
Conformant Planning for Domains with Constraints — A New Approach

Abstract

The paper presents a pair of new conformant planners,CPA,
based on recent developments in theory of action and change.
As an inputCPA takes an action descriptionD in action lan-
guageAL which allows state constraints (non-stratified ax-
ioms), together with a set of partial initial states and a goal.
We propose two approximations of the transition diagramT
defined byD. Both approximations are deterministic transi-
tion functions which map pairs of actions and partial states
into partial states. We prove that the approximations can
be computed fromD in time polynomial with respect to the
number of fluents. Moreover both approximations are sound
(and sometimes complete) with respect toT . In its search
for a plan, an approximation based planner analyses paths of
an approximation instead of that ofT . CPA is a forward,
best first search planner based on this idea. We compareCPA
with two state-of-the-art conformant planners, KACMBP and
Conformant-FF (CFF), on benchmarks in the literature, and
on two new domains. One has large number of state con-
straints and another has a high degree of incompleteness.
CPA performs reasonably well in benchmark domains and
outperforms KACMBP and CFF in the first domain while
it works well with the second one. Our experimental result
shows that having an integral part of a conformant planner to
deal with state constraintsdirectly can significantly improve
its performance, extending a similar claim for classical plan-
ners in (Thiebaux, Hoffmann, & Nebel 2003).
Keywords: Planning, Knowledge Representation, Reasoning
about action and change

Introduction and Motivation
In recent years, several conformant planners have been de-
veloped for solving planning problems in the presence of
incomplete information about the initial state. These plan-
ners can be divided into two groups. In the first group, the
planning problem is translated into an equivalent problem
in a more general setting which can be solved by off-the-
shelf software systems. Belonging to this group are the SAT-
based plannerC-PLAN (Castellini, Giunchiglia, & Tacchella
2003), QBF planner (Rintanen 2000), the model checking
planner CMBP (Cimatti & Roveri 2000) (or its newer ver-
sion KACMBP (Cimatti, Roveri, & Bertoli 2004)), and an-
swer set programming based planners (Eiteret al. 2003;

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Son, Tu, & Baral 2004). In the second group, the focus has
been on developing efficient search strategies, good heuris-
tics, and new search algorithms (Brafman & Hoffmann
2004; Bryce & Kambhampati 2004; Bonet & Geffner 2001;
Kurien, Nayak, & Smith 2002; Petrick & Bacchus 2002;
Smith & Weld 1998). While the majority of planners in the
first group allow state constraints1 to be part of the planning
problem specification, other planners, including the most re-
cent additions to the set of conformant planners (Brafman &
Hoffmann 2004; Bryce & Kambhampati 2004), do not.

Most of the planners in the second group deal with con-
straints by compiling them away, i.e., planning problems
with constraints are compiled into planning problems with-
out constraints. This practice has several disadvantages
(Thiebaux, Hoffmann, & Nebel 2003): (i) the problem rep-
resentation can become unnatural and unreadable due to the
extra actions and fluents; (ii) allowing state constraints sig-
nificantly increases the expressive power of the represen-
tation language. The authors in (Thiebaux, Hoffmann, &
Nebel 2003) also suggested a compilation schema that com-
piles away state constraints and produces a new problem
whose size is linear to the size of the original domain. Un-
fortunately, this may not be enough. The following simple
example illustrates this point.

Example 1 (Dominos Domain)Suppose that we haven
dominos standing on a line in such a way that if one domino
falls then the domino on its right also falls. There is also a
ball hanging close to the leftmost domino. Touching the ball
will cause the leftmost domino to fall. Initially, the ball stays
still and the dominos are standing. The goal is to have the
rightmost domino to fall. Obviously, swinging the ball is the
unique plan to achieve this goal, no matter how bign is.

The problem can be easily expressed by a theory with a set
of objects1, . . . , n denoting the dominos from left to right
and a single actionswing that causesdown1 (the leftmost
domino falls) to be true, andn−1 state constraintsdowni ⇒
downi+1 representing the fact thatdowni+1 is true ifdowni

is true. Initially,¬downi is true for everyi. The goal is to
havedownn become true.

According to the compilation suggested in (Thiebaux,
Hoffmann, & Nebel 2003), for each axiomdowni ⇒

1We use the term state constraints (or constraints) to refer to
PDDL axioms or static causal laws in action languages.

downi+1, we introduce a new actionei whose effect is
downi+1 and whose precondition isdowni. Clearly, under
this compilation, the plan to achieve the goal is the sequence
of actions[swing, e1, . . . , en−1].

