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Abstract The aim of this paper is to demonstrate that A-Prolog is a powerful
language for the construction of reasoning systems. In fact, A-Prolog allows to
specify the initial situation, the domain model, the control knowledge, and the
reasoning modules. Moreover, it is efficient enough to be used for practical tasks
and can be nicely integrated with programming languages such as Java. An exten-
sion of A-Prolog (CR-Prolog) allows to further improve the quality of reasoning
by specifying requirements that the solutions should satisfy if at all possible. The
features of A-Prolog and CR-Prolog are demonstrated by describing in detail the
design of USA-Advisor, an A-Prolog based decision support system for the Space
Shuttle flight controllers.

Keywords Knowledge Representation, Answer Set Programming, Reasoning,
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1 Introduction

In recent years, A-Prolog — a knowledge representation language based on the
answer set semantics [28] — was shown to be a useful tool for knowledge rep-
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resentation and reasoning [42,25,10]. The language is expressive and has a well
understood methodology of representing defaults, causal properties of actions and
fluents, various types of incompleteness, etc.

In this paper we describe an A-Prolog based methodology for modeling of and
reasoning about complex dynamic systems. We show that A-Prolog can be used
to specify all the elements of the model: the specification of the initial situation,
the causal laws that rule the evolution of the domain, the reasoning modules, and
the control knowledge used to guide the reasoning processes.

We also show how our methodology can be enhanced, using a recently developed
extension of A-Prolog called CR-Prolog [7,9], to allow the specification of re-
guirements that the solutions found by the reasoning modules should satisfy if at
all possible. The addition of such requirements substantially improves the quality
of reasoning.

We describe our methodology by showing its application to building USA-
Advisor, a decision support system for the Reaction Control System (RCS) of
the Space Shuttle. This application builds on a previous investigation [46, 14, 30],
where a substantially smaller part of RCS was represented in Prolog and used to
check correctness of plans.

The RCS is the Shuttle’s system that has primary responsibility for maneuvering
the aircraft while it is in space. It consists of fuel and oxidizer tanks, valves and
other plumbing needed to provide propellant to the maneuvering jets of the Shut-
tle. It also includes electronic circuitry: both to control the valves in the fuel lines
and to prepare the jets to receive firing commands. Overall, the system is rather
complex, in that it included?2 tanks,44 jets, 66 valves,33 switches, and around

160 computer commands (computer-generated signals).

When an orbital maneuver is required, the astronauts must configure the RCS
accordingly. This involves changing the position of several switches, which are
used to open or close valves or to energize the proper circuitry. Normally, the
sequences of actions required to configure the RCS are pre-determined before the
beginning of the mission and the astronauts simply have to search for the sequence
in a manual. However, faults (e.g. the inability to move a switch) may make these
pre-scripted sequences of actions inapplicable. The number of possible sets of
failures is too large to plan in advance for all of them. In this case, the astronauts
communicate the problem to the ground flight controllers, who come up with a
new sequence of actions to perform the desired task. The main challenge of this
step is to find plans that achieve the desired results without causing any possibly
dangerous side effect.

USA-Advisor can be viewed as a part of a decision support system for Shuttle
flight controllers. It is an intelligent system capable of verifying and generating
plans that prepare the RCS for a given maneuver. As such, it can be used when
the flight controllers have to come up with a plan for an emergency situation. Of
course, it can also be used “off-line” to pre-determine, before the beginning of the
mission, the plans for possible fault conditions.

The main issues involved in building the USA-Advisor are:



— Modeling the RCS as a dynamic domain: this includes representing informa-
tion at very different levels of detail. For instance, on one level we need to
describe the effects of the valve positions on the plumbing system. In another
level we specify the electrical circuits used to control the valves.

— Representing knowledge in several separate modules and combining the ap-
propriate modules depending on the task given to the system — notice that one
of the modules had been independently developed before the start of the USA-
Advisor project.

— Developing a planning module containing a large amount of heuristic infor-
mation (which substantially improves quality of the plans and efficiency of the
search).

The research on USA-Advisor has been partially funded by United Space Al-
liance (USA), the company responsible for managing various systems of the Space
Shuttle, including the RCS. USA-Advisor is currently being developed by the pro-
grammers at USA, who are working on formalizing models of other systems of
the Shuttle, as well as creating a graphical interface suitable for use by the flight
controller.

2 A-Prolog

A-Prolog is a knowledge representation language with roots in the research on
the semantics of logic programming languages and non-monotonic reasoning [27,
28]. Over time, several extensions of the original language have been proposed
[18,39,38,25,20,17]. In this work, we used an extension of A-Prolog along the
lines of [25] and [39].

By the termbasic A-Prologwe identify the language introduced in [27], and later
extended with epistemic disjunction [28,26]. The term basic A-Prolog programs
used later is intended as a synonyndigjunctive program

The syntax of A-Prolog is determined by a typed signafli@nsisting of types,

typed object constants, and typed function and predicate symbols. We assume that
the signature contains symbols for integers and for the standard functions and
relations of arithmetic. Terms are built as in first-order languages.

By simple arithmetic termef X~ we mean its integer constants. Bymplex arith-
metic termf > we mean terms built from legal combinations of arithmetic func-
tions and simple arithmetic terms (e3f-2-5 is a complex arithmetic term, but
3+-25is not).

Atoms are expressions of the forpity,...,t,), wherep is a predicate symbol
with arity n andt;’s are terms of suitable types. Atoms formed by arithmetic re-
lations are calledrithmetic atomsAtoms formed by non-arithmetic relations are
calledplain atomsWe allow arithmetic terms and atoms to be written in notations
other than prefix notation, according to the way they are traditionally written in
arithmetic (e.g. we writ@ = 1+ 2 instead of= (3,+(1,2))).

Literals are atoms and negated atoms, i.e. expressions of the-fpfim. .. . tn).
Literals p(ts, .. .,t,) and—p(ty,...,t,) are calleccomplementaryBy | we denote
the literal complementary to



Definition 1 A basic ruler (of A-Prolog) is a statement of the form:
hi ORhz OR ... OR hg «—I1,l2,... I, NOt i1, N0t o, ..., . (1)

where lg,...,lI, are literals, andh’s and ln.1,...,In are plain liter-
als. We callh; orR hp OR ... OR hy the head of the rule feadr));
[1,12,...Im,NOt Iy 1, N0t Iy 2, ..., In is its body (body(r)), andpog(r), neq’r) de-
note, respectivelyly,...,Im} and{Ims1,...,In}.

The informal reading of the rule (in terms of the reasoning of a rational agent
about its own beliefs) is “if you believh, ..., |, and have no reason to believe
Im1,-..,In, then believe one dfy, . .., h.” The connective “not” is calledefault
negation

A rule such thak = 0 is calledconstraint and is considered a shorthand of:
L «—notL,lq,lp,...Im,notlpig,notlmi2,.. ., lh.

Definition 2 A basic A-Prolog progranis a pair(Z, 1), whereX is a signature
and/T is a set of basic rules.

Whenever possible, we denote programs by their second element. The correspond-
ing signature is denoted by(/T). The terms, atoms and literals of a progréim
are denoted respectively bgrmg/7), atomg/T) andliterals(/7).

Notice that the definition of the syntax of basic A-Prolog does not allow the use of
variables. Rules containing variables (denoted by capital letters) are thus viewed
as shorthands for the set of their ground instantiations, obtained by substituting the
variables with all the terms of appropriate type from the signature of the program.
The approach is justified for the so called closed domains, i.e. domains satisfying
the domain closure assumption [44] that all objects in the domain of discourse
have names in the language of the program. The semantics of basic A-Prolog for
open domains can be found in [11, 33].

The semantics of basic A-Prolog is defined in two steps. The first step consists
in giving the semantics of programs that do not contain default negation. We will
begin by introducing some terminology.

An atom is innormal formif it is an arithmetic atom or if it is a plain atom and

its arguments are either non-arithmetic terms or simple arithmetic terms. Notice
that atoms that are not in normal form can be mapped into atoms in normal form
by applying the standard rules of arithmetic. For exampl&,+ 1) is mapped

into p(5). For this reason, in the following definition of the semantics of basic
A-Prolog, we assume that all literals are in normal form unless otherwise stated.

A literal | is satisfiedby a consistent set of plain litera&(denoted by§E ) if:

— | is an arithmetic literal and is true according to the standard arithmetic inter-
pretation;
— lis aplain literal and € S,



If 1 is not satisfied bys, we write S&# |. An expression not, wherel is a plain
literal, is satisfied bysif SE 1. A set of literals is satisfied bgif each element of
the set is satisfied b$

We say that a consistent set of plain liter8lss closed under a programil not
containing default negatioif, for every rule

hi ORhy, OR ... OR hy «—l1,lo,...Im
of 7 such that the body of the rule is satisfied®y{hy,hy,...,h} NS# 0.

Definition 3 (Answer Set of a program without default negation)A consistent
set of plain literals S, is ananswer set of a progranmil not containing default
negationif Sis closed under all the rules 6t andSis set-theoretically minimal
among the sets satisfying the first property.

Programs without default negation and whose rules have at most one literal in the
head are calledefinite It can be shown that definite programs have at most one
answer set. The answer set of a definite progfaims denoted byang /7).

The second step of the definition of the semantics consists in reducing the compu-
tation of answer sets of basic A-Prolog programs to the computation of the answer
sets of programs without default negation, as follows.

