
Modeling Cooperative Multi-Agent Systems

Gregory Gelfond1 and Richard Watson2

Texas Tech University

Abstract. Current work in the application of answer-set programming
for the development of reasoning agents has largely focused on single-
agent domains. A substantial body of research in this area has been
compiled describing a detailed methodology for their development based
upon a theoretical foundation. In this paper we present an extension of
the current body of work towards the domain of cooperative multi-agent
systems. The fundamental notion of an agent is extended to enable com-
munication between agents through the introduction of special named
sets of fluents known as requests. Once that has been done, we define
the concepts of an agent’s local and global perspectives and their re-
spective diagrams which serve as the theoretical foundation of this work.
Having established this baseline, we present an axiomatization of multi-
agent communication. Finally a series of results detailing some of the
properties of the framework are presented.

1 Introduction

Current work in the application of answer-set programming for the development
of reasoning agents has largely focused on single-agent domains. A substantial
body of research in this area has been compiled describing a detailed methodol-
ogy for their development based upon a theoretical foundation.

The goal of this work is to present an overview of an extension to the exist-
ing frameworks dealing with single-agent domains towards domains containing
multiple cooperating agents.

We begin by extending the principle notion of an agent. Previous work on
single-agent systems has largely abstracted out the means by which an agent
might communicate with the outside world. In order to represent communica-
tion between agents the definition of an agent has been extended via the addi-
tion of named sets of fluents known as requests. Requests provide a language
for communication between the agents that may be present in a given system.
Depending on the particular system being represented, requests may be used
in the formation of messages which the agents may pass between themselves.
Building on our redefinition of concept of an agent, we define the notions of a
collaborative multi-agent system and a special class of actions known as mes-
sage passing actions. Depending on the particular task at hand, an agent reasons
about the effects of such actions from either a local perspective, or a global per-
spective. These modes of reasoning are then described by an artifact called the
communication module, which uses a combination of action languages and logic

2

programming under the answers-set semantics as its foundation. The particular
languages used are the action language AL, and the answer-set programming
language CR-Prolog.

The rest of the introduction is structured as follows: a brief overview of the
action language AL will be presented, followed by a description of the syntax
and semantics of the relevant portions of CR-Prolog. Finally, a description of
the current framework for modeling single-agent systems will be given.

1.1 The Action Language AL

Briefly stated, action languages are a class of declarative languages used for de-
scribing the effects of actions. They have a simple syntax and semantics, and yet
are powerful enough to represent many complex reasoning domains [?]. Collec-
tions of statements in an action language are termed action descriptions, and de-
fine transition diagrams whose nodes correspond to possible states of the world,
and whose arcs are labeled by actions. An arc 〈σ, a, σ́〉 states that if an action
a occurs in state σ, the resulting state will be σ́. In addition to specifying the
effects of actions, it is necessary to specify what is left unchanged by the occur-
rences of actions. This is known as the frame problem [?], and its solution lies
in an elegant and precise representation of the inertia axiom.

Action descriptions of AL are comprised of collections of dynamic causal
laws, static causal laws, and impossibility conditions. Dynamic causal laws are
statements of the form:

a causes f if l0, . . . , ln

where a is an action and f and l0, . . . , ln are fluent literals. Laws of this form
are read as “action a causes f to be true if l0, . . . , ln.” Static causal laws have
the form:

caused f if l0, . . . , ln

where f and l0, . . . , ln are fluent literals. Static causal laws (also known as state
constraints) are read as: “f is true whenever l0, . . . , ln are true.” Unlike dynamic
causal laws, state constraints define properties of states, rather than the direct
effects of an action. They may be used however to specify the indirect effects of
actions. Lastly, impossibility conditions (also known as executability conditions)
have the form:

a impossible if l0, . . . , ln

where as before, a is an action and l0, . . . , ln are fluent literals. Rules such as
this are used to state that “action a may not occur if l0, . . . , ln are true.” From
the standpoint of the transition system, such rules specify that an outgoing arc
labeled by a may not originate in a state that satisfies l0, . . . , ln.

The semantics of an action description of AL is given by its transition dia-
gram. For a detailed description of the semantics of AL, the reader is referred
to [?].

