y1.

is not satisfied by A. Since A is complete we conclude that α(p = y, i) ∈ A. From 7.16,

p = y ∈ si.

We use a similar argument for the second rule. Since A is an answer set of P , if

obs(p, i, t, y) ∈ Γn then ¬p(i, t, y) /∈ A. Therefore, the body of every rule containing

¬p(i, t, y) in the head

¬p(i, t, y) : − p(i, t, y1),

y 6= y1.

103

Texas Tech University Sandeep Chintabathina, December 2010

is not satisfied by A. Since A is complete we conclude that p(i, t, y) ∈ A. In other

words, α(p(t) = y, i) ∈ A. From 7.16, p(t) = y ∈ si. This is possible only if

∃λT.g(T) ∈ process such that λT.g(T)(t) = y and p = λT.g(T) ∈ si.

Therefore, M is a model of Γn. 2

Given a recorded history upto moment l we proved that the theorem holds for l = 1

and then assuming that it holds for l = n − 1 we proved that it holds for l = n.

Therefore, the theorem holds for any arbitrary l > 0.

Q.E.D

7.2 Proof of Theorem 6.1

Theorem 6.1 is stated below.

Given a deterministic timed transition table T 〈Σ, S, S0, C, E〉,

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σ2−→
τ2
〈s2, v2〉

σ3−→
τ3

. . .

is a run of T over timed word (σ, τ) iff 〈s′0, σ1, s
′
1, . . . , . . . 〉 is a path of TD(M(T))

such that 〈s′0, σ1, s
′
1, . . . , . . . 〉 is compatible with r.

Proof

left to right

We must show that given a deterministic timed transition table T 〈Σ, S, S0, C, E〉 if

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σ2−→
τ2
〈s2, v2〉

σ3−→
τ3

. . .

is a run of T over (σ, τ) then ∃ a path p : 〈s′0, σ1, s
′
1, . . . , . . . 〉 ∈ TD(M(T)) such that

p is compatible with r.

Proof by Induction on the number of elements of (σ, τ) read so far. Let n denote

number of elements of (σ, τ) read so far.

Base case:

If n = 0 then no symbols from (σ, τ) have been read so far. T does not have a run

104

Texas Tech University Sandeep Chintabathina, December 2010

over empty input and therefore the hypothesis of the above statement, “if r is a run

of T ”, is false. Hence the statement is trivially true.

For n = 1 we must prove the following.

If r : 〈s0, v0〉−→
σ1

τ1
〈s1, v1〉 is a segment of a run of T after reading the first element of

(σ, τ) then 〈s′0, σ1, s
′
1〉 ∈ TD(M(T)) such that 〈s′0, σ1, s

′
1〉 is compatible with r.

Since 〈s′0, σ1, s
′
1〉 is compatible with

〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

w.r.t transition 〈s0, s1, σ1, λ1, δ1〉 the following is true.

• s′0 is compatible with 〈s0, v0〉

• s′0 |=M(δ1)

• s′0 |= {state = s0, start = 0, end = τ1}

• s′1 |= {state = s1, start = τ1}

• For every x = c ∈ λ1, s
′
1 |= {cur(x) = c, time reset(x) = τ1}

• For every x ∈ C, s′1 |= x = λT.(T − t0) + c such that s′1 |= {cur(x) =

c, time reset(x) = t0}

s′0 is closed under state constraints and triggers ofM(T) and for every x ∈ C , s′0 |=

x = λT.(T − t0) + c such that λT.(T − t0) + c is defined over the interval [0, τ1].

Therefore, s′0 is a state of TD(M(T))

To prove that s′1 is obtained as result of executing σ1 in s′0 we must prove that s′1

satisfies the McCain-Turner equation.

We know thatM(T) contains dynamic law

σ1 causes state = s1 if state = s0,

M(δ1)

105

Texas Tech University Sandeep Chintabathina, December 2010

For every x = c ∈ λ1,M(T) contains

σ1 causes cur(x) = c if state = s0,

M(δ1)

σ1 causes time reset(x) = t0 if end = t0,

state = s0,

M(δ1)

Therefore, Eσ1
(s′0) = {state = s1, cur(x) = c, time reset(x) = t0}

We know that s′1 |= end = t such that t > τi. Therefore, the projection of interval of

s′1 w.r.t s′0, Ts′
0
(s′1) = {start = τ1, end = t}

For every x ∈ C, if x does not appear in λ1 then it is not reset and its initial value is

preserved by inertia. Therefore,

s′0 ∩ s
′
1 = {cur(x) = c, time reset(x) = t0 | x does not appear in λ1}

Let L be a set of atoms such that

L = CnZ(Eσ1
(s′0) ∪ (s′0 ∩ s

′
1) ∪ Ts′

0
(s′1))

where Z is the set of state constraints of M(T). For every x ∈ C, L |= x =

λT.(T − t0) + c such that L |= {cur(x) = c, time reset(x) = t0}. It is obvious

that the set, L, obtained by applying the McCain-Turner equation is the same as s′1.

Therefore, s′1 satisfies the McCain-Turner equation and 〈s′0, σ1, s
′
1〉 ∈ TD(M(T)).