Definition 4 (Reduct of a basic A-Prolog program)Let 7 be an arbitrary basic
A-Prolog program. For any s&of plain literals, let/7S be the program obtained
from 1 by deleting:

— each ruler, such thahedqr) \ S#£ 0;
— all formulas of the form not in the bodies of the remaining rules.

Definition 5 (Answer Set of a basic A-Prolog program)A set of plain literals,
S, is ananswer set of a basic A-Prolog prografif it is an answer set of75,

An interesting extension [25] of basic A-Prolog consists in the introduction of
constructs that simplify representation and reasoning with sets of terms and with
functions from such sets to natural numbers.

In this paper, we extend basic A-Prolog by adding t®-#tomsfrom [25], which
allow to concisely represent subsets of sets of atoms. The resulting language will
be calledA-Prolog Its syntax is defined as follows.

Definition 6 A s-atomis a statement of the form:
X : pX)} C{X : q(X)} @
whereX is the list of all free variables occurring in the correspondifain atom.

Informally, the statement says thais a subset ofl. In A-Prolog, literals and s-
atoms are disjoint sets. Literals and s-atoms are caléehded literalsRules are
defined as follows.

Definition 7 A rule (of A-Prolog) is a statement of the form (1), whéy's are as
before, and either (® = 1 andh; is a s-atom, or (2) ali's are plain literals.



The reader may have noticed that, like in [25], negated atemsare not allowed
to occur in s-atoms. However, differently from there, we allow negated atoms to
be used everywhere else in the program.

Notice that the combination of sets with classical and default negations introduces
some subtleties. Consider the following informal argument. Suppose we are given
a statemen{X : p(X)} C {X : q(X)} and we knowg(a) and—q(b), but have

no information aboug(c). Clearly, p(a) satisfied the condition. But can we about
—p(b)? And what aboup(c) or —p(c)?

To restrict ourselves to cases in which the meaning of s-atoms is unambiguous,
we give the following definition of A-Prolog program.

Definition 8 An A-Prolog programis pair (Z, 1), whereZX is a signature[T is

a set of A-Prolog rules, anfibr every atonr (X) that occurs in the scope of an
s-atom,[7 contains the rule:

=r(X) < notr(X).
(which encodes the Closed World Assumptionr¢X)).

Thanks to this restriction, the meaning of s-atoms in our programs is unambigu-
ous. Going back to the previous example, and assuming the Close World Assump-
tion for p andq is part of the program, it can be shown that, for everp(x) if

g(x) and—p(x) otherwise.

To define the semantics of A-Prolog, we introduce the following terminology. Let
2 be a signature anfi be a set of plain literals fromlx. A s-atom (2) fromZ is
true inSif, for any sequenceof ground terms fronk, eitherp(f) ¢ Sorq(f) € S

The following definition is similar to the notion of reduct introduced earlier.

Definition 9 (Set-Elimination) Let I be an arbitrary A-Prolog program. For any
consistent sebof plain literals, the set-elimination @1 with respect t&(denoted
by s€I1,9)) is the program obtained froifi by:

— removing from/1 all the rules whose bodies contain s-atoms not satisfied by
S

— removing all remaining s-atoms from the bodies of the rules;

— replacing rules of the forriy < I, wherelg is an s-atom not satisfied I8/ by
rules—rI;

— replacing each remaining rule

X pX)} <X s aX)} T
by a set of rules of the forrmp(f) < I" for eachp(f) from S.

We are now ready to define the notion of answer set of an A-Prolog program.

Definition 10 (Answer Set of an A-Prolog program)A consistent set of plain
literals Sfrom the signature of prograifl is ananswer sebf I7 if it is an answer
set ofsg(1,S).



A-Prolog rules of the form
{(X 1 pX)} Xt aX)} T ®)

are calledselection ruleslt can be noted that selection rules are closely related to
the choice rules

m{p(X) : q(X)}n T 4)

introduced in [45,39]. Propositio® of [25] makes this connection precise.
Adapted to the language used here, the proposition states the following.

Proposition 1 For every progranT] such that:

1. I7 contains a rule B B
{p(X) 1a(X)} < T
2. no other rule off1 containsp in the head,

let 77" be the program obtained frofil by replacing the choice rule with selec-
tion rule (3). ThenSis an answer set dfl iff Sis an answer set ofl ™.

One limitation of our definition of A-Prolog with respect to the language of [45,
39] is that it does not allow the specification of bounds, i.e. of the lower and upper
number of elements of the subset defined{By : p(X)} C {X : q(X)}. For
simple bounds such as those used in this paper (we use only an upper bound of
1) we will use simple constraints, and avoid the introduction of the f-atoms from
[25]. For example, imposing a maximum limit @fon the cardinality of the set
(assuming that the arity qf is 1) can be achieved by means of the constraint:

— p(xl)v p(X2)7xl # X2

To simplify the notation, from now on we use the statement:

m{p(X) : q(X)}n—T.

wherem and n, if present, are0 and 1 respectively as an abbreviation of (3)
together with the appropriate constraints to limit the cardinalitp.of

3 The Reaction Control System

The RCS is the system used to maneuver the Space Shuttle while it is in orbit.
The RCS is viewed as composed of three subsystems: the Forward RCS, the Left
RCS, and the Right RCS.

The propellants for the RCS jets, or thrusters, are stored in fuel and oxidizer
tanks, pressurized with helium, and are distributed through several different types
of pressure regulation and relief valves, distribution lines (here called plumbing)
and filling and draining connections, called junctions. The only physical connec-
tion among the subsystems of the RCS is an interconnection between the Left
and Right subsystems, calletbssfeedThis provision is part of the redundancy
capabilities added to the Space Shuttle to ensure the safety of its operation.



In order for the Space Shuttle to perform a given maneuver, a set of jets, belonging
to the correct subsystems and pointing in the correct directions, must be prepared
to fire. Preparing a jet to fire involves providing an open, non-leaking path for the
fuel to flow from pressurized fuel tanks to the jet. The flow of fuel is controlled

by opening and closing pressure regulation and relief valves. Valves are opened
and closed by either having an astronaut flip a switch or by instructing the on-
board computer to issue special commands. In a very simplified form, the RCS
can be viewed as a directed graph of the type shown in Figure 2, whose nodes are
tanks, jets and pipe junctions, and whose arcs are labeled by valves. Switches are
connected to valves through fairly complex electrical circuits.

4 USA-Advisor System'’s Design

The USA-Advisor system consists of a collection of largely independent modules,
represented by Ip-functiot®4], and a graphical Java interface, The interface
gives a simple means for the user to enter information about the history of the
RCS, its faults, and the task to be performed.

USA-Advisor can perform two tasks: (1) checking if a plan satisfies a @yand

(2) finding a plan foiG of a length not exceeding some number of steps. Based on
this information,J verifies that the input is complete, selects an appropriate com-
bination of modules, assembles them into an A-Prolog progfanand passel

as an input to an answer set solvempDELS) for computing stable models In

this approach the task of checking a pRuis reduced to checking if there exists

a model of the programil UP. A planning module is used to describe a set of
possible plans the user is interested in. Planning is reduced to finding such mod-
els. Finally, the Java interface extracts the appropriate answer froeMtheELS
output and displays it in a user-friendly format.

In our design, the RCS is described at two levels of detail, the appropriate level
being selected depending on the task to be performed. At the highest level, electri-
cal circuits are assumed to be working correctly. Thus, their internal functioning
can be ignored, and the function they compute is described explicitly in terms
of the effects that switches and computer commands have on the corresponding
valves. At the lowest level of abstraction, used when electrical circuits contain
faulty components, circuits are represented explicitly.

The RCS is decomposed in four main modules: the Plumbing Module, the Valve
Control Module, the Circuit Theory Module, and the Planning Module. The
Plumbing Module models the plumbing system of the RCS. The Valve Control
Module describes how switches and computer commands affect the position of
valves. The Circuit Theory Module describes the behavior of standard combina-
torial digital circuits, augmented with other components, like delay units, power
units, switches, and valves. The Planning Module is responsible for generating
plans achieving the desired goal, and contains a large number of heuristics aimed

1 By an Ip-function we mean prografi of A-Prolog with input and output signatureg /1)
and g,(I7) and a sedom(7) of sets of literals fromo;(I7) such that, for an)X € dom(/7),
M UX is consistent, i.e. has an answer set.



at improving both the quality of plans and the efficiency of the planner. Additional
modules provide the description of the schematics of each electrical circuit.

The model of the RCS is based on the research on action languages [29]. As
the reader will probably notice, the rules used in the model are a straightforward
translation of the causal laws of action language”? [12].

The connections among the modules are depicted in Figure 1. In the rest of this
section we give a detailed description of each module.

ready_to_fire(J)

[ Plumbing Module }—7 info on leaks

positions of valves

positions of valves

NN - VCM:
' « info on stuck valves 3
Basic VCM . occurrences of Extended VCM }
! computer commands |
positions positions « dectrical faults |

of switches of switches |

« schematics of
affected !
electrical circuitsi

Switch Position Module }

|

occurrence of info on
switch flippings stuck switches

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1 Modular structure of the model of the RCS.