3

1.2 CR-Prolog

CR-Prolog is an extension of the logic programming language A-Prolog devel-
oped by Michael Gelfond and Vladimir Lifschitz in [?] which introduces the
notion of consistency-restoring rules and the ability to assign preferences over
them. When taken together these new constructs allow for a more graceful han-
dling of planning and diagnosis. For a complete description of the syntax and
semantics of CR-Prolog the reader is referred to [?]. What follows is a descrip-
tion (taken in part from the one presented in [?] with permission of the author)
of the relevant language constructs. A program of this subset of CR-Prolog is a
collection of rules of the following form:

l0 or . . . or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln

and

r : l0 or . . . or lk
+← lk+1, . . . , lm, not lm+1, . . . , not ln

where l0 . . . ln are literals, not is negation-as-failure (also known as default nega-
tion), and r is the name of a rule. Rules of the first form are termed regular rules,
and are read as: “if one has reason to believe in lk+1, . . . , lm, and no reason to
believe in lm+1, . . . , ln, then one must believe in one element of l0 . . . lk.” Rules of
the second form are called consistency restoring rules, (also known as cr-rules),
and are read as “if one has reason to believe in lk+1, . . . , lm, and no reason to
believe in lm+1, . . . , ln, then one may possibly believe in one element of l0 . . . lk.”
In addition, there is an underlying assumption that such rules are used as little
as possible.

Now that we have introduced the syntax of the language, a brief description
of its semantics is given. It should be noted that this discussion assumes that the
reader is familiar with the semantics of A-Prolog. Given a CR-Prolog program
Π, we denote the set of regular rules of Π by Πr. Similarly, the set of cr-rules of
Π is denoted by Πcr. In addition, let α(r) denote the regular rule obtain from
the cr-rule by replacing the symbol +← with ←. α is extended in a similar vein
to apply to sets of cr-rules.

Definition 1 (abductive support). Given a CR-Prolog program Π, a min-
imal (with respect to set theoretic inclusion) set R of cr-rules of Π, such that
Πr ∪ α(R) is consistent (i.e. has an answer set) is called an abductive support
of Π.

Definition 2 (answer set of a CR-Prolog program). Given a CR-Prolog
program Π, a set of literals, A, is called an answer set of Π, if it is an answer
set of a regular program Πr ∪ α(R) for some abductive support R of Π.

2 The Multi-Agent Framework

2.1 Systems of Agents

When reasoning about systems which may consist of multiple agents, we typ-
ically operate under the assumption that the agents are able to communicate

4

amongst themselves. Agents in such systems may ask other agents of the domain
to perform various tasks. In order to model the ability of agents to communicate,
the definition of an agent must be extended. This definition is extended by the
introduction of requests, which present a language for communication between
the agents in a given system. Depending on the nature of the domain being
represented, these requests may be used in the formation of messages which the
agents may pass between themselves.

Definition 3 (agent). An agent, α, is defined as a 4-tuple 〈F,A,R,D〉 where:

. F is a set of fluents.

. A is a set of elementary actions.

. R is a collection of named sets of fluents from F known as requests.

. D is an action description in the language of AL with signature Σ = F ∪A.

Given an agent α, Fα denotes the set of α’s fluents, Aα denotes the set of α’s
actions, etc.

Having defined the notion of an agent, we now introduce the concepts of a
multi-agent system and a collaborative multi-agent system.

Definition 4 (multi-agent system). A multi-agent system, M , is defined as
a finite, non-empty set of agents such that:

∀α, β ∈M,Fα ∩ Fβ = ∅ ∧Aα ∩Aβ = ∅.

The conditions placed upon a multi-agent system seem restrictive and are
discussed in greater detail in [?].

Definition 5 (collaborative multi-agent system). A collaborative multi-
agent system, M , is defined as a multi-agent system, combined with the 3-tuple
〈C,S,M〉 where:

. C is a function which given an agent α and a request r ∈ Rα, returns a set
of agents known as the clients of r.

. S is a function which given an agent α and a request r ∈ Rα, returns a set
of agents known as the servers of r.

