
Combining Logical and Probabilistic Reasoning

Michael Gelfond and Nelson Rushton and Weijun Zhu
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA

{mgelfond,nrushton,weijun.zhu }@cs.ttu.edu

Abstract

This paper describes a family of knowledge representation
problems, whose intuitive solutions require reasoning about
defaults, the effects of actions, and quantitative probabilities.
We describe an extension of the probabilistic logic language
P-log (Baral & Gelfond & Rushton 2004), which uses “con-
sistency restoring rules” to tackle the problems described. We
also report the results of a preliminary investigation into the
efficiency of our P-log implementation, as compared with
ACE(Chavira & Darwiche & Jaeger 2004), a system devel-
oped by Automated Reasoning Group at UCLA.

Introduction
P-log, introduced in (Baral & Gelfond & Rushton 2004), is
a language for representing and reasoning with logical and
probabilistic knowledge. P-log is based on Answer Set Pro-
log(Baral 2003)(Gelfond & Lifschitz 1988), and inherits all
of its expressive power, allowing us to represent recursive
definitions, and both classical and default negation. It also
allows us to represent and reason with quantitative proba-
bilities, building on the theory of causal Bayesian networks
(Pearl 2000), and combining them with the logical mecha-
nisms of Answer Set Prolog.

Moreover, P-log has a powerful mechanism forupdating,
or reassessing probabilities in the light of new information.
This mechanism allows to represent and reason with updates
which, in the framework of classical probability, could not
be expressed using conditioning and would require the con-
struction of a new model. For example, classical condition-
ing can only handle updates which eliminate possible worlds
(aka outcomes) from the model, and such that set of out-
comes remaining has nonzero prior probability. P-log, in
contrast, can handle updates which introduce new possible
worlds or change the probabilities of existing worlds, as well
as some updates which have zero prior probability. This pa-
per introduces a modification of P-log which allows an even
wider variety of updates, by adding the use of ”consistency-
restoring rules”, as defined in section on our language.

Besides expressive power, there is another reason to com-
bine logical and probabilistic reasoning. Recently, research
in Bayesian networks has shown that logical relationships

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

between variables in a network can be used to enhance the
efficiency of computations done using the network — essen-
tially by eliminating impossible combinations of the values
of variables during processing. Our implementation of P-
log is based on Smodels (Niemelä & Simons 1997), which
can find the possible worlds of a logic program quickly. This
raises the question of how our P-log implementation can per-
form, on similar problems, side by side with other systems
based on Bayes nets. Though our current P-log implemen-
tation, available at www.krlab.cs.ttu.edu/software, is only a
prototype and is not “built for speed”, our preliminary inves-
tigations into its efficiency look promising. The final sec-
tions of this paper compare our P-log prototype with ACE
(Chavira & Darwiche & Jaeger 2004), a state-of-the-art sys-
tem for computing with Bayes nets with logical information,
on a handful of benchmark problems taken from (Chavira &
Darwiche & Jaeger 2004). The experiment described here is
too small to support conclusions about the relative speed of
the two systems; but we feel the results obtained so far are
worthy of interest.

This paper is arranged as follows. First, we first describe
the “robot problem”, a problem in knowledge representa-
tion. Next, we briefly describes the language we will use to
represent and reason about this problem. We then describe
how the robot problem can be represented and reasoned with
in our language. Finally, we give the results of an experi-
ment on performance, and a note comparing our representa-
tion with that of relational Bayes nets (Jaeger 2004) .

A Moving Robot
We consider a formalization of a problem whose origi-
nal version, not containing probabilistic reasoning, first ap-
peared in (Iwan & Lakemeyer 2002). A P-log representa-
tion was presented in (Baral & Gelfond & Rushton 2004).
This paper will present new extensions on the problem, and
demonstrate how they can be approached using P-log with
consistency restoring rules.

Part 1. There are rooms, sayr0, r1, r2, reachable from the
current position of a robot. The rooms can be open or closed.
The robot cannot open the doors. It is known that the robot
navigation is usually successful. However, a (rare) malfunc-
tion can cause the robot to go off course and enter any one
of the open rooms.

We want to be able to use the corresponding formalization
for correctly answering simple questions about the robot’s
behavior. Here are some typical scenarios:

1. At time0 the robot moved toward open roomr1. Where
will the robot be after the operation is completed? The ex-
pected answer, based on the default “robot navigation is usu-
ally successful”, isin roomr1.

