
Reasoning about intended actions

Chitta Baral † and Michael Gelfond]

† Department of Computer Science and Engineering
Arizona State University, Tempe, AZ 85233, USA.

chitta@asu.edu

] Department of Computer Science
Texas Tech University, Lubbock, TX 79409, USA.

mgelfond@cs.ttu.edu

Abstract

In most research on reasoning about actions and reasoning
about narratives one either reasons about hypothetical execu-
tion of actions, or about actions that actually occurred. In this
paper we first develop a high level language that allows the
expression of intended or planned action sequences. Unlike
observed action occurrences, planned or intended action oc-
currences may not actually take place. But often when they
do not take place, they persist, and happen at an opportune
future time. We give the syntax and semantics for expressing
such intentions. We then give a logic programming axioma-
tization and show the correspondence between the semantics
of a description in the high level language, and the answer
sets of the corresponding logic programming axiomatization.
We illustrate the application of our formalism with respect to
reasoning about trips.

Introduction and Motivation
In reasoning about actions (for example, (?; ?) and reason-
ing about narratives we often reason about action sequences
that are executed in a particular situation, or actions that
happened at particular time points. Alternatively, there have
been some work on reasoning about natural actions (?) and
actions that are triggered. In this paper we considerintended
execution of actionsand formalize how to reason about such
intentions.

To motivate this further, consider a narrative where an
agent intended to execute actiona at time pointi. A com-
monsense reasoner looking back at this intention would con-
clude that the agent must have executed actiona at time
point i. To ground this example, consider that the wife of
our reasoner says that she intends to leave work at 5 PM.
At 6 PM the commonsense reasoner would conclude that
his wife must have left at 5 PM. Now suppose the reasoner
checks his email and finds an email from his wife saying that
she has been held up in a meeting and later gets information
that the meeting ended at 5:30. The reasoner would then
conclude that his wife must have left at 5:30 PM. I.e., her
intended action, since it became impossible at the initially
intended time point, must have persisted and executed at the
next time point when it became executable.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Now let us generalize this to a sequence of actions where
an agent intends to execute a sequencea1, . . . , an at time
point i. Now what if it happens (the world evolved in such
a way) that the executability condition ofak is not true at
the time point whereak−1 ended. Does this mean the agent
abandoned his intention to executeak, . . . , an? It seems to
us that most agents, if they failed to execute their intended
actionak after the execution ofak−1, would executeak in
the next possible time point when it became executable. As
before, let us consider a more grounded example. John is
supposed to have taken flight A to B and then take a connec-
tion from B to C. Suppose Peter finds out that John’s flight
from A to B was late. Once Peter knows when exactly John
reached B, his reasoning would be that John would have
taken the next flight from B to C. In other words, failure
to go from B to C at a particular time point, does not mean
that John would have abandoned his intention to go from B
to C; rather most likely he would have just done it at the next
possible time point. This actually happened to one of the au-
thors. He correctly guessed that his wife would take the next
flight (after missing a connection) and was able to meet her
at the airport when the next flight arrived.

In most earlier work on reasoning about actions and nar-
ratives (for example, (?)), if one or many of the actions in
a given sequencea1, . . . , an are not executable or otherwise
prevented from execution then the reasoning process rigidly
assumes that either the actions were not executed or con-
siders the domain to be inconsistent. The formulation there
is appropriate with respect to the assumptions in those lan-
guages. Here we consider the new notion of “intended (or
planned) execution of actions”, which needs a different for-
malization. In this we can take pointers from prior studies
on intentions (?; ?). In particular, intentions have been stud-
ied from the point of view of the design of rational agents
(?), and they are one of the three main components of BDI
(Belief-Desire-Intention) agents. In (?), various properties
of ‘intentions’ of a rational agent is discussed. In particular
the author says:

Summarizing, we can see that intentions play the fol-
lowing important roles in practical reasoning

• Intentions drive means-ends reasoning.
If I have formed an intention, then I will attempt to
achieve the intention, ...