The main problem with this compilation is that the plan
length increases with the number of objects. Even when it is
only linear to the size of the original problem, it proves to be
challenging for planners following this approach. We tested
this simple problem with some of the state-of-the-art plan-
ners that do not support state constraints. Most stop working
whenn>500. On the other hand, planning systems support-
ing state constraints have no problem withn=1000. 2

In this paper we present a new type of conformant plan-
ner based on recent developments in theory of action and
change. As an input such planners take an action descrip-
tionD in action languageALwhich allows state constraints,
together with a partial initial state and a goal. The plan-
ners’s search space is defined by a new transition diagram
called an approximation of the transition diagramT (D) of
D. Approximations have two important properties: (a) they
are deterministic and their transition functions can be com-
puted efficiently. (b) conformant plans ofD can frequently
be found by analyzing paths of the corresponding approxi-
mation. This reduces the complexity of the conformant plan-
ning problem toNP-complete, comparing toΣ2

P -complete
(Turner 2002). Even though approximation based planners
are in general incomplete we propose two approximations
which are powerful enough to solve all the benchmark prob-
lems found in the literature and used in our experiment.
Given that heuristic planners do sometime stumble in cer-
tain domains, we view the theoretical incompleteness as a
reasonable price for gaining efficiency.

To summarize, the main contributions of the paper are:
• two different sound approximations for reasoning about

actions and their effects in the presence of incomplete
information about the initial states and axioms. We im-
pose no syntactical restriction on axioms. To the best
of our knowledge, such approximations have been devel-
oped only for theories with incomplete information about
the initial state and sensing actions that do not contain
axioms (Son & Baral 2001). In a recent paper, an approx-
imation has been developed but only for very limited class
of theories (Gelfond & Morales 2004).

• a best first search conformant planner whose performance
is comparable with state-of-the-art conformant planners
in several domains. The key component of the planner is
the module computing the proposed approximations.

• two new domains for testing conformant planners; the
domino domain(Exp. 1) is rich with constraints and the
cleaner domain(later) has a high degree of incomplete-
ness in the initial state; these domains seem to be difficult
for current state-of-the-art conformant planners.

Background
We begin with a short review of the basic definitions of the
languageAL from (Baral & Gelfond 2000) and a fixpoint
characterization for domains with state constraints. The al-
phabet of a domain consists of a set of action namesA and

a set of fluent namesF. A (fluent) literal is either a fluent
f ∈ F or its negation¬f . A domain description(or a do-
main)D is a set of laws of the following forms:

a causes l if ψ (1)

l if ψ (2)

impossiblea if ψ (3)

wherea ∈ A is an action,l is a fluent literal, andψ is a
set of literals. (1) is called adynamic law, describing the
explicit effect of actiona. It says that ifa is performed in
a state whereinψ holds thenl will hold in the successor
state. (2), called astate constraint, says that in any state in
which ψ holds, then so doesl. (3) is called an executability
law which states thata cannot be executed whenψ holds.
Given a domainD,Dd (resp.Ds) denotes the set of dynamic
laws (resp. state constraints inD). Observe that there is no
syntactical restriction on state constraints.
Example 2 The domino domain in Example 1, denoted
by D1, can be represented by a domain with the dynamic
law swing causesdown1 and the set of constraints
{downi+1 if downi | 1 ≤ i ≤ n− 1}. 2

We now introduce notations that will be used throughout the
paper. For a literal fluentf , ¬¬f = f . For a set of literals
σ, ¬σ = {¬l | l ∈ σ}. A literal l (resp. set of literals
γ) holds in a set of literalsσ if l ∈ σ (resp. γ ⊆ σ); l
(resp.γ) possibly holds inσ if ¬l 6∈ σ (resp.¬γ ∩ σ = ∅).
A set of literalsσ satisfies a constraint of the form (2) if it
holds thatψ ⊆ σ implies l ∈ σ. σ is closedunderDs if it
satisfies everyr ∈ Ds. By ClD(σ), we denote the smallest
set of literals that containsσ and is closed underDs. An
interpretationI of F is a set of literals such that for every
f ∈ F, {f,¬f} ∩ I 6= ∅ and{f,¬f} \ I 6= ∅. A stateof
D is an interpretation ofF closed underDs. An actiona is
executablein s if there exists no law of the form (3) whose
action isa and whose preconditionψ holds ins.