Assume that for n = k the following is true. If

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σk−→
τk

〈sk, vk〉

is a segment of a run of T after reading the first k elements of (σ, τ) then p :

〈s′0, σ1, s
′
1, . . . , . . . , σk, s

′
k〉 ∈ TD(M(T)) such that p is compatible with r.

Inductive step: We must prove that for n = k + 1 if

r′ : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σk−→
τk

〈sk, vk〉
σk+1

−→
τk+1

〈sk+1, vk+1〉

106

Texas Tech University Sandeep Chintabathina, December 2010

is a segment of a run of T after reading the first k + 1 elements of (σ, τ) then

p′ : 〈s′0, σ1, s
′
1, . . . , . . . , σk, s

′
k, σk+1, s

′
k+1〉 ∈ TD(M(T))

such that p′ is compatible with r′.

Since p′ is the extension of p by 〈s′k, σk+1, s
′
k+1〉 and p is a path of TD(M(T)), it

is enough to prove that 〈s′k, σk+1, s
′
k+1〉 is a transition of TD(M(T)).

Since p′ is compatible with r′, the tuple 〈s′k, σk+1, s
′
k+1〉 is compatible with the last

segment of r′

〈sk, vk〉
σk+1

−→
τk+1

〈sk+1, vk+1〉

w.r.t transition 〈sk, sk+1, σk+1, λk+1, δk+1〉. Thus, the following holds.

• s′k |= {state = sk, start = τk, end = τk+1}

• s′k |=M(δk+1)

• s′k+1 |= {state = sk+1, start = τk+1}

• For every x = c ∈ λk+1, s
′
k+1 |= {cur(x) = c, time reset(x) = τk+1}

• For every x ∈ C, s′k+1 |= x = λT.(T − t0) + c such that s′k+1 |= {cur(x) =

c, time reset(x) = t0}

Since p is a path of TD(M(T)), and s′k ∈ p we conclude that s′k is a state of

TD(M(T))

To prove that s′k+1 is obtained as result of executing σk+1 in s′k we must prove that

s′k+1 satisfies the McCain-Turner equation.

We know thatM(T) contains dynamic law

σk+1 causes state = sk+1 if state = sk,

M(δk+1)

107

Texas Tech University Sandeep Chintabathina, December 2010

For every x = c ∈ λk+1,M(T) contains

σk+1 causes cur(x) = c if state = sk,

M(δk+1)

σk+1 causes time reset(x) = t0 if end = t0,

state = sk,

M(δk+1)

Therefore, Eσk+1
(s′k) = {state = sk+1, cur(x) = c, time reset(x) = t0}

We know that s′k+1 |= end = t such that t > τk+1. Therefore, the projection of

interval of s′k+1 w.r.t s′k, Ts′
k
(s′k+1) = {start = τk+1, end = t}

For every x ∈ C, if x does not appear in λk+1 then it is not reset and its initial value

is preserved by inertia. Therefore,

s′k ∩ s
′
k+1 = {cur(x) = c, time reset(x) = t0 | x does not appear in λk+1}

Let L be a set of atoms such that

L = CnZ(Eσk+1
(s′k) ∪ (s′k ∩ s

′
k+1) ∪ Ts′

k
(s′k+1))

where Z is the set of state constraints ofM(T). For every x ∈ C, L |= x = λT.(T −

t0) + c such that L |= {cur(x) = c, time reset(x) = t0}. It is obvious that the set,

L, obtained by applying the McCain-Turner equation is the same as s′k+1. Therefore,

s′k+1 satisfies the McCain-Turner equation and 〈s′k, σk+1, s
′
k+1〉 ∈ TD(M(T)). The

proof follows by induction.

At this point we have shown that if r is a run of T then there exists a path in

TD(M(T)) that is compatible with r.

Right to left

We must show that given a deterministic timed transition table T 〈Σ, S, {s0}, C, E〉

108

Texas Tech University Sandeep Chintabathina, December 2010

and timed word (σ, τ) if p : 〈s′0, σ1, s
′
1, . . . , . . . 〉 is a path of TD(M(T)) that is com-

patible with

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σ2−→
τ2
〈s2, v2〉

σ3−→
τ3

. . .

then r is a run of T over (σ, τ).

Proof by Induction on the length of path p. Let n denote the length of p.

Base case:

If n = 0 there are no transitions and the only state we have is s′0. We are given that

s′0 is compatible with 〈s0, v0〉. Therefore,

• For every x ∈ C, s′0 |= {cur(x) = 0, time reset(x) = 0}

• For every x ∈ C, s′0 |= x = λT.(T − t0) + c such that s′0 |= {cur(x) =

c, time reset(x) = t0}

• For every x ∈ C, s′0 |= x(start) = c iff v0(x) = c

Since s0 ∈ S0 and for every xinC, s′0 |= x(start) = v0(x) = 0 we conclude that

〈s0, v0〉 is the initial extended state for any run of T over (σ, τ).

For n = 1 we must prove that if 〈s′0, σ1, s
′
1〉 is a transition of TD(M(T)) compatible

with

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

then r is a segment of a run of T after reading the first element of (σ, τ).

