
Modeling Hybrid Domains Using Process
Description Language

Sandeep Chintabathina, Michael Gelfond, and Richard Watson

Texas Tech University
Department of Computer Science

Lubbock, TX, USA
chintaba,mgelfond,rwatson@cs.ttu.edu

Abstract. In previous work, action languages have predominantly been
concerned with domains in which values are static unless changed by an
action. Real domains, however, often contain values that are in constant
change. In this paper we introduce an action language for modeling such
hybrid domains called the process description language. We discuss the
syntax and semantics of the language, model an example using this lan-
guage, and give a provenly correct translation into answer set program-
ming.

1 Introduction

Designing an intelligent agent capable of reasoning, planning and acting in a
changing environment is one of the important research areas in the field of AI.
Such an agent should have knowledge about the domain in which it is intended
to act and its capabilities and goals.

In this paper we are interested in agents which view the world as a dynamical
system represented by a transition diagram whose nodes correspond to possi-
ble physical states of the world and whose arcs are labeled by actions. A link,
(s0, a, s1) of a diagram indicates that action a is executable in s0 and that after
the execution of a in s0 the system may move to state s1. Various approaches
to representation of such diagrams [3, 6, 9] can be classified by languages used
for their description. In this paper we will adopt the approach in which the di-
agrams are represented by action theories - collections of statement in so called
action languages specifically designed for this purpose. This approach allows for
useful classification of dynamical systems and for the methodology of design and
implementation of deliberative agents based on answer set programming.

Most previous work deals with discrete dynamical systems. A state of such
a system consists of a set of fluents - properties of the domain whose values can
only be changed by actions. An example of a fluent would be the position of
an electrical switch. The position of the switch can be changed only when an
external force causes it to change. Once changed, it stays in that position until
it is changed yet again.

In this paper we focus on the design of action languages capable of describ-
ing dynamical systems which allow continuous processes - properties of an object

whose values change continuously with time. This paper is an evolution of work
presented in [18]. Major changes to the language resulted in a significantly sim-
pler and less restrictive syntax and a more precise semantics based on the notion
of transition diagrams (following the approach of McCain and Turner [10]). Sev-
eral other formalisms exist which also allow modeling of continuous processes
[4, 15–17]. An advantage of our approach is that, by generalizing McCain and
Turner’s semantics, it gains the associated benefits (such as the ability to easily
represent state constraints). Also, in some of the other formalisms actions have
duration, This can lead to problems when such actions overlap. Our actions are
instantaneous. This allows us to avoid the problems with overlapping action.
Following the approach from [13], an action, A with duration can still be repre-
sented using instantaneous actions which denote A’s start and end. Due to space
considerations a more detailed discussion of the differences between approaches
will be left for a expanded version of the paper.

An example of a continuous process would be the function, height, of a freely
falling object. Suppose that a ball, 50 meters above the ground is dropped. The
height of the ball at any time is determined by Newton’s laws of motion. The
height varies continuously with time until someone catches the ball. Suppose
that the ball was caught after 2 seconds. The corresponding transition diagram
is shown in Figure 1.

s0'
&

$
%

holding
height =
f0(50, T)

[0, 0]

-
drop

s1'
&

$
%

¬holding
height =
f1(50, T)

[0, 2]

-
catch

s2'
&

$
%

holding
height =
f0(30, T)

[0, 5]

where f0 and f1 are defined as:

f0(Y, T) = Y. f1(Y, T) = Y − 1
2
gT 2.

Fig. 1. Transitions caused by drop and catch

Notice that states of this diagram are represented by mapping of values to the
symbols holding and height over corresponding intervals of time. For example
in state s1, holding is mapped to false and height is defined by the function
f1(50, T) where T ranges over the interval [0, 2].