4.1 Plumbing module

The Plumbing ModuleRM) models the plumbing system of the RCS, which con-
sists of a collection of tanks, jets and pipe junctions connected through pipes. The
flow of fluids through the pipes is controlled by valves. The system’s purpose is
to deliver fuel and oxidizer from tanks to the jets needed to perform a maneuver.
The structure of the plumbing system is described by a directed gsagfithe

type shown in Figure 2, whose nodes are tanks, jets and pipe junctions, and whose
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arcs are labeled by valves. The possible faults of the system at this level are leaky
valves, damaged jets, and valves stuck in some posifio& purpose oPM is to
describe how faults and the position of valves affect the pressure of tanks, jets and
junctions.This is accomplished by means of state constraints alone.

Swi

Figure 2 A simplified view of the RCS.

In particular, when fuel and oxidizer flow at the right pressure from the tanks to a
properly working jet, the jet is considered ready to fire. In order for a maneuver to
be started, all the jets it requires must be ready to fire. Pressurization of fuel and
oxidizer tanks is obtained by releasing helium from the helium tanks connected to
the fuel and oxidizer tanks. The necessary condition for a fluid to flow from a tank
to a jet, and in general to any node®f is that there exists a path without leaks
from the tank to the node and that all valves along the path are open.

The rules ofPM define a function which takes as input the structural description,
G, of the plumbing system, its state including position of valves and the list of
faulty components, and determines: the distribution of pressure through the nodes
of G; which jets are ready to fire; which maneuvers are ready to be performed.

The elements of the plumbing system are representBdlims follows. The arcs

of graphG are described by relatidimk(N1,N2,Vwhich holds iffG contains a di-
rected arc from nodN1 to N2 and this arc is labeled by the valVe For instance,

a statemenlink(ffh,ff,ffha)says that fuel helium tanfth is connected to fuel pro-
pellant tankff by valve ffha. Relationjet_of(J,R)identifies jets and the subsys-
tem they belong to. The subsystems of the RCS are identified by statesyents:
tem(fwdrcs), system(leftcs), andsystem(rightrcs). Relationdirection(J,D)spec-

ifies the direction of jets. There are six different possible directions different jets
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point to: up, down, left, right, forward, and aft. Relatitank of(T,R)links each

tank to the subsystem it belongs to. For instance, a statamrgof(ffh,fwdrcs)

says that the forward fuel helium tank belongs to the forward subsystem. There
are twelve possible maneuvers to be performed by firing jets of Shuttle, encoded
by atoms of the fornrmaneuve{M).

The initial state of the plumbing module is mainly characterized by fluent
in_state(V,S)specifying that valv¥ is in stateS(open or closed), and a collection

of faulty components described by atoms of the ftwam leak(V) damaged(Jand
stuck(V,S)valveV is stuck in positiorS). The role of defaults is essential for a
compact description of the initial statEor example, it is assumed that all helium
tanks are pressurized in the initial state and that normally functioning valves are
initially closed. This statement can be nicely expressed using the default:

holds(in_state(V,closed),0) :-
—holds(in_state(V,open),0).

Here and in the rest of the discussion variabldenotes a valve.

Important fluents in the characterization of the current state of the RO@ese
surizedby(N,TK) stating that fluid under pressure is flowing from tanK to
nodeN (in short, ‘N is pressurized by K”), and ready to_fire(J), saying that jet

Jis pressurized by the correct type of propellants and thus ready to fire (jets need
to be pressurized with both fuel and oxidizer).

The Shuttle is ready for a maneuwdrwhen an appropriate set of jets is ready to
fire. To increase the efficiency of reasoning, we partition such a set of jets based on
the subsystem the jets belong to. Fluer@neuveready(M,R)says that the jets of
subsystenR involved in maneuveM are ready. For example, the following rule
determines when the left subsystem is ready for the maneuver callédwhich

only requires one aft-pointing jet in the left subsystem.

holds (maneuver_ready(plus_x,left._rcs),T) :-
jet_of(J,left _rcs),
direction(J,aft),
holds(ready_to_fire(J),T).

To further illustrate the issues involved in the constructiobf, let us consider

the definition of fluenpressurizedby(N, T k). Helium tanks are treated as special
nodes and presently assumed to be always pressurized. Hence, the definition for
these tanks is trivial. For other nodes, the definition is recursive. It says that any
non-tank nod@&1 is pressurized by a tarkkif N1 is not leaking and is connected

by an open valve to a nod¢2 which is pressurized by k.

holds(pressurized by (N1,Tk),T) :-
link (N2,N1,V),
—holds(leaking(N1),T),
holds(in_state(V,open),T),
holds(pressurized by (N2,Tk),T) .

In the RCS, a node is considered leaking if propellant flow toward it is regulated
by a leaking, open valve, and there is a path from such valve to the node along
which all valves are open. This can be nicely formalized by combining recursive
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definitions andlefined fluentge. fluents that are considered false (resp., thye)
default The next rules show the formalization of defined flueatking N ):

holds(leaking(N1),T) :-
1ink(N1,N2,V), has_leak(V),
holds(in_state(V,open),T).

—holds(leaking(N),T) :-
not holds(leaking(N),T).

Notice that fluenteakingis non-inertial, and the key step in its representation is
the use of the Closed World Assumption, encoded above as a default. The recur-
sive step is obtained by:

holds(leaking(N1),T) :-
link(N1,N2,V),
holds(in_state(V,open),T),
holds(leaking(N2),T).

The high level of abstraction of A-Prolog is confirmed by the relatively small
number of rules present in the knowledge modules of USA-Advisor. For example,
the Plumbing Module consists of approximately 40 rules.

As usual, default rules are used to representirtieetia axiom All the modules
share the same inertia axiom: (we have a similar rule-fusldgL, T))

holds(L,T+1) :-
not non_inertial(L),
holds(L,T),
not —holds(L,T+1).

In the rule, variablé ranges over all fluent literals. Relatioon.inertial (L) is de-
fined for non-inertial fluents such ésaking and allows to stop the inertia axiom
from being applied to them.

4.2 Valve control module

The flow of fuel and oxidizer propellants from tanks to jets is controlled by open-
ing/closing valves along the path connecting these nodes. The state of valves can
be changed either by manipulating mechanical switches or by issuing computer
commands. Switches and computer commands are connected to the valves, they
control, by electrical circuits.

In some specific phases of operation of the Shuttle, such as launch and landing, the
on-board general purpose computers, GPCs, is in charge of opening/closing valves
and will achieve this objective by sending computer commands. If the Shuttle
is in orbit, or the computer system is malfunctioning, an astronaut can normally
override these commands by manually flipping the switches that control the valves
to be opened/closed.

The Switch Position Module&SPM, describes how the actions of flipping switches
and the faults present in the system affect the position of switches. The only type of
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fault considered in th&PMis switches being stuck. Throughout the model of the
RCS, this type of mechanical malfunctioning is represented by relstimk(D,S)
stating that devic® (in the model D ranges over switches and valves) is stuck
in stateS. Similarly to the plumbing module, the state of devices is described by
the fluentin_state(D,S)neaning that devicB is in stateS. A device is always in a
stateSif it is stuck in stateS. The input to theSPMcontains information on stuck
switches and the occurrences of switch flippings. The output of the module con-
sists of the position of switches resulting from the execution the specified actions.
The effect of the actions performed on normally functioning switches is defined
by thedynamic causal lavbelow. The law says that flipping a working switSlv

to stateS causes it to move to that state.

holds(in_state(Sw,S),T+1) :-
occurs(flip(Sw,S),T),
not stuck(Sw,S’).

Notice the use of default negation in the rule to express the Closed World As-
sumption on the information on stuck switches. A more common approach would
consist in replacing default negation by classical negation and in encoding sepa-
rately the Closed World Assumption on relatistuck Our choice to use default
negation directly is motivated by performance considerations.

The fact that a switclswis always in stat&if it stuck in S, is formalized by the
rule:

holds(in_state(Sw,S),0) :- stuck(Sw,S).

The Valve Control ModuleVVCM, describes how computer commands and
changes in the position of switches affect the state of valves. Intuitively, if a switch
Swis in position “open” or “closed”, the valve(s) it controls arermallyin that

state state. Computer commands issued when the appropriate switch is in special
position “gpc” cause the corresponding valve(s) to either open or close (depend-
ing on type of computer command). There are, however, two types of possible
failures: valves can be stuck in some position, and electrical circuits can malfunc-
tion in various ways.

A substantial simplification of the CM module is achieved by dividing it in two
parts, calletbhasicandextended/ CM modules. At the basic level, it is assumed
that all electrical circuits are working properly and therefore are notincluded in the
representation. The extended level includes information about electrical circuits
and is normally used when some of the circuits are malfunctioning. In that case,
the position of switches and the occurrence of computer commands may produce
results that cannot be predicted by the basic representation.

4.2.1 Basic valve control module

At this level, theVCM deals with a set of switches, computer commands and
valves, and connections among them. The input of the h&S consists of the
positions of switches, the faults of valves, and the collection of computer com-
mands issued. The module implements an Ip-function that, given this input, re-
turns positions of valves at the current moment of time. This output is used as



14

input to the plumbing module. The class of faults of the system considered at this
level consists of valves being stuck in some position.

Connections between devices (i.e. switches and valves) are described by relation
controls(Sw,V,Cmeaning that switct8w controls the state of valv€ through
circuit C (circuits are reified). The connection between computer commands and
valves is modeled by atoms of the foomommands(CC,V,$)}computer command

CC moves valveV to positionS’) and commands(cc(CC1,CC2),V,8¢omputer
command€£C1 andCC2 used togethemoveV to S’).