We have already concluded that 〈s0, v0〉 is the initial extended state for any run

of T . Since 〈s′0, σ1, s
′
1〉 is compatible with r w.r.t transition 〈s0, s1, σ1, λ1, δ1〉 the

following is true.

• s′0 |=M(δ1)

• For every x ∈ C, s′0 |= x(start) = c iff v0(x) = c and s′1 |= x(start) = c iff

v1(x) = c

109

Texas Tech University Sandeep Chintabathina, December 2010

In order to prove that r is a segment of a run we must show that δ1 is satisfied by

the clock interpretation v0 + τ1 − τ0 and v1 = [λ1 → c](v0 + τ1 − τ0).

Since we are dealing with clock variables that keep ticking at the same rate the

following is true. For all x ∈ C, s′0 |= x(end) = x(start) + τ1 − τ0 = y where

s′0 |= {start = τ0 = 0, end = τ1}. Since x(start) is the same as v0(x) we get, for all

xinC, s′0 |= x(end) = v0(x) + τ1 − τ0.

Now replace occurrences of x(end) inM(δ1) by v0(x)+τ1−τ0. The resulting expression

δv0+τ1−τ0
1 is the evaluation of δ1 using clock values given by interpretation v0 + τ1− τ0.

Since s′0 |=M(δ1) v0 + τ1 − τ0 satisfies δ1.

Next, for every x = c ∈ λ1, s
′
1 |= {cur(x) = c, time reset(x) = τ1}. Therefore,

s′1 |= x(start) = v1(x) = λT.(T − τ1) + c(τ1) = c.

For all x that do not appear in λ1, s
′
1 |= {cur(x) = 0, time reset(x) = 0}. Therefore,

s′1 |= x(start) = v1(x) = λT.(T −0)+0(τ1) = τ1. Now consider the clock interpretion

v0 + τ1− τ0. Since τ0 = 0 and for any x, v0(x) = 0 we have v0(x)+ τ1− τ0 = τ1. Thus,

for variables that do not appear in λ1, v1 agrees with v0 + τ1 − τ0.

Hence we conclude that v1 is the interpretation [λ1 → c](v0 + τ1 − τ0).

Since both requirements are met we conclude that

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

is a segment of a run of T after reading the first element of (σ, τ).

Assume that for n = k the following is true.

If p : 〈s′0, σ1, s
′
1, . . . , σk, s

′
k〉 is a path of TD(M(T)) compatible with

r : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σk−→
τk

〈sk, vk〉

then r is a segment of a run of T after reading the first k elements of (σ, τ).

Inductive step: We must prove that for n = k + 1 if

p′ : 〈s′0, σ1, s
′
1, . . . , . . . , σk, s

′
k, σk+1, s

′
k+1〉

110

Texas Tech University Sandeep Chintabathina, December 2010

is path of TD(M(T)) compatible with

r′ : 〈s0, v0〉
σ1−→
τ1
〈s1, v1〉

σk−→
τk

〈sk, vk〉
σk+1

−→
τk+1

〈sk+1, vk+1〉

then r′ is a segment of a run of T after reading the first k + 1 elements of (σ, τ).

Since r is already a segment of a run of T and r′ extends r by

e : 〈sk, vk〉
σk+1

−→
τk+1

〈sk+1, vk+1〉

it is enough to prove that e is a segment of a run of T after reading the k + 1th

element of (σ, τ).

Since p′ is compatible with r′, the tuple 〈s′k, σk+1, s
′
k+1〉 is compatible with e w.r.t

transition 〈sk, sk+1, σk+1, λk+1, δk+1〉. Thus, the following is true.

• s′k |=M(δk+1)

• For every x ∈ C, s′k |= x(start) = c iff vk(x) = c and s′k+1 |= x(start) = c iff

vk+1(x) = c

In order to prove that e is a segment of a run we must show that δk+1 is satisfied by

the clock interpretation vk + τk+1 − τk and vk+1 = [λk+1 → c](vk + τk+1 − τk).

Since we are dealing with clock variables that keep ticking at the same rate the

following is true. For all x ∈ C, s′k |= x(end) = x(start) + τk+1 − τk = y where

s′k |= {start = τk, end = τk+1}. Since x(start) is the same as vk(x) we get, for all

xinC, s′k |= x(end) = vk(x) + τk+1 − τk.

Now replace occurrences of x(end) inM(δk+1) by vk(x)+ τk+1−τk. The resulting ex-

pression δ
vk+τk+1−τk

k+1
is the evaluation of δk+1 using clock values given by interpretation

vk + τk+1 − τk. Since s′k |=M(δk+1) vk + τk+1 − τk satisfies δk+1.

Next, for every x = c ∈ λk+1, s
′
k+1 |= {cur(x) = c, time reset(x) = τk+1}. Therefore,

s′k+1 |= x(start) = vk+1(x) = λT.(T − τk+1) + c(τk+1) = c.

111

Texas Tech University Sandeep Chintabathina, December 2010

Every variable x that does not appear in λk+1 is not reset. So the value of x at

the end of s′k is carried over to the start of s′k+1 by inertia. Therefore, s′k+1 |=

x(start) = vk+1(x) = y such that s′k |= x(end) = y. We know that s′k |= x(end) =

vk(x) + τk+1− τk. Substituting we get s′k+1 |= x(start) = vk+1(x) = vk(x) + τk+1− τk.