Intuitively, the time interval of a state s denotes the time lapse between
occurrences of actions. The lower bound of the interval denotes start time of s
which is the time at which an action initiates s. The upper bound denotes the
end time of s which is the time at which an action terminates s. We assume that
actions are instantaneous that is the actual duration is negligible with respect to
the duration of the units of time in our domain. For computability reasons, we
assign local time to states, therefore, the start time of every state s is 0 and the
end time of s is the time elapsed since the start of s till the occurrence of an action

terminating s. For example, in Figure 1 the action drop occurs immediately after
the start of state s0. The end time of s0 is therefore 0. The action catch occurs
2 time units after the start of state s1. Therefore the end time of s1 is 2.

The state s2 in Figure 1 has the interval [0, 5] associated with it. This interval
was chosen randomly from an arbitrary collection of intervals of the form [0, n]
where n ≥ 0. Therefore, any of the intervals [0, 0] or [0, 1] or [0, 2] and so on
could have been associated with s2. In other words, performing catch leads to
an infinite collection of states which differ from each other in their durations. The
common feature among all these states is that height is defined by f0(30, T) and
holding is true. We do not allow the interval [0,∞] for any state. We assume
that every state is associated with two symbols - 0 and end. The constant 0
denotes the start time of the state and the symbol end denotes the end time of
the state. We will give a formal definition of end when we discuss the syntax of
the language.

We assume that there is a global clock which is a function that maps every
local time point into global time. Figure 2 shows this mapping. Notice that

s0'
&

$
%

holding
height =
f0(50, T)

[0, 0]

-
drop

s1'
&

$
%

¬holding
height =
f1(50, T)

[0, 2]

-
catch

s2'
&

$
%

holding
height =
f0(30, T)

[0, 5]

Global
time
(secs)

0 1 2 3 4 5 6 7 8 9

@
@

@R

��
�����

�
�

�	

�����������)

�
�

�	

Fig. 2. Mapping between local and global time

this mapping allows one to compute the height of the ball at any global time,
t ∈ [0,7]. This is not necessarily true for the value of holding. According to our
mapping global time 0 corresponds to two local times: 0 in state s0 and 0 in state
s1. Since the values of holding in s0 and s1 are true and false respectively, the
global value of holding at global time 0 is not uniquely defined. Similar behavior
can be observed at global time 2. The phenomena is caused by the presence of
instantaneous actions in the model. It indicates that 0 and 2 are the points of
transition at which the value of holding is changed from true to false and false to
true respectively. Therefore, it is false at 1 and true during the interval [3,7].
Since the instantaneous actions drop and catch do not have a direct effect on
height, its value at global time 0 and 2 is preserved, thereby resulting in unique
values for height for every t ∈ [0,7].

2 Syntax And Semantics of H

2.1 Syntax

To define our language, H, we first need to fix a collection, ∆, of time points.
Ideally ∆ will be equal to the set, R+, of non-negative real numbers, but we
can as well use integers, rational numbers, etc. We will use the variable T for
the elements of ∆. We will also need a collection, G, of functions defined on ∆,
which we will use to define continuous processes. Elements of G will be denoted
by lower case greek letters α, β, etc.

A process description language, H(Σ,G,∆), will be parameterized by ∆, G
and a typed signature Σ. Whenever possible the parameters Σ, G, ∆ will be
omitted. We assume that Σ contains regular mathematical symbols including
0, 1,+, <,≤,≥, 6=, ∗, etc. In addition, it contains two special classes, A and P =
F ∪ C of symbols called actions and processes.

Elements of A are elementary actions. A set {a1, . . . , an} of elementary ac-
tions performed simultaneously is called a compound action. By actions we mean
both elementary and compound actions. Actions will be denoted by a’s. Two
types of actions - agent and exogenous are allowed. agent actions are performed
by an agent and exogenous actions are performed by nature. Processes from
F are called fluents while those from C are referred to as continuous processes.
Elements of P, F and C will be denoted by (possibly indexed) letters p’s, k’s
and c’s respectively. F contains a special functional fluent end that maps to ∆.
end will be used to denote the end time of a state. We assume that for every
continuous process, c ∈ C, F contains two special fluents, c(0) and c(end). For
example, the fluents height(0) and height(end) corresponding to height. Each
process p ∈ P will be associated with a set range(p) of objects referred to as the
range of p. E.g. range(height) = R+.