. M is a set of ordered pairs of the form 〈r, β〉 known as messages such that
β ∈M , r ∈ Rα for some α 6= β ∈M , and β ∈ S(α, r)

In addition to the above, C, S, and M must satisfy the following properties:

. If β ∈ C(α, r) then ∀γ ∈M, β 6∈ S(γ, r).

. If β ∈ C(α, r) then α ∈ S(β, r).

. If β ∈ S(α, r) then α ∈ C(β, r).

5

2.2 Agent Communication

An agent’s knowledge defines a pair of transition diagrams known as its local
and global diagrams which are used by the agent to reason from what are termed
its local and global perspectives. These perspectives differ on how actions which
involve message passing are handled. These perspectives are defined by what
is termed communication module which is split into two sub-modules: the lo-
cal module, Clocal, and global module, Cglobal. Clocal is defined by an action
description in the language AL, while Cglobal is defined by a logic program in
CR-Prolog.

The Local Perspective Consider the following scenario: “John wants to pre-
pare for a trip. In order to do so he must pack his bags and obtain a ticket. John
has a secretary that is able to obtain a ticket for him.” John’s reasoning about
this domain could be described as follows:

. John is ready when he has his tickets and is packed.

. Packing bags causes them to be packed.

. Having his secretary purchase tickets for him causes him to have tickets.

The first two statements can be captured by the following statements of AL:

caused ready if packed, ticket.
pack causes packed.

How could we represent the final statement? When we represent agents we only
represent their knowledge of the domain. John is not concerned with how his
secretary obtains the tickets. Rather, he only knows that when asked, the secre-
tary obtains the tickets for him. This line of reasoning can be captured by the
following dynamic causal law:

ask causes ticket.

We call this reasoning from a local perspective. When reasoning in this per-
spective an agent abstracts out all of the details concerning the actions other
agents may take. The sole focus is how his requests affect his own model of
the world. This approach is generalized through the use of named sets of flu-
ents called requests. To make this law more general, and therefore applicable
to other commands that John may at some point issue to his secretary, we in-
troduce into our representation the request buy(ticket, john) which contains the
fluent ticket. Once this is accomplished, we represent this final statement via
the following dynamic causal law:

send(Request) causes Fluent if Fluent ∈ Request.

This is precisely what the local communication module, Clocal accomplishes. The
representation of John in our framework is given below:

. Fjohn = {ticket, packed, ready}.

6

. Ajohn = {pack}.

. Rjohn = {buy(ticket, john) = {ticket}}.

. Djohn =
{

caused ready if packed, ticket.
pack causes packed.

}
and the causal law:

send(Request) causes Fluent if Fluent ∈ Request.

is part of Clocal.
When taken together Djohn and Clocal define what is known as John’s local

diagram.

Definition 6 (local diagram). Given an agent α, α’s local diagram, Tlocal(α),
is the diagram defined by the action description Dα ∪ Clocal.

Example 1. Using our previous description of John, Djohn ∪Clocal is as follows:

Djohn ∪ Clocal =

caused ready if packed, ticket.
pack causes packed.
send(Request) causes Fluent if Fluent ∈ Request.

Which gives the following local diagram for John:

packedpack

ticket

send

packed,
ticket,
ready

pack

sendsend, pack

Fig. 1. local diagram for agent John

The Global Perspective As we mentioned previously, an agent’s local per-
spective is used by the agent to reason about his own actions. However, it is at
times necessary for an agent to reason about how his actions may actually play
out. It is highly unlikely that John’s secretary is capable of obtaining his tickets
instantly. Consequently John knows that he must wait for some unspecified pe-
riod of time, depending on how many other tasks his secretary has to perform.
His new model is described as follows:

. John is ready when he has his tickets and is packed.

7

. Packing bags causes them to be packed.

. Issuing a request causes that request to become pending.

. If his request is satisfied, its corresponding effect is satisfied.

. Until his request is satisfied John has to wait.

Again, John is not concerned with the actual actions that his secretary may
perform to obtain the tickets. He does however need to understand that he must
wait for her to get them. This type of reasoning is termed reasoning from a global
perspective. With the exception of the first and last statements, the above rules
are not expressible in AL. They are however easily represented in A-Prolog (and
hence in CR-Prolog), and their representation comprises the module Cglobal.