Thus, for variables that do not appear in λk+1, vk+1 agrees with vk + τk+1 − τk.

Hence we conclude that vk+1 is the interpretation [λk+1 → c](vk + τk+1 − τk).

Since both requirements are met we conclude that e is a segment of T after reading

the k + 1th element of (σ, τ). Therefore, r′ is a segment of a run of T after reading

the first k + 1 elements of (σ, τ). The proof follows by induction.

At this point we have shown that if p is a path of TD(M(T)) that is compatible with

r then r is a run of T .

Q.E.D

112

Texas Tech University Sandeep Chintabathina, December 2010

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this dissertation we use an action language-logic programming approach to

building intelligent agents acting in hybrid domains. Our approach is based on repre-

senting knowledge of the agent in some language then translating this knowledge into

a logic program and computing models of the logic program. Thus, reducing various

tasks of the agent to asking questions about models of logic programs. To represent

knowledge of an agent acting in a hybrid domain we developed a new action language

H which extends AL with the ability to reason about continuous change. With this

new language we are able to

• elegantly describe hybrid domains.

• write elaboration tolerant action descriptions.

• model a variety of domains which shows that it is a good knowledge represen-

tation language.

• write concise and simpler action descriptions compared to other approaches.

The language is based on transition diagram based semantics, much like AL, which

allows us to distinguish between states and transitions. We developed a methodology

for representing non-trivial examples in this language.

We implemented action descriptions of H by translating them into AC programs

and computing answer sets of the resulting AC programs. In this way, various tasks

of the agent can be reduced to asking questions about answer sets of AC programs.

We provided an encoding of action descriptions of H into AC programs and proved

that this encoding is correct. We used existing solvers such as EZCSP and Luna to

compute answer sets of our encodings. We encoded prediction and planning problems

under both systems and were able to compute answer sets in a reasonable amount

113

Texas Tech University Sandeep Chintabathina, December 2010

of time. Thanks to our encoding and new solvers we are able to solve problems that

could not be solved in the past.

We studied timed automata and discovered that H is more general and expressive

than timed automata. We proved that for every deterministic timed transition table

there is an equivalent action description of H.

In this dissertation we did not describe how to apply our approach to the agent

loop. But an important prerequisite to executing the loop, representing knowledge of

the agent, has been discussed in detail in this dissertation. We were able to confirm

that answer sets of our translations may encode plans to achieve goals of an agent.

8.2 Future Work

Language H is just one step towards representing knowledge of an agent. There

are several other features of a domain that are very interesting from a knowledge

representation point of view. Some of the features we are interested in are mentioned

below.

• We would like to describe non-deterministic effects of actions. From [6] an ac-

tion description with state constraints is capable of describing non-determinism.

However, we would like to express non-determinism as a direct consequence of

an action. For example, when a six-sided die is rolled there are six possible

outcomes. We would like to express the effect of this action using a dynamic

law

roll causes die = {1, 2, 3, 4, 5, 6}

which states that rolling a die can lead to one of possible six successor states.

Languages which are capable of describing such effects already exist. We would

like to investigate these languages to understand their approach.

• We showed how to use language H to reason about resources. However, there

is no proper methodology for reasoning about resources in general. We would

114

Texas Tech University Sandeep Chintabathina, December 2010

like to develop a methodology for discrete domains and later extend it to hybrid

domains.

It is clear that solvers play a vital role in the development of agents. Solvers can

be improved in several ways.

• We would like to test whether existing solvers can solve complex planning prob-

lems in H. So far we are able to run small size planning problems in H but in

complex planning problems the scheduling of actions must be taken into ac-

count to determine whether a plan is feasible. Depending on the results of our

tests we can suggest improvements to the solvers.

• We would like to enhance the language of existing solvers to make them more

suitable for knowledge representation.

• The efficiency of solvers can be further improved by running industrial size

applications of H.

115

Texas Tech University Sandeep Chintabathina, December 2010

BIBLIOGRAPHY

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

[2] M. Balduccini. Representing constraint satisfaction problems in answer set pro-
gramming. In ICLP’09 Workshop on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP09), July 2009.

[3] M. Balduccini and M. Gelfond. Diagnostic reasoning with A-Prolog. TPLP,
3(4-5):425–461, 2003.

[4] C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solv-
ing. Cambridge University Press, Jan 2003.

[5] C. Baral and M. Gelfond. Reasoning about effects of concurrent actions. Journal
of Logic Programming, 31(1-3):85–117, 1997.

[6] C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In J. Minker,
editor, Logic-Based Artificial Intelligence, pages 257–279. Kluwer Academic Pub-
lishers, 2000.

[7] C. Baral, T. Son, and L. Tuan. A transition function based characterization of
actions with delayed and continuous effects. In Proc. of KR-02, pages 291–302,
2002.

[8] S. Brass and J. Dix. A characterization of the stable semantics by partial eval-
uation. In Proc. of the 10th Workshop on Logic Programming, Zurich, October
1994.

