
Encoding Conformant Planning in A-Prolog

Michael Gelfond and A. Ricardo Morales

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
{mgelfond,ricardo}@cs.ttu.edu

Abstract. This paper investigates the applicability of answer set pro-
gramming for the design of provable correct and elaboration tolerant
conformant planners. We describe an algorithm in which the search for a
conformant plan is reduced to finding an answer set of a logic program,
present some soundness and completeness results, and demonstrate that
our solution is rather elaboration tolerant.

1 Introduction

Answer set programming (ASP) [MT99,B03] is a form of declarative program-
ming in which:
(a) Knowledge relevant to a problem, P , is represented by a program, KB, in

A-Prolog — a loosely defined collection of logic programming languages under
the answer set (stable model) semantics [GL91].

(b) The task of solving P is reduced to finding the answer sets of KB.
(c) Answer sets are computed by efficient answer set solvers

[SNS02,DLVK02,LM04].
The goal of this paper is to investigate the applicability of ASP for the de-
sign of provably correct, and elaboration tolerant conformant planners. There
is a substantial amount of work on the application of ASP to planning, but
with the notable exception of [DLVK03], this work is limited to deterministic
domains with complete initial situations. We are interested in removing these
restrictions. In the first part of the paper we concentrate on the algorithm and
some correctness results for conformant planning in deterministic domains with
incomplete initial situations. In the second part we illustrate that our approach
is rather elaboration tolerant — a simple modification of the problem (including
the introduction of non-deterministic actions), leads to a simple modification of
the problem’s solution.

2 Specifying the Problem

A planning problem normally consists of a description of the planning domain,
the agent’s goal, and a (possibly incomplete) specification of its current state.
We consider domains which can be represented by a transition diagram whose

nodes are possible states of the domain and whose arcs are actions that take the
domain from one state to another. Paths of the diagram correspond to possible
trajectories of the system. We start by limiting our attention to transition dia-
grams which can be defined by action descriptions written in the action language
AL from [BG00]. The signature Σ of an action description of AL consists of two
disjoint, non-empty sets of symbols: the set F of fluents, and the set A of ele-
mentary actions. A set {e1, . . . , en} of elementary actions is called a compound
action and it is interpreted as a collection of elementary actions performed si-
multaneously. By actions we mean both elementary and compound actions. By
fluent literals we mean fluents and their negations. A set S of fluent literals is
called complete if, for any f ∈ F, f ∈ S or ¬f ∈ S. An action description D of
AL is a collection of statements of the form:

e causes l if p. (1)

l if p. (2)

impossible a if p. (3)

where e is an elementary action, a is an action, l is a fluent literal, and p is a
set of fluent literals from the signature Σ of D. The set p is often referred to as
the precondition of the corresponding statement. If p is empty the “if” part of
the statement can be omitted. Statement (1), called a dynamic causal law, says
that, if the elementary action e were to be executed in a state in which all literals
of p hold, the fluent literal l will be caused to hold in any resulting state. (The
restriction on e being elementary is not essential and can be lifted. We require it
to simplify the presentation). Statement (2), often referred to as state constraint,
says that any state satisfying p must satisfy l; Statement (3) is an executability
condition. It says that action a cannot be performed in any situation in which p

holds. Notice that here a can be compound, e.g. impossible {e1, e2} means that
elementary actions e1 and e2 cannot be performed concurrently.
In defining the transition diagram, T (D), specified by an action description D
we will follow [McT97].
A state σ of T (D) is a complete, consistent set of literals closed under the state
constraints of D, i.e. for any state constraint (2) of D, if p ⊆ σ then l ∈ σ.
An action a is said to be prohibited in a state σ if D contains an impossibility
condition (3) such that p is true in σ. A transition, 〈σ1, a, σ2〉, is defined as
follows: Let E(a, σ) stand for the set of all fluent literals l for which there is a
causal law (1) in D such that p ⊆ σ. Given a set of literals S, Cn(S) denotes
the smallest set of fluent literals containing S closed under the state constraints
of D.

