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Abstract

We explore the major issues involved in the automatic exploitation of parallelism
from the execution models of logic-based non-monotonic reasoning systems. We
describe orthogonal techniques to parallelize the computation of models of non-
monotonic logic theories, and demonstrate the effectiveness of the proposed tech-
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1 Introduction

It is becoming increasingly clear that, to fully realize the potential of com-
puter revolution, computer scientists need to develop a systematic methodology
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for the design and construction of advanced software systems. These systems
should be capable of basing their behavior on knowledge about their environ-
ment and on the exchange of complex information and services with other
systems as well as with humans. This realization led to recent advances in the
development of programming paradigms centered around the notion of knowl-
edge. These paradigms strive to reduce a substantial part of the programming
process to the description of objects comprising the domain of interest and
relations between these objects. The resulting description can be queried to
establish truth or falsity of statements about the domain, or to find objects
satisfying various properties. Knowledge can also be updated, modified, and
used to make decisions on actions which need to be taken in a given situation
to achieve certain goals.

Various languages, e.g., database query languages (e.g., SQL), Prolog, Frame-
based, Rule-based, and Graph-based systems, support to a different extent
this approach to programming. Typically, each of these languages is provided
with a well-defined syntax and is equipped with an inference engine, capable
of manipulating the knowledge encoded in the programs. Though different
in style, all these languages are based on classical logic, developed to model
mathematical reasoning. This severely limits the ability of these program-
ming paradigms to represent common-sense knowledge and reasoning, which
is crucial for development of sophisticated knowledge based systems [9] and
intelligent agents [45].

In the last ten years we witnessed a rapid development of alternative logical
systems, called non-monotonic logics [9,4,46]—which allow new axioms to re-
tract existing theorems, and are more adequate for common-sense reasoning
and for the modeling of dynamic and incomplete knowledge bases [8]. One of
the outcomes of research in the field of non-monotonic logics is represented
by the development of a number of languages for knowledge modeling and
manipulation. In particular, in the last couple of years, a novel programming
paradigm has arisen, called Answer Set Programming (ASP) [42,48,8], which
builds on the mathematical foundations of logic programming, constraint pro-
gramming and non-monotonic reasoning. ASP is a computation paradigm
in which logical theories (composed of Horn clauses with negation as fail-
ure/default negation) serve as problem specifications, and solutions are repre-
sented by collections of models of such theories—also known as stable models
or answer sets [42]. ASP originates from the extensive research on semantics
of logic programming with negation [30,29] and it has evolved over the years
in a complete programming paradigm, thanks to the availability of efficient
inference engines—e.g., Smodels [49], DLV [23], DeRes [14], Cmodels [5], and
ASSAT [40]—and expressive declarative languages—e.g., disjunctive logic pro-
gramming [23], datalog with constraints [20], ordered logic programming [12],
and probabilistic logic programming [17]. Domain-specific languages have also
been proposed, along with sound and complete translation algorithms to map
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them to ASP (e.g., the languages B, C, and K for the specification of action
theories for intelligent agents [31]).

In comparison to other non-monotonic logics, ASP is syntactically simpler
and, at the same time, very expressive. The mathematical foundations of ASP
have been extensively studied; in addition, there exist a large number of build-
ing block results about specifying and programming using ASP—e.g., results
about dealing with incomplete information, reasoning with user-defined pref-
erences, and abductive assimilation of new knowledge. ASP has offered novel
and highly declarative solutions in a number of well-defined application areas,
including intelligent agents [8], planning [38], software modeling & verification
[35], complex systems diagnosis [6,28], semantic web services composition and
monitoring [44], phylogenetic inference [26].

In spite of the continuous effort in developing fast execution models for ASP
[23,20,49], execution of large programs remains a challenging task, limiting
the scope of applicability of ASP in certain domains (e.g., planning). 1 In this
work we propose the use of parallelism to improve performance of ASP engines
and improve the scope of applicability of this paradigm. The core of our work
is the identification of a number of potential sources for implicit exploitation
of parallelism from a basic execution model for ASP programs—specifically
the execution model proposed in the Smodels system [49]. We show that ASP
has the potential to provide considerable amounts of loosely related tasks,
which can be concurrently explored by different ASP engines. Exploitation of
parallelism can be accomplished in a fashion similar to the models proposed
to parallelize Prolog [34] and constraint propagation [47].

In this paper we overview the main issues in the exploitation of parallelism
from the basic execution model of ASP. We identify two major forms of paral-
lelism, Horizontal parallelism and Vertical parallelism, that respectively cor-
respond to the two instances of non-determinism present in the propagation-
based operational semantics commonly used for ASP. Building on recent the-
oretical results regarding the efficiency of parallel exploration of search trees
[55,52], we investigate the development of techniques to handle the different
forms of parallelism in an ASP engine and we present preliminary experimen-
tal results accomplished on shared memory and Beowulf platforms.

The work proposed in this paper—along with the work concurrently con-
ducted by Finkel et al. [27]—represents the first exploration in the use of
scalable architectures for the manipulation of non-monotonic logics ever pro-
posed. The type of parallel engine designed in this work provides improved
performance over systems like Smodels within the same application domains.
In particular, we employ alternative parallelization strategies—horizontal and

1 It is important to remember that computing stable models is in general a NP-hard
problem [42].
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vertical parallelism—to ensure a broader applicability to problems with differ-
ent structure. We expect the proposed techniques to be of interest both to the
parallel computing community—we explore and compare different dynamic
work distribution and scheduling strategies, which could find applications to
other domains (e.g., parallelization of other search-based computations)—and
the answer set programming community.

The rest of this paper is organized as follows. Section 2 provides a brief in-
troduction to ASP and to its theoretical foundations. Section 3 describes the
execution model adopted for ASP in this work. Section 4 introduces the main
forms of parallelism tackled in this work; Sections 5 and 6 discuss the two spe-
cific forms of parallelism (Vertical and Horizontal Parallelism) explored in this
project. Section 7 analyzes the problem of speeding up the grounding phase
and other optimizations. Finally, Section 8 presents conclusions and future
directions of research.

2 Non-monotonic Reasoning and Answer Set Programming

2.1 Answer Set Semantics

Answer Set Semantics (AS) [30,29] (a.k.a. Stable Models semantics) was de-
signed in the mid 80s as a tool to provide semantics for Logic Programming
(LP) with negation [4]. A (definite) logic program [41] is composed of a col-
lection of rules (a.k.a. clauses) of the form

Head : −A1, . . . , An

where Head, A1, . . . , An are atomic logic statements (atoms). Each rule repre-
sents a logic implication—if A1, . . . , An are all true, then Head will be inferred
to be true as well. The semantics of a logic program is typically described us-
ing the notion of minimal model—which is the set of all the atoms which are
logical consequences of the program. A known property is that, for a definite
logic program, the set of all logical consequences is unique.

Example 1 The following is a simple definite logic program

p :- q, r.

q .

r :- s.

r :- t.

s.
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Note that if a rule has an empty body, then we write only its head (e.g., the rule
q.). The minimal model of this program is the set {q, s, r, p}, which contains
all and only the logical consequences of the rules in the program.

Example 2 Consider the program

p(0).

p(1).

q(X) :- p(X).

The capital letters denote variables. The program is a short-hand for the set
of all rules that can be obtained by replacing the variables with any legal values
in the logic language at hand. If we assume that the only two constants in the
language are 0 and 1, then the above program represents the set of rules:

p(0).

p(1).

q(0) :- p(0).

q(1) :- p(1).

Definite logic programs allow only atomic statements in the rules; as a result,
each rule can only draw describe relationships between positive statements—
i.e., we can derive the truth of an element based on the truth of other elements.
This type of language does not allow one to derive negative consequences (i.e.,
we cannot express statements of the type “if x is true then y must be false”)
and it does not allow one to build knowledge on the false status of certain
statements (i.e., we cannot write statements of the type “if x is false then y

must be true”).

However, in a large number of cases it is useful to reason also about negative
consequences, by allowing negative knowledge to be inferred and allowing
negative assumptions in the rules of the program (i.e., allow elements of the
form not A in the body of the rules). The ability to use negated formulas
in the rules leads to a natural support for non-monotonic reasoning, and the
availability of efficient computational mechanisms provides a natural setting
for the study of proof systems for non-monotonic reasoning [48].

The introduction of negation in logic programming leads to a number of com-
plications, starting from the fact that negation may lead to the loss of one
of the key properties of definite logic programming, the existence of a unique
minimal model for each program. In fact, in definite logic programming (where
negation is not used), there is no ambiguity in what is true and what is false
w.r.t. the program. On the other hand, if negation is present, it is possible to
have programs which have distinct sets of logical consequences. Two classes
of proposals have been developed to tackle the problem of providing seman-
tics to logic programs in presence of negation. The first class [3,63] attempts
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to reconstruct a single minimal model, either by narrowing the class of ad-
missible programs (e.g., stratified programs [59] are programs meeting certain
syntactic conditions, which guarantee the existence of a single minimal model)
or by switching to 3-valued semantics—i.e., admitting the fact that formulae
can be not only true or false, but also undefined. The second direction of re-
search instead admits the existence of a collection of minimal models for a
program [15,30,29]. Answer sets is the most representative approach in this
second class. AS has been recognized to provide the right semantics for LP
with negation—e.g., it naturally extends the the minimal model semantics of
definite logic programs, it subsumes the intended model in the approach based
on stratification [4], etc.