Atoms of H(Σ,G,∆) are divided into regular atoms, c-atoms and f-atoms.

– regular atoms are defined as usual from symbols belonging to neither A nor
P.
E.g. mother(X,Y), sqrt(X)=Y.

– c-atoms are of the form c = α where range(c) = range(α).
E.g. height = 0, height = f0(Y, T), height = f0(50, T).
Note that α is strictly a function of time. Therefore, any variable occurring
in a c-atom other than T is grounded.
E.g. height = f0(Y, T) is a schema for height = λT.f0(y, T) where y is a
constant. height = 0 is a schema for height = λT.0 where λT.0 denotes the
constant function 0.

– f-atoms are of the form k = y where y ∈ range(k). If k is boolean, i.e.
range(k) = {>,⊥} then k = > and k = ⊥ will be written simply as k
and ¬k respectively. E.g. holding, height(0)=Y, height(end)=0. Note that
height(0) = Y is a schema for height(0) = y.

The atom p = v where v denotes the value of process p will be used to refer to
either a c-atom or an f-atom. An atom u or its negation ¬u are referred to as
literals. Negation of = will be often written as 6=. E.g. ¬holding, height(0) 6= 20.

Definition 1. An action description of H is a collection of statements of the
form:

l0 if l1, . . . , ln. (1)

ae causes l0 if l1, . . . , ln. (2)

impossible a if l1, . . . , ln. (3)

where ae and a are elementary and arbitrary actions respectively and l’s are
literals of H(Σ,G,∆). The l0’s are called the heads of the statements (1) and
(2). The set {l1, . . . , ln} of literals is referred to as the body of the statements
(1), (2) and, (3). Please note that literals constructed from f-atoms of the form
end = y will not be allowed in the heads of statements of H.

A statement of the form (1) is called a state constraint. It guarantees that
any state satisfying l1, . . . , ln also satisfies l0. A dynamic causal law (2) says if
an action, ae, were executed in a state s0 satisfying literals l1, . . . , ln then any
successor state s1 would satisfy l0. An executability condition (3) states that
action a cannot be executed in a state satisfying l1, . . . , ln. If n = 0 then if is
dropped from (1), (2), (3).

Example 1. Let us now construct an action description AD0 describing the tran-
sition diagram from fig (1). Let G0 contain functions

f0(Y, T) = Y.

f1(Y, T) = Y − 1
2
gT 2.

where Y ∈ range(height), g is acceleration due to gravity, and T is a variable
for time points.

The description is given in language H whose signature Σ0 contains actions
drop and catch, a continuous process height, and fluents holding, height(0) and
height(end). holding is a boolean fluent; range(height) is the set of non-negative
real numbers.

drop causes ¬holding. (4)

impossible drop if ¬holding. (5)

impossible drop if height(end) = 0. (6)

catch causes holding. (7)

impossible catch if holding. (8)

height = f0(Y, T) if height(0) = Y, holding. (9)

height = f1(Y, T) if height(0) = Y, ¬holding. (10)

It is easy to see that statements (4) and (7) are dynamic causal laws while
statements (5), (6) and (8) are executability conditions and statements (9) and
(10) are state constraints.

2.2 Semantics

The semantics of process description language, H, is similar to the semantics of
action language B given by McCain and Turner [10, 11]. An action description
AD of H, describes a transition diagram, TD(AD), whose nodes represent possi-
ble states of the world and whose arcs are labeled by actions. Whenever possible
the parameter AD will be omitted.

Definition 2. An interpretation, I, of H is a mapping that assigns (properly
typed) values to the processes of H such that for every continuous process, c,
I(c(end)) = I(c)(I(end)) and I(c(0)) = I(c)(0).

A mapping I0 below is an example of an interpretation of action language of
Example 1.

I0(end) = 0,
I0(holding) = >,
I0(height(0)) = 50,
I0(height(end)) = 50,
I0(height) = f0(50, T).

Definition 3. An atom p = v is true in interpretation I (symbolically I |= p =
v) if I(p) = v. Similarly, I |= p 6= v if I(p) 6= v.

