
Modeling Hybrid Domains Using Process

Description Language

Sandeep Chintabathina

Master’s Thesis

December 15, 2004

ACKNOWLEDGEMENTS

I would like to thank my parents and my sister for their support and good

wishes. They have always been my reason to do well. Mother and Father, I would

like to express to you my gratitude in your support as I pursue my college education.

And Akka, I have learned a lot of things from you over the years. Thank you for

everything.

I would like to thank Dr. Gelfond and Dr. Watson for making this thesis

possible. You guys are good at what you do and also nice to work with. You have

constantly pushed me and got the best out of me. Thank you for your guidance and

support.

Dr. Gelfond working with you is an unforgettable experience. I am amazed by

your ability to concentrate. Your work ethic and moral values will always inspire me.

I have learned so much from you. You always make time for me even when you are so

busy. You worked almost everyday with me to finish this thesis. I really appreciate

it. Thank you for all your suggestions and comments.

Dr. Watson you are a very open-minded and down to earth person. You hired

me as a research assistant at a time when I desperately needed funding. Thank you

for giving me an opportunity. I am glad that I will be one of your first students to

graduate. I am looking forward to working with you in future research projects.

ii

And to all my friends at Texas Tech University, a big thank you for cheering

me up whenever I am feeling down.

Ricardo you are my best friend ever. Whether it is working with you or

playing with you or just hanging out I enjoy every bit of it. Thank you for being

there whenever I needed you.

A big thanks to Sunil and all my ex-roommates for bearing with me. Sunil,

we had a great time as roommates, I will never forget that.

I would like to thank all the KR lab members. Each and everyone has con-

tributed in some way or an other towards this thesis. Its nice to be part of a very

active and smart group of researchers. I enjoy working with you all.

I would like to thank the faculty and staff of computer science department for

their support and cooperation. Finally, I would like to thank NASA Johnson space

center for funding our research projects.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1

2 SYNTAX AND SEMANTICS . 8

2.1 Syntax . 8

2.2 Semantics . 13

2.3 Specifying history . 16

3 TRANSLATION INTO LOGIC PROGRAM 19

3.1 Declarations . 19

3.2 General translations . 22

3.3 Domain independent axioms . 25

3.4 Example translations . 28

4 EXAMPLE DOMAIN . 33

5 PLANNING AND DIAGNOSIS . 42

5.1 Planning . 42

5.2 Diagnosis . 47

6 RELATED WORK . 60

6.1 Situation calculus . 60

6.2 Language ADC . 75

iv

7 CONCLUSIONS AND FUTURE WORK 82

REFERENCES. 84

APPENDIX A . 87

v

ABSTRACT

Researchers in the field of knowledge representation and logic programming

are constantly trying to come up with better ways to represent knowledge. One of the

recent attempts is to model dynamic domains. A dynamic domain consists of actions

that are capable of changing the properties of objects in the domain, for example the

blocks world domain. Such domains can be modeled by action theories - collection of

statements in so called action languages specifically designed for this purpose. In this

thesis we extend this work to allow for continuous processes - properties of objects

that change continuously with time. For example the height of a freely falling object.

In order to do this we adopt an action language/logic programming approach.

A new action language called process description language is introduced that

will be useful to model systems that exhibit both continuous and discrete behavior

(also called hybrid systems). An example of a hybrid domain is the domain consisting

of a freely falling object. A freely falling object is in the state of falling, which is

a discrete property that can be changed only by actions (also called fluent) while its

height is a continuous process.

The syntax, semantics, and translation of the statements of the language into

rules of a logic program will be discussed. Examples of domains that can represented

in this language will be given. In addition, some planning and diagnostic problems

will be discussed. Finally, the language will be compared with other languages used

for similar purposes.

vi

LIST OF FIGURES

1.1 Transitions caused by flip . 2

1.2 Transitions caused by drop and catch 3

1.3 Mapping between local and global time 5

5.1 Architecture of an agent in a hybrid domain 56

vii

CHAPTER 1

INTRODUCTION

Designing an intelligent agent capable of reasoning, planning and acting in a

changing environment is one of the important research areas in the field of AI. Such

an agent should have knowledge about the domain in which it is intended to act

and its capabilities and goals. In this thesis we are interested in agents which view

the world as a dynamical system represented by a transition diagram whose nodes

correspond to possible physical states of the world and whose arcs are labeled by

actions. A link, (s0, a, s1) of a diagram indicates that action a is executable in s0

and that after the execution of a in s0 the system may move to state s1. Various

approaches to representation of such diagrams [3; 6; 9] can be classified by languages

used for their description. In this thesis we will adopt the approach in which the

diagrams are represented by action theories - collections of statement in so called

action languages specifically designed for this purpose. This approach allows for

useful classification of dynamical systems and for the methodology of design and

implementation of deliberative agents based on answer set programming.