Definition 1. [McT97]
A transition 〈σ1, a, σ2〉 ∈ T (D) iff a is not prohibited in σ1 and

σ2 = Cn(E(a, σ1) ∪ (σ1 ∩ σ2)) (4)

An action a is executable in state σ1 if there is a state σ2 such that 〈σ1, a, σ2〉 ∈
T (D). A path M = 〈σ0, a0, σ1, . . . , an−1, σn〉 of T (D) is called a model of a chain

of events α = 〈a0, . . . , an−1〉. State σ0 will be referred to as the initial state of
M . We say M entails a set of fluent literals s, M |= s, if s ⊆ σn.
An action description D is called deterministic if for any state σ1 and action
a there is at most one successor state σ2. Note that if D is deterministic there
can be at most one model of α with initial state σ0. In this case, we denote this
model by 〈σ0, α, σn〉, and write σn = α(σ0).
By a partial state of D we mean a consistent collection of fluent literals. Partial
states and states are denoted by (possibly indexed) letters s and σ respectively.

Definition 2. A planning problem is a tuple 〈D, s0, sf 〉 where s0 and sf are
partial states of D.

Partial states s0 and sf characterize possible initial situations and the goal
respectively.
A state σ containing a partial state s is called a completion of s. By comp(s) we
denote the set of all completions of s. An action a is safe in s if it is executable
in every completion of s. α = 〈a0, . . . , an−1〉 is safe in s if a0 is safe in s and
〈a1, . . . , an−1〉 is safe in every state σ′ such that for all σ ∈ comp(s), 〈σ, a0, σ

′〉 ∈
T (D).

Definition 3. A chain α = 〈a0, . . . , an−1〉 of events is a solution of a planning
problem P = 〈D, s0, sf 〉 if α is safe in s0, and for every model M of α with the
initial state σ0 ∈ comp(s0), M |= sf .

We often refer to α as a plan for sf . If s0 is a state and action description D is
deterministic then α is a “classical” plan, otherwise it is a conformant plan.
To illustrate these definitions let us consider the following classical example.

Example 1. (Bomb in the toilet)
There is a finite set of toilets and a finite set of packages. One of the packages
contains a bomb. The bomb can be disarmed by dunking the package that con-
tains it in a toilet. Dunking a package clogs the toilet. Flushing a toilet unclogs
it. Packages can only be dunked in unclogged toilets, one package per toilet. The
objective is to find a plan to disarm the bomb.

The domain can be modeled by the following action description T D0:

dunk(P, E) causes ¬armed(P).
dunk(P, E) causes clogged(E).
f lush(E) causes ¬clogged(E).
impossible dunk(P, E) if clogged(E).
impossible dunk(P, E), f lush(E).
impossible dunk(P1, E), dunk(P2, E).
impossible dunk(P, E1), dunk(P, E2).

E and P are variables for toilets and packages respectively; P1 and P2 stand
for different packages. Similarly for toilets. Note that the last three statements
specify physical impossibilities of some concurrent actions.

Let n and m denote the number of packages and toilets respectively. The initial
situation, s0(n, m), of the problem will be given by a collection of literals:

pkg(1), . . . , pkg(n).
toilet(1), . . . , toilet(m).

together with a (possibly empty) collection of literals of the form ¬armed(P).

The goal contains {¬armed(1), . . . ,¬armed(n)}. We denote the corresponding
planning problem by B(n, m).

Action descriptions of AL containing no state constraints belong to the language
A [GL93] and define deterministic transition diagrams. This is not necessarily
true for arbitrary action descriptions of AL. In the coming sections we will use
the following condition which guarantees that the effects of actions are uniquely
determined.

Definition 4. Action descriptions of AL whose state constraints contain at
most one fluent literal in the body will be called SC-restricted.

Proposition 1. [BG04]
SC-restricted action descriptions of AL are deterministic.

In the next section we outline an algorithm for solving planning problems of AL
using the methodology of ASP. Some results will provide sufficient conditions
for correctness of our approach.