2. Initially doors to all three rooms are open. The robot
moved toward open roomr1 but found itself in some other
room. Why? The only reasonable conclusion we can obtain
from our knowledge base isthe robot malfunctioned. Where
is the robot now? The expected answer isin roomr0 or r2.

3. Initially r0 andr1 are open, andr2 is closed. The rest
is as in scenario 2. Now the answer to “where is the robot
now” is in roomr0.

Part 2. Let us now expand the example by some probabilis-
tic information. Assume for instance that the probability of
a malfunctioning robot going to the intended room is0.5.
If it does not enter the intended room, it will enter another
room at random. We would like to consider the following
scenarios:

1. Initially doors to all three rooms are open. The robot
moved toward roomr1. What possible locations can the
robot have now? The intuitive answer, based on the default
that robot navigation is usually successful, is that the robot
is in r1.

2. Initially doors to all three rooms are open. The robot
moved toward open roomr1 but found itself in some other
room. What possible locations can the robot have now, and
what are their respective probabilities? The intuitive answer
is that the robot could be in eitherr0 or r2, each with proba-
bility 1/2. This answer requires the calculation of numerical
probabilities for each of the possible resulting situations.

Even though the example is simple, the agent capable of ob-
taining the above conclusions should be able to reason with
defaults and their exceptions, and make conclusions about
effects of (sometimes non-deterministic) actions. Its reason-
ing will be non-monotonic, i.e. capable of revising its con-
clusions as the result of new information. The agent must
also be capable of reasoning with quantitative probabilistic
information.

The Language
CR-Prolog
We start with a description of syntax and semantics of a sub-
set of the logic-programming language CR-Prolog, suitable
for our purpose.

A program of CR-Prolog is pair consisting of signature and
a collection of rules of the form:

l0 ← l1, . . . , ln (1)

and
r : l0 +- l1, . . . , ln (2)

wherel1, . . . , ln are literals, andr is a term representing the
name of the rule it precedes. Rules of type (1) are calledreg-
ular; those of type (2) are calledconsistency restoringrules
(cr-rules). The set of regular rules of a cr-programΠ will be
denoted byΠr; the set of cr-rules ofΠ will be denoted by
Πcr.

Definitions:
A regular ruleα(r) obtained from a consistency restoring
rule r by replacing +- by←, and omitting the name of the
rule, will be called theregular counterpartof r.

As usual, semantics is given with respect to ground pro-
grams, and a rule with variables is viewed as shorthand for
schema of ground rules. A minimal (with respect to set
theoretic inclusion) collectionR of cr-rules ofΠ such that
Πr ∪ α(R) is consistent (i.e. has an answer set) is called an
abductive supportof Π.

A setA is called an answer set ofΠ if it is an answer set of
Πr ∪ α(R) for some abductive support ofΠ.

A programΠ is calledcategoricalif it has exactly one ab-
ductive support.

Examples.
Consider a program

p(X) :- not ab(X).
ab(e1).
ab(e2).
q(e).
r(X) :- p(X),q(X).
ab(X) +-.

The program includes a default with two exceptions, a
partial definition ofr in terms ofp andq, and consistency
restoring rule which acknowledges the possible existence of
unknown exceptions to the default. Since such a possibil-
ity is ignored whenever consistent results can be obtained
without considering it, the unique answer set of the above
program is{ab(e1), ab(e2), q(e), p(e), r(e)}.
Suppose now that the program is expanded by a new atom,
-r(e). The regular part of the new program has no answer
set. The cr-rule solves the problem by assuming thate is a
previously unknown exception to the default. The resulting
answer set is{ab(e1), ab(e2), q(e), ab(e)}.

P-log
A complete description of P-log can be found in
our paper, currently under consideration byTheory
and Practice of Logic Programming, available at
http://www.krlab.cs.ttu.edu/Papers/download/bgr05.pdf.
Here, we describe a fragment of the language sufficient for
current purposes.

The signature of a P-log program contains a set of con-
stant symbols and term-building function symbols, which
are used to form terms in the usual way. Additionally, the
signature contains a collection of special function symbols
calledattributes. An attributesa with domaind and ranger
is declared in a P-log program as

a : d→ r (3)

Technically, every P-log atom is of the forma(t) = y, where
a is an attribute,t is a vector of terms, andy is a term. How-
ever, if an attributea is declared as a Boolean attribute (i.e.,
an attribute with range{true, false}), then we may write
a(t) and−a(t) as shorthand for the atomsa(t) = true and
a(t) = false, respectively.