AS relies on a very simple definition. Given a program 2 P and given a tenta-
tive model M , we can define a new program P M (the reduct of P w.r.t. M)
which is obtained by

• removing all rules containing negative elements which are contradicted by
the model M ;
• removing all negative elements from the remaining rules.

Thus, P M contains only those rules of P that are applicable given the model
M . Furthermore, P M is a definite logic program, i.e., it does not contain
negations, which admits a unique intended model M ′ [41]. M is an answer
set (a.k.a. stable model) if M and M ′ coincide. Intuitively, a stable model
contains all and only those atoms which have a justification in terms of the
applicable rules in the program. These models can be proved to be minimal,
and in general a program with negation may admit more than one answer set.

Example 3 If we have a database indicating people working in different de-
partments

dept(hartley,cs). dept(pfeiffer,cs).

dept(gerke,math). dept(prasad,ee).

and we would like to select the existing departments and one representative
employee for each of them:

depts employee(Name,Dep) :- dept(Name,Dep), not other emps(Name,Dep).

other emps(Name,Dep) :- dept(Name,Dep), dept(Name1,Dep),

depts employees(Name1,Dep),

Name 6= Name1.

2 Let us assume for the sake of simplicity that it does not contain variables.
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The rules assert that Name/Dep should be added to the solution only if no
other member of the same department has been selected. AS produces for this
program 2 answer sets, corresponding to the solutions:

{〈hartley, cs〉, 〈gerke, math〉, 〈prasad, ee〉}

{〈pfeiffer, cs〉, 〈gerke, math〉, 〈prasad, ee〉}

2.2 Answer Set Programming: a Novel Paradigm

As recognized by a number of authors [37,42,48], the adoption of AS requires
a paradigm shift to reconcile the peculiar features of AS—i.e., the existence
of multiple admissible models—with the traditional program view of logic
programming. This need arises for a number of reasons. In the first place, under
AS, each program potentially admits more than one intended model. This
ends up creating an additional level of non-determinism—specifically a form of
don’t know non-determinism. The presence of multiple answer sets complicates
the framework in two ways. First of all, we need to provide programmers
with a way of handling the multiple answer sets. On one hand, one could
attempt to restore a more “traditional” view, where a single “model” exists.
This has been attempted, for example, using skeptical semantics [42], where an
atom is considered entailed from the program only if it is true in each answer
set. For certain classes of programs skeptical semantics coincides with other
semantics proposed for LP with negation. Nevertheless, skeptical semantics
is often inadequate—e.g., in many situations it does not provide the desired
result (see example 3), and in its general form provides excessive expressive
power [42,43]. The additional level of non-determinism—removed by skeptical
semantics—is indeed a real need for a number of applications; it is also possible
to see some similarities between this and some of the proposals put forward
in other communities—such as the choice and witness constructs used in the
database community [36,1,56].

The presence of multiple answer sets, in turn, leads to a new set of require-
ments on the computational mechanisms used. Given a program, now the main
goal of the computation is not to provide a goal-directed tuple-at-a-time an-
swer (i.e., a true/false answer or an answer substitution), as in traditional LP,
but the goal is to return whole answer sets. The traditional resolution-based
control used in LP is largely inadequate, and should give place to a different
form of control and different execution mechanisms.

In this project we embrace a different view of LP under AS, interpreted as a
novel programming paradigm—that we will refer to as Answer Set Program-
ming (ASP). This term was originally created by V. Lifschitz, and nicely
blends the notion of programming with the idea that the entities produced by
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the computation are answer sets. The notion of ASP is not completely new and
has been advocated by others during the last two years: Niemela has recently
proposed answer set semantics as a constraint programming paradigm [48],
while Marek and Truszczynski have coined the term Stable Logic Program-
ming [42] to capture the notion we are describing. A comprehensive overview
of ASP can be found in [8].

In simple terms, the goal of an ASP program is to identify a collection of
answer sets—i.e., each program is interpreted as a specification of a collection
of sets of atoms. Each rule in the program plays the role of a constraint [48]
on the collection of sets specified by the program: a generic rule

Head : −B1, . . . , Bn, not G1, . . . , not Gm

requires that whenever B1, . . . , Bn are part of the answer set and G1, . . . , Gm

are not, then Head has to be in the answer set as well. Thus, the collection of
rules in a program constrain what sets of literals can be considered admissible
models.

The shift of perspective from LP to ASP is very important. The programmer
is led to think about writing programs as manipulating sets of elements, and
the outcome of the computation is going to be a collection of sets—instead of
an answer substitution, as in traditional logic programming. This perspective
comes very natural in a large number of application domains (graph problems
deal with set of nodes/edges, planning problems deal with sets of actions or
states, etc.).

Example 4 [38] The simple ASP program in Figure 1 computes the hamil-
tonian cycles of a graph. For the graph in the example, the program admits a
single answer set:

{in(0, 1), in(1, 2), in(2, 3), in(3, 0)}

In spite of these differences, ASP maintains many of the positive properties of
traditional logic programming, including its declarative nature and the sepa-
ration between logic and control—where the logic is given by the content of
the program and the control is determined the mechanisms used to compute
the answer sets.
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%% Graph:

vertex(0). vertex(1). vertex(2). vertex(3).

edge(0,1). edge(0,2). edge(1,3). edge(1,2). edge(2,3). edge(3,0).

%% choice rules to select one edge

in(U,V) :- vertex(U), vertex(V), edge(U,V), not nin(U,V).

nin(U,V) :- vertex(U), vertex(V), edge(U,V), not in(U,V).

%% each node is traversed once

false :- vertex(U), vertex(V), vertex(W), V 6= W, in(U,V), in(U,W).

false :- vertex(U), vertex(V), vertex(W), U 6= V, in(U,W), in(V,W).

reachable(U) :- vertex(U), in(0,U).

reachable(V) :- vertex(U),vertex(V),reachable(U), in(U,V).

%% Guarantees that each vertex is reachable from 0

false :- vertex(U), U 6= 0, not reachable(U).

Fig. 1. Program to Computer Hamiltonian Cycles of a Graph

2.3 Why ASP?

ASP has received great deal of attention within the knowledge representation
and deductive database communities, as it allows for the representation of
default assumptions, constraints, uncertainty and nondeterminism in a direct
way [9]. The automation of non-monotonic reasoning may well rely upon au-
tomatic ASP, through the well-studied equivalences with, e.g., autoepistemic
logic. ASP is related, both ideally and through formal equivalences, to the al-
gorithmic study of satisfaction of boolean formulas (SAT). It is believed that
ASP encoding of traditionally hard problems is more compact than SAT en-
coding. For instance, [42] argues that ASP encodings of the Hamiltonian cycle
problem are asymptotically more concise than SAT ones. This implies that,
other things being equal, ASP interpretations can be as efficient as satisfia-
bility and even as constraint satisfiability systems. For example, [18] reports
ASP solutions of planning problems in time comparable to ad-hoc planning
algorithms. Finally, ASP syntax corresponds to DATALOG¬ of deductive
databases, and should make database access transparent and straightforward.

3 Execution of ASP Programs

Computing with ASP is fairly different from computing in definite logic pro-
grams (e.g., Prolog)—in the latter we are interested in a single answer sub-
stitution computed w.r.t. a unique intended model, while in the former we
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are interested in computing sets of atoms representing different models of the
logical theory. Designing an architecture for the computation of answer sets
is not a straightforward task—indeed, the original definition of AS [30,29] is
inherently non-constructive, as it requires guessing models and successively
verifying whether they are answer sets or not. Nevertheless, in recent years a
number of proposals have been made which provide approaches for computa-
tion of answer sets [11,13,14,49,23]. Chen and Warren [13] propose a method
for computing answer sets which builds on their work on tabled evaluation
of LP [54]. The method has the advantages of allowing a more relaxed pro-
gram syntax and of being integrated in the context of an efficient Prolog
system. On the other hand, the goal directed nature of this approach does not
make it directly applicable as an engine for ASP [9]. Work is in progress by
the XSB team to overcome this limitation. The three most efficient systems
which support computation in the ASP paradigm are dlv [23], DeRes [14],
and Smodels [49]. 3 These systems, which have been proposed very recently
and are continuously developing, provide comparable efficiency and relatively
similar features. Smodels relies on efficient and robust algorithms, and accepts
as input language a (very powerful) superset of A-Prolog that includes choice
rules [62]. DeRes is a system originally developed to deal with a larger class
of programs than ASP—default theories—but capable of efficiently handling
ASP programs. The DeRes group currently provide a version of DeRes (called
stable) which is specialized for the computation of answer sets, highly suitable
as computational engine for ASP. dlv supports a very general language (which
includes disjunctions in the head of the logical rules) and it provides different
application specific front-ends—e.g., a front-end for abductive diagnosis [22].
The development of different implementations capable of handling ASP pro-
grams is very important—as it indicates the existence of a community which
needs the power of ASP as well as it demonstrates that efficient execution of
ASP is not beyond our reach.