• Intentions persist.
I will not usually give up on my intentions without good
reason – they will persist, ...
...

In this paper we first present an action language that al-
lows the expression of intentions. We then use AnsProlog
(logic programming with answer set semantics) to imple-
ment reasoning with intentions.The ability of AnsProlog
to express defaults and normative reasoning, becomes a key
tool in expressing the normative reasoning associated with
characterizing intentions, in particular the statements: (i)
normally intended actions take place, and (ii) normally in-
tentions, that are not executed as intended, persist.

Syntax and Semantics of the language
The signature of our languageALI contains two disjoint fi-
nite sets:A, a set of names for elementary actions (agent’s
and exogenous); andF , whose elements are referred to as
fluentsand used to denote dynamic properties of the do-
main1. By fluent literalswe mean fluents and their nega-
tions (denoted by¬f). The set of literals formed from a
set X ⊆ F of fluents will be denoted bylit(X). A set
Y ⊆ lit(F) is calledcompleteif for any f ∈ F , f ∈ Y
or ¬f ∈ Y ; Y is calledconsistentif there is nof such that
f,¬f ∈ Y .

Actions are sets{a1, . . . , an} of elementary actions. In-
tuitively, execution of an action{a1, . . . , ak} corresponds to
the simultaneous execution of its components. Action se-
quences are constructed using〈.〉 a la Prolog, i.e. we al-
low sequences〈{a1, a2}, {a3, a4}〉, etc. We will frequently
identify an actiona with the sequence〈a〉.

By a transition diagramover signatureΣ we mean a di-
rected graphT such that:

(a) the states ofT are labeled by complete and consis-
tent sets of fluent literals (corresponding to possible physical
states of the domain) denoted byσis.

(b) the arcs ofT are labeled by actions.
Paths of a transition diagram, which are of the form

〈σ1, a1, σ2, . . . , an−1, σn〉, are calledtrajectoriesof the do-
main.

Background: Representation of the transition
diagram
In this section we briefly review the syntax of an action de-
scription languageAL (?) and its semantics that defines the
transition diagram corresponding to a give action description
in AL.

An action description of AL is a col-
lection of propositions of the form (1)
causes(ae, l0, [l1, . . . , ln]), (2) caused(l0, [l1, . . . , ln]),
and (3)impossible if(ae, [l1, . . . , ln]);

whereae is an elementary action andl0, . . . , ln are fluent
literals. The first proposition says that, if the elementary ac-
tion ae were to be executed in a situation in whichl1, . . . , ln

1Our definitions could be easily generalized to domains with
non-boolean fluents. However, the restriction to boolean fluents
will simplify the presentation.

hold, the fluent literall0 will be caused to hold in the result-
ing situation. Such propositions are calleddynamic causal
laws. The second proposition, called astatic causal law,
says that, in an arbitrary situation, the truth of fluent liter-
als, l1, . . . , ln is sufficient to cause the truth ofl0. The last
proposition says that actionae cannot be performed in any
situation in whichl1, . . . , ln hold. (The one presented here is
actually a simplification ofAL. Originally impossible if
took as argument an action rather than an elementary one.
The restriction onae being elementary is not essential and
can be lifted. We require it to simplify the presentation).