Besides declarations, a P-log program consists of two
parts: its logical part and its probabilistic part. The logi-
cal part essentially consists of a logic program together with
a collection ofrandom selection rules, which take the form

[r] random(a(t) : {X : p(X)})← B. (4)

Here,r is a term used to name the rule andB is a collection
of extended literals (where anextended literalis either an
atom or an atom preceded bynot). Names are optional and
can be omitted if the program contains exactly one random
selection fora(t). The above random selection rule roughly
says thatif B holds, the value ofa(t) is selected at random
from {X : p(X)} ∩ range(a). If B is empty we simply
write

[r] random(a(t) : {X : p(X)}). (5)

In case the value ofa(t) is selected at random from its entire
range (which is quite often the case), we write

[r] random(a(t))← B. (6)

We obtain the possible worlds of a P-log programΠ by
translating its logical part into an Answer Set Prolog pro-
gramτ(Π) and identifying answer sets ofτ(Π) with possi-
ble worlds ofΠ. An atom of the forma(t) = y is translated
as an atoma(t, y). For each attributea of Π, τ(Π) contains
the axiom

¬a(t, Y1)← a(t, Y2), Y1 6= Y2 (7)

which says thata defines a partial function. The random
selection rule

[r] random(a(t) : {X : p(X)})← B. (8)

is translated to the following choice rule in Answer Set Pro-
log

1{a(t, Z) : c0(Z) : p(Z)}1← B. (9)

wherec0 is the range ofa. The precise semantics of this rule
can be found in (Simons 1999). It says roughly that every
answer sets satisfyingB must also satisfya(t, Z) for some
Z such thatc0(Z) ∈ s andp(Z) ∈ s.

The probabilistic part of a P-log program consists of a
collection ofprobability atoms, which have the form:

prr(a(t) = y |c B) = v (10)

wherev ∈ [0, 1], B is a collections of extended literals, and
r is the name of a random selection rule fora(t). The above
probability atom says thatif B were to be true, and the value
ofa(t) were selected by ruler, thenB would causea(t) = y
with probabilityv.

If probability atoms are not given for all possible
outcomes of a random selection, then all outcomes of
the selection which are not assigned probabilities are

considered to be equally likely by default. This se-
mantic is explained in detail in our paper available at
http://www.krlab.cs.ttu.edu/Papers/download/bgr05.pdf.

A CR-P-log programΠ consists of P-log programΠ1, to-
gether with a (possibly empty) collectionΠ2 of CR-rules,
such thatτ(Π1) ∪ Π2 is a categorical program. The possi-
ble worlds ofΠ are computed as in the previous section. A
probability measure on these worlds is obtained in the usual
way, using the probability atoms ofΠ.

Formalization

We start with formalizing the knowledge in Part 1 of our
problem description. We need the initial and final moments
of time, the rooms, and the actions.

time = {0, 1} rooms = {r0, r1, r2}.
We will need actions:

go in : rooms→ boolean.

break : boolean

The actiongo in(R) consists of the robotattemptingto en-
ter a roomR at time step0. break is an exogenous breaking
action which may occur at moment0 and alter the outcome
of this attempt. In what follows, (possibly indexed) variables
R will be used for rooms.

A state of the domain will be modeled by a time-dependent
attribute,in, and a time independent attributeopen.

open : rooms→ boolean.

in : time→ rooms.

The description of dynamic behavior of the system will be
given by the rules below:

The first two rules state that the robot navigation is usually
successful, and a malfunctioning robot constitutes an excep-
tion to this default.

1. in(1) = R← go in(R),not ab.
2. ab← break.

The random selection rule (3) below plays a role of a (non-
deterministic) causal law. It says that a malfunctioning robot
can end up in any one of the open rooms.

3. [r]random(in(1) : {X : open(X)}) ←
go in(R), break.

We also need inertia axioms for the fluentin.

4a. in(1) = R← in(0) = R,not ¬in(1) = R.
4b. in(1) 6= R← in(0) 6= R,not in(1) = R.

Finally, we assume that only closed doors will be specified
in the initial situation. Otherwise doors are assumed to be
open.

5. open(R)← not ¬open(R).

