Conformant Planning for Domains with Constraints — A New Approach

Abstract

The paper presents a pair of new conformant planr@sa,
based on recent developments in theory of action and change.
As an inputCPA takes an action descriptiaB in action lan-
guage AL which allows state constraints (non-stratified ax-
ioms), together with a set of partial initial states and a goal.
We propose two approximations of the transition diagf@&m
defined byD. Both approximations are deterministic transi-
tion functions which map pairs of actions and partial states
into partial states. We prove that the approximations can
be computed fronD in time polynomial with respect to the
number of fluents. Moreover both approximations are sound
(and sometimes complete) with respectlio In its search

for a plan, an approximation based planner analyses paths of
an approximation instead of that @f. CPA is a forward,
best first search planner based on this idea. We contxke

with two state-of-the-art conformant planners, KACMBP and
Conformant-FF (CFF), on benchmarks in the literature, and
on two new domains. One has large number of state con-
straints and another has a high degree of incompleteness.
CPA performs reasonably well in benchmark domains and
outperforms KACMBP and CFF in the first domain while

it works well with the second one. Our experimental result
shows that having an integral part of a conformant planner to
deal with state constraintfirectly can significantly improve

its performance, extending a similar claim for classical plan-
ners in (Thiebaux, Hoffmann, & Nebel 2003).

Keywords: Planning, Knowledge Representation, Reasoning
about action and change

Introduction and Motivation

In recent years, several conformant planners have been de-

veloped for solving planning problems in the presence of
incomplete information about the initial state. These plan-
ners can be divided into two groups. In the first group, the
planning problem is translated into an equivalent problem
in a more general setting which can be solved by off-the-
shelf software systems. Belonging to this group are the SAT-
based plannef-PLAN (Castellini, Giunchiglia, & Tacchella
2003), QBF planner (Rintanen 2000), the model checking
planner CMBP (Cimatti & Roveri 2000) (or its newer ver-
sion KACMBP (Cimatti, Roveri, & Bertoli 2004)), and an-
swer set programming based planners (Egeal. 2003;

Copyright © 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Son, Tu, & Baral 2004). In the second group, the focus has
been on developing efficient search strategies, good heuris-
tics, and new search algorithms (Brafman & Hoffmann
2004; Bryce & Kambhampati 2004; Bonet & Geffner 2001;
Kurien, Nayak, & Smith 2002; Petrick & Bacchus 2002;
Smith & Weld 1998). While the majority of planners in the
first group allow state constraidt® be part of the planning
problem specification, other planners, including the most re-
cent additions to the set of conformant planners (Brafman &
Hoffmann 2004; Bryce & Kambhampati 2004), do not.

Most of the planners in the second group deal with con-
straints by compiling them away, i.e., planning problems
with constraints are compiled into planning problems with-
out constraints. This practice has several disadvantages
(Thiebaux, Hoffmann, & Nebel 2003): (i) the problem rep-
resentation can become unnatural and unreadable due to the
extra actions and fluents; (ii) allowing state constraints sig-
nificantly increases the expressive power of the represen-
tation language. The authors in (Thiebaux, Hoffmann, &
Nebel 2003) also suggested a compilation schema that com-
piles away state constraints and produces a new problem
whose size is linear to the size of the original domain. Un-
fortunately, this may not be enough. The following simple
example illustrates this point.

Example 1 (Dominos Domain) Suppose that we have
dominos standing on a line in such a way that if one domino
falls then the domino on its right also falls. There is also a
ball hanging close to the leftmost domino. Touching the ball
will cause the leftmost domino to fall. Initially, the ball stays
still and the dominos are standing. The goal is to have the
rightmost domino to fall. Obviously, swinging the ball is the
unique plan to achieve this goal, no matter howbig.

The problem can be easily expressed by a theory with a set
of objectsl, ..., n denoting the dominos from left to right
and a single actiorwing that causedown; (the leftmost
domino falls) to be true, and—1 state constraintéown,; =
down,;1 representing the fact thdbwn; , is true ifdown;
is true. Initially, ~down; is true for everyi. The goal is to
havedown,, become true.