An interpretation I is closed under the state constraints of AD if for any state
constraint (1) of AD, I |= li for every i, 1 ≤ i ≤ n then I |= l0.

Definition 4. A state, s, of TD(AD) is an interpretation closed under the state
constraints of AD.

It is easy to see that interpretation I0 corresponds to the state s0 in fig (1). By
definition, the states of TD(AD) are complete.

Whenever convenient, a state, s, will be represented by a complete set {l : s |= l}
of literals. For example, in Figure 1, the state s0 will be the set

s0 = { end = 0, holding, height(0) = 50,
height(end) = 50, height = f0(50, T) }

Please note that only atoms are shown here. s0 also contains the literals holding 6=
⊥, height(0) 6= 10, height(0) 6= 20 and so on.

Definition 5. Action a is executable in a state, s, if for every non-empty subset
a′ of a, there is no executability condition

impossible a′ if l1, . . . , ln.

of AD such that s |= li for every i, 1 ≤ i ≤ n.

Let ae be an elementary action that is executable in a state s. Es(ae) denotes
the set of all direct effects of ae, i.e. the set of all literals l0 for which there is a
dynamic causal law

ae causes l0 if l1, . . . , ln

in AD such that s |= li for every i, 1 ≤ i ≤ n . If a is a compound action then
Es(a) =

⋃
ae∈a Es(ae).

A set L of literals of H is closed under a set, Z, of state constraints of AD if L
includes the head, l0, of every state constraint

l0 if l1, . . . , ln

of AD such that {l1, . . . , ln} ⊆ L.

The set CnZ(L1) of consequences of L1 under Z is the smallest set of literals
that contains L1 and is closed under Z.

A transition diagram TD is a tuple〈Φ, Ψ〉 where
1. Φ is a set of states.
2. Ψ is a set of all triples 〈s, a, s′〉 such that a is executable in s and s′ is a state
which satisfies the condition

s′ = CnZ(Es(a) ∪ (s ∩ s′)) ∪ {end = t′} (11)

where Z is the set of state constraints of AD and t′ is the end time of s′ that is
s′(end) = t′. The argument to CnZ in (11) is the union of the set Es(a) of the
“direct effects” of a with the set s ∩ s′ of facts that are “preserved by inertia”.
The application of CnZ adds the “indirect effects” to this union. Since s′ is the
successor state of s with end = t′, the union of the set resulting after application
of CnZ with the set {end = t′} gives s′.

In the example from figure 1, the set Es0(drop) of direct effects of drop will be
defined as

Es0(drop) = {¬holding}
The instantaneous action drop occurs at global time 0 and has no direct effect
on the value of height at 0. This means that the value of height at the end of
s0 will be preserved at time 0 of s1. Therefore,

s0 ∩ s1 = {height(0) = 50}

The application of CnZ to Es0(drop) ∪ (s0 ∩ s1) gives the set

Q = {¬holding, height(0) = 50, height = f1(50, T)}

where Z contains the state constraints (9) and (10). The set Q will not represent
the state s1 unless end is defined. In the example, s1(end) = 2, therefore, we get

s1 = { end = 2, ¬holding, height(0) = 50,
height(end) = 30, height = f1(50, T) }

Please note that, again, only atoms are shown here.

3 Specifying history

In addition to the action description, the agent’s knowledge base may contain
the domain’s recorded history - observations made by the agent together with a
record of its own actions.

The recorded history defines a collection of paths in the diagram which, from
the standpoint of the agent, can be interpreted as the system’s possible pasts.
If the agent’s knowledge is complete (e.g., it has complete information about
the initial state and the occurrences of actions, and the system’s actions are
deterministic) then there is only one such path.

The Recorded history, Γn, of a system up to a current moment n is a collection
of observations, that is statements of the form:

obs(v, p, t, i).
hpd(a, t, i).

where i is an integer from the interval [0, n) and time point, t ∈ ∆. i is an
index of the trajectory. For example, i = 5 denotes the step 5 of the trajectory
reached after performing a sequence of 5 actions. The statement obs(v, p, t, i)
means that process p was observed to have value v at time t of step i. Note that
p is any process other than end. The statement hpd(a, t, i) means that action
a was observed to have happened at time t of step i. Observations of the form
obs(y, p, 0, 0) will define the initial values of processes.