Taken together, Djohn and Cglobal define what is known as John’s global
diagram.

Definition 7 (global diagram). Given an agent α, α’s global diagram, Tglobal(α),
is the transition diagram defined by the following logic program:

Πglobal(α) = Πα ∪Πinertia ∪Πeffects ∪Πdefault ∪ Cglobal.

Where Πα is a logic program representation of the agent; Πinertia is a logic
program describing inertia; Πeffects is a logic program describing the general
effects of actions; and Πdefault is a logic program characterizing the behavior of
default fluents. An in depth presentation of these modules is given in [?].

Example 2. Using our previous description of John, a high level presentation of
Djohn ∪ Cglobal is given below:

Djohn∪Cglobal =

caused ready if packed, ticket.
pack causes packed.
send(Request) causes pending(Request).
pending(Request) triggers wait(Request).
wait(Request) causes satisfied(Request) or ¬satisfied(Request).
caused Fluent if satisfied(Request), F luent ∈ Request.

Which describes the global diagram presented in figure 2 (note that the notation
has been simplified somewhat).

The System Perspective Every agent of a multi-agent system has its own
local and global perspectives of the domain that it uses to reason about the
effects of its actions. If we take a step back however, and look at the system
of agents as a whole, the global perspectives of the agents may be combined
to form what is termed the system perspective, characterized by the system
diagram defined as follows:

Definition 8 (system diagram of a collaborative multi-agent system).
Given a collaborative multi-agent system, M , M ’s system diagram, Tsystem(M),
is the transition diagram defined by the following logic program:

8

packed

pack

pending

wait

send

packed,
pending

send

send, pack pack, wait

satisfied,
ticket

wait

wait

packed,
satisfied,

ticket,
ready

wait

pack, wait
packed,
ticket,
ready

pack

Fig. 2. global diagram for agent John

Πsystem(M) = (∪
α∈M

Πα) ∪Πinertia ∪Πeffects ∪Πdefault ∪ Cglobal.

The system diagram is used to describe the behavior of a multi-agent system
as a whole, showing the interactions of all the agents of the system. This dia-
gram is used primarily in diagnosis (where it plays the same role as the actual
transition diagram mentioned in [?]), and in analyzing the properties of a given
multi-agent system.

2.3 The Multi-Agent Loop

When describing single-agent systems, an agent’s behavior is characterized by
what has been termed the agent-loop [?] (also known as the observe-think-act
loop). Essentially, the agent loops through the following steps:

. observe the state of the world

. if these observations fail to match up with the agent’s expectations, identify
the reason for the discrepancy

. select a goal

. generate a sequence of actions to achieve the goal

. execute the first element of the sequence

In our framework for multi-agent systems the structure of the loop remains
unchanged. What does change is how the agent performs the steps of planning
and diagnosis. This is where local and global perspectives play come into play.

In the single-agent version of the loop, planning is reduced to finding a path
from the agent’s current/initial state to a goal state in the agent’s transition dia-
gram. This basic template is observed in our framework as well, except that path
generated is from the agent’s local diagram, rather than the diagram described
by the agent’s action description.

Example 3. Recall that our previous description of John, yielded the local dia-
gram described in figure 1. Suppose that John has the goal of becoming ready.
During the planning phase of the multi-agent loop John could generate the fol-
lowing trajectory, π as a possible plan:

9

packedpack
packed,
ticket,
ready

send

Fig. 3. possible plan, π, for achieving ready

Once a plan has been generated, the agent uses its global diagram to generate
a sequence of actions describing how the execution of its plan may play out in
the presence of other agents. This sequence forms the agent’s expectations con-
cerning the results of its actions, and is captured by the notion of an expansion
of a path.

Definition 9 (expansion of a transition). Let τ = 〈σ, a, σ́〉 be a transition
in Tlocal(α) for some agent α. The expansion of τ in Tglobal(α), denoted by τ́ , is
defined as follows:

. If a∩Aα = a, then τ́ is a transition 〈δ, á, δ́〉 ∈ Tglobal(α) where σ ⊆ δ, σ́ ⊆ δ́,
and a ⊆ á, where á \ a = ∅, or á \ a only contains actions of type wait.