According to the compilation suggested in (Thiebaux,
Hoffmann, & Nebel 2003), for each axiombown; =

lWe use the term state constraints (or constraints) to refer to
PDDL axioms or static causal laws in action languages.

down;y1, we introduce a new actiop; whose effect is a set of fluent nameB. A (fluent) literal is either a fluent
down;+1 and whose precondition igown;. Clearly, under f € F or its negation-f. A domain descriptior{or a do-
this compilation, the plan to achieve the goal is the sequence main) D is a set of laws of the following forms:

of actions[swing, ey, ..., en_1]. a causes if ¥ 1)

The main problem with this compilation is that the plan Lif 5
length increases with the number of objects. Even when itis _ ' ¥ _ @)
only linear to the size of the original problem, it proves to be impossiblea if ¢ 3)

challenging for planners following this approach. We tested wherea € A is an action/ is a fluent literal, and) is a
this simple problem with some of the state-of-the-art plan- set of literals. (1) is called dynamic law describing the
ners that do not support state constraints. Most stop working explicit effect of actiona. It says that ifa is performed in
whenn>500. On the other hand, planning systems support- a state wherein) holds then! will hold in the successor
ing state constraints have no problem witk 1000. o state. (2), called atate constraintsays that in any state in

In this paper we present a new type of conformant plan- whlchz/g holds, then so dods (3) is called an executability
ner based on recent developments in theory of action and |2W Which states that cannot be executed whah holds.
change. As an input such planners take an action descrip- Given a domairD, D (resp.D) denotes the set of dyn_am|c
tion D in action language! £ which allows state constraints, 2w (resp. state constraints®). Observe that there is no
together with a partial initial state and a goal. The plan- Syntactical restriction on state constraints.
ners’s search space is defined by a new transition diagram Example 2 The domino domain in Example 1, denoted
called an approximation of the transition diagrdfD) of by Dy, can be represented by a domain with the dynamic
D. Approximations have two important properties: (a) they law swing causesdown; and the set of constraints
are deterministic and their transition functions can be com- {down;1 if down; [1 <i <n —1}. O
puted efficiently. (b) conformant plans &f can frequently We now introduce notations that will be used throughout the
be found by analyzing paths of the corresponding approxi- paper. For a literal fluent, ——f = f. For a set of literals
mation. This reduces the complexity of the conformantplan- o, -0 = {-l | I € o}. A literal I (resp. set of literals
ning problem toNP-complete, comparing t&2-complete ~) holds in a set of literalg if | € o (resp. v C 0o); 1
(Turner 2002). Even though approximation based planners (resp.~) possibly holds iny if -/ ¢ o (resp.—y N o = 0).
are in general incomplete we propose two approximations A set of literalso satisfies a constraint of the form (2) if it
which are powerful enough to solve all the benchmark prob- holds thaty C o implies! € . o is closedunderDs if it
lems found in the literature and used in our experiment. satisfies every € D*. By Cip(c), we denote the smallest
Given that heuristic planners do sometime stumble in cer- set of literals that contains and is closed undebs. An
tain domains, we view the theoretical incompleteness as a interpretation of F is a set of literals such that for every
reasonable price for gaining efficiency. feF {f,~fInI#0and{f,~f}\I # 0. A stateof

To summarize, the main contributions of the paper are: D is an interpretation of closed unde®*. An actiona is
o two different sound approximations for reasoning about executablen s if there exists no law of the form (3) whose

actions and their effects in the presence of incomplete action isa and whose precondition holds ins.

information about the initial states and axioms. We im- Given a domairD, for an actionz and a state such that

pose no syntactical restriction on axioms. To the best « is executable irs, lete(a,s) = {l | a causesl if ¢ €

of our knowledge, such approximations have been devel- D?) C s}. In essenceg(a, s) denotes the direct effects

oped only for theories with incomplete information about of a. We define the set of possible successor states after

the initial state and sensing actions that do not contain executing in s, denoted byRes$,(a, s), as follows.

axioms (Son & Baral 2001). In a recent paper, an approx- pefinition 1 ((McCain & Turner 95)) Let D be a domain
imation has been developed but only for very limited class gescription. For any action and states, let Res%(a,s) =

of theories (Gelfond & Morales 2004). s' | s' = Clp(e(a,s) U (s N s'))} if a is executable ir;
e a best first search conformant planner whose performance otherwise ResS, (a, s)

is comparable with state-of-the-art conformant planners
in several domains. The key component of the planner is
the module computing the proposed approximations.

e two new domains for testing conformant planners; the
domino domainExp. 1) is rich with constraints and the
cleaner domair(later) has a high degree of incomplete-
ness in the initial state; these domains seem to be difficult
for current state-of-the-art conformant planners.