[9] S. Chintabathina, M. Gelfond, and R. Watson. Modeling hybrid domains using
process description language. In Proc. of ASP-05, pages 303–317, 2005.

[10] S. Chintabathina, M. Gelfond, and R. Watson. Defeasible laws, parallel actions,
and reasoning about resources. In Proc. of CommonSense’07, pages 35–40. AAAI
Press, 2007.

[11] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. Planning under
incomplete knowledge. Lecture Notes in Computer Science, 1861:807–821, 2000.

[12] E. Erdem and A. Gabaldon. Cumulative effects of concurrent actions on numeric-
valued fluents. In Proc. of AAAI-05, pages 627–632, 2005.

[13] E. Erdem and A. Gabaldon. Representing action domains with numeric-valued
fluents. In Proc. of JELIA-06, pages 151–163, 2006.

116

Texas Tech University Sandeep Chintabathina, December 2010

[14] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic
programs: Semantics and complexity. In Proc. of JELIA-04, volume 3229, pages
200–212. Springer-Verlag, 2004.

[15] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proc. of ICLP-88, pages 1070–1080,
Cambridge, Massachusetts, 1988. The MIT Press.

[16] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9(3/4):365–386, 1991.

[17] M. Gelfond and V. Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–321, 1993.

[18] M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions on AI,
3(16), 1998.

[19] M. Gelfond and T. C. Son. Reasoning with prioritized defaults. In J.Dix, L.
M. Pereira, T. Przymusinski eds, Lecture Notes in Artificial Intelligence, 1471,
pages 164–224, 1998.

[20] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, and H. Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153:49–104, 2004.

[21] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI/IAAI, pages 623–630, 1998.

[22] R. K. Guy. Unsolved problems in number theory. New York; Berlin: Springer-
Verlag, c1981, first edition, 1981.

[23] R. Kowalski and F. Sadri. From logic programming towards multi-agent systems.
Annals of Mathematics and Artificial Intelligence, 25(3-4):391–419, 1999.

[24] J. Lee and V. Lifschitz. Describing additive fluents in action language C+. In
Proc. of IJCAI-03, pages 1079–1084, 2003.

[25] J. Lee and V. Lifschitz. A knowledge module: Buying and selling. In Working
Notes of the AAAI Symposium on Formalizing Background Knowledge, pages
28–32, 2006.

[26] V. Lifschitz. Missionaries and cannibals in the causal calculator. In Anthony
G. CohnFausto GiunchigliaBart Selman, editor, KR2000: Principles of Knowl-
edge Representation and Reasoning, pages 85–96, San Francisco, 2000. Morgan
Kaufmann.

[27] V. Lifschitz. Answer set programming and plan generation. Artificial Intelligence,
138(1-2):39–54, 2002.

117

Texas Tech University Sandeep Chintabathina, December 2010

[28] V. Lifschitz. What is answer set programming? In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 1594–1597. MIT Press, 2008.

[29] Fangzhen Lin. Embracing causality in specifying the indirect effects of actions.
In Proc. of IJCAI-95, pages 1985–1991, 1995.

[30] W. Marek and M. Truszczynski. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective,
pages 375–398. Springer-Verlag, 1999.

[31] N. McCain and H. Turner. A causal theory of ramifications and qualifications.
In C. Mellish, editor, Proc. of IJCAI-95, pages 1978–1984. Morgan Kaufmann,
1995.

[32] N. McCain and H. Turner. Causal theories of action and change. In Proc. of
AAAI-97, pages 460–465, 1997.

[33] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[34] V. Mellarkod. Integrating ASP and CLP Systems: Computing Answer Sets from
Partially Ground Programs. Texas Tech University, 2007.

[35] V. Mellarkod and M. Gelfond. Enhancing asp systems for planning with temporal
constraints. In Proc. of LPNMR 2007, pages 309–314, May 2007.

[36] V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating Answer Set Pro-
gramming and Constraint Logic Programming. In Proc. of ISAIM’08,
http://isaim2008.unl.edu/index.php, 2008.

[37] A. Ricardo Morales. Improving Efficiency of Solving Computational Problems
with ASP. PhD Dissertation. Texas Tech University, December 2010.

[38] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[39] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, 2001.

[40] M. Shanahan. Solving the frame problem. MIT Press, 1997.

[41] Y. Shoham. Nonmonotonic reasoning and causation. Cognitive Science,
14(2):213–252, 1990.

[42] H. Turner. Representing actions in logic programs and default theories: A situ-
ation calculus approach. Journal of Logic Programming, 31(1-3):245–298, 1997.

[43] N. Vinogradova and L.G.Blaine. Exploring the mathematics of bouncing balls.
Mathematics teacher, pages 192–198, October 2010.

[44] Y. Zhang. Handling defeasibilities in action domains. TPLP, 3(3):329–376, 2003.

118

Texas Tech University Sandeep Chintabathina, December 2010

APPENDIX A

% EZCSP code encoding the bouncing ball example from chapter 3.
% We are able to do projection in the presence of triggers and also translate triggers.
% Value of a process fluent will be determined at the end of a state
% depending upon the preconditions and the function associated with it.
% Unable to encode ASP predicates dependent on constraints directly.
% However, found alternative ways that are equivalent.
%*****
% The domain is real numbers
cspdomain(r).