Given a domainD, for an actiona and a states such that
a is executable ins, let e(a, s) = {l | a causesl if ψ ∈
Dd, ψ ⊆ s}. In essence,e(a, s) denotes the direct effects
of a. We define the set of possible successor states after
executinga in s, denoted byResc

D(a, s), as follows.
Definition 1 ((McCain & Turner 95)) LetD be a domain
description. For any actiona and states, let Resc

D(a, s) =
{s′ | s′ = ClD(e(a, s) ∪ (s ∩ s′))} if a is executable ins;
otherwise,Resc

D(a, s) = ∅.
As an example, the states0 = {¬downi | 1 ≤ i ≤ n}
represents the fact that all dominos are standing. Further-
more,e(swing, s0) = {down1} andResc

D1
(swing, s0) =

{downi | 1 ≤ i ≤ n}.
We say that a domain isinconsistentif Resc

D(a, s) = ∅
for some actiona and states such thata is executable ins.
In the rest of the paper, we are only interested in consistent
domains. Intuitively, Definition 1 says that if the agent is
currently in states then after executinga it will reach one of
the states inResc

D(a, s). In the presence of incomplete in-
formation, the agent does not always know what exact state
it is currently in. It might need to consider a setW of pos-
sible states rather than a single one. In this case, the set of
possible successor states,Resc

D(a,W), is defined as

• Resc
D(a,W) = ∅ if Resc

D(a, s) = ∅ for somes ∈ W;
• Resc

D(a,W) =
⋃

s∈W Resc
D(a, s), otherwise.

The set of states reached after executing an action sequence
α = 〈a1; . . . ; an〉 from a set of statesW is defined next.

Resc
D(α,W) =

{
W if n = 0
Resc

D(a2; . . . ; an, Resc
D(a1,W)) if n ≥ 1

We say that a literall holds after the execution ofα in W,
denoted by(D,W) |= l after α, if Resc

D(α,W) 6= ∅ and
l ∈ s for every states ∈ Resc

D(α,W).
By a partial stateof D we mean a consistent collection

of fluent literals which are closed underDs. Partial states
are denoted by (possibly indexed) Greek letters hereafter. A
states containing a partial stateδ is called acompletionof
δ. By ext(δ) we denote the set of all completions ofδ. For
a set of partial states∆, let ext(∆) = ∪δ∈∆ext(δ).

Definition 2 A conformant planning problem(or planning
problem) is a tuple〈D,∆0, δf 〉 where∆0 is a set of partial
states andδf is a partial state ofD.

In the above definition,∆0 andδf characterize possible ini-
tial situations and the goal respectively.

Definition 3 A sequence of actionsα = 〈a0, . . . , an−1〉
is a solution to a planning problemP = 〈D, ∆0, δf 〉 if
(D, ext(∆0)) |= l after α for everyl ∈ δf .

Two Approximations of Resc
D

Given a conformant planning problem, most of the search-
based planners look for solutions by exploring the belief
state2 space whose size is double exponential to the num-
ber of fluents. Adding to this, determining what is true/false
after one action is executed in the presence of incomplete
information is a co-NP complete problem even when state
constraints are not present (Baral, Kreinovich, & Trejo
2000). As such, we begin our quest for building a con-
formant planner by looking for ways to reduce the com-
plexity of the task. We achieve this goal by developing
two sound (but incomplete) approximations of the function
Resc

D which we denote byResph
D and Respc

D (ph and pc
stand for “possibly holds” and “possibly changes”, respec-
tively). We sometime writeResa

D whenever we would like
to refer to eitherResph

D and/orRespc
D . Each approximation

is a function which maps pairs of partial states and actions
into partial states. Both are deterministic and can be com-
puted efficiently. Furthermore, both reduce the size of the
state space to single exponential to the number of fluents.

Given an actiona and a partial stateδ, we will now define
Resa

D(a, δ), an approximation of what will hold after the
execution ofa in δ. Before we present the formula defin-
ing Resa

D, let us observe that each possible successor state
s′ in Definition 1 can be divided into three parts: (i)e(a, s)
contains the direct effects ofa; (ii) s ∩ s′ contains what re-
mains unchanged (because of the inertial law); and (iii) the
set of the indirect effects ofa. Any formulation of theResa

D
should account for these three components.

2A belief state is a set of states.

To specify the direct effects of an action we take the view
of a skeptical reasoner. Given a partial stateδ and an action
a, we definee(a, δ) = {l | a causesl if ψ ∈ Dd, andψ ⊆
δ} andmc(a, δ) = {l | a causesl if ψ ∈ Dd, and¬ψ∩ δ =
∅}. Intuitively, e(a, δ) (resp.mc(a, δ)) consists of the direct
effects (reps. possible direct effects) ofa when it is executed
in a state in whichδ holds. As an example, for the action
swing in D1, we have thate(swing, δ) = mc(swing, δ) =
{down1} for everyδ.