As an example, the statd = {~down; | 1 < i < n}
represents the fact that all dominos are standing. Further-
more,e(swing, s°) = {down,} and Res, (swing, s°) =
{down; | 1 <i < n}.

We say that a domain isiconsistenif Res$,(a,s) = 0
for some actiorn and states such that is executable irs.
In the rest of the paper, we are only interested in consistent
domains. Intuitively, Definition 1 says that if the agent is
currently in states then after executing it will reach one of
Background the states inRes$, (a, s). In the presence of incomplete in-
We begin with a short review of the basic definitions of the formation, the agent does not always know what exact state
languageAL from (Baral & Gelfond 2000) and a fixpoint it is currently in. It might need to consider a 3ét of pos-
characterization for domains with state constraints. The al- sible states rather than a single one. In this case, the set of
phabet of a domain consists of a set of action nafesd possible successor staté;ss, (a, W), is defined as

e Resh(a, W) =0 if Resh(a,s) =0 for somes € W;
o Resh(a, W) = U,y Resp(a, s), otherwise.

To specify the direct effects of an action we take the view
of a skeptical reasoner. Given a partial stand an action

The set of states reached after executing an action sequencer, we definee(a, §) = {I | a caused if ¢ € D?, andy C

a = {aq;...;a,) from a set of statesV is defined next.
Wifn=0
Resp(az;. .

Resp(, W) = { .3 an, Resp (a1, W))ifn>1
We say that a literal holds after the execution ef in W,
denoted by(D, W) = [after «, if Res%(a, W) # 0 and
[€ sfor every states € Res$ (o, W).

By a partial stateof D we mean a consistent collection
of fluent literals which are closed und®®. Partial states
are denoted by (possibly indexed) Greek letters hereafter. A
states containing a partial stat&is called acompletionof
J. By ext(d) we denote the set of all completionsdfFor
a set of partial stated, letext(A) = Usecaext(9).

Definition 2 A conformant planning problerfor planning
problem) is a tupldD, A°, §/) whereA® is a set of partial
states and/ is a partial state ob.

In the above definitionA® ands/ characterize possible ini-
tial situations and the goal respectively.

Definition 3 A sequence of actions (agy -+, an—1)
is a solutionto a planning problen? = (D, A% §7) if
(D, ext(A)) = [after « for everyl € §/.

Two Approximations of Res$%,

Given a conformant planning problem, most of the search-
based planners look for solutions by exploring the belief
staté space whose size is double exponential to the num-
ber of fluents. Adding to this, determining what is true/false
after one action is executed in the presence of incomplete
information is a coNP complete problem even when state
constraints are not present (Baral, Kreinovich, & Trejo
2000). As such, we begin our quest for building a con-
formant planner by looking for ways to reduce the com-
plexity of the task. We achieve this goal by developing
two sound (but incomplete) approximations of the function
ResS, which we denote byRes?' and Resb (ph and pc
stand for “possibly holds” and “possibly changes”, respec-
tively). We sometime writeRes, whenever we would like

to refer to eitherRes? and/orRests. Each approximation
is a function which maps pairs of partial states and actions
into partial states. Both are deterministic and can be com-
puted efficiently. Furthermore, both reduce the size of the
state space to single exponential to the number of fluents.
Given an actiom and a partial staté, we will now define
Res$(a,d), an approximation of what will hold after the
execution ofa in 6. Before we present the formula defin-

§} andme(a, d) = {l | a caused if ¢ € D¢, and—) NS =
@}. Intuitively, e(a, &) (resp.mc(a, d)) consists of the direct
effects (reps. possible direct effectsyofvhen it is executed
in a state in whichy holds. As an example, for the action
swing in Dy, we have that(swing, §) = mc(swing, §) =
{down; } for everys.

The main difficulty in characterizinges%,, however, lies
in specifying the second component, i.e., what remains un-
changed by the inertial law. Different ways of defining this
set lead to different approximations &les%,. We next in-
troduce two possibilities.

Approximation Based on What Possibly Holds

We will now defineRes’;J” which approximatefes$, based

on what possibly holds. Here, we look at the inertial part as

a set of literals whose negations cannot possibly hold. Given

an actiona and a partial staté such that: is executable in

0, aliterall possibly holds in a successor state, §ayf one

of the following happens.

e a might causé to hold, i.e.l € mc(a, 9);

e =/ does not hold ind and there exists no law

a causes—l if ¢ in D? such thaty holds ing, i.e.,

-l & (6 Ne(a,d)) orequivalentlyl ¢ =(§ U e(a,d));

there exists a constraihif ¢ in D? s.t. ¢) possibly holds

ind’.