3 Solving Planning Problems in A-Prolog

In accordance with the ASP methodology our next step is to encode the cor-
responding planning problem P by a logic program whose answer sets contain
information about the solutions of P . We denote such a program by e(P), and
call it the cautious encoding of P . The signature of e(P) includes terms cor-
responding to fluent literals and actions of D, as well as non-negative integers
from the interval [0, length] used to represent time steps. Atoms of e(D) are
formed by the following (sorted) predicate symbols: holds(f, t) meaning “fluent
f holds at time t”; o(e, t) meaning “elementary action e occurs at time t”; and
an auxiliary predicate symbol ab(l, t).1 We will use the following notation: If a

is a compound action then o(a, t) = {o(e, t) : e ∈ a}. If l is a fluent literal then
h(l, t) stands for holds(f, t) if l = f and for ¬holds(f, t) if l = ¬f . If p is a set of
fluent literals,h(p, t) = {h(l, t) : l ∈ p} and similarly ab(p, t) = {ab(l, t) : l ∈ p}.
Predicate ¬h(¬f, t) will be identified with h(f, t). By l we mean ¬f if l = f

and f if l = ¬f . Literals l and l are called contrary literals. Similarly as above,
not ¬h(p, t) = {not ¬h(l, t) : l ∈ p}. Finally, L and T are variables for fluent

1 Some adjustment to this syntax is needed if one wants to use some of the existing
answer set solvers. For instance, since SMODELS does not allow ab(¬f, t) we may
replace it by, say, ab(neg(f), t).

literals and time steps from [0, length] respectively. The definition of e(P) will
be given in several steps:

Step One: The cautious encoding e(D) of the action description D of P
consists of rules obtained by replacing:

– Every causal law (1) in D by effects and cancellation rules of the form:

h(l, T + 1)← o(e, T), h(p, T). (5)

ab(l, T)← o(e, T), not ¬h(p, T). (6)

– Every state constraint (2) in D, by rules of the form:

h(l, T)← h(p, T). (7)

ab(l, T)← ab(p, T). (8)

– Every impossibility condition (3) in D, by logic programming constraints of
the form:

← o(a, T), not ¬h(p, T). (9)

• The inertia axiom:

h(L, T + 1)← h(L, T), not ab(L, T). (10)

Note that the cancellation rules of the program guarantee that the inertia axiom
for a fluent l is stopped if there is a possibility that l may be caused to be
true in the next state. (The program e(D) can be viewed as a modification and
generalization of the translation from language A into A-Prolog [GL93]).

Step Two: The encoding e(s0), of the initial state:

e(s0) = {h(l, 0). : l ∈ s0}

Step Three: The cautious encoding, e(sf), of the goal of P consists of the
rules:

– For every l ∈ sf , may fail(T)← not h(l, T).
– goal(T)← not may fail(T)
– success← goal(T).
– ← not success.

– o(E, T) or ¬o(E, T).

The first rule says that the goal of P may fail at time step T if there is l ∈ sf

such that the truth value of l at T is either unknown, or known to be false. The
second rule says that the goal is satisfied at time T if all the fluent literals from
the goal are known to be true at T . The next two rules state that failing to
achieve the goal is not an option. The last rule specifies that any (executable)
elementary action e may occur at each time step T ∈ [0, length]. Intuitively the
last rule generates a chain of events α with |α| < length while the rest of the
program checks if α is a solution of problem P . (Of course this description is
purely conceptual and has nothing to do with the actual computation of answer
sets).

Definition 5. (Cautious encoding)

e(P) = e(D) ∪ e(s0) ∪ e(sf) (11)

The following establishes the relationship between answer sets of e(P) and the
solutions of P .

Theorem 1. (Soundness)
Let P = 〈D, s0, sf 〉 be a planning problem and S be an answer set of its cautious
encoding e(P) with length = n. If D is an SC-restricted action description of
AL then α = 〈a0, . . . , an−1〉 such that for every 0 ≤ i < n, ai = {e : o(e, i) ∈ S}
is a solution of P .