The main difficulty in characterizingResa
D, however, lies

in specifying the second component, i.e., what remains un-
changed by the inertial law. Different ways of defining this
set lead to different approximations ofResc

D. We next in-
troduce two possibilities.

Approximation Based on What Possibly Holds

We will now defineResph
D which approximatesResc

D based
on what possibly holds. Here, we look at the inertial part as
a set of literals whose negations cannot possibly hold. Given
an actiona and a partial stateδ such thata is executable in
δ, a literall possibly holds in a successor state, sayδ′, if one
of the following happens.
• a might causel to hold, i.e.,l ∈ mc(a, δ);
• ¬l does not hold in δ and there exists no law

a causes¬l if ψ in Dd such thatψ holds in δ, i.e.,
¬l 6∈ (δ ∩ e(a, δ)) or equivalentlyl 6∈ ¬(δ ∪ e(a, δ));

• there exists a constraintl if ψ in Ds s.t. ψ possibly holds
in δ′.

Resph
D (a, δ) conservatively defines the second com-

ponent as the set of all literals whose negations
cannot possibly hold. Formally, letph(a, δ) =
ClD(mc(a, δ) ∪ {l | l 6∈ ¬(δ ∪ e(a, δ))}), we define

Resph
D (a, δ) = ClD(e(a, δ) ∪ {l | l 6∈ ¬ph(a, δ)})

if ClD(e(a, δ) ∪ {l | l 6∈ ¬ph(a, δ)}) is consistent; other-
wise,Resph

D (a, δ) = ∅. We will discuss some properties of
Resph

D after the definition of the second approximation.

Approximation Based on What Possibly Changes

While Resph
D approximates the inertial part by looking at

what might hold in the successor partial state,Respc
D looks at

what might change. It resemblesResc
D by assuming that the

result is known, sayδ′. That is, assume thatRespc
D (a, δ) =

δ′. We say that a literall is possibly changedafter the ex-
ecution ofa in δ if it does not belong toδ but possibly
holds inδ′. We denote the set of possibly changed literals
by pc(a, δ, δ′). Observe that a literall possibly changes its
value if l 6∈ δ and
• a might directly causel, i.e.,l ∈ mc(a, δ); or
• there exists a constraintl if ψ, ψ possibly holds inδ′, and

ψ contains at least one literal that possibly changes.
This leads us to definepc(a, δ, δ′) = ∪∞i=0pci(a, δ, δ′) where

pc0(a, δ, δ′) = mc(a, δ) \ δ,
pci+1(a, δ, δ′) = (pci(a, δ, δ′) ∪ Ωi) \ δ for i ≥ 0 with

Ωi={l | l if ψ ∈ Ds,¬ψ ∩ δ′=∅, andψ ∩ pci(a, δ, δ′)6=∅}.
The definition ofRespc

D rests on the following observa-
tions: (i) δ′ must containClD(e(a, δ)); (ii) ClD(δ′ ∪
(δ \ ¬pc(a, δ, δ′))) holds in δ′; and (iii) for the sequence
of partial statesδ0, δ1, . . . whereδ0=δ, δ1=ClD(e(a, δ)),

and δi+2=ClD(δi+1 ∪ (δ \ ¬pc(a, δ, δi+1))) for i≥0,
it holds that (a) δi ⊆ δi+1; and (b) δi holds in
every successor state resulting from executinga in a
state satisfyingδ; and (c) this sequence converges to
a partial stateδ∗. We therefore defineRespc(a, δ) as

Respc
D (a, δ) = δ∗

if δ∗ is consistent; andRespc
D (a, δ) = ∅ otherwise. We will

now discuss some properties of the approximations.

Properties of the Approximations

Notice that in the definitions ofResa
D, we take into account

the three components mentioned earlier: (i) the direct effect
of a: e(a, δ); (ii) the inertial part: {l | l 6∈ ¬ph(a, δ)} or
δ \¬pc(a, δ, δ′) (iii) the indirect effect ofa: those generated
by the operatorClD. It is easy to see thatResa

D(a, δ) is
uniquely defined, i.e., the functionsResa are deterministic.

The definitions ofResc
D(a,W) and |= are extended to

defineResa
D(a,∆) and |=a in a straightforward way. We

omit them here to save space.

Example 3 Consider the following domain descriptionD2

defined over the set of fluents{f, g, h, k, p, q}.
a causesf a causesg if k g if f, h
g if f,¬h k if f p if g, q

Suppose that we executea in δ = {¬f,¬g,¬p,¬q}. Intu-
itively, we would expect that in the resulting partial state,f
should be true (because it is a direct effect ofa); k should
be true (because of the constraint “k if f ” andf is true);g
should be true (because of the two constraints “g if f, h”
and “g if f,¬h” and f is true); andp, q should be false
(because of inertial).
We have thate(a, δ) = {f} andmc(a, δ) = {f, g}.