3.1 Sequential Execution Models

The sequential architecture we propose in this project is a new generation
engine obtained from the original design of the Smodels system [49]. Smodels
relies on efficient and robust algorithms for the execution of ASP programs.
The basic structure is sketched in Fig. 2—the algorithm alternates choices and
propagations, in the style of typical constraint programming solutions.

Figure 3 provides a schematic illustration of the overall proposed architecture.
The components are described in this section.

3 Recently new models have also been proposed based on the use of off-the-shelves
SAT solvers [5,40].
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function compute (Π : Program, A : LiteralsSet)
B := expand(Π, A) ;

while ( (B is consistent) and

(B is not complete) )

l := choose literal(Π, B);

B := expand(Π , A ∪ { l }) ;

endwhile

if (B stable model of Π) then

return B;

Fig. 2. Basic Execution Model for ASP

Fig. 3. Sequential Architecture

3.1.1 Preprocessor

Many of the systems proposed so far rely on the use of a preprocessor to trans-
form the input program to a format suitable for processing. The preprocessor
we propose includes the following components:

• Program Transformation: this is a collection of different modules used to
perform source-to-source code transformation. Source transformations are
used, first of all, to support alternative input languages (e.g., the language B
[9] used to describe action theories for software agents) which are mapped to
pure logic programs with negation [9,10,50]. Another objective of program
transformations is to determine code transformations which can improve
efficiency of execution.

• Grounder: answer set semantics [30,29] relies on the manipulation of ground
programs—i.e., programs which have been completely instantiated on a do-
main of interest and do not contain variables. During preprocessing it is
necessary to ground the input program—identifying finite domains for each
variable. Both Smodels and DeRes rely on the same software, called lparse
[62], which provides sophisticated grounding procedures.
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3.1.2 Engine:

The analogy between ASP and constraint programming, advocated by various
researchers [42,48] has been used to a certain extent in the design of existing
ASP engines. Computation of answer sets relies on propagation techniques—
selecting an atom as being true or false constrains, via the program rules, a
number of other atoms to a specific logical value. Most systems take advantage
of this feature (e.g., the expand procedure in Fig. 4). The proposal in [11] even
translates the problem of computing answer sets into a problem of solving a
linear programming problem—which can be tackled directly via constraint
programming techniques. The procedure choose literal selects one literal
(i.e., an atom or its negation) to add to the answer set, while the procedure
expand determines which atoms have a determined value in the partial answer
set A—i.e., expand identifies those atoms whose truth value is uniquely defined
by the choices made up to that point. The actual algorithms used in many
systems are refinements of this execution cycle.

The meaning of the partial answer set B is that, if atom a belongs to B, then a

will belong to the final model. If not a belongs to B, a will not belong to the
final model. Inconsistent interpretations are those containing contradictory
atoms.

As ensues from Fig. 2, computation of answer sets is a highly non-deterministic
and time-consuming activity. Non-determinism arises in different phases of
this computation. The expand phase involves applying program rules in vari-
ous ways (e.g., forward and backward chaining) to infer truth values of other
literals. This process is seen as a fixpoint computation where, at each step, one
rule is selected and used. Being the result of this phase deterministic, expand
can be seen as an instance of don’t care non-determinism. The fact that ASP
programs may admit different answer sets implies that the choose literal

procedure is also non-deterministic; different choices will potentially lead to
distinct answer sets. Thus, the process of selecting literals to add to the an-
swer set represents a form of don’t know non-determinism. This form of non-
determinism has some resemblance to the non-determinism present in tradi-
tional LP (rule selection during one resolution step).

function expand (Π : Program, A : LiteralsSet)
B := A ;

while ( B 6= B’ ) do

B’ := B;

B := apply rule(Π, B);

endwhile

return B ;

Fig. 4. Expand procedure
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Each non-deterministic computation can terminate either successfully—i.e., B

assigns a truth value to all the atoms and it represents an answer set of Π—or
unsuccessfully—if either the process tries to assigns two distinct truth values
to the same atom or if B does not represent an answer set of the program
(e.g., truth of certain selected atoms is not “supported” by the rules in the
program). As in traditional logic programming, non-determinism is handled
via backtracking to the choice points generated by choose literal. Observe
that each choice point produced by choose literal has only two alternatives:
one assigns the value true to the chosen literal, and one assigns the value false

to it.

The expand procedure mentioned in the algorithm in Figure 2 is intuitively
described in Figure 4. This procedure repeatedly applies expansion rules to
the given set of literals until no more changes are possible. The expansion
rules are derived from the program Π and allow to determine which liter-
als have a definite truth value w.r.t. the existing partial answer set. This is
accomplished by applying the rules of the program Π in different ways [49].
Efficient implementation of this procedure requires considerable care to avoid
unnecessary steps, e.g., by dynamically removing invalid rules and by using
smart heuristics in the choose literal procedure [49], e.g.,

1. forward rule: if the rule h← a1, . . . , an, not b1, . . . , not bm is in Π and all
the elements in the body of the rule are true (i.e., they are in B), then
also h can be assumed to be true in B

2. nullary rule: if there are no rules having the atom a as a head, then a

can assumed to be false in B

3. single positive rule: if the atom h is true (i.e., it is in B) and there is a
single rule

h← a1, . . . , an, not b1, . . . , not bm

in Π having h as head, then all the elements of the body of the rule can
be added to B (i.e., they have to be true as well)

4. negative rules: if the literals not h, l1, . . . , li−1, li+1, . . . , lm are in B and
the rule

h← l1, . . . , lm

is in Π, then l̄i can be added to B, where l̄ indicates the complement of
the literal l—i.e., if l is the positive atom a (negative literal not a) then
l̄ is the literal not a (a).

Efficient implementation of this procedure requires considerable care to avoid
unnecessary steps, e.g., by dynamically removing invalid rules and by using
smart heuristics in the choose literal procedure [60].
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3.2 Our Prototypes

The execution model sketched in the previous section has been originally pro-
posed in the context of the Smodels system, and adopted in a variety of other
systems computing answer sets (e.g., some versions of the DLV system [27]).
This execution model is at the core of the prototypes used for the investiga-
tion in parallel execution of ASP programs presented in this paper. The ideas
presented in this work have been integrated in prototypes developed at New
Mexico State University and Texas Tech University. These systems provide a
number of additional features, including:

• support for various language extensions, such as choice rules [62] and weak
constraints [21];

• support for consistency restoring rules [7];

• an object-oriented interface with Prolog, which allows Prolog programs to
include ASP modules;

• support for various forms of aggregates [53].

4 Sources of Parallelism

As described in Section 3.1, the execution model for ASP is inherently non-
deterministic, due to the different choices that have to be performed during
the computation of each model. This inherent non-determinism suggests a
natural direction for automatic parallelization of the computation of answer
sets.

The structure of the computation of answer sets previously illustrated can
be easily interpreted as an instance of a constraint-based computation [61],
where the application of the expansion rules (expand procedure) represents
the propagation step of the constraint computation, and the selection of a
literal in choose literal represents a labeling step. From this perspective, it
is possible to identify two sources of non-determinism:

• horizontal non-determinism: which arises from the choice of a method for
the expansion of the partial answer set (e.g., in expand);
• vertical non-determinism: which arises from the choice of the literal to add

to the partial answer set (in choose literal).

These two forms of non-determinism bear similarities respectively to the don’t
care and don’t know non-determinism traditionally recognized in constraint
and logic programming [34]. The goal of this project is to explore avenues for
the exploitation of parallelism from these two sources of non-determinism—by
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exploring the different alternatives available in each point of non-determinism
in parallel.

In particular, we will use the terms

• Horizontal Parallelism to indicate the use of separate threads of computa-
tion to concurrently apply different expansion techniques to a partial answer
set.
• Vertical Parallelism to indicate a situation where separate threads of com-

putation are employed to explore alternatives arising from vertical non-
determinism;

Horizontal parallelism is aimed at the use of different computation agents
to construct one of the models of the program—thus, the different agents
cooperate in the construction of one model of the original program. Vertical
Parallelism, on the other hand, makes use of separate computing agents for
the computation of different models of the program—each execution thread
is working on a different answer set of the program. In the rest of this paper
we focus on the exploitation of Vertical Parallelism, and on a particular (and
promising) form of Horizontal Parallelism, that we call Parallel Lookahead.