It is possible to show that the reverse of Theorem 1 does not holds. This is
not surprising since the complexity of conformant planning (even without non-
deterministic actions) is ΣP

2
[BKT99]. However for some classes of planning

problems the cautious encoding is complete. We give the following simple suffi-
cient condition guaranteeing completeness

Theorem 2. (Completeness)
Let P = 〈D, s0, sf 〉 be a planning problem such that:

1. D contains no state constraints;
2. dynamic causal laws of D have no preconditions. Then e(P) is complete with

respect to P .

These results suggest a method for finding a solution of a planning problem P .
First make sure that the action description D of P is deterministic. Next find an
upper bound u limiting the possible lengths of your plans. (Of course this works
only if such u can be known in advance which is frequently, but not always, the
case.) Finally, let Ei to be a cautious encoding of P with length = i and search
for a conformant plan by repeatedly calling an answer set solver with Ei as an
input. If an answer set S is found, then, by Theorem 1, the chain of events α(S)
extracted from S is a (shortest) solution of P . If no solution exists for i ≤ u and
P satisfies the conditions of Theorem 2 then no such plan exists.
Cautious encoding is frequently used in conjunction with a collection, C, of
constraints and definitions of A-Prolog specifying additional requirements which
may be imposed on solutions of P . Suppose for instance that we are interested in
finding a sequential solution α of P , i.e., solution α = 〈e0, . . . , elength−1〉 where
e‘s are elementary actions. This requirement can be specified by the program C0

which consists of the rule
act(T)← o(E, T).

and constraints:
← not act(T)

← o(E1, T), o(E2, T), E1 6= E2

The rule is the definition of act(T) which says that some action occurred at time
step T .

We want to be able to use the program e(P , C) = e(P) ∪ C to find solutions of
P satisfying C. To make this precise we will need the following definitions. A
constraint

← L1, . . . , Lm

of C will be called basic if L‘s are atoms of the form o(e, t), h(l, t), or their
negations. We will say that a model M = 〈σ0, a0, σ1, . . . , an−1, σn〉 of a chain of
events α = 〈a0, . . . , an−1〉 satisfies L (and write M |= L) if

1. M |= o(e, t) if e ∈ at;
2. M |= h(l, t) if l ∈ σt;
3. M |= ¬L if M 6|= L

M |= {L1, . . . , Lk} if for every 1 ≤ i ≤ k, M |= Li. This definition can, in
a rather natural way, be expanded to include the defined literals. Finally, M

satisfies a constraint c = {← L1, . . . , Lk} if there is 0 ≤ i ≤ k such that M 6|= Li.

Definition 6. A solution, α, of a planning problem P = 〈D, s0, sf 〉 satisfies a
constraint c (α |= c) if every model M of α with the initial state σ ∈ comp(s0)
satisfies c; α satisfies a set C of constraints if α |= c for every c ∈ C.

Now we can generalize Theorem 1.

Theorem 3. Let P = 〈D, s0, sf 〉 be a planning problem, C be a collection of
constraints and definitions described above, and S be an answer set of e(P , C)
with length = n. If D is an SC-restricted action description of AL then α =
〈a0, . . . , an−1〉 such that for every 0 ≤ i < n, ai = {e : o(e, i) ∈ S} is a solution
of P satisfying C.

Similar generalization can be proven for Theorem 2. To illustrate the use of
constraints let us go back to the action description T D0 and planning problem
B(n, m) from Example 1. T D0 contains no state constraint and hence is SC-
restricted. It is easy to check that by computing answer sets of e(B(n, m)) for
length = 0, 1, . . . we can find a conformant plan for disarming the bomb. This
plan will be shortest but not necessarily the best; It can contain some useless
concurrent actions like flushing unclogged toilets or getting rid of unarmed pack-
ages. Even though this can be dealt with by using specialized system directive
(e.g. “minimize” of SMODELS) we prefer to describe the desired quality of plans
by the following program C1:

← o(dunk(P, E), T),¬h(armed(P), T).