The resulting program,Π0, completes the first stage of our
formalization. The program will be used in conjunction with
a collectionX of atoms of the formin(0) = R, ¬open(R),

go in(R), break which satisfies the following conditions:
X contains at most one atom of the formin(0) = R (robot
cannot be in two rooms at the same time);X has at most
one atom of the formgo in(R) (robot cannot move to more
than one room);X does not contain a pair of atoms of the
form¬open(R), go in(R) (robot does not attempt to enter a
closed room); andX does not contain a pair of atoms of the
form ¬open(R), in(0) = R (robot cannot start in a closed
room). A setX satisfying these properties will be normally
referred to as avalid inputof Π0.

Given an inputX1 = {go in(r0)} the programΠ0 ∪ X1

will correctly concludein(1) = r0. The input X2 =
{go in(r0), break} will result in three possible worlds con-
tainingin(1) = r0, in(1) = r1 andin(1) = r2 respectively.
If, in addition, we are given¬open(r2) the third possible
world will disappear, etc.

Now let us expandΠ0 by some useful probabilistic informa-
tion. We can for instance considerΠ1 obtained fromΠ0 by
adding the probability atom:

8. prr(in(1) = R |c go in(R), break) = 1/2.

ProgramT1 = Π1∪X1 has the unique possible world which
containsin(1) = r0.

Now considerT2 = Π1 ∪X2. It has three possible worlds:
W0 containingin(1) = r0, andW1,W2 containingin(1) =
r1 and in(1) = r2 respectively. PT2(W0) is assigned a
probability of1/2, while PT2(W1) = PT2(W2) = 1/4 by
default. ThereforePT2(in(1) = r0) = 1/2. Here the ad-
dition of break to the knowledge base changed the degree
of the reasoner’s belief inin(1) = r0 from 1 to 1/2. This
is not possible in classical Bayesian updating, for two rea-
sons. First, the prior probability ofbreak is 0 and hence it
cannot be conditioned upon. Second, the prior probability of
in(1) = r0 is 1 and hence cannot be diminished by classical
conditioning. To account for this reasoning in the classi-
cal framework requires the creation of a new probabilistic
model. However, each model is a function of the underly-
ing knowledge base; and so P-log allows us to represent the
change in the form of an update.

Our analysis so far has assumed that our agent is given
knowledge of whether a break occurred. Suppose, however,
that this knowledge may be left out; i.e., thatbreak may
be absent from our input even if a break occurred. This
intuitively allows inputs such as{go in(r1), in(1) = r2},
which, when added to programΠ1, result in inconsistency
(in the sense of having no possible worlds). We can repre-
sent the belief that breaks are rare, but may occur without
our being informed, by the following cr-rule:

9. break +-

Let Π2 consist ofΠ1 together with this rule.Π2 ∪ X1 has
the same answer sets asΠ1 ∪X1 — in this case our reason-
ing agent is not forced to consider the possibility of a break.
Now letX3 = {go in(r0), in(1) 6= r0}. Π1 ∪X3 is incon-
sistent — it has no answer sets.Π2 ∪X3, however, has two
answer sets: one containingin(1) = r0 and one containing
in(1) = r2. Each of these answer sets has probability1/2

according to the semantics of our language, which accords
with intuition.

A note on performance
The random blocks problem was introduced by (Chavira &
Darwiche & Jaeger 2004) to demonstrate the performance of
ACE, a system for probabilistic inference based on relational
Bayesian networks. A problem in the random blocks domain
consists of a collection oflocations, knowledge of which
locationsleft of andbeloweach other, a set ofblocks, and
knowledge of a location for each block. A path from one
location to another is defined in the natural way, and a path
cannot go through a location with a block in it. A typical
query might ask for the probability that there is an unblocked
path between two locationsL1 andL2, where the placement
of the blocks is uncertain.

The following program describes a situation with five lo-
cations and two blocks. It contains two sorts, one for blocks
and one for locations.

#domain location(L; L1; L2; L3).
#domain block(B; B1).
location={1..5}. block={a, b}.

The arrangement of the locations is represented by the rela-
tions left of andbelow.

left_of(1, 2). left_of(2, 3).
left_of(4, 5). below(4, 2).
below(5, 3).

The attributeplacemaps each block to a location.

place: block -> location.

Block a can be placed at any location.

[r1] random(place(a)).

Block b can be placed at a location that is not occupied by
blocka. We introduce a unary predicatefree for b, which
is satisfied by all the candidate locations that blockb can
occupy. In this problem,free for b(L) is true if blocka is
not atL.

[r2] random(place(b):
{X:free_for_b(X)}).

free_for_b(L):- not place(a,L).

Now we are going to define the connectivity of the map.
First, we say a locationL is blocked if there is a block atL.

blocked(L):- place(B) = L.