5 Vertical Parallelism

The alternative choices of literals during the derivation of answer sets
(choose literal in Fig. 2) are independent and can be concurrently explored,
generating separate threads of computation, each potentially leading to a dis-
tinct answer set. We will refer to this form of parallelism as Vertical Par-
allelism. Thus, vertical parallelism parallelizes the computation of different
answer sets.

5.1 Issues in Managing Vertical Parallelism

As ensues from research on parallelization of search tree applications and
non-deterministic programming languages [55,2,16,34], the issue of designing
the appropriate data structures to maintain the correct state in the different
concurrent branches, is essential to achieve efficient parallel behavior. Observe
that straightforward solutions to related problems have been formally proved
to be ineffective, leading to unacceptable overheads [55].

The architecture for vertical parallel ASP that we envision is based on the use
of a number of ASP engines (agents), which are concurrently exploring the
search tree generated by the search for answer sets—specifically the search tree
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whose nodes are generated by the execution of the choose literal procedure.
Each agent explores a distinct branch of the tree; idle agents are allowed to
acquire unexplored alternatives generated by other agents.

The major issue in the design of such architecture is to provide efficient mecha-
nisms to support this sharing of unexplored alternatives between agents. Each
node P of the tree is associated to a partial answer set B(P )—the partial an-
swer set computed in the part of the branch preceding P . An agent acquiring
an unexplored alternative from P needs to continue the execution by expand-
ing B(P ) together with the literal selected by choose literal in node P .
Efficient computation of B(P ) for the different nodes in the tree is a known
complex problem [55].

Since ASP computations can be very ill-balanced and irregular, we opt to
adopt a dynamic scheduling scheme, where idle agents navigate through the
system in search of available tasks. Thus, the partitioning of the available
tasks between agents is performed dynamically and is initiated by the idle
agents. This justifies the choice of a design where different agents are capable
of traversing a shared representation of the search tree to detect and acquire
unexplored alternatives. In addition, this view allows one to reuse the op-
timization schemes developed for other parallel execution models to improve
efficiency of these mechanisms, via run-time transformations of the search tree
[33]—e.g., flattening the tree to facilitate work sharing.

5.1.1 Basic Structure of the Parallel Engine

As mentioned earlier, the system is organized as a collection of agents, which
are cooperating in computing the answer sets of a program. Each agent is a
separate ASP engine, which owns a set of private data structures employed
for the computation of answer sets. Additionally, a number of global data
structures, i.e., accessible by all the agents, are introduced to support cooper-
ation between agents. This structuring of the system implies that we rely on
a shared-memory architecture.

The different agents share a common representation of the ASP program to
be executed. This representation is stored in one of the global data struc-
tures. Program representation has been implemented following the general
data structure originally proposed in [19]—proved to guarantee very efficient
computation of models for definite logic programs. This representation is sum-
marized in Figure 5. Each rule is represented by a descriptor; all rule descrip-
tors are collected in a single array, which allows for fast scan of the set of
rules. Each rule descriptor contains, between the other things, pointers to the
descriptors for all atoms which appear in the rule—the head atom, the atoms
which appear positive in the body of the rule, and the atoms which appear
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negated in the body of the rule.

Each atom descriptor contains information such as

• an array containing pointers to the rules in which the atom appears as head
• an array containing pointers to the rules in which the atom appears as

positive body element
• an array containing pointers to the rules in which the atom appears as

negative body element
• an atom array index

Differently from the schemes adopted in sequential ASP engines [19,49], our
atom descriptors do not contain the truth value of the atom. Truth values
of atoms are instead stored in a separate data structure, called atom array.
Each agent maintains a separate atom array, as shown in Figure 5; this allows
each agent to have an independent view of the current (partial) answer set
constructed, allowing atoms to have different truth values in different agents.
E.g., in Figure 5, the atom of index i is true in the answer set of one agent,
and false in the answer set computed by another agent.

Each agent essentially acts as a separate ASP engine. Each agent maintains a
local stack structure (the trail), which keeps track of the atoms whose truth
value has already been determined. Each time the truth value of an atom is
determined (i.e., the appropriate entry in the atom array is set to store the
atom’s truth value), a pointer to the atom’s descriptor is pushed in the trail
stack. The trail stack is used for two purposes:

• (during expand) the agent uses the elements newly placed on the trail to
determine which program rules may be triggered for execution;
• a simple test on the current size of the trail stack allows each agent to

determine whether all atoms have been assigned a truth value or not.

The use of a trail structure provides also convenient support for exploitation
of horizontal parallelism [24].

To support the exploitation of vertical parallelism, we have also introduced an
additional simple data structure in each agent: a choice point stack (or core
stack). The elements of the choice point stack are pointers to the trail stack.
These pointers are used to identify those atoms whose truth value has been
“guessed” by the choose literal function. The choice points are used during
backtracking: they are used to determine which atoms should be removed
from the answer set during backtracking, as well as which alternatives can be
explored to compute other answer sets. This is akin to the mechanisms used
to support backtracking in trail-based constraint systems [57,58].
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Fig. 5. Representation of Rules and Atoms

The open issue which remains to be discussed is how agents interact in order
to exchange unexplored alternatives—i.e., how agents share work. Each idle
agent attempts to obtain unexplored alternatives from other active agents. In
our context, an unexplored alternative is represented by a partial answer set
together with a new literal to be added to it.

In this project we have explored two alternative approaches to tackle this
problem:

• Recomputation-based Work Sharing: agents share work just by exchanging
the list of chosen literals which had been used in the construction of an
answer set; the receiving agent will use these to reconstruct the answer set
and then perform local backtracking to explore a new alternative.
• Copy-based Work Sharing: agents share work by exchanging a complete

copy of the current answer set (both chosen as well as determined literals)
and then performing local backtracking.

In both schemes, the sharing of work is a local transaction between the two
agents involved. Sharing of work is initiated by the idle agent. The interaction
is realized by copying data from the (private) area belonging to one agent
to the area of another agent. Note that this is feasible since even the data
structures that belong to a specific agent (e.g., its choice point stack) are
stored in shared memory.

The two schemes provide a different balance between amount of data copied
from one agent to the other and amount of time needed to restart the com-
putation with a new alternative in a different agent. These two methods are
discussed in detail in the next sections. Although many alternative methods
have been discussed in the literature to handle parallel execution of search-
based applications (e.g., see [32] for a survey), we have focused on these two
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models for the following reasons:

• these two methodologies have been theoretically demonstrated to be opti-
mal with respect to a reasonable abstraction of the problem of supporting
concurrent search;
• our intention is to target exploitation of vertical parallelism across a wide

range of parallel platforms, including distributed memory platforms. It has
been proven that these two methodologies are the most effective in absence
of shared memory.

Another important aspect that has to be considered in dealing with this sort
of systems is termination detection. The overall computation needs to deter-
mine when a global fixpoint has been reached—i.e., all the answer sets have
been produced and no agent is performing active computation any longer. In
the system proposed we have adopted a centralized termination detection al-
gorithm. One of the agents plays the role of controller and at given intervals
polls the other agents to verify global termination. Details of this algorithm
are omitted for lack of space.

5.1.2 Model Recomputation

The idea of recomputation-based sharing of work is derived by similar
schemas adopted in the context of or-parallel execution of Prolog [34]. In
the recomputation-based scheme, an idle agent obtains a partial answer set
from another agent in an implicit fashion. Let us assume that agent P wants
to send its partial answer set B to agent Q. To avoid copying the whole par-
tial answer set B, the agents exchange only a list containing the literals which
have been chosen by P during the construction of B. These literals represent
the “core” of the partial answer set. In particular, we are guaranteed that
an expand operation applied to this list of literals will correctly produce the
whole partial answer set B. This communication process is illustrated in Fig.
6. The core of the current answer set is represented by the set of literals which
are pointed to by the choice points in the core stack (see Fig. 6). In particular,
to make the process of sharing work more efficient, we have modified the core
stack so that each choice point not only points to the trail, but also contains
the corresponding chosen literal (the literal it is pointing to in the trail stack).
As a result, when sharing of work takes place between agent P and agent Q,
the only required activity is to transfer the content of the core stack from P
to Q. Once Q receives the chosen literals, it will proceed to install their truth
values (by recording the literals’ truth values in the Atom Array) and perform
an expand operation to reconstruct (on the trail stack) the partial answer set.
The last chosen literal will be automatically complemented to obtain the effect
of backtracking and constructing the “next” answer set. This copying process
can be also made more efficient by making it incremental : agents exchange
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only the difference between the content of their core stacks. This reduces the
amount of data exchanged and allows to reuse part of the partial answer set
already existing in the idle agent.