To define the transition diagram,T , given by an action de-
scriptionAD of AL we use the following terminology and
notation. A setS of fluent literals is closed under a setZ of
static causal laws ifS includes the head,l0, of every static
causal law such that{l1, . . . , ln} ⊆ S. The setCnZ(S)
of consequencesof S underZ is the smallest set of flu-
ent literals that containsS and is closed underZ. E(ae, σ)
stands for the set of all fluent literalsl0 for which there is a
dynamic causal lawcauses(ae, l0, [l1, . . . , ln]) in AD such
that [l1, . . . , ln] ⊆ σ. E(a, σ) =

⋃
ae∈a E(ae, σ). The tran-

sition systemT = 〈S,R〉 describedby an action description
AD is defined as follows:

1. S is the collection of all complete and consistent sets of
fluent literals ofΣ closed under the static laws ofAD,

2. R is the set of all triples〈σ, a, σ′〉 such thata is exe-
cutable inσ (i.e.,AD does not contain a proposition of the
form impossible if(ae, [l1, . . . , ln]) such thatae ∈ a,
{l1, . . . , ln} ⊆ σ) andσ′ is the fixpoint of the equation

σ′ = CnZ(E(a, σ) ∪ (σ ∩ σ′)) (1)

whereZ is the set of all static causal laws ofAD. The
argument ofCnZ in (1) is the union of the setE(a, σ) of
the “direct effects” ofa with the setσ ∩ σ′ of facts that
are “preserved by inertia”. The application ofCnZ adds
the “indirect effects” to this union.

We call an action descriptiondeterministicif for any state
σ0 and actiona there is at most one such successor stateσ1.

Syntax of the rest of the language: Observations
and intentions
As we mentioned earlier our focus is on the recorded history,
including past intentions, and their characterization on how
the world evolved. The recorded history is a collection of
statements of the following forms:
(i) intended(α1, i),
(ii) happened(α2, i), and (iii) observed(l, i).
whereα’s are action sequences,l is a fluent literal, andi is a
time-step. We assume that the elementary actions ofα1 are
not exogenous.

Intuitively, the statementintended(α1, i) means that the
agent intended to execute the action sequenceα1 at time
point i. In the context of an agent architecture one can view
this as that the agent made a plan (at time pointi) to achieve
its goal and the plan was to executeα1. As mentioned ear-
lier, it may so happen that the first action ofα1 may not be
immediately executable at time pointi, as things might have

changed while the agent was making its plan. In that case
the intuition is that the agent would execute it at the next
possible time point. (The agent would most likely not go for
making a new plan immediately as there is no guarantee that
things would remain unchanged while he is making the new
plan. But ifα1 does not become executable for a long time,
then the agent may indeed look for alternatives.)

The intuitive meaning of the statementshappened(α2, i)
andobserved(l, i) are that the sequence of actionsα2 was
observed to have happened starting from time pointi, andl
was observed to be true at time pointi respectively.

Semantics
For the formal characterization, since we adopt the usual
meaning ofhappened andobserved, our main focus is the
characterization ofintended. In particular, our characteri-
zation formulates the following assumptions:

1. a reasoner executes an intended action the moment such
execution becomes possible;

2. intending an execution of a sequence of actions
a1, . . . , an at time stepi consists of intending the execu-
tion of a1 at i followed by intending the execution ofa2 at
the time step at which execution ofa1 is completed, and
so on. (The intuition remains the same, ifais are action
sequences themselves.)

3. Intentions persist even if execution of an action at in-
tended time-step proves to be impossible.

The following example illustrates the above assumptions.

Example 1 In accordance with these assumptions a history
consisting ofintended(〈a1, a2〉, 1) defines a collection of
trajectories of the form:
〈σ1, a1, σ2, a2, σ3〉,
while a history consisting ofintended(〈a1, a2〉, 1) and

happened(a3, 2), wherea2 anda3 can not be executed in
parallel, defines a collection of trajectories of the form
〈σ1, a1, σ2, a3, σ3, a2, σ4〉. 2

We now define when a trajectory is a model of a history. In
this we assume that all actions that have occurred are either
recorded byhappened facts, or are due to intentions.

Definition 1 Let P = 〈σ1, a1, σ2, . . . σm, am, σm+1〉 be a
trajectory.