Res%h (a,d) conservatively defines the second com-

ponent as the set of all literals whose negations

cannot possibly hold. Formally, leph(a,?)

Clp(me(a,0) U{l | I & —(dUe(a,d))}), we define
Resh'(a,8) = Clp(e(a,8) U{l |l & —ph(a,d)})

if Clp(e(a,d)U{l |1l & —ph(a,d)}) is consistent; other-

wise,Res%h(a, 0) = 0. We will discuss some properties of

Res%h after the definition of the second approximation.

Approximation Based on What Possibly Changes

While Res%’" approximates the inertial part by looking at
what might hold in the successor partial stdtes’, looks at
what might change. It resembl&®sS, by assuming that the
result is known, say’. That is, assume thdtes? (a,d) =
4’. We say that a literal is possibly changedfter the ex-
ecution ofa in ¢ if it does not belong t® but possibly
holds iné’. We denote the set of possibly changed literals
by pc(a, §,46"). Observe that a literdl possibly changes its
value if] ¢ ¢ and
e a might directly causé, i.e.,l € mc(a,d); or
e there exists a constrainif 1), ¢ possibly holds i’, and

1) contains at least one literal that possibly changes.

ing Res%, let us observe that each possible successor state This leads us to defing:(a, 6, 6") = U2pc' (a, §,8’) where

s in Definition 1 can be divided into three parts: €iu, s)
contains the direct effects af (ii) s N s’ contains what re-
mains unchanged (because of the inertial law); and (iii) the
set of the indirect effects ef. Any formulation of theRes$,
should account for these three components.

2A belief state is a set of states.

pc’(a,6,0") = me(a,0) \ 9,

pctl(a,8,8") = (pci(a,d,8") U Q) \ & fori > 0 with
Q={l|1if ¢ € D*,—p N &§'=0, andy) N pci(a,d, 8")AD}.
The definition of Res?) rests on the following observa-
tions: (i) 6’ must containClp(e(a,d)); (i) Clp(é’' U
(6 \ —pc(a,d,d"))) holds ind’; and (iii) for the sequence
of partial stateshy, 91, ... wheredp=4, 61=Clip(e(a,d)),

and 6¢+2:CZD(51'+1 U (5 \ ﬁpc(a,& 6i+1))) for >0,

it holds that (a)d; < &;41; and (b) é; holds in
every successor state resulting from executingn a
state satisfyingd; and (c) this sequence converges to
a partial stated*. We therefore defineResP“(a,d) as

Resly(a,) = 6*

if 8% is consistent; an®es? (a, §) = 0 otherwise. We will
now discuss some properties of the approximations.

Properties of the Approximations

Notice that in the definitions aRes$,, we take into account
the three components mentioned earlier: (i) the direct effect
of a: e(a,d); (ii) the inertial part: {I | | & —ph(a,d)} or
0\ —pc(a, 6, ") (iii) the indirect effect ofu: those generated
by the operatolCip. It is easy to see thaRes$(a,d) is
uniquely defined, i.e., the functiores® are deterministic.
The definitions ofRes%, (a, W) and = are extended to
define Res$ (a, A) and = in a straightforward way. We
omit them here to save space.

Example 3 Consider the following domain descriptidm,
defined over the set of fluenfg, g, h, k, p, ¢}

a causesf a causesg if k g if f,h
g it f,-h kif f pif g.q

Suppose that we execuiein 6 = {—f, —g, —p, —q}. Intu-
itively, we would expect that in the resulting partial stafe,
should be true (because it is a direct effecuyf & should
be true (because of the constraikt ff f” and f is true);g
should be true (because of the two constraintsif f, h”
and ‘g if f,—h"and f is true); andp, ¢ should be false
(because of inertial).
We have that(a,0) = {f} andmc(a,d) = {f, g}.