Fig. 6. Recomputation Sharing of Work

5.1.3 Model Copying

The copying-based approach to work sharing adopts a simpler approach than
recomputation. Upon work sharing from agent P to Q, the entire partial an-
swer set existing in P is directly copied to agent Q. The use of copying has
been frequently adopted to support computation in constraint programming
systems [58] as well as to support or-parallel execution of logic and constraint
programs [34]. The partial answer set owned by P has an explicit represen-
tation within the agent P: it is completely described by the content of the
trail stack. Thus, copying the partial answer set from P to Q can be simply
reduced to the copying of the trail stack of P toQ. This is illustrated in Figure
7. Once this copying has been completed, Q needs to install the truth value of
the atoms in the partial answer set—i.e., store the correct truth values in the
atom array. Computation of the “next” answer set is obtained by identifying
the most recently added literal whose value has been “guessed” and perform-
ing local backtracking to it. The identification of the backtracking literal is
immediate as this literal lies always at the top of copied trail stack. As in the
recomputation case, we can improve performance by performing incremental
copying, i.e., by copying not the complete answer set but only the difference
between the answer set in P and the one in Q.

5.1.4 Hybrid Sharing Schemes

The experiments performed on shared memory architectures (described in
the next Section) have indicated that Model Copying behaves better than
Model Recomputation in most of the cases. This is due to the high cost of
recomputing parts of the answer set w.r.t. the cost of simply performing a
memory copying operation.
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Fig. 7. Copy-based Sharing of Work

To capture the best of both worlds, we have switched in our prototype to an
hybrid work sharing scheme, where both Model Recomputation and Model
Copying are employed. The choice of which method to use is performed dy-
namically (each time a sharing operation is required). Various heuristics have
been considered for this selection, which take into account the size of the
core and the size of the partial answer set. Some typical observations that
have been made from our experiments include: (i) if the size of the core is
sufficiently close to the size of the answer set, then recomputation would
lead to a loss w.r.t. copying. (ii) if the size of the answer set is very large
compared to the size of the core, then copying appears still to be more ad-
vantageous than recomputation. This last property is strongly related to the
speed of the underlying interconnection network—the slower the intercon-
nection network, the larger is the partial answer set that one can effectively
recompute. We have concretized these observations by experimentally identi-
fying two thresholds (low and high) and a function f which relates the size
of the core and the size of the answer set; Recomputation is employed when-
ever low ≤ f( sizeof (Core), sizeof (Partial Answer Set) ) ≤ high. The same
considerations are even more significant in the context of execution of ASP
on distributed memory platforms: in this context the cost of copying is higher
(due to the higher cost of moving data across the interconnection network)
and the threshold in favor of recomputation is wider.

5.2 Experimental Results

5.2.1 Model Recomputation on Shared Memory Platforms

In this section we present performance results for a preliminary prototype
which implements an ASP engine with Recomputation-based vertical paral-
lelism. The prototype is capable of computing the answer sets of standard
ASP programs, pre-processed by the lparse grounding program [62].

All performance figures presented are in milliseconds and have been achieved
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as average execution times over 10 consecutive runs on a lightly loaded ma-
chine. The benchmarks adopted are programs obtained from various sources
(all written by other researchers); they include some large scheduling applica-
tions (sjss, rcps), planners (logistics 1,2, strategic), graph problems (color), as
well various synthetic benchmarks (T4, T5, T15, T8, P7). These benchmarks
range in size from few tens of rules (e.g., T4, T5) to hundreds of rules (e.g.,
rcps).

Name Smodels 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents

Scheduling (sjss) 130997.22 141710.67 71157.78 47891.41 38362.39 21182.46 17870.2

Scheduling (rcps) 71553.27 77021.983 38549.54 30686.05 30918.86 14236.97 11632.76

Color (Random) 1100323.37 1232359.24 616389.19 400608.21 309117.38 183933.32 163225.41

Color (Ladder) 973.21 993.77 624.31 497.01 332.2 305.11 314.67

Logistics (1) 8679.98 8918.5 9001.78 8634 4032.78 3995.67 3235.82

Logistics (2) 5681.26 6020.33 3241.01 2723.14 2278.3 1387.12 1270

Strategic 12488.88 12573.32 6672.39 4677.679 3654.12 2080.89 1817.64

T5 111.60 127.31 62.57 70.97 71.11 66.59 76.62

T4 104.02 103.01 71.24 68.33 74.18 88.79 108.21

T8 3070.51 3205.79 1669.11 1034.26 899.21 701.03 705.52

P7 2881.08 3260.01 1668.37 1252.9 871.04 415.13 425.14

T15 398.88 446.73 245.4 198.03 132.1 145 117.11

T23 3722.15 3741 1790.76 1685.38 1523.86 1411.79 1410.7

Table 1
Recomputation-based Sharing: Execution Times (msec.)

As can be seen from the figures in Table 1, the system is capable of produc-
ing good speedups for most of the selected benchmarks. On the scheduling
(sjss, rcps), graph coloring, and planning (strategic, logistics) benchmarks the
speedups are very high (mostly between 6 and 8 using 10 agents). This is
quite a remarkable result, considering that these benchmarks are very large
and some produce highly unbalanced computation trees, with tasks having
very different sizes. The apparently low speedup observed on the logistics with
the first plan (logistics 1), is actually still a positive result, since the number of
choices performed across the computation is just 4 (thus we cannot expect a
speedup higher than 4). On the very fine-grained benchmarks T4 and T5 the
system does not behave as well; in particular we can observe a degradation of
speedup for a large number of agents—in this case the increased number of
interactions between agents overcome the advantages of parallelization, as the
different agents attempt to exchange very small tasks. In T4 we even observe a
slow-down when using more than 8 agents. Two slightly disappointing results
are in T8 and P7. T8 is a benchmark which produces a very large number
of average-to-small size tasks; the top speedup is below 5 and denotes some
difficulty in maintaining good efficiency in presence of frequent task switching.
P7 on the other hand has a very low number of task switching, but generates
extremely large answer sets. The speedup tends to decrease with large num-
ber of agents because some agents end up obtaining choice points created very
late in the computation, and thus waste considerable time in rebuilding large
answer sets during the recomputation phase. The speedups obtained for all
these benchmarks are plotted in Figure 8.

Note that the sequential overhead observed in all cases (the ratio between
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the sequential engine and the parallel engine running on a single processor) is
extremely low, i.e., within 5% to 15% for most of the benchmarks.

Fig. 8. Speedups using Recomputation

5.2.2 Model Copying on Shared Memory Platforms

We modified our implementation to support Copy-based work sharing, and
tested its performance on the same pool of benchmarks. Also in this case, the
sequential overhead is very low (on average it is between 5% and 15%).

Name Smodels 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents

Scheduling (sjss) 130997.22 141710.67 67607.98 46374.28 33888.71 18650.48 15577.87

Scheduling (rcps) 71553.27 77021.99 38500.06 23692.36 19250.04 10349.47 7243.66

Color (Random) 1100323.37 1232362.54 606857.17 360152.65 286253.38 166034.76 136679.54

Color (Ladder) 973.21 987.71 539.51 366.95 308.05 262.65 261.27

Logistics (1) 8679.98 8920.51 3907.65 3727.05 3711.46 2416.99 2359.14

Logistics (2) 5681.26 6018.13 3051.41 2587.08 2017.03 1135.55 1066.35

Strategic 12488.88 12576.32 6693.23 4640.96 3252.46 1854.47 1686.73

T5 111.60 82.12 42.22 43.41 43.6 47.99 50.57

T4 104.02 91.56 58.6 51.53 62.47 62.08 62.94

T8 3070.51 3200.79 1587 1076.12 890.46 433.43 358.89

P7 2881.08 3260.01 1905.23 1435.22 1111.92 573.58 513.06

T15 398.88 440.97 223.08 148.72 126.73 128.94 131.21

T23 3722.15 2622 1357.59 990.23 748.61 391.72 451.69

Table 2
Copy-based Sharing: Execution Times (msec.)

The results reported in Table 2 (and the corresponding speedups plotted in
Figure 9) are remarkable. The large benchmarks (e.g., the two scheduling
applications) report speedups in the range 8.5− 10 for 10 agents, maintaining
linear speedups for small number of agents (from 2 to 5 agents).

The fine grained benchmarks (such as T4 and T5) provide speedups simi-
lar (usually slightly better) to those observed earlier. In both cases we note
a slight degradation of speedup for large number of agents. As in the case
of recomputation, this indicates that if the tasks are too fine grained, addi-
tional steps are needed in order to achieve performance improvements. We
have experimented with a simple optimization, which semi-automatically un-
folds selected predicates a constant number of times, in order to create larger
grain tasks (by effectively combining together consecutive tasks). The simple
optimization has produced improvements, as shown in Table 3.

23



Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents 10 Agents

T5 1.0 1.94/1.99 1.89/1.99 1.88/1.97 1.71/1.95 1.62/1.93

T4 1.0 1.56/1.92 1.77/1.93 1.46/1.95 1.47/1.93 1.45/1.91

Table 3
Speedup Improvement using Task-collapsing Optimization (before/after)

The Copy-based scheme behaves quite well in presence of a large number of
average-to-small tasks, as seen in the T8 benchmark. The speedups reported in
this case are excellent. This is partly due to the lower cost, in this particular
case, of copying w.r.t. recomputation, as well as the adoption of a smarter
scheduling strategy, made possible by the use of copying, as discussed in the
next section.