An electrical malfunctioning of the circuitry controlling valveis represented by
statement of the forrbad circuitry(V) (in the RCS, each valve is controlled by no
more than one circuit).

The dynamic behavior of the basitCM is described by a set of fluents and ac-
tions. Actions are represented as follows:

— action.of(flip(Sw,S),R} flipping switch Swto stateSis an action of theR
subsystem of the RCS.

— action.of(cc(CC1,CC2),R} issuing a pair of computer comman@€1 and
CC2is an action of thé&k subsystem of the RCS.

— action.of(CC,R)- issuing computer commai@ is an action of thé&r subsys-
tem of the RCS.

The input of the basi¥’ CM consists of:

1. a collection of statements of the forholds(instate(D,S),T)describing the
states of switches and valves;

2. the description of the faults affecting the valves;

3. the set of occurrences of computer commands.

The effect of the occurrence of computer commands is described by a dynamic
causal law stating that, if switcBw controlling valveV is in stategpc, V is
working properly, and the computer command required to nvbt@some stat&

were issued at tim&, thenV will be in stateSat the next moment of time.

holds(in_state(V,S),T+1) :-
controls(Sw,V,C),
holds(in_state(Sw,gpc),T),
occurs(CC,T), commands(CC,V,S),
not stuck(V,S’), not bad_circuitry(V).

The condition onbad circuitry(V) is used to stop this rule from being applied
when the circuit connectin§wandV is not working properly.

The static connection between switches and valves is expressed by a static causal
law. It says that, under normal conditions, if switSkvcontrolling valveV is in
some stat&, different from gpc, thelW is also in states.

holds(in_state(V,S1),T) :-
controls(Sw,V,C),

2 A switch can be in one of three positions: open, closed, or gpc. When itis in gpc, it does not
affect the position of the valve.
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holds(in_state(Sw,S1),T),
state_of (S,v_switch), neq(S1,gpc),
not stuck(V,S2), not bad_circuitry(V).

It is assumed that a valwéis always in stat&if it stuck in S, as defined by rule:
holds(in_state(V,S),0) :- stuck(V,S).

Impossibility conditionsare described by constraints. THEM description in-
cludes such a constraint to express that it is not possible to move a switch to a
state it is already in.

:- holds(in_state(Sw,S),T),
state_of (S,v_switch),
occurs(flip(Sw,S),T).

This constraint eliminates any models where an actiop tries to move a switch

Sw; which is in states, to the same statg Constraints of this type play an impor-
tant role in increasing efficiency of the module by reducing the search space for
plans.

The output of the/CM is a description of the state of valves and switches at the
current moment of time.

4.2.2 Extended valve control module

The extended/ CM encompasses the basi€M and also includes information
about electrical circuits, power and control buses, and the wiring connections
among all the components of the system.

This module, too, defines an Ip-function. It takes as input the same information as
the basic/ CM, together with faults on power buses, control buses and electrical
circuits. The extendel CM returns positions of valves at the current moment of
time, exactly like the basM¥CM.

Since (possibly malfunctioning) electrical circuits are part of the representation,
it is necessary to compute the signals present on all wiring connections, in order
to determine the positions of valves. The signals present on the circuit’s wires are
generated by the Circuit Theory Module (CTM), included in the extendetil.

Large part of this module was developed independently to address a different col-
lection of tasks [8]. The part of the CTM used by the USA-Advisor is described
in the next section. Figure 3 below shows the connection between the Extended
Valve Control Module and the Circuit Theory Module.
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Figure 3 Connection between Extended VCM and Circuit Theory Module.

The state of a valve in the extend€d/C is determined by the signals present
on its two input wires, labeledpenand closed If the openwire is set tol

and theclosedwire is set to0, the valve moves to state open. Similarly for
the state closed. The following static causal law defines this behavior. Relation
inputof_typgW,S) is used to indicate wheth&¥ is anopenwire or aclosed

wire.

holds(in_state(V,S1),T) :-
input(W1,V), input(W2,V),
input_of_type(W1,S1),input_of type(W2,52),
neq(S81,82),
holds(value(W1,1),T),
holds(value(W2,0),T),
not stuck(V).

The output signals of switches, valves, power buses and control buses are also
defined by means of static causal laws, to be discussed shortly.

At this level, the representation of a switch is extended by a collection of its in-
put and output wires. Each input wire is associated to one and only one output
wire, and every input/output pair is linked to a position of the switch. There are
a few different types of switches in the RCS system. Those that control valves
are calledv_switchesand represented by relatiai_type(Sw,switch) Possible
states for vswitches are expressed by relatistate of(S,vswitch) and include
open closed andgpc When a switclSwis in position (or statey, an electrical
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connection is established between inpitand outputWo of the pair(s) corre-
sponding toS and represented in A-Prolog by statemeanhnects(S,Sw,Wi,Wo)
This relation says that “stateof switch Swconnects input wirgVito output wire
Woa” Therefore the signal present @i is transferred t&Vo, as expressed by the
following rule.

holds(value(Wo,X),T) :-
holds(in_state(Sw,S),T),
connects(S,Sw,Wi,Wo),
holds(value(Wi,X),T).

Output wiresWo of all pairs corresponding to states different fr@wvill have
valueO at timeT, as defined by rule

holds(value(Wo,0),T) :-
holds(in_state(Sw,S1),T),
connects(S2,8w,Wi,Wo), neq(S1,S2).

We will of course also need a more detailed representation of valves. There are
two types of valves in the RCS: solenoid and motor controlled valves. However,
a motor controlled valve can operate in one of three ways depending on the type
of electrical circuit connected to it. So, in our representation, valves can be of
four types. In all cases, wires coming from an electrical circuit control the state of
the valves. The present state of a valwand the value present on its input wire
connected to a power bus control the value of signals on the output wixes of

Valves have a set of input pins, one power pin, and two output pins. Valves are
classified according to their physical properties and to the number of input pins
they have, as follows: (a) solenoid valves (which have two input pins), (b) two-
pin motor-controlled MC) valves, (c) three-pitMC valves, and (d) four-pitfMC
valves. The number of input pins determines the way valves are controlled. Two-
pin valves have one “open” and one “closed” pin. When a sidrialsent to an
input pin, while the other is set @ the valve moves to the state associated with
the pin set tdl. This behavior is captured by rule

holds(in_state(V,S),T) :-
v_twopin(V), input(Wi,V),
input_of_type(W1,S), neq(S,power_bus),
input (W2,V), input_of_type(W2,S1),
neq(S1,power_bus), neq(S,S1),
holds(value(W1,1),T),
holds(value(W2,0),T),
not stuck(Vv,S1).

In these rules, the typey, of a valve, V, is given by statement

type of_valve(V,Y) For instance, valvéfhais identified as a solenoid by statement
type of_valve(ffha,solenoid)An input/output pin of a valve has a specific function
associated with it. Wires connected to the input pins of valves are represented by
the two relationsnput(W,V)andinput of_type(W,Y)whereY is chosen in order to

be able to distinguish among the different pins.

8 The actual naming depends on the type of valves.
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Rules describing the behavior of three-pin and four-pin valves are similar.

Power and output pins work in the same way for all types of valves. Of the two
valve output pins one is labeled “open”, and the other “closed”. When a valve
is in state “open”, an electrical connection is established between the power pin
and the “open” output pin, while the “closed” output pin is disconnected. Wires
connected to the output pins are represented by stateraetgst(W,V) which

says that wireVN is an output wire of valvé/, andoutputof_type(W,S) stating

that output wiré corresponds to stat Values on output wires of both solenoid
and motor controlled valves are determined by rule

holds(value(W,1),T) :-
of type(V,valve),
output (W,V), output_of_type(W,S),
input (Wp,V), input_of_type(Wp,power_bus),
holds(in_state(V,S),T),
holds(value(Wp,1),T).

This rule expresses that if valis in stateS at time T, then the value on the
output wire (corresponding 8 of V is 1 atT whenV is powered.

Values on output wires of a valwé indicate the state o¥, and are therefore
mutually exclusive under normal behavior. If an output wire has vakigimeT,
then the value on the other output wireiat T. This behavior is defined by rule

holds(value(W2,0),T) :-
of _type(V,valve),
output (W1,V), output(W2,V), neq(Wi,w2),
holds(value(W1,1),T).

If a valve has no power (abnormal condition) then all its output wires have value
0, which is specified by rule

holds(value(W,0),T) :-
of type(V,valve), output(W,V),
input (Wp,V), input_of_type(Wp,power_bus),
holds(value(Wp,0),T).

The behaviors described for switches and valves are valid provided that no faults
are involved. If a switch is stuck in some position, flipping has no effect. If a valve
is stuck in some position, signals on the input pins are not effective. If a power or
control bus is faulty, its output is constanfly Stuck devices are represented by
stuck(D,S)s in the basic valve control module. Faulty power buses and control
buses are described by statemiead device(B)

Given the type of a valv¥, values on input wires of at timeT, malfunctioning
conditions expressed Istuck(V,S)and the state of at timeT — 1, the program
determines the state ¥fand the values present on its output wires at moriient

The electrical circuits of the RCS are composed of both analog and digital com-
ponents. Circuits are named through statements of the &emcirc(C). In the
extended level of th&/ CM, a digital gate or componen6, can malfunction

if its input/output wireW is stuck at a valueX (0 or 1), defined by statement
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stuckat(W,G,X) If this is the case, the representation of the electrical circuit(s)
these gates belong to, are also included as part of the module. However, it is not
necessary to add the representation of circuits that are working properly. To indi-
cate that circui€ connected to a valvé is malfunctioning we add rule

bad_circuitry(V) :-
bad_circuitry(C),
controls(Sw,V,C).