1. P is said to satisfy a statementintended(a, i), wherea
is an action, if there isj ≥ i such thata ⊆ aj and for
everyi ≤ k < j, a is not executable atσk (i.e., for some
ae ∈ a, we haveimpossible if(ae, [l1, . . . , ln]) in our
action description such that{l1, . . . , ln} ⊆ σk). We then
say thatj+1 is the point ofa’s completion, and we say
that each element ofa is supported atj.

2. P is said to satisfy a statementintended(α, i) whereα =
〈a′1, . . . , a′n〉, andn > 1, if P satisfiesintended(a′1, i)
andintended(〈a′2, . . . , a′n〉, j) wherej is the point ofa′1’s
completion.

3. P is said to satisfy a statementobserved(f, i) if f is true
in σi.

4. P is said to satisfy a statementhappened(α, i), where
α = 〈a′1, . . . , a′n〉, if for 1 ≤ j ≤ n, a′j ⊆ ai+j−1. We
then say that each element ofa′j is supported ati+j-1.

5. P is a modelof H if it satisfies all the statements ofH,
and for1 ≤ i ≤ m, all elements ofai are supported ati.
2

Thus models of a history may have some empty actions in
between. Ifai is empty then it means that no actions oc-
curred at time pointi.

Axiomatization of the semantics in AnsProlog
In this section we give an AnsProlog encoding that captures
the semantics of the previous section. Initially, we assume
that there is a set of rules which capture the transition dia-
gram. With that assumption, our initial goal is to write the
additional AnsProlog rules which when given facts about the
historyH, consisting ofhappened, observed andintended
atoms, will enumerate trajectories (through its answer sets)
that are models ofH. This encoding ofH consists of the
representation of thehappened, intended, andobserved
facts as given below (denoted byα(H)), and the rules item-
ized in 1, 2, and 3 below. The rules are denoted asΠ1.

Sincehappened andintended facts are about sequences
of actions, we represent them inα(H) as follows. To en-
codehappenned(α, i), whereα = 〈a1, . . . , an〉, andai =
{ai1, . . . , aiji

}, we write the facts:
happened(s, i).

seq(s, 1, a1). in(a11, a1). . . . in(a1,j1 , a1).
. . .
seq(s, n, an). in(an1, an). . . . in(an,jn

, an).
intended(α, i) is encoded similarly.observed facts are

encoded directly.
The collection of rulesΠ1 that reasons about a given his-

tory consists of the following.

1. To account forhappened atoms we have the following
rule:

occurs(A,I+J-1) :- happened(S,I),
seq(S,J,A’), in(A,A’).

2. To account forobserved atoms we have the following
rule:

holds(L,0) :- observed(L, 0).
:- not holds(L,T), observed(L,T).

3. To account forintended atoms we need to add several
rules as explained below.

(a) Unfolding intention of executing a sequence to plan-
ning the execution of actions in that sequence.

planned(A,I) :- intended(S,I),
seq(S,1,A).

planned(B,K+1) :- intended(S,I),
I <= K,
seq(S,J,A),
occurs_set(A,K),
seq(S,J+1,B).

The first rule above encodes that an individual actionA
is planned for execution at time pointI, if, A is the first

action of a sequence which is intended to be executed
in time pointI. The second rule encodes that an indi-
vidual actionB is planned for execution at time point
K+1, if B is theJ+1th action of a sequence intended to
be executed at an earlier time point and theJ th action
of that sequence isA which is executed at time point
K.

(b) Planned actions occur unless they are prevented
occurs_set(A,I) :- planned(A,I),

not -occurs_set(A,I).

(c) If a planned action does not occur as planned then the
plan persists.
planned(A,I+1) :- planned(A,I),

not occurs_set(A,I).

(d) If an actionA occurs then all elementary actions inA
occur.
occurs(B,I) :- occurs_set(A,I),

in(B,A).

(e) If an elementary actionB does not occur then all ac-
tions containingB do not occur.
-occurs_set(A,I) :- -occurs(B,I),

in(B,A).