X = δ ∪ e(a, δ) = {¬f,¬g,¬p,¬q, f}
¬X = {f, g, p, q,¬f}
Y = {l | l 6∈¬X} = {¬g,¬p,¬q, h,¬h, k,¬k}
Z = mc(a, δ)∪{l | l 6∈ ¬X}

= {f, g,¬g,¬p,¬q, h,¬h, k,¬k}
Thus,ph=ClD(mc(a, δ) ∪ {l | l 6∈ ¬X}) = {f, g,¬g,¬p,

¬q, h,¬h, k,¬k}. Hence,Resph
D2

(a, δ) = {f,¬p,¬q, k}.
For Respc, let δ0 = δ, δ1 = ClD2(e(a, δ)) = {f, k}, we
have thatpc0(a, δ, δ1) = {f, g}, Ω0 = {k, g, p}

pci(a, δ, δ1) = {f, g, k, p}, Ωi = {k, g, p} for i ≥ 1.
This leads toδ2 = {f, k,¬q}. Repeating this computation
with δ2, we getδ3=δ2. So,Respc

D2
(a, δ)={f, k,¬q}.

Observe that bothResph
D2

(a, δ) and Respc
D2

(a, δ) contain
f, k,¬q as expected but none containsg. This is because
Resa

D2
does not allow reasoning by cases. Furthermore,

only Resph
D2

(a, δ) contains¬p. Some entailments w.r.t.
the approximation semantics are:(D22, δ)|=af after a;
(D22, δ)6|=ag after a; (D22, δ)6|=a¬g after a. 2

We now prove some properties of the approximations. The
next theorem shows that|=a is sound w.r.t.|=.
Theorem 1 (Soundness w.r.t.|=) LetD be a consistent do-
main description,α be a sequence of actions,δ be a partial
state, andl be a fluent literal. Then,

(D, δ) |=a l after α implies that(D, ext(δ)) |= l after α.

Example 3 shows that the approximations are not complete
w.r.t. Resc

D. In this example,Respc(a, δ) ⊆ Resph(a, δ).
We do come across domains in which this relation does not
hold. We also show that

Theorem 2 Given a domain descriptionD, for any pair of
partial statea and actiona, Resa

D(a, δ) can be computed in
polynomial time in the size of the domain.

This allows us to prove the following result.

Theorem 3 The conformant planning problem w.r.t. the ap-
proximation semantics isNP-complete.

We have, among other things, extended both approxima-
tions to consider concurrent actions and non-deterministic
actions. We also identified a large class of domains in which
|=a is equivalent to|=. These results can be found in the
complete version of this paper. In the next section, we de-
scribe our initial experiments with these approximations in
the development of conformant planners.

Conformant Planning using Approximations
We first implemented an answer set programming based
conformant planner usingResph, which we will refer to
asCPASP. In this sense,CPASP is similar to DLVk (Eiter
et al. 2003), CMBP (Cimatti & Roveri 2000),C-PLAN
(Castellini, Giunchiglia, & Tacchella 2003), QBF (Rintanen
2000). CPASP allows parallel actions. We testedCPASP
against DLVk, CMBP, andC-PLAN because these planners
do allow state constraints and are similar in spirit ofCPASP.
Our results show thatCPASP is competitive with these plan-
ners in most of the domains from the literature. Due to
space limit, we omit here the detailed encoding ofCPASP
and the experimental result. The main weakness ofCPASP
is that it does not solve problems with disjunctive informa-
tion about the initial states, a feature supported by many
conformant planners such as CFF (Brafman & Hoffmann
2004), KACMBP (Cimatti, Roveri, & Bertoli 2004), POND
(Bryce & Kambhampati 2004). Furthermore, the general
solver used withCPASP cannot handle large domains due to
its grounding procedure.

To test the usability of the approximations in large do-
mains, we implemented a pair of planners, calledCPApc and
CPAph , in C++. To simplify the presentation, we will write
CPA whenever we want to refer to both planners or one of
them when the distinction between them is not important.
Both planners employ the best first search strategy with re-
peated state avoidance and the number of fulfilled subgoals
in a partial state as the heuristic function. The main module
of CPApc andCPAph is for computingResph

D andRespc
D , re-

spectively.CPA accepts problems encoded using the rules of
the form (1)-(3). The initial partial state is specified by state-
ments of the forminitially φ (whereφ is in the CNF form).
The goal is encoded using statements of the formgoal φ
whereφ is a set of literals. We compareCPA with three plan-
ners CFF, KACMBP, and POND. These planners were se-
lected for the following reasons: (i) CFF and KACMBP are
— to the best of our knowledge — the current fastest con-
formant planners in most of the benchmark domains in the

literature; (ii) CFF is superior to other state-of-the-art con-
formant planners like GPT (Bonet & Geffner 2001), MBP
(Cimatti & Roveri 2000) (see (Brafman & Hoffmann 2004));
(iii) KACMBP is a heuristic guided, symbolic model check-
ing based conformant planner which works with domains
with state constraints; (iv) KACMBP is known to outper-
form DLVk andC-PLAN in many domains in the literature
(see (Cimatti, Roveri, & Bertoli 2004)). POND is a new
addition to the set of conformant planners. It implemented
several interesting heuristics.