The following two rules claim that for any two locationsL1

andL2, if they satisfy theleft of or below relation, and there
is no block placed at either of them, thenL1 and L2 are
connected. The logical operatornot represents negation as
failure. Its precise semantics are described in (Gelfond &
Lifschitz 1988).

connected(L1,L2) :- left_of(L1,L2),
not blocked(L1),
not blocked(L2).

connected(L1,L2) :- below(L1,L2),
not blocked(L1),
not blocked(L2).

We also need the following rules to state that the relation
connected is symmetric and transitive. (Noteneq(X, Y) is
a built-in relation meaning thatX andY are not equal.)

connected(L1,L2) :- connected(L2,L1),
neq(L1,L2).

connected(L1,L3) :- connected(L1,L2),
connected(L2,L3),
neq(L1,L3).

The last rule says if there is no reason to believe two loca-
tionsL1 andL2 are connected, then they are not connected.

-connected(L1,L2) :-
not connected(L1,L2).

%The end of the program.

We compare the performance of P-log with ACE (Chavira
& Darwiche & Jaeger 2004), a system developed by Au-
tomated Reasoning Group at UCLA. Our test data sets are
taken directly from (Chavira & Darwiche & Jaeger 2004).
Each test set has a name of the formblockmap − l − b,
wherel is the number of locations, andb is the number of
blocks in the example. The experiments are run for both
reasoning systems on on a 1.8GHZ Pentium M with 1GB of
RAM.

Problem Ans P-log ACE
blockmap-05-01 5 0.119 1.06
blockmap-05-02 20 0.140 1.23
blockmap-05-03 60 0.209 1.442
blockmap-10-01 10 0.151 13.26
blockmap-10-02 90 0.489 22.88
blockmap-10-03 720 1.763 34.6
blockmap-15-01 15 0.380 55.91
blockmap-15-02 210 1.230 118.19
blockmap-15-03 2730 9.752 327.91
blockmap-20-01 20 0.781 301.41
blockmap-20-02 380 3.655 642.71
blockmap-20-03 6840 52.194 2737.6
blockmap-22-01 22 0.920 773.67
blockmap-22-02 462 4.956 1448.34
blockmap-22-03 9240 67.977 >1800

Table 1: P-log and ACE’s performance on random blocks
problem. Times are given in seconds.

The third column gives the compilation time in sec-
onds of each problem in ACE. In ACE, once the model
is compiled, queries can be answered relatively quickly,
compared with the time to compile (around an order of
magnitude less than compile time).

The first column gives the number of possible worlds of
each problem in P-log. The second column gives the time in

seconds for our P-log implementation to obtain the possible
worlds of the given problem, along with their probabilities.
This represents a lower bound on the time for P-log to an-
swer queries about unconditional probabilities. As in ACE,
the additional time for a particular query is relatively small.
One can see that the run time of P-log is basically a func-
tion of the number of possible worlds considered. Our cur-
rent prototype implementation does not store these possible
worlds for later use, so they must be recomputed for each
query. However, if our query involves probabilities condi-
tioned on some set of observations, then possible worlds fail-
ing to satisfy these observations are never generated, which
can decrease the time and space requirements dramatically.

P-log seems to perform well on this small data set. The
random block problem combines uncertainty (in the place-
ment of blocks) with a recursively defined logical relation
(connected). The relationconnected is a symmetric and
transitive relation, leading to a cycled dependencies, which
are handled quite efficiently by Smodels (Niemelä & Simons
1997), the system on which our P-log solver rests. This may
help explain the efficiency of P-log in this problem. Since
ACE is a system fine tuned and well noted for its efficiency,
we were frankly quite surprised to find that our naive proto-
type performed comparably or better with ACE on this sam-
ple problem. Note that we do not make any general claims
about the comparative efficiency of the P-log and ACE, and
this is a topic for further investigation.

Representation in P-log compared with
Relational Bayesian Networks

The representation language of ACE is that of relational
Bayes nets (RBN’s) (Jaeger 2004). The objective of RBN’s
is to succinctly represent Bayes nets with variables: roughly
speaking, RBN’s are to Bayes nets as predicate logic is to
propositional logic. The objective of P-log, on the other
hand, is to represent logical and probabilistic beliefs of an
agent. Differences in elegance and expressiveness of the lan-
guages stem largely from these differences in objective.