Definition 6. A pair 〈AD,Γ 〉 where AD is an action description of H and Γ is
a set of observations, is called a domain description.

Definition 7. Given an action description AD of H that describes a transition
diagram TD(AD), and recorded history, Γn, up to moment n, a path

〈s0, a0, s1, . . . , an−1, sn〉

in the TD(AD) is a model of Γn with respect to TD(AD), if for every i, 0 ≤ i ≤ n
and t ∈ ∆

1. ai = {a : hpd(a, t, i) ∈ Γn} ;
2. if obs(v, p, t, i) ∈ Γn then p = v ∈ si.

4 Translation into Logic Program

In this section we will discuss the translation of a domain description written in
language H into rules of an A-Prolog program. A-Prolog is a language of logic
programs under the answer set semantics [5]. For this paper our translation will
comply with the syntax of the SMODELS [12] inference engine.

We know that the statements of H contain continuous functions. Translating
these statements into rules of A-Prolog is straight forward, however, due to
issues involved with grounding, to run the resulting program under SMODELS,

the functions should be discretized. We will now look at how to discretize these
functions.

Let f : A → B be a function of H. A discretized set, Ah1 corresponding to
A is obtained as follows. First, a unit h1 is selected. Next, Ah1 is constructed
by selecting all those elements of A that are multiples of h1. Since, in H, the
domain of each function is time, we only consider positive multiples. Therefore,

Ah1 = {0, h1, 2h1, 3h1,}

After Ah1 is defined, the discretized set Bd corresponding to B is then defined
as Bd = {f(x)|x ∈ Ah1}.

Let g : Ah1 → Bd. The function g : Ah1 → Bd is called the discretized
ε− approximation of f if ∀x ∈ Ah1

| f(x)− g(x) |< ε

where ε > 0.

Definition 8. Given an action description AD of H(Σ, δ,G), the discretized ac-
tion description AD

′
with respect to AD is obtained by replacing the occurrence

of every function f ∈ G in the statements of AD by the function g where g is
the discretized ε− approximation of f .

From now on, we will deal with discretized action descriptions. We assume
that the agent makes observations at discrete time points and observes only the
discretized values of processes.

Definition 9. Given a domain description D = 〈AD,Γn〉, the discretized do-
main description D′

with respect to D is the pair 〈AD
′
, Γn〉 where AD

′
is the

discretized action description with respect to AD and Γn is the recorded history
up to moment n.

Next we will show how to translate discretized domain descriptions. Note
that, from now on, when we say domain description (or action description) we
refer to the discretized one. First, let us look at the general way of declaring
actions and processes.

4.1 Declarations

Let us look at a general way of declaring actions and processes:

action(action name, action type).
process(process name, process type).

action name and action type are non-numeric constants denoting the name of
an action and its type respectively. Similarly, process name and process type are

non-numeric constants denoting the name of a process and its type respectively.
For instance in example 1 the actions and processes are declared as follows:

action(drop, agent).
action(catch, agent).

process(height, continuous).
process(holding, fluent).

Now let us see how the range of a process is declared. There are a couple of
ways of doing this. The range of height from Example 1 is the set of non-negative
real numbers. In logic programming this would lead to an infinite grounding.
Therefore, we made a compromise and chose integers ranging from 0 to 50.

values(0..50).
range(height, Y) : − values(Y).

holding is a boolean fluent. Therefore, we write

range(holding, true).
range(holding, false).

Suppose we have a switch that can be set in three different positions, the range
of the process switch position is declared as:

range(switch position, low).
range(switch position,medium).
range(switch position, high).

In order to talk about the values of processes and occurrences of actions we
have to consider the time and step parameters. Integers from some interval [0, n]
will be used to denote the step of a trajectory. I’s will be used as variables for
step. Every step has a duration associated with it. Integers from some interval
[0,m] will be used to denote the time points of every step. In this case, m will
be the maximum allowed duration for any step. T’s will be used as variables for
time. Therefore, we write

step(0..n).
time(0..m).