For what concerns the benchmark P7, the situation is sub-optimal. In this
case the need of copying large answer sets during sharing operations penalizes
the overall performance. We expect this case to become less of a problem with
the introduction of incremental copying techniques—i.e., instead of copying
the whole answer set, the agents compute the actual difference between the
answer sets currently present in their stacks, and transfer only such difference.
Our current prototype does not include this optimization.

Fig. 9. Speedups using Copying

5.2.3 Performance on Distributed Memory Platforms

The engine used in the previous experiment has been converted to support
execution on distributed platforms. The main modifications performed deal
with the fact that, on a Beowulf, agents cannot exchange data by copying
data structures (e.g., from the choice point stack of one agent to the choice
point stack of another agent). These operations have been converted to ex-
plicit message passing (based on MPI). The results have been obtained on
a Pentium-based Beowulf cluster (purely distributed memory architectures).
The experiments have been performed by executing a number of ASP pro-
grams (mostly obtained from other researchers).

All timings presented have been obtained as average over 10 runs. For the dis-
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tributed memory prototype we have decided to consider the Hybrid Method of
task exchange (see Sect. 5.1.4), rather than implementing Model Copying and
Model Recomputation separately (like we did for shared memory platforms).
The reason for this choice is the higher cost of communication between pro-
cessors in distributed memory architectures. This factor, in fact, leads to a
higher number of situations where Model Copying provides sub-optimal per-
formances. On the other hand, the shift of balance is not large enough to
justify a static application of Model Recomputation.

Table 4 reports the execution times observed on a set of benchmarks, while
Fig. 10 illustrates the speedups observed using the hybrid scheme on a set
of ASP benchmarks. Some of the benchmarks, e.g., T8 and P7, are synthetic
benchmarks developed to study specific properties of the inference engine,
while others are ASP programs obtained from other researchers. Color is a
graph coloring problem, Logistics and Strategic are scheduling problems,
while sjss is a planner. Note also that sjss is executed searching for a sin-
gle model while all others are executed requiring all models to be produced.
The tests marked [*] in Fig. 10 indicate those cases where Recomputation
instead of Copying has been triggered most of the times. The results pre-
sented have been obtained by using an experimentally determined threshold
to discriminate between copying and recomputation. The rule adopted in the
implementation can be summarized as: if

min ≤
size(Partial Answer Set)

size(Core)
≤ max

then model recomputation is applied, otherwise model copying is used. The in-
tuition is that (i) if the ratio is too low, then, there is no advantage in copying
just the core, while (ii) if the ratio is too high, then the cost of recomput-
ing the answer set is likely to be excessive. The min and max used for these
experiments where set to 1.75 and 12.5. Fig. 11 shows the impact of using
recomputation in the benchmarks marked with [*] in Fig. 10. Some bench-
marks have shown rather low speedups—e.g., Color on a ladder graph and
Logistics. The first generates very fine grained tasks and suffers the penalty
of the cost of communication between processors—the same benchmarks on
a shared-memory platform produces speedups close to 4. For what concerns
Logistics, the results are, after all, quite positive, as the maximum speedup
possible is actually 5 and there seem to be no degradation of performance
when the number of agents is increased beyond 5.

It is interesting to compare the behavior of the distributed memory imple-
mentation with that of the shared memory engine presented in the previous
subsection. Fig. 12 presents a comparison between the speedups observed on
selected benchmarks in the shared memory and the distributed memory en-
gines. In the majority of the cases we observed relatively small degradation in
the speedup. Only benchmarks where frequent scheduling of small size tasks is
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Name 1 Agent 2 Agents 3 Agents 4 Agents 8 Agents

Color (Ladder) 311434 225465 212393 264278 266523

Color (Random2) 2126786 1195970 879276 621776 319453

Logistics 2 3934631 2170681 1841471 1651771 1040842

Strategic 69348 36553 25777 19714 11447

sjss 99869303 50028294 37178170 24567899 14226396

T8 1766751 863535 588916 443887 226499

P7 1781537 946618 712330 553272 222733

Table 4
Execution Times (in µs.) on Beowulf

Fig. 10. Speedups from Vertical Parallelism

Fig. 11. Impact of using Recomputation

required lead to a more relevant difference (e.g., Color for the ladder graph).

Fig. 12. Comparison of Shared and Distributed Memory Engines
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5.3 Scheduling Vertical Parallelism

In the context of our system, two scheduling decisions have to be taken by
each idle processor in search of work:

1. select from which agent work will be taken;

2. select which unexplored alternative will be taken from the selected agent.

In the current prototype, we have tackled

the first issue simply by maintaining

a work-load count (i.e., number of local unexplored alternatives) for each agent
and attempting to take work from the agent with the highest work-load. This
simple scheme has proved to work well in practice.

The second decision turned out to be more complicated and has a deeper
impact on the performance of the system. Our experimental results have in-
dicated that the choice of which unexplored alternative to take work from
(i.e., which choice point to steal from another agent) may lead to substantial
variations in parallel performance.

In our experiments we have considered two approaches to this problem. In the
first approach, agents are forced to steal the first choice point (i.e., the oldest
choice point) from another agent (we call this approach Top scheduling). This
technique was expected to perform well since:

• detecting the first choice point is a fast operation;
• selecting the first choice point reduces the size of the partial answer set

transfered between agents;
• if the computation tree is balanced, then by taking the first choice point we

should minimize the frequency of sharing operations.

The alternative technique considered is the dual of the one described above:
at each sharing operation the last choice point created is taken (we call this
approach Bottom scheduling). This approach is expected to have the following
advantage: with simple modifications to the backtracking scheme, it allows to
share at once not just a single choice point but a collection of them—e.g., all
the choice points owned by an agent. On the other hand, the cost of sharing
work under this scheme is considerable higher, since larger answer sets have
to be exchanged.

The implementation of the first method is relatively simple; the first choice
point is easily detected (by keeping an additional register in each agent for
this purpose). The choice point indicates the segment of trail that has to be
transferred to the other agent.
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The second method has been realized as follows:

• the last choice point is easily detected as it lies on the top of the choice
point stack; this allows to determine immediately what is the part of the
trail that has to be copied;
• to allow sharing of multiple choice points at once, we push on the choice

point stack a special choice point, which simply represents a link to a choice
point lying in another processor’s stack. This allows the backtracking activ-
ity to seamlessly flow between choice points belonging to different agents.
(This technique resembles a similar methodology used for public backtrack-
ing in and-parallel logic programming systems [51]).

We have implemented both schemes and compared them on the selected pool
of benchmarks. Figure 13 compares the speedups achieved using the two
scheduling schemes in the Copy-based sharing scheme. The results clearly
indicate that Bottom scheduling is superior in the large majority of the cases.
Particularly significant are the differences in the sjss and the graph coloring
problems. These are all programs where a large number of choice points are
created; the bottom scheduling scheme allows to share in a single sharing op-
eration a large number of alternatives, thus reducing the number of scheduling
interactions between agents. The Top scheduling scheme provides better per-
formance in those benchmarks where either there are few choices (e.g., T15)
or the choices tend to be located always towards the beginning of the trail
stack (T8).

Also in this case we can clearly identify a preferable scheme (the Bottom
scheduling scheme); nevertheless a mixed approach which selects alternative
scheduling policies depending on the structure of the program or the structure
of the current answer set is likely to provide superior performance.

Fig. 13. Scheduling: Top vs. Bottom Scheduling

5.4 Optimizing Vertical Parallelism

We have also explored the performance of the distributed engine on a number
of other benchmarks. The preliminary results obtained on this second batch
of benchmarks were rather disappointing; indeed, on a number of sufficiently
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large grain computations, we observed severe slow-downs when increasing the
number of agents employed. The problem was pinpointed to derive from the
large size of the models generated by these benchmarks. During the sharing
operations, each idle agent has to undo the existing computation (via back-
tracking), receive a complete copy of the trail, and install the new entries.
As pointed out earlier, the current prototype does not include the notion of
incremental copying, which may improve this sort of situations. Instead of
building the complete infrastructure for incremental copying—which is poten-
tially quite complex—we have tried to simply optimize the task of abandoning
the current computation. Instead of blindly proceeding in a complete back-
tracking phase, the idle processor performs a test on the current size of the
partial model located in its trail stack. If the size is above an experimentally
determined threshold, then complete backtracking is replaced by a brute-force
memory zeroing operation (using Unix’s memset) to wipe out the content of
the atom array. Experimental results have shown that if the trail’s content is
very large, this operation is considerably faster.

Figure 14 compares the speedup curves achieved with and without this op-
timization. While for the benchmarks in the left diagram the improvements
are relatively small, the benchmarks on the right indicate that the impact of
this optimization can be very high. Both benchmarks (Color 6 is the coloring
of another large ladder graph, while rpcs 4 is a different version of the rpcs

scheduling program) lead to a slowdown using a large number of agents. The
use of the optimization allows the benchmarks to produce acceptable (for the
Color 6 program) or really good (for the rpcs 4 benchmark) speedups. It is
important to observe that the cost of the optimization is negligible (a simple
test), compared to the cost of performing a full-blown incremental copying
(e.g., cost of determining the part of the trail in common between two inter-
acting agents).