We prepare two suites. The first one consists of typical
conformant planning domains including the Bomb-in-the-
toilet (BT), the Ring, and Logistics domains. The first do-
main was chosen because both CFF and KACMBP work
well with it (e.g. CFF can scale up the BT domain with
multiple toilets to 100 packages and 100 toilets within a
minute). The latter two were chosen because the experi-
ments in (Brafman & Hoffmann 2004) showed that CFF is
good at the Logistics problem but the Ring, while KACMBP
is good at Ring but has poor performance with Logistics.

In the BT domain, we experimented with10, 20, 50, 100
packages andt = 1, 5, 10 toilets.

We use the Logistics domain from the test suit described
in (Brafman & Hoffmann 2004) and distributed together
with the CFF distribution. We did experiments with 5 prob-
lems, corresponding tol = 2, 3, 4 andc = p = 2, 3, wherel,
c, andp are the number of locations per city, cities, and pack-
ages respectively (only Logistics(4,2,2) is not available).

In the Ring domain, one can move in a cyclic fashion (ei-
ther forward or backward) around an-room building to lock
windows. Each room has a window and the window can be
locked only if it is closed. The uncertainty is that the initial
state of windows is unknown. The goal is to have all win-
dows locked. A possible conformant plan is to perform a
sequence of actionsforward, close, lockrepeatedly. In this
domain, we tested withn =2,5,10, and 20.

Three domains in the first test suite, however, do not
contain many state constraints. Most of the constraints in
our encodings are aimed at expressing multivalued vari-
ables as boolean fluents3. To see how good these plan-
ners are in dealing with domains rich in constraints, in the
second test suite, we include the Domino domain. We
tested the domain with eight problems corresponding to
n = 10, 50, 200, 100, 500, 1000, 2000, 5000, wheren is the
number of dominos. Note that we encoded these problems
for POND and CFF following the compilation procedure in
(Thiebaux, Hoffmann, & Nebel 2003).

The second domain included in the second test suite is the
Cleaner domain. It is a modified version of the Ring do-
main. The difference is that instead of locking the window,
the robot has to clean objects. Each room hasp objects to
be cleaned. Initially, the robot is at the first room and does
not know whether or not objects are cleaned. The goal is

3It is worth noting that unlike POND,CPA, and CFF, an advan-
tage of KACMBP is that it allows for multivalued fluents. Thus, it
seems to perform very well with numeric domains like Ring, Cube,
and Square, etc (see (Cimatti, Roveri, & Bertoli 2004) for the per-
formance of KACMBP on these domains)

to have all objects cleaned. While the Domino domain ex-
poses a richness in constraints, the Cleaner domain provides
a high degree of uncertainty in the initial state. We tested
the domain with 6 problems corresponding ton = 2, 5 and
p = 10, 50, 100 respectively.

All experiments were made on a 2.4 GHz CPU, 768MB
RAM machine, running Slackware 10.0 operating system.
Time out is set to half an hour. The testing results for two
test suites are shown in Tables 1–2. Times are shown in sec-
onds; ‘TO”, “AB”, and “NA” indicates timeout, the planner
stopped abnormally, and not applicable, respectively.

Domains KACMBP CFF POND CPApc CPAph

Bomb(10,1) 19 / 0.01 19 / 0.05 19/2.61 19 / 0.05 19 / 0.07
Bomb(20,1) 39 / 0.05 39 / 0.17 /AB 39 / 0.31 39 / 0.42
Bomb(50,1) 99 / 0.51 99 / 5.33 /AB 99 / 4.46 99 / 6.36
Bomb(100,1) 199 / 3.89 199 / 121.80 /AB 199 / 36.62 199 / 51.56
Bomb(10,5) 15 / 0.09 15 / 0.07 /AB 15 / 0.15 15 / 0.21
Bomb(20,5) 35 / 0.30 35 / 0.16 /AB 35 / 1.08 35 / 1.25
Bomb(50,5) 95 / 1.66 95 / 4.70 /AB 95 / 14.49 95 / 16.97
Bomb(100,5) 195 / 6.92 195 / 113.95 /AB 195 / 103.14 195 / 129.90
Bomb(10,10) 10 / 0.30 10 / 0.05 /AB 10 / 0.24 10 / 0.37
Bomb(20,10) 30 / 0.97 30 / 0.13 /AB 30 / 1.77 30 / 2.58
Bomb(50,10) 90 / 5.39 90 / 4.04 /AB 90 / 24.52 90 / 32.86
Bomb(100,10) 190 / 35.83 190 / 102.56 /AB 190 / 184.48 190 / 226.47