Assume that n and m are sufficiently large for our applications. Then we add
the rules

#domain step(I; I1).
#domain time(T ;T1;T2).

for declaring the variables I, I1, T, T1 and, T2 in the language of SMODELS.
The first domain declaration asserts that the variables I and I1 should get their
domain from the literal step(I).

4.2 General translations

We will now discuss a general translation of statements of H into rules of A-
prolog. If a is an elementary action occurring in a statement that is being trans-
lated, it is translated as

o(a, T, I)

which is read as “action a occurs at time T of step I”. If a is a compound action
then each elementary action ae ∈ a will be translated in the same manner.

If l is a literal occurring in any part of a statement, other than the head of
a dynamic causal law, then it will be written as

α0(l, T, I)

where α0(l, T, I) is a function, described below, that denotes a case-specific trans-
lation of literal l. A literal, l, occurring in the head of a dynamic causal law will
be written as

α0(l, 0, I + 1)

In this paper, due to difficulties with generalizing inertia axioms, we limit our-
selves to action descriptions of H in which the heads of dynamic causal laws are
either f-atoms or their negations. This can be done without loss of generality as
all other dynamic causal laws can be replaced using a dynamic causal law/state
constraint pair. From now on we will only consider such action descriptions.

Definition 10. Let AD be an action description of H, n and m be positive
integers, and Σ(AD) be the signature of AD. We will use n and m as the
maximum values for steps and time points respectively. Σn

m(AD) denotes the
signature obtained as follows:
const(Σn

m(AD)) = 〈const(Σ(AD)) ∪ {0, . . . , n} ∪ {0, . . . ,m}〉;
pred(Σn

m(AD)) = {val,−val, o, process, action, range, step, time, values}

Let
αn

0 (AD) = 〈α0(AD), Σn
m(AD)〉, (12)

where
α0(AD) =

⋃
r∈AD

α0(r), (13)

and α0(r) is defined as follows:

– α0(l0 if l1, . . . , ln.) is

α0(l0, T, I) : − α0(l1, T, I), . . . , α0(ln, T, I). (14)

– α0(ae causes l0 if l1, . . . , ln.) is

α0(l0, 0, I + 1) : − o(ae, T, I), α0(l1, T, I), . . . , α0(ln, T, I). (15)

– α0(impossible a if l1, . . . , ln.) is

: − o(a, T, I), α0(l1, T, I), . . . , α0(ln, T, I). (16)

In statement (3), if a is the non-empty compound action {a1, . . . , am} then
o(a, T, I) in rule (16) will be replaced by o(a1, T, I), . . . , o(am, T, I). The con-
struction of αn

0 (AD) in equation (12) is such that the declarations from section
(4.1) are added to α0(AD).

α0(l, T, I) will be replaced by

– val(V, c, 0, I) if l is an atom of the form c(0) = v. It is read as “V is the value
of process c at time 0 of step I”.
E.g. height(0) = Y will be translated as val(Y, height, 0, I).

– −val(V, c, 0, I) if l is of the form c(0) 6= v. It is read as “V is not the value
of process c at time 0 of step I”.

– val(V, p, T, I) if l is an atom of the form p = v other than c(0) = v. It is read
as “V is the value of process p at time T of step I”.
E.g. height(end) = 0 will be translated as val(0, height, T, I).

– −val(V, p, T, I) if l is of the form p 6= v other than c(0) 6= v. It is read as “V
is not the value of process p at time T of step I”.

α0(l, 0, I + 1) will be replaced by

– val(V, p, 0, I + 1) if l is of the form p = v.
– −val(V, p, 0, I + 1) if l is of the form p 6= v.

Note that when translating the f-atom, end = y we will not follow the above
conventions. Instead we translate it as end(T, I) where T denotes the end of step
I. Before we look at some examples we will discuss domain independent axioms.