Most of this work, with the notable exception of [4; 14], deals with discrete

dynamical systems. A state of such a system consists of a set of fluents - properties

of the domain whose values can only be changed by actions. An example of a fluent

would be the position of an electrical switch. The position of the switch can be

1

changed only when an external force causes it to change. Once changed, it stays

in that position until it is changed yet again. The corresponding transitions in the

diagram are shown in Figure 1.1.

s0#
"

!on

-
flip

�
flip

s1#
"

!¬on

Figure 1.1: Transitions caused by flip

Action languages will describe the diagram in Figure 1.1 by so called dynamic causal

laws of the form:

flip causes ¬on if on. (1.1)

flip causes on if ¬on. (1.2)

(1.1) says that performing the action flip causes the position of the switch to be off

if it was on. (1.2) says that performing the action flip causes the position of the

switch to be on if it was off .

In this thesis we focus on the design of action languages capable of describing

dynamical systems which allow continuous processes - properties of an object whose

values change continuously with time. Example of such a process would be the

function, height of a freely falling object. Suppose that a ball, 50 meters above

the ground is dropped. The height of the ball at any time is determined by Newton’s

laws of motion. The height varies continuously with time until someone catches the

2

ball before it reaches the ground. Suppose that the ball was caught after 2 seconds.

Assume that there is only one arm that drops and catches the ball. The corresponding

transition diagram will contain transitions of the form:

s0'

&

$

%
holding

height = f0(50, T)

[0, 0]

-
drop

s1'

&

$

%
¬holding

height = f1(50, T)

[0, 2]

-catch

s2'

&

$

%
holding

height = f0(30, T)

[0, 5]

where f0 and f1 are defined as:

f0(Y, T) = Y. f1(Y, T) = Y − 1

2
gT 2.

Figure 1.2: Transitions caused by drop and catch

Notice that states of this diagram are represented by mapping of values to the symbols

holding and height over corresponding intervals of time. For example in state s1,

holding is mapped to false and height is defined by the function f1(50, T) where T

ranges over the interval [0, 2].

Intuitively, the time interval of a state s denotes the time lapse between oc-

currences of actions. The lower bound of the interval denotes start time of s which

is the time at which an action initiates s. The upper bound denotes the end time

of s which is the time at which an action teminates s. We assume that actions are

instantaneous that is the actual duration is negligible with respect to the duration of

the units of time in our domain. For computability reasons, we assign local time to

3

states. Therefore, the start time of every state s is 0 and the end time of s is the time

since the start of s till the occurrence of an action terminating s. For example, in

Figure 1.2 the action drop occurs after a time lapse of 0 units since the start of state

s0. Therefore, the end time of s0 is 0. The action catch occurs after a time lapse of

2 units since the start of state s1. Therefore the end time of s1 is 2.

The state s2 in Figure 1.2 has the interval [0, 5] associated with it. This interval

was chosen randomly from an arbitrary collection of intervals of the form [0,n] where

n ≥ 0. Therefore, any of the intervals [0, 0] or [0, 1] or [0, 2] and so on could have been

associated with s2. In other words, performing catch leads to an infinite collection of

states which differ from each other in their durations. The common feature among

all these states is that height is defined by f0(30, T) and holding is true. We do not

allow the interval [0,∞] for any state. We assume that every state is associated with

two symbols - 0 and end. The constant 0 denotes the start time of the state and the

symbol end denotes the end time of the state. We will give an accurate definition of

end when we discuss the syntax of the language.

We assume that there is a global clock which is a function that maps every

local time point into global time. Figure 1.3 shows this mapping. Notice that this

mapping allows one to compute the height of the ball at any global time, t ∈ [0,7].