The behavior of different components of electrical circuits is described within the
circuit theory module.

The Space Shuttle flight computer software is contained in its five general purpose
computers (GPCs) which control the vehicle during specific phases of a flight.
This software allows control of all RCS activity being responsible for transmitting
commands for valve configuration and jet firings. If a switch is placed in GPC
state, computer commands can be outpubpenor closethe affected valves.
Issuing a computer command is represented as an action that will affect a target
deviceD by settingD to a new state. At the extended level of MEM, issuing
computer commands is expressed by a dynamic causal law that assertsmalue

the wireW that connects the computer to a component of an electrical circuit. The
rule defining this behavior is

holds(value(W,1),T+1) :-
commands (CC,V,S), output(W,CC),
occurs(CC,T).

Normally, i.e. in the absence of computer commands, a signal Gakiassigned
to the wire that connects a component of an electrical circuit to the computer, as
follows

holds(value(W,0),T) :-
commands (CC,V,S), output(W,CC),
—holds(value(W,1),T).

Wires connected to the output pins of computer commands, as well as power buses
and control buses, are identified butput(W,E) whereE is either a computer
command, a power bus or a control bus.

The extende® CM, without the Circuit Theory module, consists of 36 rules.

4.3 Circuit theory module

The Circuit Theory ModuleGT M) is a general description of normal and faulty
behavior of components of electrical circuits with possible propagation delays
and 3-valued logic. It can also be used as a stand-alone application for simulation,
computation of the maximum delay of a circuit, detection of glitches, and other
tasks.

A large portion of theCT M was independently developed as part of the A-Circuit
project [8]. Because of the modularity of our design, it has been possible to di-
rectly include theCT M in the USA-Advisor system. Some additions were neces-
sary to account for more complex components used in the RCS. More importantly,
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we extended the model to allow the representation of faulty components. The de-
scription of theCT Mis beyond the scope of this paper, but it is important to stress
the central role of recursion in the state constraints ofGRé/. The interested
reader can refer to [41] for an in-depth discussion.

Next, we analyze the planning module used in USA-Advisor. For simplicity of
presentation we start our discussion by describing the basic structure of the mod-
ule. Section 4.5 contains an elaboration of the basic module obtained by adding
control knowledge. Section 5 describes a further improvement based on an exten-
sion of A-Prolog.

4.4 The Basic Planner

The Basic Planning Module of the USA-Advisor establishes a simple search crite-

ria used by the program to find a plan. The structure of the Basic Planning Module

described in this section follows the generate and test approach from [21,36,42].
The main idea of this approach consists in establishing a one-to-one correspon-
dence between plans for achieving a g8ah at most a given numbelasttime

of steps and answer sets of a logic progr@n This program normally consists

of (a) a large part describing our knowledge about the corresponding dynamic

system, and (b) a smaller part containing specification of a goal, a special rule

“generating” actions needed to achieve this goal, and possibly some other rules
describing properties of the desired plans. The following discussion illustrates this

idea. Notice that we differ from the standard answer set planning approach in that
we take advantage of the fact that the RCS consists of three, largely independent,
subsystems. A plan for the RCS is viewed as the composition of three separate
plans that can operate in parallel.

The following rules form the heart of the planner. The first rule, which is respon-
sible for the generation of occurrences actions, states that, for each timelpoint,
in a given finite interval, if the goal has not been achieved for subsyRtetren

an action controlling subsysteRimay occur aff .

O{occurs(A,T) :action_ of (A,R)}1 :-
T < lasttime, subsystem(R),
not goal(T,R).

Informally, notgoal(T,R) means “if the goal has not been achieved at 3tépr
subsystenik.”

The goal of preparing for such a maneuver is also split into subgoals, each prepar-
ing a particular subsystem. The first rule below states that the overall goal has been
achieved if every subsystem is ready for the current maneuver.

goal :-
selected_maneuver (M),
holds (maneuver_ready(M,left _rcs),T1),
holds (maneuver_ready(M,right_rcs),T2),
holds (maneuver_ready(M,fwd_rcs),T3).

:— not goal.
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The second rule above is a constraint that states that the overall goal must be
achieved in every model.

Splitting the RCS into subsystems allowed us to substantially improve the effi-
ciency of the module because of the reduction in the length of plans. For instance,
in some cases, it allowed us to reduce the time to find a plan of 5 steps from a few
hours to a few seconds. Notice that, since there actually are some dependencies be-
tween some subsystems, a very small number of extremely rare (and undesirable)
plans can be missed. It is possible to extend the planning module in order to find
these plans. The interested reader may refer to [4] to see how this is accomplished.

Since the RCS contains more than 200 actions, with rather complex effects, and
may require long plans, the standard planning approach described above can still
be too slow, and needs to be substantially improved. This is done by addition of
various forms of heuristic, domain-dependeimiformation. We refer to the Basic
Planner expanded by such heuristics as Smart Planner.

4.5 Smart Planner: adding the control knowledge

In this section we will discuss the expansion of the basic planner by useful heuris-
tic information, including control knowledge. The usefulness of control knowl-
edge for planning has been investigated in [1,34,32, 3], but comparatively little is
known about the influence of heuristics in answer set planning (see however [13]).
Such knowledge can be classified into two categories: domain dependent and do-
main independent. Both types of heuristics work by either limiting the combina-
tions of actions that can occur or by declaring that certain situations are illegal.
In either case the heuristics help prune the search space, leading to increased effi-
ciency, and improving plan quality by eliminating unwanted plans.

Some of the control knowledge used in the USA-Advisor can easily be included
for planning in other domains. An example of such domain independent knowl-
edge is the statement “Do not repeat actions already performed.” Note that, while
this rule does not apply in all domains, in many an optimal plan will never in-
clude the same action twice. This rule can be easily encoded in A-Prolog as the
following constraint:

:- action_of (A,R), neq(T1,T2),
occurs(A,T1), occurs(A,T2).

USA-Advisor contains also a number of domain specific heuristics. The first ex-
ample shown here states that a switch should not be moved to the gpc (general
purpose computer) position unless the following action is to issue a computer
command to the valve related to that switch.

:— controls(Sw,V),
occurs (f1ip(Sw,gpc),T),
not issued_commands(V,T+1).

4 Notice that the addition does not affect the generality of the algorithm.
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Note that while there are valid plans for the operation of the RCS which do not
obey this rule, for each of them there is a plan containing exactly the same actions
which does obey it. This allows us to further prune the search space.

More domain-dependent rules embody common-sense knowledge of the type “do
not pressurize nodes which are already pressurized.” In the RCS, some nodes can
be pressurized through more than one path. Clearly, performing an action in order
to pressurize a node already pressurized will not invalidate a plan, but this involves
an unnecessary action. Although we do not claim the plans computed are optimal,
the shortest sequence of actions to achieve the goal is a good candidate as the
optimal plan(s). The following constraint eliminates models where more than one
path to pressurize a nodé is open.

:= 1ink(N1,N2,V1), 1ink(N1,N2,V2), neq(V1,V2),
holds(in_state(V1,open),T),
holds(in_state(V2,open),T),
not stuck(V1i,open), not stuck(V2,open).

The Planning Module contains approximately 20 rules of which 15 are heuristics.

Next, we discuss the lessons learned from the development of USA-Advisor de-
scribed in the previous sections. In Section 5, we explain how the use of an exten-
sion of A-Prolog later allowed us to substantially improve the quality of reasoning
carried out by the system.

4.6 Discussion

The Smart Planner is to the best of our knowledge the largest and most sophisti-
cated answer set planner in existence. Below are some lessons we learned from its
design and implementation.

— Since a single action of an astronaut changes the values of many interrelated
fluents of the RCS the description of effects of this action becomes a non-
trivial task. To solve it we need to find solutions to frame, ramification, and
qualification problems [31,23,37]. We solved these problems by using the
techniques developed in theory of actions and change and the power of A-
Prolog rules. The frame problem was solved by encoding the inertia axiom
by a “non-monotonic”, default rule of A-Prolog. Qualification was addressed
by the use of constraints. And finally, the most difficult ramification problem
was solved by the use of static causal laws. It is not clear to us how and if the
effects of the RCS actions could be accurately represented by more traditional
STRIPS-like action languages like ADL [43].

— A-Prolog proved to be a language capable of specifying the initial situation,
causal and other relations of the domain, as well as the heuristic informa-
tion limiting the search space and improving quality of plans. This contrasts
with some of the other representational approaches which require separate lan-
guages for each of these classes of statements. For instance, the encoding of
heuristic information in [1, 2, 3] required a fairly sophisticated use of temporal
logic.
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— The sameformalization of the domain can be used for other reasoning tasks
than planning. All that is needed is replacing the reasoning module, as shown
later in Section 6 and in more detail in [5].