Fig. 14. Speedup Curves with and without Memory Zeroing Optimization
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6 Horizontal Parallelism

An orthogonal direction for parallel ASP can be achieved by parallelizing the
steps occurring along one branch of the search tree. This implies, as in Fig. 2,
the parallel evaluation of the individual executions of expand. The procedure
expand determines the literals whose truth value is immediately determined
by the partial answer set B. This is achieved by applying in various ways the
program rules (e.g., forward and backward chaining), to expand the partial
answer set, without performing any choice. Each rule can provide a different
contribution, depending on the partial answer set. Horizontal parallelism can
be achieved by allowing concurrent application of different rules to expand the
partial answer set.

6.1 Static Horizontal Parallelism

The most direct approach in the exploitation of horizontal parallelism arises
from the parallelization of the operations present in the expand procedure. As
illustrated in Section 3.1, the expand operation consists of a fixpoint compu-
tation aimed at expanding the partial answer set by applying in different ways
the rules present in the program.

Static parallelization of this process is obtained by partitioning the set of
program rules between the different processors, so that each processor is in
charge of applying a given set of rules (program fragment) to the partial answer
set.

Two major issues have to be considered when developing an horizontal parallel
ASP solution:

(1) partitioning scheme: the partitioning scheme is the policy used to dis-
tribute the program rules between the set of available processors.

(2) interaction policy: the interaction policy determines the frequency and
pattern of interaction between the processors cooperating in the expan-
sion of a partial answer set.

In our preliminary experiments we have adopted the following policies:

(1) partitioning scheme: the current policy is derived from the work on paral-
lel constraint propagation [47] and assigns to each processor a collection
of procedures—where a procedure is a collection of all the rules with the
same predicate in the head. The partitioning is static and it is not mod-
ified during the execution of the program. The collection of procedures
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assigned to the processors are determined according to two heuristics:
• processors should receive fragments of the same size—where the size is

given by the total number of atoms in the fragment;
• procedures which are “close” in the dependency graph of the ASP pro-

gram are assigned to the same processor. In particular, the current
heuristics tries to keep elements belonging to a strongly connected com-
ponent of the dependence graph within the same and-agent.

(2) interaction policy: each and-agent maintains a local stack where it main-
tains the part of the partial answer set that has been determined exclu-
sively using the locally available program rules. Each time a local fixpoint
is determined, the content of the local stack is transferred to a global rep-
resentation (in shared memory) of the partial answer set.

We have initiated the development of an horizontal parallel ASP engine con-
structed according to the previously described policies. The prototype has
been tested on a collection of automatically generated synthetic benchmarks
(Synth1 through Synth4). The benchmarks are composed of 50,000 program
rules, each having a random number of body elements (between 0 and 4). The
results are presented in Table 5.

Benchmark Number of Agents

1 2 3 4

Synth1 393662 37945 17720 2048

Synth2 811335 89353 2337 1852

Synth3 2565765 132473 61480 3426

Synth4 64386763 260800 211890 45162

Table 5
Execution Times (in µsec)

The current prototype has the following properties:

• the indicated benchmarks show super-linear speedups; this arises from the
fact that all the synthetic benchmarks considered do not have models—the
parallel execution allows to detect inconsistencies faster.
• it provides sub-optimal sequential performance, due to excessive locking in

the access of the shared representation of the partial answer set.

Work is in progress to attempt to reduce communication costs and sustain
acceptable speedups on regular (non-contradictory) benchmarks.

6.2 Lookahead Parallelism

The (sequential) Smodels algorithm presented earlier builds the stable models
of an answer set program incrementally. The algorithm presented in Fig. 2 can
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be refined to introduce the use of lookahead during the “guess” of a literal.
The algorithm is modified as follows: (1) Before guessing a literal to continue
expansion, unexplored literals are tested to verify whether there is a literal
l such that expand(Π, B ∪ {l}) is consistent and expand(Π, B ∪ {not l}) is
inconsistent. Such literals can be immediately added to B. (2) After such
literals have been found, choose literal can proceed by guessing an arbitrary
unexplored literal. Step 1 is called the lookahead step. It is important to
observe that any introduction of literals performed in this step is deterministic
and does not require the creation of a choice point. In addition, the work
performed while testing for the various unexplored literals can be used to
choose the “best” literal to be used in step 2, according to some heuristic
function.

During the lookahead step, every test performed on a pair 〈l, not l〉 is sub-
stantially independent from the tests run on any other pair 〈l′, not l′〉. Each
test involves up to two calls to expand (one for l, the other one for not l),
which results in a comparatively expensive computation. These characteristics
make the lookahead step a natural point where the algorithm could be paral-
lelized. Notice that Parallel Lookahead is an instance of the general concept of
Horizontal Parallelism, since the results of the parallel execution of lookahead
are combined, rather than being considered alternative to each other, as in
Vertical Parallelism. The appeal of exploiting Horizontal Parallelism at the
level of lookahead, rather than at the level of expand, lies in the fact that the
first involves a coarser-grained type of parallelism.

In this section, we describe our approach to Parallel Lookahead. In order to
distinguish the prototype presented earlier with the one implementing Parallel
Lookahead, we will call the latter ParLook.

6.2.1 Basic Design

The parallelization of the lookahead step is obtained in a quite straightforward
way by splitting the set of unexplored literals, and assigning each subset to a
different agent. Each agent then performs the test described in step 1 on the
unexplored literals that it has been assigned. Finally, a new partial answer
set, B′ is built by merging the results generated by the agents.

Notice that, even in the parallel implementation, the lookahead step can be
exploited in order to determine the best literal to be used in choose literal

(provided that the results returned by the agents are suitably combined). This
greatly reduces the computation performed by choose literal, and provides
a simple way of combining Vertical and Horizontal Parallelism by applying
a work-sharing method similar to the Basic Andorra Model [34], studied for
parallelization of Prolog computation.
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6.2.2 Scheduling

The key for the integration of Vertical and Horizontal Parallelism is in the
way work is divided in work units and assigned to the agents. To keep the
system simple, the prototype that we used to test Parallel Lookahead is based
on a central scheduler, and a set of agents that are dedicated to the actual
computation of the answer sets. Every work unit corresponds to a lookahead
step performed on a partial answer set, B, using a set of unexplored literals,
U . Work units related to different partial answer sets can be processed at
the same time by the system. Every time all the work units associated with
certain partial answer set have been completed, the scheduler gathers the re-
sults and executes choose literal – which, as we stated before, requires a
very small amount of computation, and can thus be executed directly on the
scheduler. choose literal returns two (possibly) partial answer sets 4 , and
the scheduler generates work units for both of them, thus completing a (par-
allel) iteration of the algorithm in Fig. 2, extended with lookahead. Under
this perspective, Horizontal Parallelism corresponds to the parallel execution
of work units related to the same partial answer set. Vertical Parallelism, in-
stead, is the parallel execution of work units related to different partial answer
sets. The way the search space is traversed, as well as the balance between
Vertical and Horizontal Parallelism, are determined by: (1) the number agents
among which the set of unexplored literals is split, and (2) the priority given
to pending work units. In our implementation we assign priorities to pending
work units according to a “simulated depth first” strategy, i.e., the priority of
a work unit depends on: (1) the depth, d, in the search space, of the corre-
sponding node, n, and (2) the number of nodes of depth d present to the left
of n. This choice guarantees that, if a computation based only on Horizontal
Parallelism is selected, the order in which nodes are considered is the same as
in a sequential implementation of the algorithm.

The number of agents among which the set of unexplored literals is split is
selected at run-time. This allows the user to decide between a computation
based on Horizontal Parallelism, useful if the answer set(s) are expected to
be found with little backtracking, and a computation based on Vertical Par-
allelism, useful if more backtracking is expected.

6.2.3 Experimental Results

For our tests on Parallel Lookahead, we have used a subset of the benchmarks
available from the Smodels’ web site 5 : (1) color: c-colorability (4 colors, 300
nodes), (2) pigeon: put N pigeons in M holes with at most one pigeon in a

4 Our version of choose literal runs expand on the two partial answer sets before
returning them.
5 http://www.tcs.hut.fi/pub/smodels/tests/lp-csp-tests.tar.gz
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hole (N = 24, M = 24), (3) queens: N -queens problem (N = 14), and (4)
schur: put N items in B boxes such that, for any X, Y ∈ {1, . . . , N}: items
labeled X and 2X are in different boxes, and if X and Y are in the same box,
then X + Y is in a different box (N = 35, B = 15).