% Defining sorts
% various positions of the ball
pos(ascending).

pos(stationary).

pos(descending).

% Steps of trajectory
step(0).

step(1).

step(2).

step(3).

step(4).

step(5).

step(6).

% Actions in the domain
action(drop).

action(catch).

action(dummy).

action(bounce).

action(fall).

% Fluents
% 1. status (a multi valued fluent)
fluent(status).

range(status,B) :- pos(B).

% 2. height
cspvar(h(I),0,500) :- step(I).

% 3. ht changed
cspvar(ch(I),0,500) :- step(I).

% 4. time changed
cspvar(t(I),0,60) :- step(I).

% 5. velocity
cspvar(v(I),0,200) :- step(I).

% 6. v changed

119

Texas Tech University Sandeep Chintabathina, December 2010

cspvar(cv(I),0,200) :- step(I).

% Declaration of start and end as CSP variables
cspvar(start(I),0,60) :- step(I).

cspvar(end(I),0,60) :- step(I).

% General axioms
% Axioms for start
required(start(0)==0).

required(start(I1)==end(I)) :- step(I),
step(I1),
I1 = I + 1.

% Inertia for Fluents (status is the only non-real fluent here)
v(X,F,I1) :- v(X, F, I),

step(I),
step(I1),
I1 = I + 1,
fluent(F),
range(F, X),
not¬v(X, F, I1).

¬v(X,F,I):- v(Y, F, I),
X! = Y,
range(F, X),
range(F, Y),
fluent(F),
step(I).

% Inertia axioms for “ht changed” and “time changed” are needed.
% Drop, catch and fall effect ht changed and time changed
ab(I) :- occurs(drop,I), step(I).

ab(I) :- occurs(catch,I), step(I).

ab(I) :- occurs(fall,I), step(I).

% Bounce effects v changed and time changed
ab1(I) :- occurs(bounce,I), step(I).

% Inertia axiom for ”ht changed”
required(ch(I1)==ch(I)) :- not ab(I),

step(I),
step(I1),
I1 = I + 1.

% Inertia axiom for ”time changed”
required(t(I1) == t(I)) :- not ab(I),

not ab1(I),
step(I),
step(I1),
I1 = I + 1.

% Inertia axiom for ”v changed”

120

Texas Tech University Sandeep Chintabathina, December 2010

required(cv(I1) ==cv(I)) :- not ab1(I),
step(I),
step(I1),
I1 = I + 1.

% Inertia for ”height” and ”velocity” are not needed because they are defined fluents.
% Causal laws
% 1. Effects of ”drop” and ”catch”
% a. status
% ”drop causes status= descending”
v(descending,status,I+1) :- occurs(drop,I),step(I).

% ”impossible drop if status=descending”
-occurs(drop,I) :- v(descending,status,I),step(I).

% ”impossible drop if status=ascending”
-occurs(drop,I) :- v(ascending,status,I), step(I).

% ”catch causes status=stationary”
v(stationary,status,I+1) :- occurs(catch,I),step(I).

% ”impossible catch if status=stationary”
-occurs(catch,I) :- v(stationary,status,I),step(I).

% b. ht changed
% ”drop causes ht changed=X if height(end)=X”
required(ch(I1)== h(I)) :- occurs(drop,I),step(I1), step(I), I1 = I+1.

% ”catch causes ht changed=X if height(end)=X”
required(ch(I1) == h(I)):- occurs(catch,I), step(I), step(I1), I1=I+1.

% ”impossible drop if height(end)=0”
required(h(I) > 0):- occurs(drop,I), step(I).

% ”impossible catch if height(end)=0 ”
required(h(I) > 0) :- occurs(catch,I), step(I).

% c. time changed
% ”drop causes time changed=T0 if end=T0”
required(t(I1)==end(I)) :- occurs(drop,I), step(I1), step(I), I1=I+1.

% ”catch causes time changed=T0 if end=T0”
required(t(I1)==end(I)) :- occurs(catch,I), step(I1), step(I), I1=I+1.

% 2. Effects of bounce
% a. v changed
% ”bounce causes v changed = X*0.8 if velocity(end)=X”
required(cv(I1) == 8*v(I)/10) :- occurs(bounce, I),

step(I),
step(I1),
I1 = I + 1.

% b. status
% ”bounce causes status=ascending”
v(ascending,status,I+1) :- occurs(bounce,I), step(I).

121

Texas Tech University Sandeep Chintabathina, December 2010

% c. time changed
% ”bounce causes time changed=T0 if end=T0”
required(t(I1)== end(I)):- occurs(bounce,I), step(I1), step(I), I1=I+1.

% ”impossible bounce if status=ascending”
-occurs(bounce,I) :- v(ascending,status,I), step(I).

% ”impossible bounce if status=stationary”
-occurs(bounce,I) :- v(stationary,status,I), step(I).

% ”impossible bounce if velocity(end)=0”
required(v(I) > 0) :- occurs(bounce,I), step(I).