— The heuristics used in the Smart Planner were easy to encode and to use. More-
over, our experiments show that they significantly improve both, quality of
plans and efficiency of search.

— The planner’s ability to mix parallel and sequential pfaaad to efficiently
search for them are the key ingredients in the success of the project.

Overall, answer set planning proved to be a good tool for our purpose. We are not
aware of any other tool which would allow us to deal with the complex effects of
actions of the RCS.

Experiments show that the system is also quite efficient and meets the criteria for
use by NASA stating that a plan should be found in at most 20 minutes. In fact,
in our experiments the threshold has been exceeded inZordges out 0200Q

while the average time to find a plan has been alidigeconds — far lower than

the 20 minute threshold. Partly this is due to non-numerical nature of the problem.
The fact that despite a large number of concurrent actions involved, the plans were
comparatively short also contributed to the efficiency. To expand the applicability
of answer set planning and reasoning to hybrid systems, i.e. systems involving
“continuous” time and numerical computations we need to substantially extend
the existing answer set solvers.

Let us now look in more detail at how the experiments were performed and at the
results. To assess efficiency, we have randomly gene?@@@problem instances,

each specifying a set of faults and a maneuver to be performed. The instances are
partitioned in10 sets of200 elements, according to the number and type of faults

in them. Every set is denoted by a panechelec, wheremechandelectare
respectively the number of mechanical and electrical faults present in the instances
of the set. Table 1 shows the sets of instances used for our experiments (for further
details on the generation of the instances, the reader can refer to [41]).

Recall that our planner takes a paramei@sitime specifying the maximum al-
lowed length of the plans. In the experiments, we used an algorithm that, given a
problem instance, iteratively runs the planner, increakastiimeby 1 if no plan

is found. When a plan is found the procedure terminates and the plan is returned.
The value oflasttimeranges betweef and 10. We also included a timeout of
600seconds for each call to the planner: if no plan is found within that time, the
planner is interrupted and a new iteration is performed. Notice that, if no timeout
occurs, this approach is guaranteed to find shortest plans, in terms of the corre-
sponding value ofasttimé.

The average time (including all the calls to the planner that occur during the iter-
ations ovetasttimé to find a plan of up td.0 steps or determine that none exists
are shown in Table 2. The table also includes the number of instances that do not

5 As we discussed earlier, the plans found by our planner consist of sequences of compound
actions, each containing at most one action per subsystem. The elements of each compound
action are to be executed concurrently.

6 But not necessarily in terms of number of actions, as we will see later.
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Table 1 Sets of instances used in the experiments.

Set Name | Mechanical Faults | Electrical Faults
ins-3-0 3 0
ins-5-0 5 0
ins-8-0 8 0
ins-10-0 10 0
ins-3-2 3 2
ins-5-3 5 3
ins-8-5 8 5
ins-10-3 10 3
ins-10-5 10 5
ins-10-7 10 7

have a solution ifLO steps or less. As the numbers show, some sets of instances
were quite hard.

Figures 4-8 give a graphical representation of the times to find a solution for each
instance. All the tests in this paper were performed on a Pentium 4 3.2GHz with
1.5GB RAM running NetBSD 3.99.Tparse1.0.13, andsMODELS2.26.

Table 2 Average times, grouped by set of instances.

Set Name | Average Time (sec)| No solution
ins-3-0 4.6443 7
ins-5-0 4.5658 28
ins-8-0 11.4887 63
ins-10-0 22.4169 96
ins-3-2 4.1187 60
ins-5-3 13.8207 102
ins-8-5 8.3934 138
ins-10-3 20.2484 177
ins-10-5 10.1764 162
ins-10-7 11.0357 143

Average | 11.0909 [ 976 |
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5 Improving the Quality of Reasoning

The previous sections showed that USA-Advisor is capable of fairly sophisticated
planning in presence of complex faults.

On the other hand, although the plans found are all reasonable, some of them
may be preferable to the others. For example, plans that do not involve the use
of the crossfeed in the RCS are preferable to those that do, because they allow to
maintain a better balance of the level of propellant in the tanks. In this section,
we show how answer set programming techniques can be extended to allow the
specification of preferences on plans and the computation of such preferred plans.
We begin by extending the syntax and semantics of A-Prolog.

5.1 CR-Prolog

CR-Prolog is obtained from A-Prolog by adding consistency-restoring rules (cr-
rules) with preferences. Rules of A-Prolog are calisgular rules A cr-rule is a
statement of the form:

r: hporhyor...orhe< Ie,....Im, ®)
notImy1,...,notl,

wherer is the name of the rule (in the rest of the discussion, we will omit rule
names whenever possible). The cr-rule intuitively says that, if the agent believes
l1,...,ln and does not believg,,1,...,ln, then it “may possibly” believe one el-
ement of the head. This possibility is used only if there is no way to obtain a
consistent set of beliefs using regular rules only.

Let us see how cr-rules work. Consider the following program:

r1:porq<- nott.
rs:s.

Since the program containing only regular rujeis consistenty; need not be
applied. Hence, there is only one answer §g}: On the other hand, program

ry: porq<i nott.
.S
r3: < notp,notq.

has two answer setés, p} and{s,q}, obtained by applying;.

The semantics of the fragment of CR-Prolog described so far can be concisely
defined as follows. Lefl" denote the set of regular rules of progréamand let
[1°" denote the set of cr-rules &tf. By a(r) we denote the regular rule obtained

from a consistency restoring ruteby replacingi by «—; a is expanded in a
standard way to an arbitrary $eof cr-rules.

A minimal (with respect to set theoretic inclusion) collectiRrof cr-rules of1
such that7" U a(R) is consistent (i.e. has an answer set) is calle@lsiuctive
supportof 1.
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A setA of literals is called amnswer sebf 1 if it is an answer set of the regular
program/1" U a (R) for some abductive suppdrof 1.

Preferences between cr-rules are encoded by atoms of thedi@fer(rq,r»),
wherer; andr, are names of cr-rules. The intuitive reading of the atom is “do not
consider sets of beliefs obtained usingunless you have excluded the existence
of belief sets obtained usirrg.” We call this type of preferendeinding

To better understand the use of preferences, consider prdgram

ri:p< nott.
r2:0 < nott.
r3: prefenry,ra).

I, has one answer setprefer(ry,ro)}. Notice that cr-rules are not applied, and
hence the preference atom has no effect. Now consider proGgam/1; U {ry :

— not p,not q}. Now cr-rules must be used to restore consistency. Sinie
preferred ta,, the answer set if:p, prefer(ry,ry)}. Finally, considerls = 1, U
{rs: < p}. Its answer setis{q, prefer(ry,ra)}.

For the definition of the semantics of CR-Prolog, refer to [5].

5.2 CR-Prolog and Soft Requirements

In several cases, “best” plans are selected based on some minimization criteria. An
interesting case is when we are given a set of requirements that plans should satisfy
if at all possible(e.g., “if at all possible, do not skip lunch”). Such requirements
are referred to asoft (or defeasiblg In our approach, the satisfaction of soft
requirements is checked for in the test phase of the search.

In its simplest form, a soft requirement is encoded by a constraint and a cr-rule.
The body of the constraint contains:

— the encoding of the condition that plans should satisfy, according to the soft
requirement; the encoding is such that, if the requirement is not met, the body
of the constraint isatisfied

— a condition (thénhibitor) that allows to stop the application of the constraint,
in case the soft requirement has to be violated.

For example, a possible constraint for the soft requirement “if at all possible, do
not skip lunch” is:

« skip(lunch), not allowed skip(lunchy)).

The cr-rule is used to say that, under some conditions, the constrajnpossibly
be inhibited, but its inhibition should be a rare occurrence. The cr-rule for the soft
requirement above is:

allowed(skip(lunch)) <= .

which intuitively says that one may be possibly allowed to skip lunch.
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If plans exist that do not violate the requirement, the cr-rule is not used. However,
if no such plan exists, the cr-rule is used to conclude that skipping lunch is allowed.
This inhibits the constraint, and allows the computation of plans violating the
requirement.

For another example, consider the encoding of the soft requirement “if possible
do not skip lunch; however, if you had a big breakfast, you are allowed to skip
lunch,” which consists of the rules:

«— skip(lunch), not allowed skip(lunchy)).
allowed(skip(lunch)) <= had(big_break fasj.

The cr-rule informally says that, if one had a big breakfast, he may possibly be
allowed to skip lunch.

When several soft requirements are specified, one is often interested in ranking
them in order of preference, so that the most preferred soft requirements are the
ones that are less likely to be violated. Preferences statements of CR-Prolog pro-
vide a convenient way to encode such preferences. For example, consider the two
soft requirements:

— if at all possible, do not skip lunch;
— if at all possible, do not skip dinner;

together with the preference “skipping lunch is preferred over skipping dinner.”
The soft requirements can be encoded as before:

«— skip(lunch), not allowed(skip(lunch)).
skip : allowed(skip(lunch)) <~ .

— skip(dinner), not allowedskip(dinner)).
skip : allowed(skip(dinner)) <~ .