This is not necessarily true for the value of holding. According to our mapping global

time 0 corresponds to two local times: 0 in state s0 and 0 in state s1. Since the values

of holding in s0 and s1 are true and false respectively, the global value of holding at

4

s0'
&

$
%

holding
height = f0(50, T)

[0, 0]

-
drop

s1'
&

$
%

¬holding
height = f1(50, T)

[0, 2]

-catch

s2'
&

$
%

holding
height = f0(30, T)

[0, 5]

Global
time
(secs)

0 1 2 3 4 5 6 7 8 9

C
C
C
CW

�������������)

��������

��������������������9

�
�

�
�	

Figure 1.3: Mapping between local and global time

global time 0 is not uniquely defined. Similar behavior can be observed at global time

2. The phenomena is caused by the presence of (physically impossible) instantaneous

actions in the model. It indicates that 0 and 2 are the points of transition at which the

value of holding is changed from true to false and false to true respectively. Therefore,

it is false at 1 and true during the interval [3,7].

Since the instantaneous actions drop and catch do not have a direct effect

on height, its value at global time 0 and 2 is preserved, thereby resulting in unique

values for height for every t ∈ [0,7].

Our new action language H, also called as process description language, will

describe these transitions by defining the continuous process height, fluent holding,

functions f0(Y, T), f1(Y, T), and actions drop and catch. The effects of the action

drop will be given by the causal law:

drop causes ¬holding. (1.3)

which says that performing the action drop at time end in a state, s, causes holding

5

to be false in the successor state of s. This explains the change in the value of holding

from s0 to s1. The executabilty conditions will have the form:

impossible drop if ¬holding. (1.4)

which says that the ball cannot be dropped at time end in a state, s, if holding the

ball is false. Therefore, the action drop cannot be performed in the state s1.

impossible drop if height(end) = 0. (1.5)

says that the ball cannot be dropped at time end in a state, s, if it is on the ground at

end. height(end) is a special fluent corresponding to the continuous process height

that denotes the height at the end of a state. The effects of the action catch are given

by the causal law:

catch causes holding. (1.6)

(1.6) explains why there is a change in the value of holding from s1 to s2. The

executablity conditions will have the form:

impossible catch if holding. (1.7)

(1.7) explains why the action catch cannot be performed in the states s0 and s2.

height is defined by the following statements:

height = f0(Y, T) if height(0) = Y,

holding.

(1.8)

6

From Figure 1.3 it is obvious that the value of height is determined depending on

whether holding is true or not. Statement (1.8) requires that in any state in which

holding is true, height does not change with time. height(0) is a special fluent

corresponding to continuous process height that denotes the height at time 0 of a

state. If holding is false then height is defined as follows:

height = f1(Y, T) if height(0) = Y,

¬holding.

(1.9)

Statement (1.9) requires that in any state in which holding is false, height is defined

by Newtonian equations.

In the next chapter we will discuss the syntax and semantics of the language

and see some more examples.

7

CHAPTER 2

SYNTAX AND SEMANTICS

2.1 Syntax

To define our language we first need to fix a collection ∆ of time points.

Normally ∆ will be equal to the set, R+, of non-negative real numbers, but we can as

well use integers, rational numbers, etc. We will use the variable T for the elements

of ∆. We will also need a collection, G, of functions defined on ∆, which we will use

to define continuous processes. Elements of G will be denoted by lower case greek

letters α, β, etc.

A process description language, H(Σ,G, ∆), will be parameterized by ∆, G

and a typed signature Σ. Whenever possible the parameters Σ, G, ∆ will be omitted.

We assume that Σ contains regular mathematical symbols including 0, 1, +, <,≤,≥

, 6=, ∗, etc. In addition, it contains two special classes, A and P = F ∪ C of symbols

called actions and processes.

Elements of A are elementary actions. A set {a1, . . . , an} of elementary actions

performed simultaneously is called a compound action. By actions we mean both

elementary and compound actions. Actions will be denoted by a’s. Two types of

actions - agent and exogenous are allowed. agent actions are performed by an agent

and exogenous actions performed by nature.

8

Processes from F are called fluents while those from C are referred to as

continuous processes. Elements of P, F and C will be denoted by (possibly indexed)

letters p’s, k’s and c’s respectively.