Example 2 We now illustrate Smodels encoding of the
above with respect to the second part of Example 1. Since
that example deals with actions that are singletons, we sim-
plify the code a bit.

action(a1;a2;a3). time(1..3).
intended(s,1). seq(s,1,a1).
seq(s,2,a2). occurs(a3,2).
-occurs(B,X) :- action(A),

action(B), time(X),
occurs(A,X), A !=B.

planned(A,I) :- intended(S,I),
seq(S,1,A).

planned(B,K+1) :- intended(S,I),
seq(S,J,A),
occurs(A,K), time(K),
seq(S,J+1,B).

occurs(A,I) :- action(A), time(I),
planned(A,I),

not -occurs(A,I).

planned(A,I+1) :- action(A), time(I),
planned(A,I),
not occurs(A,I).

As expected, the above program has a single answer set
which contains:

planned(a1,1) planned(a2,2) planned(a2,3)
occurs(a1,1) occurs(a3,2) occurs(a2,3)

Translation of the action description
So far we assumed the existence of an AnsProlog encoding
of the action description part. To precisely relate the seman-
tics of ALI with an AnsProlog encoding we now present
the encoding of the action description part as given in (?).

We start with the encoding of the static and dynamic
causal laws and the impossibility conditions. This encod-
ing is done via a mappingα, from action descriptions ofAL
into programs of AnsProlog, defined as follows:

1. α(causes(a, l0, [l1 . . . lm])) is the collection of atoms

d law(d), head(d, l0), action(d, a),
prec(d, 1, l1), . . . , prec(d, m, lm), prec(d,m + 1, nil).

Here and belowd will refer to the name of the corre-
sponding law. Statementprec(d, i, li), with 1 ≤ i ≤
m, says thatli is the i’th precondition of the lawd;
prec(d, m + 1, nil) indicates that the law has exactly
m preconditions. This encoding of preconditions has a
purely technical advantage. It will allow us to concisely
express the statements of the form ‘All preconditions of a
law d are satisfied at momentT ’. (See rules (3-5) in the
programΠ2 below.)

2. α(caused(l0, [l1 . . . lm])) is the collection of atoms

s law(d), head(d, l0),
prec(d, 1, l1), . . . , prec(d, m, lm), prec(d,m + 1, nil).

3. α(impossible if(a, [l1 . . . lm])) is the rule

−occurs(a, T)← holds(l1, T), . . . , holds(ln, T).

whereoccurs(a, t) stands for ‘elementary actiona oc-
curred at timet’.

By α(AD) we denote the result of applyingα to the laws of
the action descriptionAD. Finally, for any history,H, of S

α(AD,H) = Π1 ∪ α(H) ∪Π2 ∪ α(AD)

whereΠ2 is defined as follows:

Π2



1. holds(L, T ′) ← d law(D),
head(D,L),
action(D,A),
occurs(A, T),
prec h(D,T).

2. holds(L, T) ← s law(D),
head(D,L),
prec h(D,T).

3. all h(D,N, T) ← prec(D,N, nil).
4. all h(D,N, T) ← prec(D,N,P),

holds(P, T),
all h(D,N ′, T).

5. prec h(D,T) ← all h(D, 1, T).
6. holds(L, T ′) ← holds(L, T),

not holds(L, T ′).
7. ← holds(L, T), holds(L, T).

HereD,A,L are variables for the names of laws, actions,
and fluent literals respectively,T, T ′ denote consecutive
time points, andN,N ′ are variables for consecutive inte-
gers. (To run this program under SMODELS we need to ei-
ther define the above types or add the corresponding typing
predicates in the bodies of some rules ofΠ2. These details
will be omitted to save space.)

Relationprec h(d, t), defined by the rule (5) ofΠ2, says
that all the preconditions of lawd are satisfied at momentt.