X =duUe(a,0) ={~f,~g9,7p,~q, [}

-X=1{f,9,p,4,~f}

Y = {l | lg—‘X} = {_‘gv —p,—q, h,=h, k, _'k}

Z =me(a,)U{l |l & X}

={f,9,79,7p,~q, h, =h, k, =k}

Thus,ph=Clp(mc(a,d) U{l |1 & ~X}) = {f, 9,79, p,
=q, h,=h, k, ~k}. Hence,Resh (a,8) = { f, ~p, ~q, k}.
For ResPe, let g = 6, 61 = Clp,(e(a,0)) = {f, k}, we
have thaﬁ)CO(a, 57 61) = {fa g}! Q(] = {kv gap}

pci(a,0,61) ={f,g,k,p}, Q% = {k,g,p} fori > 1.
This leads tod; = {f, k, ~q}. Repeating this computation
with d, we getdz=d,. So,Res’, (a,0)={f,k, —q}.
Observe that bothResh: (a,d) and Resky, (a,6) contain
f,k,—q as expected but none contaigs This is because
Res?, does not allow reasoning by cases. Furthermore,
only Res%hz (a,0) contains—p. Some entailments w.r.t.

the approximation semantics aréDs,,0)=*f after aq;
(Dag, 0) =g after a; (Daqy, 0)E*—yg after a. a

We now prove some properties of the approximations. The
next theorem shows that® is sound w.r.t}=.

Theorem 1 (Soundness w.r.t=) LetD be a consistent do-
main descriptiong be a sequence of actionsbe a partial
state, and be a fluent literal. Then,

(D, d) = 1 after «implies that(D, ext(d)) = I after «.

Example 3 shows that the approximations are not complete
W.r.t. Res%. In this exampleResP*(a,§) C ResP"(a,d).

We do come across domains in which this relation does not
hold. We also show that

Theorem 2 Given a domain descriptio®, for any pair of
partial stateq and actiona, Res$ (a,d) can be computed in
polynomial time in the size of the domain.

This allows us to prove the following result.

Theorem 3 The conformant planning problem w.r.t. the ap-
proximation semantics P-complete.

We have, among other things, extended both approxima-
tions to consider concurrent actions and non-deterministic
actions. We also identified a large class of domains in which
= is equivalent to=. These results can be found in the
complete version of this paper. In the next section, we de-
scribe our initial experiments with these approximations in
the development of conformant planners.

Conformant Planning using Approximations

We first implemented an answer set programming based
conformant planner usingees?”, which we will refer to
asCPasP. In this senseCPAsP is similar to DLV* (Eiter

et al. 2003), CMBP (Cimatti & Roveri 2000)C-PLAN
(Castellini, Giunchiglia, & Tacchella 2003), QBF (Rintanen
2000). CPasp allows parallel actions. We testeé@iPaspP
against DL\V¥, CMBP, andC-PLAN because these planners
do allow state constraints and are similar in spiriC#HASP.

Our results show thaE Paspis competitive with these plan-
ners in most of the domains from the literature. Due to
space limit, we omit here the detailed encodingGfasp

and the experimental result. The main weaknesS{spP

is that it does not solve problems with disjunctive informa-
tion about the initial states, a feature supported by many
conformant planners such as CFF (Brafman & Hoffmann
2004), KACMBP (Cimatti, Roveri, & Bertoli 2004), POND
(Bryce & Kambhampati 2004). Furthermore, the general
solver used witlCPaspP cannot handle large domains due to
its grounding procedure.

To test the usability of the approximations in large do-
mains, we implemented a pair of planners, callaé?< and
CPAP" | in C++. To simplify the presentation, we will write
CPA whenever we want to refer to both planners or one of
them when the distinction between them is not important.
Both planners employ the best first search strategy with re-
peated state avoidance and the number of fulfilled subgoals
in a partial state as the heuristic function. The main module
of CPAP® andCPAP" is for computingRes)' andResky, re-
spectively.CPA accepts problems encoded using the rules of
the form (1)-(3). The initial partial state is specified by state-
ments of the forminitially ¢ (where¢ is in the CNF form).
The goal is encoded using statements of the fgwal ¢
whereg is a set of literals. We compaf&rA with three plan-
ners CFF, KACMBP, and POND. These planners were se-
lected for the following reasons: (i) CFF and KACMBP are
— to the best of our knowledge — the current fastest con-
formant planners in most of the benchmark domains in the

literature; (ii) CFF is superior to other state-of-the-art con-
formant planners like GPT (Bonet & Geffner 2001), MBP
(Cimatti & Roveri 2000) (see (Brafman & Hoffmann 2004));
(iil) KACMBP is a heuristic guided, symbolic model check-
ing based conformant planner which works with domains
with state constraints; (iv) KACMBP is known to outper-
form DLV* andC-PLAN in many domains in the literature
(see (Cimatti, Roveri, & Bertoli 2004)). POND is a new
addition to the set of conformant planners. It implemented
several interesting heuristics.