F contains a special functional fluent end that maps to ∆. end will be used

to denote the end time of a state. We assume that for every continous process, c ∈ C,

F contains two special fluents, c(0) and c(end). For example, the fluents height(0)

and height(end) corresponding to height.

Each process p ∈ P will be associated with a set range(p) of objects referred

to as the range of p. E.g. range(height) = R+.

Atoms of H(Σ,G, ∆) are divided into regular atoms, c-atoms and f-atoms.

• regular atoms are defined as usual from symbols belonging to neither A nor P.

E.g. mother(X,Y), sqrt(X)=Y.

• c-atoms are of the form c = α where range(c) = range(α).

E.g. height = 0, height = f0(Y, T), height = f0(50, T).

Note that α is strictly a function of time. Therefore, any variable occurring in

a c-atom other than T is grounded.

E.g. height = f0(Y, T) is a schema for height = λT.f0(y, T) where y is a

constant. height = 0 is a schema for height = λT.0 where λT.0 denotes the

constant function 0.

• f-atoms are of the form k = y where y ∈ range(k). If k is boolean, i.e.

9

range(k) = {>,⊥} then k = > and k = ⊥ will be written simply as k

and ¬k respectively. E.g. holding, height(0)=Y, height(end)=0. Note that

height(0) = Y is a schema for height(0) = y.

The atom p = v where v denotes the value of process p will be used to refer to either

a c-atom or an f-atom. An atom u or its negation ¬u are referred to as literals.

Negation of = will be often written as 6=. E.g. ¬holding, height(0) 6= 20.

Definition 2.1 An action description of H is a collection of statements of the form:

l0 if l1, . . . , ln. (2.1)

ae causes l0 if l1, . . . , ln. (2.2)

impossible a if l1, . . . , ln. (2.3)

where ae and a are elementary and arbitrary actions respectively and l’s are literals

of H(Σ,G, ∆). The l0’s are called the heads of the statements (2.1) and (2.2). The

set {l1, . . . , ln} of literals is referred to as the body of the statements (2.1), (2.2) and,

(2.3). Please note that literals constructed from f-atoms of the form end = y will not

be allowed in the heads of statements of H.

A statement of the form (2.1) is called a state constraint. It guarantees that

any state satifying l1, . . . , ln also satisfies l0. A dynamic causal law (2.2) says if an

action a were executed in a state s0 satisfying literals l1, . . . , ln then any successor

state s1 would satisfy l0. An executability condition (2.3) states that action a cannot

10

be executed in a state satisfying l1, . . . , ln. If n = 0 then if is dropped from (2.1),

(2.2), (2.3).

Example 2.1 Let us now construct an action description AD0 describing the transition

diagram from Figure 1.2. Let G0 contain functions

f0(Y, T) = Y.

f1(Y, T) = Y −
1

2
gT 2.

where Y ∈ range(height), g is acceleration due to gravity, and T is a variable for

time points.

The description is given in language H whose signature Σ0 contains actions drop and

catch, a continuous process height, and fluents holding, height(0) and height(end).

holding is a boolean fluent; range(height) is the set of non-negative real numbers. It

is easy to see that statements (1.3) and (1.6) are dynamic causal laws while statements

(1.4), (1.5) and (1.7) are executability conditions and statements (1.8) and (1.9) are

state constraints.

Example 2.2 This example is simplied version of the example used by Reiter in [14].

Consider an elastic ball moving with uniform velocity on a frictionless floor between

two walls, w1 and w2. Assume that the floor is the X-axis and the walls are parallel

to the Y-axis. We expect the ball to bounce indefinitely between the two walls. The

bouncing causes velocity of the ball to change discontinuously. And as long as the

velocity is not zero, position changes continuously with time.

11

Let us now construct an action description AD1 of H(Σ1,G1, ∆) that will

enable us to define the velocity and position of the ball. Signature Σ1 contains the

action bounce(W) which denotes the ball bouncing against wall W , a continuous

process position, and fluents velocity, position(0) and position(end).

Since velocity is uniform and is a changed only by bounce we treat it as a

fluent. The range(velocity) is the set of real numbers and the range(position) is the

set of non-negative real numbers. Let G1 contain the function

f2(Y0, V, T) =



















Y0 if T = 0.

f2(Y0, V, T − 1) + V if T > 0.

where Y0 ∈ range(position) and V ∈ range(velocity). On hitting a wall, the ball

changes direction. This is defined by the causal law:

bounce(W) causes velocity = −V if velocity = V. (2.4)

Statement (2.4) says that if the ball moving with velocity V bounces against the wall

W at time end in a state, s, then its new velocity is −V in any successor state of s.

position will be defined by the state constraint.

position = f2(Y0, V, T) if position(0) = Y0,

velocity = V.