Fig. 15. Times for Parallel Lookahead Fig. 16. Speedups for Parallel Looka-
head

Fig. 17. Speedups for Parallel Looka-
head

ParLook Smodels

Color 27.120 3.800

Pigeon 5.350 4.430

Queen 6.680 1.120

Schur 37.160 5.540

Fig. 18. Times of ParLook (54 agents)
and Smodels

ParLook has been run on a distributed memory platform, and employs Model
Copying. The tests consisted of finding one answer set for each of the above
programs. Since, for all of these programs, an answer set can be found with
a comparatively small amount of backtracking, the engine was run so that
Horizontal Parallelism was given a higher priority than Vertical Parallelism.

The experiments show, in general, a consistently good speedup for all pro-
grams. The speedup measured for queens is indeed surprising. It is interesting
to note that queens requires (with Smodels) the highest amount of backtrack-
ing. We conjecture that the speedup observed is the result of the combined
application of both types of parallelism.

Although in this paper we are interested in investigating the issues involved in
automatic exploitation of parallelism, rather than in relating to state-of-the-
art sequential engines, we have included in Figure 18 a short comparison with
Smodels. The table reports the times obtained with Smodels on the bench-
mark programs above, and the times obtained with ParLook using the max-
imum number of processors available. Smodels was run will all the available
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optimizations turned on (including lookahead). Notice that our prototype’s
performance reasonably close to that of Smodels, considering that many im-
portant heuristics present in Smodels are not implemented in ParLook.

7 Optimizations

7.1 Parallel Grounding

In this section we present some preliminary results on the development of
a parallel grounding engine. The problem is important, since there are ASP
programs whose grounding phase requires a significant amount of time. On
the other hand, as shown in this section, the problem can be easily addressed
via parallelism.

7.1.1 Parallelizing Lparse

The first phase of the execution is characterized by the grounding of the input
program. Although for most interesting programs the majority of the execution
time of the engine is spent in the actual computation of models, the execution
of the local grounding can still require a non-negligible amount of time. For
this reason we have decided to investigate simple ways to exploit parallelism
also from the preprocessing phase.

The structure of the local grounding process, as illustrated in [62], is based on
taking advantage of the strong range restriction to individually ground each
rule in th eprogram. The process can be parallelized by simply distributing
the task of grounding the different rules to different agents, as in Fig. 19. The
forall indicated in the algorithm represents a parallel computation: the dif-
ferent iterations are
independent of each
other. The actual so-
lution adopted in our
system is based on
the use of a distri-
bution function which
statically computes
a partition of the
program Π (after re-

function ParallelGround(Π)

ΠG = {a | a is instance of domain predicate}
Π = Π \ ΠG

forall Ri ∈ Π
Ri

G
= GroundRule(Ri)

endall

ΠG =
⋃

Ri
G

end

Fig. 19: Parallel Preprocessing

moving all rules defining the domain predicates) and assigns the elements of
the partition to the available computing agents. The choice of performing a
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static assignment is dictated by (i) the large amount of work typically gener-
ated, and (ii) the desire to avoid costly dynamic scheduling in a distributed
memory context. The various computing agents provide as result the ground
instantiations of all the rules in their assigned component of the partition of
Π. The partitioning of Π is performed in a way to attempt to balance the
load between processors. The heuristic used in this context assigns a weight
to each rule (an estimation of the number of instances based on the size of
the relations of the domain predicates in the body of the rule) and attempts
to distribute balanced weight to each agent. Although simplistic in its design,
the heuristics have proven effective in the experiments performed.

The preprocessor has been implemented as part of our ASP system, and it is
designed to be compatible in input/output formats with the lparse preproces-
sor used in Smodels. The preprocessor makes use of an internal representation
of the program based on structure sharing—the input rule acts as skeleton and
the different instantiations are described as environments for such skeleton.
The remaining data structures are essentially identical to those described for
the lparse system [62]. The implementation of the preprocessor, developed on
a Beowulf system, has been organized as a master-slave structure, where the
master agent is in charge of computing the program partition while the slaves
are in charge of grounding the rules in each partition.

7.1.2 Experimental Results

We have analyzed the performance of the parallel preprocessor by comparing
its execution speed with varying number of processors. The parallel preproces-
sor is in its first prototype and it is very unoptimized (compared to lparse we
have observed differences in speed ranging from 4% to 48%). Nevertheless, the
current implementation was mostly meant to represent a proof of concept con-
cerning the feasibility of extracting parallelism from the preprocessing phase.

The first interesting result that we have observed is that the rather embar-
rassingly parallel structure of the computation allowed us to make the parallel
overhead (i.e., the added computation cost due to the exploitation of paral-
lelism) almost negligible. This can be seen in Fig. 20, which compares the
execution times for a direct sequential implementation of the grounding algo-
rithm with the execution times using a single agent in the parallel preprocessor.
In no cases we have observed overhead higher than 4.1%. Very good speedups
have been observed in each benchmark containing a sufficient number of rules
to keep the agents busy. Fig. 21 shows the preprocessing time for two bench-
marks using different numbers of processors. Note that for certain benchmarks
the speedup is slightly lower than linear due to slightly unbalanced distribu-
tion of work between the agents—in the current scheme we are simply relying
on a static partitioning without any additional load balancing activities.
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Fig. 20. Preprocessing Overhead (Pi-
geon, Coloring)

Fig. 21. Parallel Execution of the Pre-
processor

7.2 Other Optimizations

Further research is needed in order to improve the efficiency of the system.
Different types of improvements can be identified.

(1) Design improvements, aimed at decreasing the overhead due to communi-
cations. Improvements will probably need to be focused on the selection
of the correct work sharing model, for which the hybrid method is a good
candidate. The development of better scheduling techniques will also be
important to achieve a higher efficiency.

(2) Optimization of the heuristic function used to find the “best” literal for
choose literal, in order to exploit the features of the parallel imple-
mentation: we are currently using a heuristic function close to the one
used in Smodels, designed for sequential implementations.

(3) Improvements aimed at making the system able to self-adapt according
the type of logic program whose answer sets are to be found. Research has
to be conducted on techniques for selecting the correct balance between
Vertical Parallelism and Horizontal Parallelism depending on the task to
be performed.

8 Conclusions and Future Work

In this paper we have presented an overview of the current effort in developing
technology for the parallel execution of answer set programs. ASP has quickly
become a leading paradigm for the high-level development of applications in
areas such as planning and scheduling.
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The investigation has led to the identification of two major forms of
parallelism—horizontal parallelism and vertical parallelism—that can be au-
tomatically exploited from the commonly used execution model for ASP. We
have illustrated the major issues behind the exploitation of these forms of
parallelism and described some possible solutions. These solutions have been
integrated in actual prototypes and the paper reported the performance re-
sults obtained. The results accomplished demonstrates that good parallel per-
formance is possible, especially for programs that are rich of non-determinism
and for programs where heavy pruning is realized through lookahead.

The current research has highlighted the inherent difficulties in the efficient
exploitation of horizontal parallelism from ASP programs. The experiments
conducted indicates that exploitation of horizontal parallelism is heavily ham-
pered by some key aspects of ASP execution:

(1) granularity: the steps performed during the execution of the expand op-
eration are very fine grained;

(2) dependencies: the activities required to expand a partial model require
intense interactions—each worker needs to have an up-to-date view of the
partial answer set in order to effectively progress the expansion;

(3) irregularity: traditional partitioning techniques (e.g., partitioning based
on predicates) lead to unbalanced computations and/or increased com-
munication overheads.

In the search for better solutions to this problem, we have initiated an inves-
tigation aimed at developing horizontal parallel models for ASP where par-
titioning is driven by the syntactic and semantic properties of the program.
This effort is facilitated by the rich collection of theoretical results that have
been developed over the years in the context of stable models and answer set
semantics [8]. We are currently exploring one main property of answer set pro-
grams to drive horizontal parallel execution: splitting. Splitting is a property of
logic programs under the answer set semantics originally studied by Lifschitz
and Turner [39,25]. Given a logic program P , a splitting set of P is a set of
atoms U with the following property: for each rule r in the program, if the
head of r belongs to U , the all the atoms in the body of r belong to U . A
splitting set U of P suggests a partitioning of the program in two parts: the
set of all the rules whose head is in U (bottom—bU (P )) and the set of all rules
whose head is not in U (top—tU(P )). The Splitting Theorem [39] guarantees
that each answer set of P can be computed by first computing each answer
set of bU(P ) and then using such answer sets to determine the answer sets
of tU(P ). Splitting can be generalized to obtain a splitting of a program in n

layers with the same property.

Our current effort is aimed at viewing the computation of answer sets as a
pipelined computation, where the different stages of the pipeline corresponds
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to the different components of a program splitting. The pipeline allows data
movement in both directions, since each layer of the pipeline can support the
computation of both the preceding as well as the consecutive layers. We are
currently developing a prototypical implementation of an engine based on this
view of horizontal parallelism. We expect that this approach can be significant
for large size programs with a regular splitting structure—this is, for example,
the case of answer set programs obtained from planning applications [9].
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