Ring(2) 5 / 0.00 7 / 0.06 5/0.16 5 / 0.01 5 / 0.02
Ring(5) 14 / 0.00 45 / 63.67 15/39.37 15 / 0.46 15 / 0.67
Ring(10) 29 / 0.02 / TO /TO 30 / 9.23 30 / 16.65
Ring(15) 44 / 0.04 / TO /TO 45 / 57.80 45 / 97.18
Ring(20) 59 / 0.15 / TO /TO 60 / 221.02 60 / 393.47
Ring(25) 74 / 0.32 / TO /TO 75 / 636.55 75 / 1145.49

Logistic(2,2,2) 14 / 0.19 16 / 0.03 /NA 11 / 2.31 11 / 8.44
Logistic(2,3,3) 34 / 355.96 24 / 0.06 /NA 106 / 432.30 106 / 1620.69
Logistic(3,2,2) 17 / 2.10 20 / 0.06 /NA 147 / 199.76 147 / 246.04
Logistic(3,3,3) 40 / 29.80 34 / 0.12 /NA / TO / TO
Logistic(4,3,3) / TO 37 / 0.14 /NA / TO / TO

Table 1: Conformant Planning Benchmarks

As can be seen in Table 14 , in the BMTC domain, KACMBP
is the best. CPA outperforms CFF in only a few prob-
lems, for instance,CPApc took 36.62 seconds to solve
BMTC(100,1), while CFF took 121.80 seconds. CFF seems
to have no problem when the number of toilets increases,
while there is a significant increase in the amount of time
for KACMBP. The change in the amount of time forCPA
is reasonable. For example, with a fixed number of pack-
ages 100, when the number of toilets increase from 5 to 10,
the amount of solving time for CFF even decreases, while
that for KACMBP about 6 times increases andCPA’s is just
doubled. POND can solve BMTC(10,1) only.

The Ring domain is really problematic for CFF. As ex-
plained in (Brafman & Hoffmann 2004), it is because of the
lack of informativity of the heuristic function in the presence
of non-unary effect conditions and the problem with check-
ing repeated states. CFF can solve only the first two prob-
lems within the time limit. Again, KACMBP is the best.
CPA is much better than CFF and POND but is not compet-
itive with KACMBP.

In the Logistic domain, both KACMBP andCPA have
difficulty in finding plans. Although KACMBP is better than
CPA, its performance is far from that of CFF which solves
each problem in less than one second. We believe that the
poor performance ofCPA lies in the not-so-good heuristic
function (which also reflected by in the plan’s length).

4In each cell, the first number is the length of the solution. The
second number is the time taken by the planner to find the solution.

Table 2 shows the testing results for the second test-suite.
As expected, using the mentioned compilation procedure,
CFF has poor performance in the Domino domain. Within
the time limit, KACMBP can only solve instances with
n < 500 but CPA has no problem withn = 5000.

Domains KACMBP CFF POND CPApc CPAph

Domino(10) 23 / 0.01 10 / 0.05 10/1.72 1 / 0.00 1 / 0.00
Domino(50) 163 / 0.27 50 / 4.44 /TO 1 / 0.03 1 / 0.04
Domino(100) 376 / 2.56 / AB /TO 1 / 0.08 1 / 0.19
Domino(200) 852 / 29.10 / AB /TO 1 / 0.30 1 / 0.67
Domino(500) / TO / AB /TO 1 / 1.92 1 / 4.14
Domino(1000) / TO / AB /TO 1 / 7.78 1 / 17.48
Domino(2000) / TO / AB /TO 1 / 35.59 1 / 76.16
Domino(5000) / TO / AB /TO 1 / 354.26 1 / 524.76

Cleaner(2,10) 21 / 0.08 21 / 0.07 /AB 21 / 0.09 21 / 0.12
Cleaner(2,20) 41 / 0.62 41 / 0.15 /AB 41 / 0.57 41 / 0.62
Cleaner(2,50) 101 / 13.55 101 / 0.80 /AB 101 / 7.98 101 / 8.63
Cleaner(2,100) 201 / 185.39 201 / 5.72 /AB 201 / 65.36 201 / 67.47
Cleaner(5,10) 56 / 0.10 54 / 0.24 /AB 54 / 1.37 54 / 1.42
Cleaner(5,20) 106 / 7.82 104 / 0.85 /AB 104 / 8.28 104 / 8.53
Cleaner(5,50) 256 / 227.82 254 / 14.36 /AB 254 / 114.92 254 / 116.23
Cleaner(5,100) / TO / AB /AB 504 / 921.19 504 / 897.52

Table 2: Domains with Constraints and High Degree of Incompleteness

CPA has a relatively good performance in the Cleaner do-
main. It can solve the instance with 5 rooms and 100 ob-
jects within the time limit. The returned plan has 504 ac-
tions. CFF is very good at this domain and outperforms
CPA and KACMBP (POND cannot solve any problem of
these). Unfortunately, it cannot solve the last problem since
the maximum length of a plan is exceeded.CPA outper-
forms KACMBP in most problems in this domain.