This relation is defined via an auxiliary relationall h(d, i, t)
(rules (3), (4)), which holds if the preconditionsli, . . . , lm
of d are satisfied at momentt. (Here l1, . . . , lm stand for
the ordering of preconditions ofd used by the mappingα.)
Rules (1),(2) ofΠ2 describe the effects of causal laws and
constraints ofAD. Rule (6) is the inertia axiom (?), and
rule (7) rules out inconsistent states.

The following terminology will be useful for describing
the relationship between answer sets ofα(AD,H) and mod-
els ofH.

Definition 2 Let AD be an action description, andA be a
set of literals overlit(α(AD,H)). We say thatA defines
the sequence

〈σ0, a0, σ1, . . . , an−1, σn〉

if σk = {l | holds(l, k) ∈ A} and ak =
{a | occurs(a, k) ∈ A}.

The following theorem establishes the relationship be-
tween action domains and histories inALI and their en-
coding in AnsProlog.

Theorem 1 If the initial situation ofH is complete(i.e. for
any fluentf of AD, H containsobs(f, 0) or obs(¬f, 0)),
and the action sequences in the atoms ofH do not have re-
peated actions thenM is a model ofH iff M is defined by
an answer set ofα(AD,H).

We now elaborate Example 2 by adding information about
the actions, their executability, and their impact on the states.
We also move the starting time point to 0 to make it more
interesting.

Example 3 Lets assume that we have a fluentf which is
initially true. We have three actionsa1, a2 anda3. a1 is
executable in all situations and causes¬f . a3 is executable
in all situations and causesf . a2 is executable in situations
wheref is true and causes¬f . Now supposea3 has been
observed to occur at time point 2, and the agent intended to
execute〈a1, a2〉 at time point 0.

In that casea1 must have been executed in time point 0.
But a2 could not have been executed at time point 1 because
at time point 1,¬f would have been true makinga2 inex-
ecutable. The actiona2 could not have been executable at
time point 2 because at time point 2a3 occurred and two ac-
tions can not happen at the same time. Now, at time point 3,
the executability conditions ofa3 was satisfied, and no other
action is observed to have occurred at that time, and hence
a2 must have occurred at time point 3.

We now illustrate how an AnsProlog encoding based on
the previous sections does the same reasoning. Since this ex-
ample does not have static causal laws, and only deals with
singleton actions, we simplify the code a bit.

fluent(f).
literal(F) :- fluent(F).
literal(neg(F)) :- fluent(F).
action(a1;a2;a3). time(0..4).
intended(s,0). seq(s,1,a1). seq(s,2,a2).
occurs(a3,2).
-occurs(B,X) :- action(A), action(B),

time(X), occurs(A,X),

A !=B.
planned(A,I) :- intended(S,I), seq(S,1,A).
planned(B,K+1) :- intended(S,I),

seq(S,J,A), occurs(A,K),
time(K), seq(S,J+1,B).

occurs(A,I) :- action(A), time(I),
planned(A,I),
not -occurs(A,I).

planned(A,I+1) :- action(A), time(I),
planned(A,I),
not occurs(A,I).

holds(f,0).

-holds_set(C,T) :- in(F,C), literal(F),
set(C), time(T),
not holds(F,T).

holds_set(C,T) :- set(C), time(T),
not -holds_set(C,T).

holds(F,T+1) :- causes(A,F,C), literal(F),
set(C), time(T),
occurs(A,T), holds_set(C,T).

holds(F,T+1) :- holds(F,T), fluent(F),
time(T), not -holds(F,T+1).

-holds(F,T+1) :- -holds(F,T), fluent(F),
time(T), not holds(F,T+1).

-holds(F,T) :- fluent(F), time(T),
holds(neg(F),T).

holds(neg(F),T) :- fluent(F), time(T),
-holds(F,T).

causes(a1, neg(f), empty). set(empty).
causes(a3, f,empty).
causes(a2, neg(f), empty).