We prepare two suites. The first one consists of typical
conformant planning domains including the Bomb-in-the-
toilet (BT), the Ring, and Logistics domains. The first do-
main was chosen because both CFF and KACMBP work
well with it (e.g. CFF can scale up the BT domain with
multiple toilets to 100 packages and 100 toilets within a
minute). The latter two were chosen because the experi-
ments in (Brafman & Hoffmann 2004) showed that CFF is
good at the Logistics problem but the Ring, while KACMBP
is good at Ring but has poor performance with Logistics.

In the BT domain, we experimented witl, 20, 50, 100
packages antl= 1, 5, 10 toilets.

We use the Logistics domain from the test suit described
in (Brafman & Hoffmann 2004) and distributed together
with the CFF distribution. We did experiments with 5 prob-
lems, corresponding o= 2, 3,4 andc = p = 2, 3, wherel,
¢, andp are the number of locations per city, cities, and pack-
ages respectively (only Logistics(4,2,2) is not available).

In the Ring domain, one can move in a cyclic fashion (ei-
ther forward or backward) aroundsaroom building to lock
windows. Each room has a window and the window can be
locked only if it is closed. The uncertainty is that the initial
state of windows is unknown. The goal is to have all win-
dows locked. A possible conformant plan is to perform a
sequence of actiorferward, close, lockepeatedly. In this
domain, we tested with =2,5,10, and 20.

Three domains in the first test suite, however, do not
contain many state constraints. Most of the constraints in
our encodings are aimed at expressing multivalued vari-
ables as boolean fluedts To see how good these plan-
ners are in dealing with domains rich in constraints, in the
second test suite, we include the Domino domain. We
tested the domain with eight problems corresponding to
n = 10,50, 200, 100, 500, 1000, 2000, 5000, wheren is the

to have all objects cleaned. While the Domino domain ex-
poses a richness in constraints, the Cleaner domain provides
a high degree of uncertainty in the initial state. We tested
the domain with 6 problems correspondingte= 2,5 and

p = 10, 50, 100 respectively.

All experiments were made on a 2.4 GHz CPU, 768MB
RAM machine, running Slackware 10.0 operating system.
Time out is set to half an hour. The testing results for two
test suites are shown in Tables 1-2. Times are shown in sec-
onds; ‘TO”, “AB”, and “NA’ indicates timeout, the planner
stopped abnormally, and not applicable, respectively.

[Domains [kacMBP [CcFF [POND | ceaP¢ | ceAPR]

Bomb(10,1) 1970.01 1970.05 197261 1970.05 1970.07
Bomb(20,1) 39/0.05 39/0.17 IAB 39/0.31 39/0.42
Bomb(50,1) 99/0.51 99/5.33 IAB 99/ 4.46 99/6.36
Bomb(100,1) | 199/3.89 | 199/121.80 | /AB 199/36.62 | 199/51.56
Bomb(10,5) 15/0.09 15/0.07 IAB 15/0.15 15/0.21
Bomb(20,5) 35/0.30 35/0.16 IAB 35/1.08 35/1.25
Bomb(50,5) 95/1.66 95/4.70 IAB 95/14.49 95/16.97
Bomb(100,5) | 195/6.92 | 195/113.95| /AB 195/103.14 | 195/129.90
Bomb(10,10) 10/0.30 10/0.05 IAB 10/0.24 10/0.37
Bomb(20,10) 30/0.97 30/0.13 IAB 30/1.77 30/2.58
Bomb(50,10) 90/5.39 90/4.04 IAB 90/24.52 90/32.86
Bomb(100,10) | 190/35.83 | 190/102.56 | /AB 190/184.48 | 190/ 226.47
RINg(2) 570.00 770.06 5/0.16 570.01 570.02
Ring(5) 14/0.00 45/63.67 | 15/39.37 | 15/0.46 15/0.67
Ring(10) 29/0.02 /TO To 30/9.23 30/16.65
Ring(15) 44/0.04 /TO To 45/57.80 45/97.18
Ring(20) 59/0.15 /TO To 60/221.02 | 60/393.47
Ring(25) 7410.32 /TO TO 75/636.55 | 75/1145.49
Logistic(2,2,2) | 1470.19 1670.03 NA 117231 11/8.44
Logistic(2,3,3) | 34/355.96 | 24/0.06 INA 106/432.30 | 106 / 1620.69
Logistic(3,2,2) | 17/2.10 20/0.06 INA 147/199.76 | 147 /246.04
Logistic(3,3,3) | 40/29.80 34/0.12 INA /TO /TO
Logistic(4,3,3) /TO 37/0.14 INA /TO /TO