← o(flush(E), T),¬h(clogged(E), T).

← o(flush(E1), T),¬h(clogged(E2), T), E1! = E2.

The planner is told not to dunk safe packages, to use unclogged toilets if possible,
and not to flush unnecessarily. In addition to improving the quality of plans the
constraints narrow the “search space” and hence make the planning process
more efficient. It is not difficult to show that, if B(n, m) has a solution then it
has a solution satisfying the above constraints. Since the problem satisfies the
conditions of Theorem 2 this means that if no solution of length u is found by
our algorithm then such solution does not exist.

4 Adding New Knowledge

In this section we use Example 1 to show how new information about the domain
can be incorporated in our planner. Due to the space limitations the discussion
from now on will be substantially less formal.

Example 2. (State Constraints)
Suppose that a peculiar plumbing design guarantees that if toilet 1 is clogged
then so is toilet 2. This can be recorded by the statement

clogged(2) if clogged(1).

The resulting action description, T D1, does not belong to language A. However,
it is SC-restricted and hence, by Theorem 1, α returned by our algorithm for an
input 〈s0, T D1, sf 〉 is a solution of this problem.

The next example demonstrates how A-Prolog can be used to specify a fairly
complex initial situation.

Example 3. (Complex initial situation)
Assume that the packages received by the character from our story are com-
ing from people belonging to one of two hierarchically structured organizations,
called b (bad) and g (good). The hierarchies are described in the usual way using
relation link(D1, D2) which indicates that a department D1 is a subdivision of
a department D2. Organization g for instance can be represented by a collection
{link(d1, g). link(d2, g). link(d3, d1). link(d4, d1).}
of atoms. It is known that packages sent by people from g are safe. The bomb is
sent by someone working for b. There are packages labeled by the name of the
department the sender works for, which can be recorded by the atom from(P, D)
- package P came from department D. There are also some unlabeled packages.
The initial situation of the new problem, Bh(n, m) will be described by the pro-
gram H consisting of the above atoms and the following rules which define the
organization the package came from and our trust in the good guys from g.

from(P, D2)← from(P, D1), link(D1, D2).

¬armed(P)← from(P, g).

Naturally P ranges over packages and D’s range over the departments. Our def-
inition of a planning problem can be easily modified by allowing initial situation
to be a program with a unique answer set. The corresponding algorithm and the
correctness results can be easily adopted to this case. The initial situation of the
new problem, Bh(n, m) can be encoded by e(s0) = H ∪ {¬h(armed(P), 0) ←
¬armed(P)}. (In general, the latter rule must be included for any fluent of
the language of H). The rest of the cautious encoding, e(Bh(n, m)) will be un-
changed. As before the problem Bh(n, m) can be solved by computing answer
sets of e(Bh(n, m)).

The next example shows how it is also possible to deal with non-deterministic
actions. We extend AL by statements of the form

e causes {l1, . . . , ln} if p. (12)

which state that the execution of an elementary action e in a state satisfying p

non-deterministically causes one of the fluent literals l1, . . . , ln to become true.
The semantics of the new version of AL is a simple extension of the original
semantics. The cautious encoding of (12) will consist of rules of the form

ab(li, T)← o(a, T), not ¬h(p, T). (13)

for each 1 ≤ i ≤ n.

Example 4. (Non-deterministic actions)
Let us consider a modification T D2 of TD0 in which dunking a package may or
may not clog the toilet. This can be encoded by a non-deterministic causal law

dunk(P, E) causes {clogged(E),¬clogged(E)}.

Other statements of TD0 remain unchanged. The new planning problem will be
denoted by Bnd(n, m). It is not difficult to show that the new cautious encoding
is sound and hence the models of e(Bnd(n, m)) determine conformant plans of
Bnd(n, m).