The preference is encoded by the following rule:
prefer(skip,skipy).

which says that (if one has to skip either dinner or lunch) skipping dinner should
be considered only if skipping lunch is not possible. It is important to stress that
preference statements of CR-Prolog allow to encode more complex criteria than
the one above, e.g. dynamic preferences such as “if you had a big breakfast, it is
better for you to skip lunch than skipping dinner; otherwise, skipping dinner is
preferred.” Such preference can be encoded in CR-Prolog with the rules:

prefer(skip,skipy) < had(big_break fas}.
prefer(skipy,skip) < not had(big_break fasj}.
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5.3 CR-Prolog Based Planner

The structure of the A-Prolog based planners, such as the one shown in Sec-
tion 4.4, can be easily extended to take defeasible requirements into account. Let
PLANPROBbe a set of A-Prolog rules containing the encoding of a domain de-
scription as well as the specification of the goal and the planning module. Let also
SOFTREQbe the encoding of a set of defeasible requirements. The plans that
best satisfy the requirements can be found by computing the answer sets of:

PLANPROBU SOFTREQ

Soft requirements and preferences over them have an immediate application in an
extended planner for USA-Advisor (CR-Plan). For example, recall that the left
and right subsystems of the RCS are actually connected bgrdissfeedwhich

allows to share propellant between the two subsystems. The crossfeed is intended
to be used when one of the two subsystems is affected by faults preventing the
use of the propellant from its own tanks. Use of the crossfeed should normally
be avoided, to keep the level of propellant in the two subsystems balanced. This
statement can be seen as the soft requirensarit] the use of the crossfeed if at

all possible” Following the approach outlined above, a possible encoding of such
requirement in CR-Prolog is:

rei(RT) : allowedxfeedR T)) & subsysterfR).

— subsysterR),actionof(AR),
occurgA,T),
opensxfeedvalveA),
not allowedxfeedR T)).

The cr-rule says that the use of the crossfeed may possibly be allowed at any time
stepT. The constraint says that it is impossible for actidof subsystenR to

occur afT if A opens a crossfeed valve, and the use of the crossfeed is not allowed
in Rat time stepr .

To see how the introduction of this requirement affects planning, consider a situa-
tion in which the RCS is functioning correctly and we need to perform a maneuver
that involves the use of the left and right subsystems.

Because of the absence of faults, the design of the RCS guarantees that the ma-
neuver can be performed without the use of the crossfeed. On the other hand, the
design also guarantees that the crossfeethe used to achieve the goal. Hence,

the set of plans found by the planner from Sections 4.4 and 4.5 contains both plans

that use the crossfeed and plans that do not use it.

If the soft requirement described above is used, then the planner will return only
plans thatdo notuse the crossfeed, as these are the “best” plans according to the
requirement. It is worth stressing the non-monotonic behavior of the planner: if

faults are later added to the description of the initial situation, so that the goal can
only be achieved with the use of the crossfeed, then the planner will be forced to
violate the soft requirement and to return plans that involve the crossfeed.
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Another example of the use of soft requirements for USA-Advisor is the encod-
ing of the policy that tomputer commands should be avoided if at all possible.
(This policy is motivated by the fact that, normally, issuing a computer command
requires preparing and uploading a patch of the software of the on-board com-
puter.) The CR-Prolog encoding of the requirements is:

rees(R T) : allowedcc{R T)) <= subsysterR).

— subsystetiR),actionof(A R),
occur(A, T),sendscomputercommandA),
not allowedccqR,T)).

The cr-rule says that computer commands may possibly be allowed at any time
stepT. The constraint says that it is impossible for actfoaf subsysteniR to oc-

cur atT if Asends a computer command and computer commands are not allowed
in Rat time stepr.

Itis of course possible to state preferences between the two soft requirements. For
example, if modifying the software of the Shuttle’s computer is considered prefer-
able to losing the balance of the propellant between the left and right subsystems,
the following rule can be added to the planner:

preferrees(R2,T2),rxs(RL, T1)). (6)

Itis also possible (and often important) to use dynamic preferences. For example,
the rules:

preferrys(R1,T1),rees(R2, T2)) < computerunreliable )
preferrees(R2,T2),rxi(R1,T1)) «— not computerunreliable

say that the use of the crossfeed is preferred to computer commands only if the
on-board computer iknowrl to be unreliable. Otherwise, computer commands
are preferred.

Notice once again the non-monotonic nature of the planner: if the preference state-
ment(s) are not satisfiable, they can be violated. For example, if the computer is
unreliable, but the goal still cannot be achieved after allowing the use of the cross-
feed, then the use of computer commands will be allowed.

Itis interesting to notice that soft requirements can also be used to avoid the gener-
ation of irrelevant actions, typical of planning domains in which the goal is divided

in independent subgoals, and the execution of parallel actions is allowed. Consider
what happens in USA-Advisor if the goal requires that some jets in the forward
and left subsystems be set ready to fire, and achieving the subgoal for the forward
subsystem takas; steps, while achieving the subgoal for the left subsystem takes
n; steps, withns < n;. By inspecting the selection rule used in the planning mod-
ule, one can see that, evenldsttime is set to the lowest possible value rpf

a plan in which the subgoal for the forward subsystem is achieved ahstisp
considered equivalent to one in which the same subgoal is achiewed-dt For

this reason, a plan in which an extra, irrelevant action is performed on the forward

7 Notice the use of default negation to encode the Closed World Assumption.



33

subsystem at sont® < ns + 1 is as likely to be returned as the plan that achieves
the subgoal at step.

A soft requirement can be written so that, if a plan of lengtht 1 is generated

for the forward subsystem, it is possible to guarantee that no extra action will
occur at steg’ above (i.e. the plan for that subsystem contains an empty step).
The soft requirement for irrelevant actions states that “performing actions should
be avoided if at all possible.”, and is encoded by the rules:

rsnort(R, T) : allowed executeactionR, T)) <= subsystel(R).

— subsysteliR),actionof(A R),
occurgA, T), not allowedexecuteactionR, T)).

The cr-rule says that, at any stépof the plan for subsystemR, the agent may be
possibly allowed to perform actions. The constraint says that it is impossible for
actionA of subsystenR to occur at stef if the agent is not allowed to execute
actions on subsysteRat stepT .

Experimental results confirm that the plans returned by CR-Plan are of a signif-
icantly higher quality than the plans generated by the basic planner described in
Sections 4.4 and 4.5.

We have applied CR-Plan to the problem instances from Section 4.6. The iteration
over the maximum plan length has been performed using the algorithm described
there. For these experiments, we have usesMODELS 1.5, an inference engine

for CR-Prolog recently developed [35].

The experiments have been performed in two sessions. In the first sessions, we
have removed from CR-Plan all the preference statements (see (6)—(7) above). The
resulting planner, called CR-Planwas tested on th2000problem instances. In

the second session, we added to CR-Pldne preference statements (7) and tested
the resulting planner, called CR-Piaron the sam@000instances.

The use of CR-Plan substantially increased the quality of plans with respect

to the A-Prolog based planner. Overall, computer commands and crossfeed were
usedl19times, as opposed ®089times by the A-Prolog planner, with an im-
provement 006.15% Moreover, in569cases, CR-Planreturned plans that con-
tained less actions than the plans found by the A-Prolog planner (in no occasion
they were longer). The total number of irrelevant actions avoided by CR-Plan
was1595 corresponding to a reduction ©9.69% on the total number of actions
used 8102for the A-Prolog planner an@s07for CR-Plam).

Although the experiments were mainly aimed at assessing the quality improve-
ment, we found that the speed of CR-Plamas still largely acceptable, in spite of
the substantial increase in the complexity of the task performed. Q@Gsfruns,
CR-Planm exceeded NASA's 20 minute threshold odi$times, corresponding to
2.15% of the instances. The average time to complete one instanc23@asec-
onds, far below the threshold. If we discard #&outliers, the average time goes
down to156 seconds. The times for CR-Plaare shown in Table 3.

8 Available fromhttp://www.krlab.cs.ttu.edu/Software.
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Table 3 Average times for CR-Planand the A-Prolog planner, grouped by set of instances.

Set Name | Average Time (sec)| A-Prolog Avg. (sec)
ins-3-0 140.5569 4.6443
ins-5-0 161.3922 4.5658
ins-8-0 340.4750 11.4887
ins-10-0 236.3294 22.4169
ins-3-2 155.8627 41187
ins-5-3 316.4596 13.8207
ins-8-5 221.4760 8.3934
ins-10-3 282.9618 20.2484
ins-10-5 238.2858 10.1764
ins-10-7 288.1211 11.0357
[ Average | 238.1920 [ 11.0909 |

The results of the experiments on CR-Plaare equally satisfactory. Because of
the introduction of preference statements (7) in CR-Plahe number of times

the crossfeed was used throughout2B80instances went down fro@6 for CR-

Plarm to 56 for CR-Plart. The speed of CR-Planwas quite good: out a2000
instances, only6 times NASA's20 minute threshold was exceeded (compare to
43times for CR-Plan), and the average time wag592 seconds154seconds if
the46 outliers are discarded). These numbers show that, overall, the introduction
of preferences didn't affect significantly the computation time. A comparison of
the average times, grouped by set of instances, is shown in Table 4. It is interest-

Table 4 Average times for CR-Planand comparison with the other planners

Set Name | CR-Plan™ | CR-Plan~ | A-Prolog

ins-3-0 72.2124 140.5569 4.6443
ins-5-0 83.7280 161.3922 4.5658
ins-8-0 368.8101 | 340.4750 | 11.4887
ins-10-0 250.4088 | 236.3294 | 22.4169
ins-3-2 156.8805 | 155.8627 4.1187

ins-5-3 351.7330 | 316.4596 | 13.8207
ins-8-5 241.5304 | 221.4760 8.3934
ins-10-3 264.3492 | 282.9618 | 20.2484
ins-10-5 265.1365 | 238.2858 | 10.1764
ins-10-7 404.4173 | 288.1211 | 11.0357

Average | 245.9206 | 238.1920 [ 11.0909 |

ing to note that in some cases is average time for CR¥Akasignificantly smaller

than that of CR-Plan. A possible explanation of the phenomenon is that the in-
troduction of preferences adds several constraints on the application of cr-rules,
and in some experiments this can help to reduce the search space.
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5.4 Discussion

Various extensions of A-Prolog have been recently developed, providing con-
structs that allow the specification of preferences.