% 3. Effects of fall
% ”fall causes status=descending”
v(descending,status,I+1) :- occurs(fall,I), step(I).

% fall causes ht changed=X if height(end)=X
required(ch(I1) == h(I)):- occurs(fall,I), step(I), step(I1), I1=I+1.

% ”fall causes time changed=T0 if end=T0”
required(t(I1)==end(I)) :- occurs(fall,I), step(I), step(I1), I1=I+1.

% ”impossible fall if status = descending”
-occurs(fall,I) :- v(descending,status,I), step(I).

% ”impossible fall if status=stationary”
-occurs(fall,I) :- v(stationary,status,I), step(I).

% ”impossible fall if height(end)=0”
required(h(I)>0) :- occurs(fall,I), step(I).

% 4. Velocity
% velocity = λT.9.8 ∗ (T − T0) if status=descending, time changed=T0
required(v(I) == 98*(end(I)-t(I))/10) :- v(descending, status, I),

step(I).
% velocity = λT.0 if status=stationary
required(v(I) == 0) :- v(stationary,status,I), step(I).

% velocity = λT.max(0, X − 9.8 ∗ (T − T0)) if status = ascending,
%v changed = X,
%time changed = T0

required(v(I)== max(0,cv(I)-98*(end(I)-t(I))/10)) :-

v(ascending, status, I),
step(I).

% 5. height
% We will be defining the value of height at the end of every step.
% height = λT.max(0, X − 4.9 ∗ (T − T0)2) if ht changed = X,

%time changed = T0,
%status = descending

122

Texas Tech University Sandeep Chintabathina, December 2010

required(h(I) == max(0, ch(I) − 49 ∗ (end(I)− t(I)) ∗ (end(I)− t(I))/10)) : −
v(descending, status, I),
step(I).

% height = λT.X if ht changed=X, status= stationary
required(h(I) == ch(I)) :- v(stationary,status,I), step(I).

% height = λT.X ∗ (T − T0)− 4.9 ∗ (T − T0)
2 if v changed = X,

%time changed = T0,
%status = ascending

required(h(I)==cv(I)*(end(I)-t(I))-49*(end(I)-t(I))*(end(I)-t(I))/10):-

v(ascending, status, I),
step(I).

% TRIGGERS
% status=descending, height(end)=0 triggers bounce
1{p(I),q(I)}1:- v(descending,status,I), step(I).

required(end(I) == pow(2*ch(I)*10/98,1/2) + t(I)) :- p(I), step(I).

required(end(I) < pow(2*ch(I)*10/98,1/2) + t(I)) :- q(I), step(I).

% If height at end==0 and status=descending then bounce occurs
occurs(bounce,I) :- required(end(I) == pow(2 ∗ ch(I) ∗ 10/98, 1/2) + t(I)),

step(I),
v(descending, status, I).

% Similarly for fall
1{fall(I),nfall(I)}1 :- v(ascending,status,I), step(I).

% fall time = time it hits ground + u/g
required(end(I)== cv(I)*10/98 + t(I)) :- fall(I), step(I).

required(end(I) < cv(I)*10/98 + t(I)) :- nfall(I), step(I).

% status=ascending, velocity(end)=0 triggers fall
occurs(fall,I) :- required(end(I) == cv(I) ∗ 10/98 + t(I)),

step(I),
v(ascending, status, I).

% HISTORY
% Initial values of height and velocity
required(ch(0)==500).

required(cv(0)==0).

% Initial value of other fluents
required(t(0)==0).

v(stationary,status,0).

occurs(drop,0).

required(end(0)==5).

occurs(catch,1).

required(end(1)==10).

123

Texas Tech University Sandeep Chintabathina, December 2010

occurs(drop,2).

required(end(2)==20).

occurs(dummy,3).

required(end(3)==25).

occurs(catch,6).

required(end(6)==40799/1000).

% End of Program

% Answer set returned by EZCSP(only showing relevant atoms)

v(stationary,status,0) v(descending,status,1) v(stationary,status,2)
v(descending,status,3) v(descending,status,4) v(ascending,status,5)
v(descending,status,6) v(stationary,status,7) occurs(drop,0) occurs(catch,1)
occurs(drop,2) occurs(dummy,3) occurs(bounce,4) occurs(fall,5) occurs(catch,6)
ch(0)=500.0 ch(1)=500.0 ch(2)=377.5 ch(3)=377.5 ch(4)=377.5 ch(5)=377.5
ch(6)=241.6 cv(0)=0.0 cv(1)=0.0 cv(2)=0.0 cv(3)=0.0 cv(4)=0.0
cv(5)=68.81 cv(6)=68.81 end(0)=5.0 end(1)=10.0 end(2)=20.0 end(3)=25.0
end(4)=28.77 end(5)=35.79 end(6)=40.79 h(0)=500.0 h(1)=377.5 h(2)=377.5
h(3)=255.0 h(4)=0.0 h(5)=241.60 h(6)=119.10 start(0)=0.0 start(1)=5.0
start(2)=10.0 start(3)=20.0 start(4)=25.0 start(5)=28.77 start(6)=35.79 t(0)=0.0
t(1)=5.0 t(2)=10.0 t(3)=20.0 t(4)=20.0 t(5)=28.77 t(6)=35.79 v(0)=0.0 v(1)=49.0
v(2)=0.0 v(3)=49.0 v(4)=86.01 v(5)=0.0 v(6)=48.99

124

Texas Tech University Sandeep Chintabathina, December 2010

APPENDIX B

% Luna encoding of the brick drop example from chapter 2.
% Given an initial situation and a sequence of actions
% we are able to predict the values of fluents.
% We begin with defining sorts

% Regular sorts
% a.Boolean values
b val(true).

b val(false).