5 Conclusion and Future Work

In this paper we presented an ASP approach for representing planning problems
with incomplete information about the initial situation and non-deterministic
actions which is substantially different from the approach in [DLVK03], and
showed some soundness and correctness results. We hope that the paper shows
that the application of ASP to conformant planning is promising and deserves
further investigation. The conditions for soundness and completeness presented
in this paper are simple and sufficient, but limit the generality of the results. We
are currently working on more general soundness and completeness results that
will widen the scope of planning domains in which our approach is applicable
and, for example, allow us to show completeness for the solution to Example 2.
A comparison of the efficiency of our planning algorithm, called ttu, to other
conformant planning systems is available in [GM03]. The ttu planner seems
to be reasonably efficient in searching for comparatively short, highly parallel
plans, in complex domains. We believe that new answer set solving algorithms
and systems will substantially expand its applicability.

Finally we would like to mention the paper [SPB04] which uses ideas similar
to ours. The relationship between both works is currently under investigation.
We also would like to thank C. Castellini and P. Bertoli for their help with the
C-plan and hscp planners.

References

[BKT99] Baral, C., Kreinovich V., and Trejo R. Computational complexity of planning
and approximate planning in presence of incompleteness. In Proc. of IJCAI-1999.
pp. 948-953.

[B03] Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, 2003.

[BG04] Baral, C., and Gelfond, M. Logic Programming and Reasoning about Actions
To appear in the Handbook of Temporal Reasoning in Artificial Intelligence.

[BG00] Baral, C., and Gelfond, M. Reasoning agents in dynamic domains. In Minker, J,.
ed., Logic-Based Artificial Intelligence, Kluwer Academic Publishers, (2000), 257–
279.

[BRC01] Bertoli P.G., Roveri M., and Cimatti A. Heuristic Search + Symbolic Model
Checking = Efficient Conformant Planning In Proc. of IJCAI-2001. pp 467-472.

[CGT03] Castellini C., Giunchiglia, E., and Tacchella A. SAT-Based planning in com-
plex domains: Concurrency, Constraints and Nondeterminism. In Artificial Intelli-

gence, 147(1-2): 85-117 (2003).
[DLVK02] Leone N., Pfeifer G., Faber W., Calimeri F., Dell’Armi T., Eiter., Gottlob

G, Ianni G., Ielpa G., Koch C., Perri S., and Polleres A. The DLV System. In
JELIA-8, number 2424 in Lecture Notes in Computer Science, pp. 537-540, 2002.

[DLVK03] Eiter, T., Faber, W, Leone, N., Pfeifer, G., and Polleres, A. A logic Pro-
gramming Approach to Knowledge State Planning: the DLV K system. Artificial

Intelligence 144, 1–2(Mar.) 157–211.
[GL91] Gelfond, M., and Lifschitz, V. Classical negation in logic programs and dis-

junctive databases. In New Generation Computing, 365–387, 1991.
[GL93] Gelfond, M., and Lifschitz, V. Representing Actions and Change by Logic

Programs. Journal of Logic Programming, vol. 17, Num. 2,3,4, pp. 301–323, 1993.
[GM03] Gelfond, M., and Morales, A. R. On Conformant Planning in A-Prolog. un-

published, http://www.kralab.cs.ttu.edu/Papers 2003.
[LM04] Lierler Yu., and Maratea M., Cmodels-2: SAT-based Answer Sets Solver En-

hanced to Non-tight Programs, In Proc. of LPNMR-7, pp. 346, 2004.
[MT99] Marek, W., and Truszczyński, M. Stable models and an alternative logic

paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, 375–398,
Springer Verlag, 1999.

[McT97] McCain, N., and Turner, H. Causal theories of action and change. In Proc.

of AAAI-97, 460–465, 1997.
[SNS02] Simons P., Niemelä I., Soininen T. Extending and implementing the stable

model semantics. Artificial Intelligence, 138(1-2): 181-234 (2002)
[SPB04] Tran Cao Son, Phan Huy Tu, and Baral, C. Planning with Sensing Actions

and Incomplete Information using Logic Programming. In LPNMR’04 pp 261-274,
Springer, 2004.