(2.5)

Statement (2.5) says that position is defined by Newtonian equations in any state.

The occurrence times of the bounce action is determined by Newtonian equations.

One way to represent such an action is to write statements called action triggers that

12

include these Newtonian equations. In general, action triggers describe the effects of

processes or actions on other actions. We will not address the issue of how to write

triggers in this thesis because it is not the purpose of this thesis. Our future work

may involve extending language H to include triggers.

2.2 Semantics

The semantics of process description language, H, is similar to the semantics

of action language B given by McCain and Turner [10; 11]. An action description AD

of H, describes a transition diagram, TD(AD), whose nodes represent possible states

of the world and whose arcs are labeled by actions. Whenever possible the parameter

AD will be omitted.

Definition 2.2 An interpretation, I, of H is a mapping that assigns (properly typed)

values to the processes of H such that for every continuous process, c, I(c(end)) =

I(c)(I(end)) and I(c(0)) = I(c)(0).

A mapping I0 below is an example of an interpretation of action language of Exam-

ple 2.1.

I0(end) = 0,

I0(holding) = >,

I0(height(0)) = 50,

13

I0(height(end)) = 50,

I0(height) = f0(50, T).

Definition 2.3 An atom p = v is true in interpretation I (symbolically I |= p = v) if

I(p) = v. Similarly, I |= p 6= v if I(p) 6= v.

An interpretation I is closed under the state constraints of AD if for any state con-

straint (2.1) of AD, I |= li for every i, 1 ≤ i ≤ n then I |= l0.

Definition 2.4 A state, s, of a TD(AD) is an interpretation closed under the state

constraints of AD.

It is easy to see that interpretation I0 corresponds to the state s0 in Figure 1.2.

Whenever convenient, a state, s, will be represented by a set {l : s |= l} of literals.

For example, in Figure 1.2, the state s0 will be the set

s0 = {end = 0, holding, height(0) = 50, height(end) = 50, height = f0(50, T)}

Please note that only atoms are shown here. s0 also contains the literals holding 6= ⊥,

height(0) 6= 10, height(0) 6= 20 and so on.

Definition 2.5 Action a is executable in a state, s, if for every non-empty subset a′ of

a, there is no executability condition

impossible a′ if l1, . . . , ln.

of AD such that s |= li for every i, 1 ≤ i ≤ n.

14

Let ae be an elementary action that is executable in a state s. Es(ae) denotes the

set of all direct effects of ae, i.e. the set of all literals l0 for which there is a dynamic

causal law

ae causes l0 if l1, . . . , ln

in AD such that s |= li for every i, 1 ≤ i ≤ n . If a is a compound action then

Es(a) =
⋃

ae∈a Es(ae).

A set L of literals of H is closed under a set Z of state constraints of AD if L includes

the head, l0, of every state constraint

l0 if l1, . . . , ln

of AD such that {l1, . . . , ln} ⊆ L. The set CnZ(L) of consequences of L under Z is

the smallest set of literals that contains L and is closed under Z.

A transition diagram TD=〈Φ, Ψ〉 where

1. Φ is a set of states.

2. Ψ is a set of all triples 〈s, a, s′〉 such that a is executable in s and s′ is a state

which satisfies the condition

s′ = CnZ(Es(a) ∪ (s ∩ s′)) (2.6)

where Z is the set of state constraints of AD. The argument to Cn(Z) in (2.6) is the

union of the set Es(a) of the “direct effects” of a with the set s ∩ s′ of facts that are

“preserved by inertia”. The application of Cn(Z) adds the “indirect effects” to this

15

union. In Example 2.1, the set Es0
(drop) of direct effects of drop will be defined as

Es0
(drop) = {¬holding}.

The instantaneous action drop occurs at global time 0 and has no direct effect on the

value of height at 0. This means that the value of height at the end of s0 will be

preserved at time 0 of s1. Therefore,

s0 ∩ s1 = {height(0) = 50}.