#domain b val(B;B1).

% b.Actions
action(drop).

action(catch).

#domain action(A).

% c.Fluents
fluent(holding).

range(holding,B).

% d.Indices of the trajectory
const n=2.

step(0..n).

#domain step(I;I1;I2).

next(I,I+1):- I<n.

% Constraint sorts
% a.time sort
#csort time(0..60).

% b.meters
#csort meters(0..500).

% Declaration of mixed predicates
#mixed start(step,time).

#mixed end(step,time).

%mixed predicates for ht changed, time changed and height
#mixed ch(step,meters).

#mixed tc(step,time).

#mixed height(step,meters).

% Domain Independent axioms
% Axioms to define start and end times of a step

125

Texas Tech University Sandeep Chintabathina, December 2010

% Start time of step 0 is 0
<∼ start(0,T), T!=0.

% start of I+1 defined in terms of end of I
<∼ start(I1, T1),

next(I, I1),
end(I, T),
T! = T1.

% Uniqueness axiom
% A fluent has a unique value in every step
¬val(Y1,P,I) :- val(Y2, P, I),

Y1! = Y2,
fluent(P),
range(P, Y1),
range(P, Y2).

% Inertia axiom
val(Y,P,I1) :- val(Y, P, I),

not ¬val(Y, P, I1),
next(I, I1),
I < n,
fluent(P),
range(P, Y).

ab(I) :- occurs(drop,I).

ab(I) :- occurs(catch,I).

¬ab(I) :- not ab(I).

% Inertia for ht changed and time changed
<∼ ch(I, X),

next(I, I1),
ch(I1, X1),
I < n,
¬ab(I),
X! = X1.

<∼ tc(I, T),
tc(I1, T1),
next(I, I1),
I < n,
¬ab(I),
T! = T1.

% Height is well defined so no need to write inertia axiom for it
% Domain Dependent axioms
% 1. Effects of ”drop” and ”catch”
% 1a. holding
% drop causes ¬holding
val(false,holding,I+1) :- occurs(drop,I).

126

Texas Tech University Sandeep Chintabathina, December 2010

% impossible drop if ¬holding
¬occurs(drop,I) :- val(false,holding,I).

% catch causes holding
val(true,holding,I+1) :- occurs(catch,I).

% impossible catch if holding
¬occurs(catch,I) :- val(true,holding,I).

% 1b. ht changed
% drop causes ht changed=X if height(end)=X
<∼ occurs(drop, I),

height(I, X),
next(I, I1),
I < n,
ch(I1, X1),
X1! = X.

% catch causes ht changed if height(end) = X
<∼ occurs(catch, I),

height(I, X),
next(I, I1),
I < n,
ch(I1, X1),
X1! = X.

% 1c.time changed
% drop causes time changed= T0 if end=T0
<∼ occurs(drop, I),

end(I, T),
next(I, I1),
tc(I1, T1),
T! = T1.

% catch causes time changed=T0 if end=T0
<∼ occurs(catch, I),

end(I, T),
next(I, I1),
tc(I1, T1),
T! = T1.

%2. Definition of height
% We use middle rules to define height at end of each step

127

Texas Tech University Sandeep Chintabathina, December 2010

% height = λT.X − 4.9 ∗ (T − T0)2 if ht changed = X,
%time changed = T0,
%¬holding.

compute ht(I)<∼ val(false, holding, I),
ch(I, X),
tc(I, T),
end(I, T1),
height(I, X1),
d(X, X1, T, T1).

% Forcing to compute height
¬compute ht(I):- not compute ht(I).

:- ¬compute ht(I), val(false,holding,I).

% height = λT.X if ht changed=X, holding.
<∼ val(true, holding, I),

ch(I, X),
height(I, X1),
X1! = X.

% defined rules
{: d(X,X1,T,T1) <- X1 = max(0,X - 4.9*(T1-T)*(T1-T)). :}
% Executablity conditions involving “height”
% “impossible drop if height(end)=0”
<∼ occurs(drop,I), height(I,X), X==0.

% “impossible catch if height(end)=0”
<∼ occurs(catch,I), height(I,X), X==0.

%History
% Initially the agent is not holding the ball
val(false,holding,0).

% The height is 500 units
<∼ ch(0,X), X!=500.

% Initial value of time changed
<∼ tc(0,T), T!=0.

% Sequence of actions
occurs(catch,0).

<∼ end(0,T), T!= 2.

occurs(drop,1).

<∼ end(1,T),T!=5.

occurs(catch,2).

<∼ end(2,T), T!=10.

% End of Program

128