As stated, our planner is sound but not complete, i.e., the-
oretically speaking,CPA cannot solve some planning prob-
lems, even when the initial state is complete. To make sure
that our approach can cover a broader spectrum of practi-
cal planning problems, we testedCPA on classical planning
problems. The first domain considered is the Block World.
We testedCPA with five instances described in (Eiteret al.
2003). We then tested problems in the Rovers domain5. Five
problems, different from each other in the numbers of way
points, rovers, cameras, rock and soil samples, and objec-
tives, were experimented with. It turns out thatCPA can
solve all those problems but does not perform very good in
the Blocks World domain. E.g., it tooks more than 1 hour
to solve the fifth instance. The plan’s length is 24, which
doubles the minimum length. We suspect that our heuristic
is not good enough to guide the planner in this domain.

Discussion and Conclusion
We describe the development of a conformant planner,CPA,
which deals directly with state constraints. Its performance
is comparable with state-of-the-art conformant planners in
typical benchmark domains as well as in new sample do-
mains. Due to the simple heuristic used in the implementa-
tion of CPA, we believe that the good performance ofCPA
lies in the use of the approximations. The development of
CPA demonstrates that research in reasoning about action
and change can positively impact the development of prac-
tical planners. AlthoughCPA yields outstanding perfor-
mance, there are a number of issues that need to be inves-
tigated. On the implementation side, we would like to im-

5
http://planning.cis.strath.ac.uk/competition/

proveCPA’s performance by testing it with different heuris-
tics used in other planners. We would also like to find plans
with parallel actions and/or minimal plans. Theoretically,
we would like to investigate the relationship betweenResph

andRespc or to find a better approximation that allows for
limited reasoning by case for use withCPA. Alternatively,
we would like to strengthen our current characterization of
domains in which the approximations are complete6.

References
Baral, C.; and Gelfond, M. 2000. Reasoning agents in dynamic
domains. In Minker, J,. ed., LBAI, 257–279.

Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompleteness.AIJ 122:241–267.

Bonet, B., and Geffner, H. 2001. GPT: a tool for planning with
uncertainty and partial information. IJCAI-01 Workshop on Plan-
ning with Uncertainty and Partial Information, 82–87.

Brafman, R., and Hoffmann, J. 2004. Conformant planning via
heuristic forward search: A new approach. ICAPS-04, 355–364.

Bryce, D., and Kambhampati, S. 2004. Heuristic Guidance Mea-
sures for Conformant Planning. ICAPS-04, 365–375.

Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003. SAT-
based Planning in Complex Domains: Concurrency, Constraints
and Nondeterminism.AIJ 147:85–117.

Cimatti, A., and Roveri, M. 2000. Conformant Planning via
Symbolic Model Checking.JAIR13:305–338.

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant Plan-
ning via Symbolic Model Checking and Heuristic Search.AIJ
159:127–206.

Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A. 2003.
A Logic Programming Approach to Knowledge State Planning,
II: The DLVK System. AIJ 144, 157–211.

Gelfond, M., and Morales, R. 2004. Encoding conformant plan-
ning in a-prolog. InProceedings of DRT’04, LNCS.

Kurien, J.; Nayak, P. P.; and Smith, D. E. 2002. Fragment-based
conformant planning. InAIPS, 153–162.

McCain, N., and Turner, H. 95. A causal theory of ramifications
and qualifications. IJCAI, 1978–1984.

Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sensing.
AIPS-02, 212–222.

Rintanen, J. 2000. Constructing conditional plans by a theorem
prover.JAIR10:323–352.

Smith, D., and Weld, D. 1998. Conformant Graphplan. InAAAI,
889–896.

Son, T., and Baral, C. 2001. Formalizing sensing actions - a
transition function based approach.AIJ 125(1-2):19–91.

Son, T.; Tu, P.; and Baral, C. 2004. Planning with Sensing Ac-
tions and Incomplete Information using Logic Programming. In
LPNMR’04, 261–274.

Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In Defense of
PDDL Axioms. IJCAI’03.

Turner, H. 2002. Polynomial-length planning spans the polyno-
mial hierarchy. JELIA’02, 111–124.

6It is worth noting that the current characterization seems to
cover most problems found in the literature. This result will be
available in the complete version of this paper.