4.3 Domain independent axioms

Domain independent axioms define properties that are common to every domain.
We will denote such a collection of axioms by Πd. Given a action description
AD of H, let

αn(AD) = αn
0 (AD) ∪Πd. (17)

Πd is the following set of rules:

1. End of state axioms. These axioms will define the end of every state s. The
end of a state is the local time at which an action terminates s. When it
comes to implementation we talk about the end of a step instead of state.
Therefore, we write

end(T, I) : − o(A, T, I). (18)

If no action occurs during a step then end will be the maximum time point
allowed for that step. This is accomplished by using the choice rule

{end(m, I)}1. (19)

The consequence of the rule (19) is that the number of end(m,I) that will be
true is either 0 or 1. A step cannot have more than one end. This is expressed
by (20).

: − end(T1, I), end(T2, I), neq(T1, T2). (20)

Every step must end. Therefore, we write

ends(I) : − end(T, I). (21)
: − not ends(I). (22)

Every step, i, is associated with an interval [0, e] where 0 denotes the start
time and e denotes the end time of i. We will use the relation out to define
the time points, t /∈ [0, e] and in to define the time points, t ∈ [0, e].

out(T, I) : − end(T1, I), T > T1. (23)

in(T, I) : − not out(T, I). (24)

By using these relations in our rules we can avoid computing process values
at time points, t /∈ [0, e].

2. Inertia axiom. The inertia axiom states that things normally stay as they
are. It has the following form:

val(Y, P, 0, I + 1) : − val(Y, P, T, I), end(T, I), not − val(Y, P, 0, I + 1).
(25)

Intuitively, rule (25) says that actions are instantaneous. In the example from
figure 1, the value of height at global time 0 remains 50 when the action
drop occurs at 0.

3. Other axioms. A fluent remains constant throughout the duration of a step.
This is expressed by the axiom (26).

val(Y, P, T, I) : − val(Y, P, 0, I), process(P, fluent), in(T, I). (26)

Axiom (27) says that no process can have more than one value at the same
time.

−val(Y 1, P, T, I) : − val(Y 2, P, T, I), neq(Y 1, Y 2). (27)

Adding history Given an action description AD of H and recorded history Γn

up to moment n, we will construct a logic program that contains translations of
the statements of AD and Γn.

Γn contains observations of the form obs(v, p, t, i) and hpd(a, t, i) which are
translated as facts of A-Prolog programs. Let Σn

m,Γ (AD) denote the signature
obtained as follows:

– const(Σn
m,Γ (AD)) = const(Σn

m(AD));
– pred(Σn

m,Γ (AD)) = pred(Σn
m(AD)) ∪ {hpd, obs}.

Let
αn(AD,Γn) = 〈ΠΓ , Σn

m,Γ (AD)〉. (28)

where
ΠΓ = αn(AD) ∪ Π̂ ∪ Γn. (29)

and Π̂ is the set of rules:

1. Reality check axiom that guarantees that the agent’s predictions match with
his observations.

: − obs(Y, P, T, I), −val(Y, P, T, I). (30)

2. The following rule says that if action A was observed to have happened at
time T of step I then it must have occurred at time T of step I.

o(A, T, I) : − hpd(A, T, I). (31)

3. The following rule is for defining the initial values of processes.

val(Y, P, 0, 0) : − obs(Y, P, 0, 0). (32)

Hence αn(AD,Γn) is the resulting logic program containing translations for
the statements of AD and Γn.

4.4 Correctness

The following definitions will be useful for describing the relationship between
answer sets of αn(AD,Γn) and models of Γn.

Definition 11. Let AD be an action description of H and A be a set of literals
over αn(AD,Γn). We say that A defines the sequence 〈σ0, a0, σ1, . . . , an−1, σn〉 if

σi = {l | α0(l, t, i) ∈ A} ∪ {end = t | end(t, i) ∈ A}

for 0 ≤ i ≤ n, and

ai = {a | o(a, t, i) ∈ A}

for 0 ≤ i < n.

Definition 12. The initial situation of Γn is complete if and only if for any
process p of Σ, Γn contains obs(v, p, 0, 0).

The following theorem establishes the relationship between the theory of actions
in H and logic programming.