Table 1: Conformant Planning Benchmarks

As can be seen in Tablé 1in the BMTC domain, KACMBP
is the best. CPA outperforms CFF in only a few prob-
lems, for instance,CPAP¢ took 36.62 seconds to solve
BMTC(100,1), while CFF took 121.80 seconds. CFF seems
to have no problem when the number of toilets increases,
while there is a significant increase in the amount of time
for KACMBP. The change in the amount of time fQPA
is reasonable. For example, with a fixed number of pack-
ages 100, when the number of toilets increase from 5 to 10,
the amount of solving time for CFF even decreases, while
that for KACMBP about 6 times increases a@igA’s is just
doubled. POND can solve BMTC(10,1) only.

The Ring domain is really problematic for CFF. As ex-
plained in (Brafman & Hoffmann 2004), it is because of the

number of dominos. Note that we encoded these pr0b|ems lack of informatiVity of the heuristic function in the presence

for POND and CFF following the compilation procedure in
(Thiebaux, Hoffmann, & Nebel 2003).

of non-unary effect conditions and the problem with check-
ing repeated states. CFF can solve only the first two prob-

The second domain included in the second test suite is the /€ms within the time limit. Again, KACMBP is the best.

Cleaner domain. It is a modified version of the Ring do-

main. The difference is that instead of locking the window,

the robot has to clean objects. Each room habjects to

be cleaned. Initially, the robot is at the first room and does
not know whether or not objects are cleaned. The goal is

3tis worth noting that unlike PONDCPA, and CFF, an advan-
tage of KACMBP is that it allows for multivalued fluents. Thus, it
seems to perform very well with numeric domains like Ring, Cube,
and Square, etc (see (Cimatti, Roveri, & Bertoli 2004) for the per-
formance of KACMBP on these domains)

CPA is much better than CFF and POND but is not compet-
itive with KACMBP.

In the Logistic domain, both KACMBP an@PA have
difficulty in finding plans. Although KACMBP is better than
CPA, its performance is far from that of CFF which solves
each problem in less than one second. We believe that the
poor performance o€PA lies in the not-so-good heuristic
function (which also reflected by in the plan’s length).

“In each cell, the first number is the length of the solution. The
second number is the time taken by the planner to find the solution.

Table 2 shows the testing results for the second test-suite.
As expected, using the mentioned compilation procedure,
CFF has poor performance in the Domino domain. Within
the time limit, KACMBP can only solve instances with
n < 500 but CPA has no problem with. = 5000.

[Domains [kacMBP [CFF | POND [ceAP® [ceaPh]
Domino(10) 23/0.01 10/0.05 | 10/1.72 170.00 170.00
Domino(50) 163/0.27 50/4.44 1O 1/0.03 1/0.04
Domino(100) 376/2.56 /AB TO 1/0.08 1/0.19
Domino(200) 852/29.10 /AB TO 1/0.30 1/0.67
Domino(500) /TO /AB TO 1/1.92 1/4.14
Domino(1000) /TO /| AB ITO 1/7.78 1/17.48
Domino(2000) /TO /| AB ITO 1/35.59 1/76.16
Domino(5000) /TO | AB ITO 1/354.26 1/524.76
Cleaner(2,10) 21/0.08 2170.07 TAB 21/0.09 217012
Cleaner(2,20) 41/0.62 41/0.15 IAB 41/0.57 41/0.62
Cleaner(2,50) | 101/1355 | 101/0.80 IAB 101/7.98 101/8.63
Cleaner(2,100)| 201/185.39 | 201/5.72 IAB 201/65.36 | 201/67.47
Cleaner(5,10) 56/0.10 54/0.24 IAB 54/1.37 54/1.42
Cleaner(5,20) | 106/7.82 | 104/0.85 IAB 104/8.28 104/8.53
Cleaner(5,50) | 256/227.82| 254/14.36 | /AB 254/114.92 | 254/116.23
Cleaner(5,100) /TO / AB IAB 504/921.19 | 504/897.52

Table 2: Domains with Constraints and High Degree of Incompleteness

CPA has a relatively good performance in the Cleaner do-
main. It can solve the instance with 5 rooms and 100 ob-
jects within the time limit. The returned plan has 504 ac-
tions. CFF is very good at this domain and outperforms
CPA and KACMBP (POND cannot solve any problem of
these). Unfortunately, it cannot solve the last problem since
the maximum length of a plan is exceede@rPA outper-
forms KACMBP in most problems in this domain.