A Bayesian networks may exhibit determinism at some
of its nodes, corresponding to the case where the probability
of any value of a node, conditioned on its parents, is 1 or
0. This special case amounts to the node being a Boolean
function of its parents, and so RBN’s come with a natu-
ral, though slightly inelegant method for expressing Boolean
logic. Among its other features, relational Bayes nets intro-
duce primitives for making these representations less inele-
gant.

The logical expressiveness available in Primula, or any
system whose underlying representation is a Bayes net, nat-
urally consists of those constructs which crystallize out of
local determinism in Bayesian networks. On the other hand,
the logical apparatus of P-log, Answer Set Prolog, is the re-
sult of deliberate and long research in non-monotonic logic –
and so we should expect some advantages in elegance and/or
expressiveness with respect to complex logical elements of a
problem. For example, we do not see how to easily represent
the robot example of this paper as a relational Bayes network
— as it contains defaults, closed world assumptions, inertia

axioms, and can be queried with evidence consisting of in-
terventions using Pearl’s do-calculus.

For comparison we include some of the source code used
by ACE for the random blocks problem. The relationcon-
nectedis defined in the above P-log program by the four
rules containingconnectedin their left hand sides, plus a
closed world assumption. These four rules straightforwardly
say that two blocks are connected if one is below or to the
left of the other and neither is blocked, and that the relation
is symmetric and transitive. These P-log rules are compa-
rable in their content to the following code in the language
of RBN’s. The precise semantics of the code can be found
in the Primula user’s guide, which can be downloaded at
http://www.cs.aau.dk/ jaeger/Primula/more.htm.

% The following definitions describe
% when two blocks are connected

connected(l1,l2)=
(sformula((location(l1)&location(l2))):

n-or{pathoflength(l1,l2,u)|
u: last(u)},
0

);
pathoflength(l1,l2,v)=
(sformula((location(l1)&location(l2))):

(sformula(zero(v)):
sformula(l1=l2),

(n-or{pathoflength(l1,l2,u)
|u:pred(u,v)

}:
1,

n-or{
@connectoneighbor(l1,l2,w,u)

|u,w: (pred(u,v)&((leftof(w,l2)
|leftof(l2,w))
|(belowof(w,l2)|belowof(l2,w))))
}

)
),
0

);

@connectoneighbor(l1,l2,ln,u)=
pathoflength(l1,ln,u):

(connectionblocked(ln,l2):0,1),0);

% Two locations are not connected
% if either contains a block

connectionblocked(l1,l2)=(
sformula((

(location(l1)&location(l2))
&
((leftof(l1,l2)|leftof(l2,l1))
|(belowof(l1,l2)|belowof(l2,l1))
)

)):

n-or{blocks(u,l1),blocks(u,l2)
|u:block(u)

},
0
);

Acknowledgments
The authors would like to thank Nasa (contract NASA-
NNG05GP48G) and Arda for supporting this research.

References
Balduccini, M.; and Gelfond, M. 2003. Logic programs
with consistency-restoring rules. In AAAI Spring 2003
Symposium, 9-18.
Baral, C. 2003. Knowledge representation, reasoning and
declarative problem solving. Cambridge University Press.
Baral, C.; Gelfond, M.; and Rushton, N. 2004. Proba-
bilistic reasoning with answer sets. In Proc. LRNMR-07.
Chavira, M.; Darwiche, A.; and Jaeger, M. 2004. Compil-
ing relational Bayesian networks for exact inference. Pro-
ceedings of the Second European Workshop on Probabilis-
tic Graphical Models(PGM-2004), The Netherlands, 49-
56.
Gelfond, M.; and Lifschitz, V. 1988. The stable
model semantics for logic programming. R.Kowalski,
K. Bowen(Eds.), Logic Programming: Proc. Fifth Internat.
Conference and Symposium, 1070-1080.
Iwan, G.; and Lakemeyer, G. 2002. What observations
really tell us. In CogRob́02.
Jaeger, M. 1997. Relational Bayesian networks. UAI97.
Niemel̈a, I.; and Simons, P. 1997. Smodels – an imple-
mentation of the stable model and well-founded semantics
for normal logic programs. In Dix, J, Furbach, U, and
Nerode, A, editors, Proc. 4th international conference on
Logic programming and non-monotonic reasoning, 420–
429. Springer.
Pearl, J. 2000. Causality: models, reasoning and inference.
Cambridge University Press.
Simons, P. 1999. Extending the stable models semantics
with more expressive rules. In Proc. LPNMR-99, Lec-
ture Notes in Artificial Intelligence(LNCS). Springer Ver-
lag, Berlin.