In its simplest form, th@inimize statement 0EMODELS[40] instructs the rea-
soning system to look for one model that minimizes the number of atoms, from
a given set, that are present in the model. In its complete form, the statement al-
lows to minimize the sum of the weights associated with the specified atoms. The
fact that theminimize statement allows to find only one model limits its appli-
cability, as one may be interested in finding multiple, equally good solutions to
a problem. Moreover, in the presence of preferences, an encoding of defeasible
requirements based @rinimize is likely to be less elaboration tolerant than the
CR-Prolog equivalent, because of the need to find suitable weights to be assigned
to the atoms in theinimize statement.

The language of Logic Programs with Ordered Disjunctieobd [15,16] is an
extension of A-Prolog that allows the specification, in the head of the rules, of a list
of alternative literals in order of preference (this is similar to epistemic disjunction,
with the difference that in epistemic disjunction all the alternatives are considered
equivalent). If the body of the rule is satisfied, one alternative must be selected
following the preference order. A possible, rather straightforward, encoding of soft
requirements usingPOD consists in writing the constraint part of the requirement
as shown earlier, and replacing the corresponding cr-rule hya rule:

—allowedreq) x allowed(req).

whereallowed(req) is the inhibitor used in the constraint. If multiple requirements
need to be specified, and a total preference order exists over them, the constraints
are written as usual, and their inhibitors are listed in a single rule:

noneviolatedx allowed(reqy) x allowed(reg) x ... x allowedreq).

Because of the use of a single rule to list all the inhibitors, this type of encoding
is less elaboration tolerant than ours. Another difference in CR-Prologrod

lies in the different definition of the preference relation. If conflicts arise among
preferences, the Pareto-style preferencerabD simply ignores the conflicting
preferences. On the other hand, our binding preference discards any solutions that
are involved in the conflict of preferences. In particular, when preferences are
static, the program becomes inconsistent. This behavior derives from our view
that programs should contain a small, clearly specified set of preferences. Hav-
ing inconsistency is a way to alert the user (e.g. the flight controllers) that the
preferences were not clearly specified. We believe that our more conservative def-
inition of preferences can be especially useful when the consequences of making
the wrong choice are serious (e.g. loss of valuable equipment, loss of lives). For a
more detailed discussion, refer to [4].

Finally, theweak constraint®f bLv [19] (also used in the approaches that rely
on a translation to this language, suchoas - [22]) provide an elegant way to
encode defeasible requirements. Unfortunately, the current implementation of the
DLV inference engine does not allow function symbols, which complicates the
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development of a complex system such as USA-Advisor. With respect to the en-
coding of defeasible requirements, notice that preferences on weak constraints are
encoded with numerical weights. This is likely to limit the elaboration tolerance of
the approach, as the addition of a new soft requirement may require re-assigning
most of the weights in the program. It is also important to notice that the definition
of the preference relation inLv is in the style of Pareto preference. Conflicting
preferences are ignored in a way similar.®oDb, which may cause problems if

the making wrong choice may have negative consequences.

6 Other Forms of Reasoning

In the previous sections we have shown how our A-Prolog based methodology can
be used to model complex domains and to perform planning tasks.

An important feature of our methodology is thle domain model is independent
of the particular type of reasoningnd can thus be shared by all the reasoning
modules.

To demonstrate this point, in this section we describe a simple diagnostic mod-
ule for the RCS that uses the same domain model as the planning module. The
interested reader may refer to [6] for an in-depth description of answer set based
diagnosis.

We view the diagnostic task as a reasoning process in which the agent explains
unexpected observations by making hypotheses on faults that may be present in
the system. In our approach, observations about fluents are encoded by statements
of the formobg],t), wherel is a fluent literal and is a time step. The statement
informally says that was observed to hold at stépPossible observations on

the state of the RCS are, for examptdg pressurizedoy(f f12j, f fh),3) and
obgin_state f fml,open,5). Notice the difference between relatiobs which
encodes observations, and relatiwids which encodes the reasoner’s beliefs or
expectations.

Observations and expectations are linked in A-Prolog by the following set of ax-
ioms,RA

holdgL,0) < obgL,0).

—obgqL,T),holdgL,T).

The first axiom provides a simple way to describe the initial situation (and can be
easily made more sophisticated, e.g. by introducing the Closed World Assump-
tion). The second axiom, calledality check ensures that the reasoner’s expecta-
tions coincide with the observations.

Given a domain modeV¥l, a setH of statements of the formaccurgA, T), spec-
ifying the actions performed, and a collection of observatiOnshe need for a
diagnosis can be verified by checking the consistency of

< =MURAUHUO.

If . is consistent, the reasoner can conclude @habntains no unexpected ob-
servations. Otherwise?’ is called a symptom, and a diagnosis needs to be found.
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In this paper by diagnosis we mean a set-theoretically minimal collec@igrof
faults such that” U & is consistent.

Notice that, in the context of diagnosis, faults can be viewed as unlikely events,
and can thus be nicely formalized using cr-rules. For example, a cr-rule:

stuckV,S) <= .

says that any valv€ may be stuck in some positid) although this is unlikely.
Similarly, we can write cr-rules for all the other possible faults from the model of
the RCS, e.g.

hasleak(V) <= .

The corresponding set of cr-ruledM, constitutes aliagnostic moduldor the
RCS. It is not difficult to check that, in the presence of unexpected observations,
the answer sets of the program:

. UDM

correspond to the possible diagnoses of the system. In fact, the cr-ruléd in

are used only if¥ is inconsistent. As discussed above, this happens when
contains unexpected observations. The application of the cr-rulB$/irallows

the reasoner to assume the existence of faults, and the reality check axiom ensures
that in every answer set the reasoner’s expectations coincide with the observations.
Moreover, thanks to the minimality built in the semantics of CR-Prolog, the set of
faults found with this method are minimal with respect to set-theoretic inclusion,
and thus constitute diagnoses according to the above definition.

7 Lessons Learned

Our methodology for representing knowledge about dynamic domains and for
designing reasoning modules proved to be scalable beyond small domains. The
key steps of the methodology are:

1. Identifying the relevant objects and relations in the domain.
2. ldentifying the actions.
3. Describing the effects of the actions using the action language based approach.

The decisions made at step (1) heavily influence both the clarity of the model
and efficiency of the resulting system. An example of this is the modeling of the
junctions of the RCS, which improved to the model substantially.

The availability of state constraints also proved to be important for modeling

domains of size and complexity comparable to the RCS. We believe state con-
straints contributed substantially to the compact definition of fluents such as
pressurizedoy(N, T K) and of our general theory of electrical circuits.

Besides its already known applications, we found default negation useful in se-
lecting modules of the domain’s encoding. Consider for instance the way relation
bad_circuitry(V) influences the selection of the Basic and Extended Valve Con-
trol Modules: in the model, we only had to specify when the relation holds (thus
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enabling the Extended Valve Control Module), while default negation was used to
determine when it does not hold. Without default negation, we would have been
forced to state explicitly whehad_circuitry(V) does not hold.

Control knowledge proved to be essential in improving the speed of reasoning.
Very frequently, this type of information could be found in the operating proce-
dures of the RCS.

In order to improve the speed of computation, it is also profitable to divide the ac-
tions in independent subsets (elements of which are executed concurrently) when-
ever possible.

The use of an external frontend is important to allow the automatical selection of
the appropriate modules and avoid problems due to the large size of the grounding
of the whole model.

8 Conclusions

In this paper we have described an A-Prolog based methodology for modeling
dynamic domains that allows to formalize the description of rather complex do-
mains. In this methodology, A-Prolog, or CR-Prolog in more sophisticated cases,
are used to specify the initial situation, the domain model, the control knowledge,
and the reasoning modules. It is important to stress that, in our approach, the do-
main model is shared tsll the reasoning modules

The resulting programs are efficient enough to be used for practical applications.
We demonstrated our methodology by applying it to the development of a decision
support system for the Reaction Control System of the Space SHuftie.system

is intended for actual use by NASA flight controllers and its applicability is not
limited to the Space Shuttle. In fact, the development of USA-Advisor is currently
being continued by the programmers at United Space Alliance, who are working
on formalizing models of other systems of the Shuttle and of the International
Space Station, as well as creating suitable graphical interfaces.

Finally, in this paper we have also shown how CR-Prolog, the extension of A-
Prolog by consistency-restoring rules and preferences, allows to substantially im-
prove the quality of reasoning by specifying soft requirements (i.e. conditions on
the solutions that the reasoning modules should satisfy if at all possible) and pref-
erence over them.
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