As stated, our planner is sound but not complete, i.e., the-
oretically speakingCPA cannot solve some planning prob-
lems, even when the initial state is complete. To make sure
that our approach can cover a broader spectrum of practi-
cal planning problems, we test&@®PA on classical planning
problems. The first domain considered is the Block World.
We testedCPA with five instances described in (Eitet al.
2003). We then tested problems in the Rovers dofndiive
problems, different from each other in the numbers of way
points, rovers, cameras, rock and soil samples, and objec-
tives, were experimented with. It turns out th@pA can
solve all those problems but does not perform very good in
the Blocks World domain. E.g., it tooks more than 1 hour
to solve the fifth instance. The plan’s length is 24, which
doubles the minimum length. We suspect that our heuristic
is not good enough to guide the planner in this domain.

Discussion and Conclusion

We describe the development of a conformant planbes,
which deals directly with state constraints. Its performance
is comparable with state-of-the-art conformant planners in
typical benchmark domains as well as in new sample do-
mains. Due to the simple heuristic used in the implementa-
tion of CPA, we believe that the good performanceGHA

lies in the use of the approximations. The development of
CPA demonstrates that research in reasoning about action
and change can positively impact the development of prac-
tical planners. AlthoughCPA yields outstanding perfor-

proveCpPA’s performance by testing it with different heuris-
tics used in other planners. We would also like to find plans
with parallel actions and/or minimal plans. Theoretically,
we would like to investigate the relationship betweess?"

and ResP€ or to find a better approximation that allows for
limited reasoning by case for use wi@PA. Alternatively,

we would like to strengthen our current characterization of
domains in which the approximations are compfete

References

Baral, C.; and Gelfond, M. 2000. Reasoning agents in dynamic
domains. In Minker, J,. ed., LBAI, 257-279.

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompletenessAl) 122:241-267.

Bonet, B., and Geffner, H. 2001. GPT: a tool for planning with
uncertainty and partial information. I3JCAI-01 Workshop on Plan-
ning with Uncertainty and Partial Information, 82—87.

Brafman, R., and Hoffmann, J. 2004. Conformant planning via
heuristic forward search: A new approach. ICAPS-04, 355-364.
Bryce, D., and Kambhampati, S. 2004. Heuristic Guidance Mea-
sures for Conformant Planning. ICAPS-04, 365-375.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003. SAT-
based Planning in Complex Domains: Concurrency, Constraints
and NondeterminismAlJ 147:85-117.

Cimatti, A., and Roveri, M. 2000. Conformant Planning via
Symbolic Model CheckingJAIR 13:305-338.

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant Plan-
ning via Symbolic Model Checking and Heuristic SearchlJ
159:127-206.

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A. 2003.
A Logic Programming Approach to Knowledge State Planning,
Il: The DLV™ System. AlJ 144, 157-211.

Gelfond, M., and Morales, R. 2004. Encoding conformant plan-
ning in a-prolog. INProceedings of DRT'Q4A.NCS.

Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-based
conformant planning. IAIPS 153-162.

McCain, N., and Turner, H. 95. A causal theory of ramifications
and qualifications. 1JCAI, 1978-1984.

Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sensing.
AIPS-02, 212-222.

Rintanen, J. 2000. Constructing conditional plans by a theorem
prover.JAIR10:323-352.

Smith, D., and Weld, D. 1998. Conformant GraphplanAA|,
889-896.

Son, T., and Baral, C. 2001. Formalizing sensing actions - a
transition function based approachlJ 125(1-2):19-91.

Son, T.; Tu, P.; and Baral, C. 2004. Planning with Sensing Ac-
tions and Incomplete Information using Logic Programming. In
LPNMR'04, 261-274.

Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In Defense of
PDDL Axioms. IJCAI'03.

Turner, H. 2002. Polynomial-length planning spans the polyno-
mial hierarchy. JELIA02, 111-124.

mance, there are a number of issues that need to be inves-

tigated. On the implementation side, we would like to im-

Shttp://planning.cis.strath.ac.uk/competition/

81t is worth noting that the current characterization seems to
cover most problems found in the literature. This result will be
available in the complete version of this paper.