. If a contains an action of type send whose corresponding message is m, τ́ is
a path in Tglobal(α) of the form:

〈δ, á, δ0, a0, . . . , an, δ́〉

where a0, . . . , an are actions of type wait whose corresponding message is
m, and σ ⊆ δ, σ́ ⊆ δ́, and a ⊆ á.

Definition 10 (expansion of a path). Let π = 〈σ1, a1, σ2, a2, . . . , an, σn〉 be
a path in Tlocal(α) for some agent α. The expansion of π in Tglobal(α), is any
path π́ = β ◦ γ ∈ Tglobal(α) such that:

. β is an expansion of 〈σ1, a1, σ2〉 whose final state is δ2

. γ is an expansion of 〈σ2, a2, . . . , an, σn〉 whose initial state is δ2

Example 4. Given the possible plan from example 3, John could use the following
expansion to form his expectations of how the plan might actually be realized:

packed
packed,
pending

send

wait

packed,
satisfied,

ticket,
ready

waitpack

Fig. 4. an expansion of π from example 3

10

3 Properties of the Framework

In this section we present several properties of multi-agent systems that are
reflected in various characteristics of an agent’s local and global diagrams.

3.1 Feasibility of Plans

Once an agent selects a goal, he then uses his local perspective to determine
a plan which will achieve it. Subsequently, he uses his global perspective to
determine how the plan may play out in the domain by determining its possible
expansions. Is this always possible however? Do paths in an agent’s local diagram
always have expansions in the global diagram? In this section we present some
results showing that this is the case, that the paths of an agent’s local diagram
are guaranteed to have at least one expansion in the agent’s global diagram. For
proofs of the subsequent theorems the reader is referred to [?].

We begin by with a result stating that the states of an agent’s local diagram
may be extended to obtain states in the agent’s global diagram.

Lemma 1. Let α be an agent, and let σ be a state of Tlocal(α). Then there
exists a state δ ∈ Tglobal(α) such that σ ⊆ δ.

A similar pair of results specifying that the arcs of an agent’s local diagram
may be extended to the global diagram are given below:

Lemma 2. Let α be an agent, ε be a single elementary action such that type(ε) 6=
send, and let τ = 〈σ, ε, σ́〉 be a transition in Tlocal(α). Then for any state
δ ∈ Tglobal(α) such that σ ⊆ δ, there exists an expansion τ́ = 〈δ, έ, δ́〉 ∈ Tglobal(α)
of τ .

Lemma 3. Let α be an agent, a be a single elementary action such that type(a) =
send, and let τ = 〈σ, a, σ́〉 be a transition in Tlocal(α). There exists an expansion
τ́ = 〈δ, a, δ0, a0, . . . , an, δ́〉 ∈ Tglobal(α) of τ , where a0, . . . , an are actions of type
wait whose message corresponds to that of a, and σ ⊆ δ, and σ́ ⊆ δ́.

Lastly, the relationship between the paths of an agent’s local and global
diagrams is given by the following theorem.

Theorem 1. Let α be an agent, and let π be a path whose arcs are labeled
by elementary actions in Tlocal(α). Then there exists an expansion π́ of π in
Tglobal(α).

4 Conclusions and Future Work

In this work we presented a general overview of a framework for reasoning about
cooperative multi-agent systems. We began by extending the fundamental notion
of an agent to facilitate communication via the introduction of requests. We
then introduced the notions of an agent’s local and global perspectives and

11

their respective diagrams. These form the basis of the framework by providing
a foundation upon which an agent perceives the world around him. Together
these diagrams are used by an agent for planning, and reasoning about their
execution. In addition we introduced the system diagram, which is used as a
means of modeling the “actual state of the world” for the purposes of diagnosis
and reasoning about the system at large. Having introduced the basic framework
we then presented an axiomatization of reasoning about agent communication.
An example detailing a simple system was presented followed by a series of
results describing the relationship between the paths in an agent’s local diagram
and those of it’s global diagram.