-occurs(a2,T) :- time(T), holds(neg(f),T).

As expected, the above program has a single answer
which contains the following:

occurs(a1,0) occurs(a3,2) occurs(a2,3)
planned(a1,0) planned(a2,1)
planned(a2,2) planned(a2,3)
holds(f,0) -holds(f,1) -holds(f,2)
holds(f,3) -holds(f,4) -holds(f,5)

Allowing repeated actions
In the previous encodings we assumed that sequences of in-
tended actions do not have the same action repeated. To
remove this assumption, the following changes in the en-
coding suffices.

• Replace 3(a) by

planned(S,1,I) :- intended(S,I).
planned(S,J+1,K+1) :- intended(S,I),

occurs(S,J,K).

• Replace 3(b) by

occurs(S,J,K) :- planned(S,J,K),
not -occurs(S,J,K).

• Replace 3(c) by

planned(S,J,I+1) :- planned(S,J,I),
not occurs(S,J,I).

• Replace 3(d) by

occurs(B,I) :- occurs(S,J,I),
seq(S,J,A), in(B,A).

• Replace 3(e) by

-occurs(S,J,I) :- -occurs(B,I), in(B,A),
seq(S,J,A).

An application: reasoning about trips
We came across the issue of reasoning about intentions when
we were trying to develop a representation and reasoning
module to reason about trips. We now briefly mention some
of the aspects of modelling trips and its relationship with
reasoning about intentions.

A trip is an activity with many participants who join the
trip and may drop out at different points of the trip. The trip
has a sequence of planned (or intended) stops, and the same
location may appear multiple times in the sequence as some
locations are hubs. The first stop of the trip is referred to as
its origin, and the last stop is referred to as its destination.
The trip may use many different vehicle types for its differ-
ent legs. At any point the status of a trip may be in transit or
in one of its possible stops (in our case - cities). The various
actions associate with a trip include: a person embarking on
the trip, a person dropping out (or disembarking) from the
trip, depart (from a stop), and stop (in a stop). To embark on
the trip a person may need to have some travel documents.
Things packed in various containers can make the trip more
pleasant, etc.

Our goal was to develop a reasoning and representation
system which encodes the above general knowledge about
trips and together with additional facts about the trips can
answer various relevant questions. Following is a sam-
ple of questions which our system, built using the vari-
ous encodings mentioned in this paper, answers correctly.
(Our encodings of many of these and similar questions are
available at http://www.public.asu.edu/∼cbaral/aquaint04-
06/travel-module/.)

• j1 is a trip which starts in Boston in day 1, supposed to
go to Baghdad on day 3, leave Baghdad on day 5 and
come back to Boston on day 6. The plane broke down in
Baghdad for 2 days on the day it was supposed to leave.
When did the plane reach Boston? (Answer: day 8).

• John took the plane from Paris to Baghdad. He planned
to meet his friend Mike there. Did John meet Mike? (An-
swer: yes.)

• John joined a plane trip which was scheduled to go from
Paris to Rome to Baghdad. John was arrested in Rome.
Where is John? (Answer: Rome.) Where is the plane?
(Answer: Baghdad.)

Conclusion
Intentions have been discussed and properties of intentions
have been formalized using modal logic in the past (?;

?). But this is perhaps the first time intentions about actions
has beenformalized and declaratively implementedtogether
with reasoning about actions and narratives. In this paper we
not only give a formal characterization of intended actions
but also give a provable correct implementation of it using
AnsProlog. Our implementation is part of a bigger project
involving representation and reasoning about trips.

Although in this paper we consider intentions of action
sequences, this can be generalized to more expressive exe-
cution structures, such as Golog programs (?) by combining
the encodings in this paper together with the encodings in
(?), with minor changes.

Acknowledgements
We would like to than the anonymous reviewers for their in-
sightful comments. This work was supported by NSF grants
0070463 and 0412000 and an ARDA contract.