Theorem 1. Given a discretized domain descriptionD = 〈AD,Γn〉; if the initial
situation of Γn is complete then M is a model of Γn with respect to TD(AD) iff
M is defined by some answer set of αn(AD,Γn).

The proof is omitted due to space considerations.

5 Conclusions and Future Work

In this paper we presented a new type of action language, the process description
language. Our language, H, is capable of representing domains containing con-
tinuous processes in a simple and concise manner. In sample runs, computation
of small, discrete domains (using the translated action description and SMOD-
ELS) is reasonable, but, in general, efficient processing will require a non-ground
solver.

The authors would like to thank ARDA, United Space Alliance, and NASA
who’s grants helped fund this research.

References

1. [BG03] M. Balduccini and M. Gelfond. Diagnostic reasoning with A-Prolog. In
Journal of Theory and Practice of Logic Programming (TPLP), 3(4-5):425-461,
Jul 2003.

2. [BG03a] M. Balduccini and M. Gelfond. Logic Programs with Consistency-
Restoring Rules. In AAAI Spring 2003 Symposium, 2003.

3. [BG00] C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In Minker,
J,. ed., Logic-Based AI, Kluwer Academic publishers,(2000),257-279.

4. [BST02] C. Baral, T. Son and L. Tuan. A transition function based characterization
of actions with delayed and continuous effects. In Proc. of KR’02, pages 291-302.

5. [GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming, In Logic Programming: Proc. of the Fifth International Conference and
Symposium, 1988, pp. 1070-1080.

6. [GL98] M. Gelfond and V. Lifschitz. Action Languages. In Electronic Transactions
on Artificial Intelligence, 3(6),1998.

7. [GW98] M. Gelfond and R. Watson. On Methodology of Representing Knowledge
in Dynamic Domains. In Proc. of the 1998 ARO/ONR/NSF/DARPA Monterey
Workshop on Engineering Automation for Computer Based Systems, pp. 57-66,
1999.

8. [Lif97] V. Lifschitz, Two components of an action language, In Annals of Mathe-
matics and Artificial Intelligence, Vol. 21, 1997, pp. 305-320.

9. [Lif99] V. Lifschitz. Action languages, Answer Sets and planning. In The Logic
Programming Paradigm:a 25 year perspective.357-373, Springer Verlag,1999.

10. [MT95] N. McCain and H. Turner. A causal theory of ramifications and qualifica-
tions. In Proc. of IJCAI-95, pages 1978-1984, 1995.

11. [MT97] N. McCain and H. Turner. Causal theories of action and change. In Proc.
of AAAI-97, pages 460-465, 1997.

12. [NS97] I. Niemela and P. Simons. Smodels - an implementation of the stable model
and well founded semantics for normal logic programs. In Proc. of LPNMR’97,
pages 420-429,1997.

13. [Pin94] J.A. Pinto. Temporal Reasoning in the Situation Calculus. PhD Thesis,
Department of Computer Science, University of Toronto, 1994.

14. [Rei96] R. Reiter. Natural actions, concurrency and continuous time in the situation
calculus. In Principles of Knowledge Representation and Reasoning: Proc. of the
Fifth International Conference (KR’96), pages 2-13, Cambridge, Massachusetts,
U.S.A., November 1996.

15. [Rei01] R. Reiter. Time, concurrency and processes. In Knowledge in action: Logical
Foundations for specifying and implementing dynamical systems, pages 149-183,
ISBN 0-262-18218-1, MIT, 2001.

16. [San89]E. Sandewall. Filter Preferential entailment for the logic of action in almost
continuous worlds. In Proc. of IJCAI’89, pages 894-899, 1989.

17. [Sha89]M. Shanahan. Representing continuous change in the Event Calculus. In
Proc. of the European Conference on Artificial Intelligence, pages 598-603, 1990.

18. [WC03] R. Watson and S. Chintabathina. Modeling hybrid systems in action
languages. In Proc. of the 2nd International ASP’03 workshop, pages 356-370,
Messina, Sicily, Italy, September 2003.