The application of Cn(Z) to Es0
(drop) ∪ (s0 ∩ s1) gives the set

Q = {¬holding, height(0) = 50, height = f1(50, T)}

where Z contains the state constraints (1.8) and (1.9).

The set Q will not represent the state s1 unless end is defined. Let us suppose that

s1(end) = 2. Therefore, we get

s1 = {end = 2,¬holding, height(0) = 50, height(end) = 30, height = f1(50, T)}.

Please note that only atoms are shown here.

2.3 Specifying history

In addition to the action description, the agent’s knowledge base may contain

the domain’s recorded history - observations made by the agent together with a record

of its own actions.

16

The recorded history defines a collection of paths in the diagram which, from

the standpoint of the agent, can be interpreted as the system’s possible pasts. If

the agent’s knowledge is complete (e.g., it has complete information about the initial

state and the occurrences of actions, and the system’s actions are deterministic) then

there is only one such path.

The Recorded history, Γn, of a system up to a current moment n is a collection

of observations, that is statements of the form:

obs(v, p, t, i).

hpd(a, t, i).

where i is an integer from the interval [0, n) and time point, t ∈ ∆. i is an index of

the trajectory. For example, i = 5 denotes the step 5 of the trajectory reached after

performing a sequence of 5 actions.

obs(v, p, t, i) means that process p was observed to have value v at time t of

step i. hpd(a, t, i) means that action a was observed to have happened at time t of

step i. Observations of the form obs(y, p, 0, 0) will refer to the initial state of the

system.

Definition 2.6 A pair 〈AD, Γ〉 where AD is an action decription of H and Γ is a set

of observations, is called a domain description.

17

Definition 2.7 Given an action decription AD of H that describes a transition diagram

TD(AD), and recorded history, Γn, upto moment n, a path

〈s0, a0, s1, . . . , an−1, sn〉

in the TD(AD) is a model of Γn with respect to the domain description, 〈AD, Γn〉, if

for every i, 0 ≤ i ≤ n and t ∈ ∆

1. ai = {a : hpd(a, t, i) ∈ Γn} ;

2. if obs(v, p, t, i) ∈ Γn then p = v ∈ si.

18

CHAPTER 3

TRANSLATION INTO LOGIC PROGRAM

In this chapter we will discuss the translation of a domain description written

in language H into rules of an A-Prolog program. A-Prolog is a language of logic

programs under the answer set semantics [5] for representing agent’s knowledge about

the domain and formulating the agent’s reasoning tasks. Since we use SMODELS [12]

to compute answer sets of the resulting A-Prolog program, the translation will comply

with the syntax of the SMODELS inference engine.

Given a domain description, D = 〈AD, Γ〉 where AD is an action description

of H and Γ is a set of observations, we will construct the logic program, α0(D) by

mapping statements of D into rules of A-Prolog.

α0(D) contains two parts. The first part contains declarations for actions and

processes and the second part contains translations for the statements of H and the

observations in Γ.

3.1 Declarations

Let us look at a general way of declaring actions and processes:

action(action name, action type).

process(process name, process type).

19

action name and action type are non-numeric constants denoting the name of an

action and its type respectively. Similarly, process name and process type are non-

numeric constants denoting the name of a process and its type respectively. For

instance in Example 2.1 the actions and processes are declared as follows:

action(drop, agent).

action(catch, agent).

process(height, continuous).

process(holding, fluent).

Now let us see how the range of a process is declared. There are a couple

of ways of doing this. The range of height from Example 2.1 is the set of non-

negative real numbers. In terms of logic programming this means infinite groundings.

Therefore, we made a compromise and chose integers ranging from 0 to 50.

values(0..50).

range(height, Y) : − values(Y).

holding is a boolean fluent. Therefore, we write

range(holding, true).

range(holding, false).

Suppose we have a switch that can be set in three different positions, the range of

20

the process switch position is declared as:

range(switch position, low).

range(switch position,medium).

range(switch position, high).

In order to talk about the values of processes and occurrences of actions we

have to consider the time and step parameters.

Integers from some interval [0, n] will be used to denote the step of a trajectory.

I’s will be used as variables for step. Now every step has a duration associated with

it. Therefore, integers from some interval [0,m] will be used to denote the time points

of every step. In this case, m will be the maximum allowed duration for any step.

T’s will be used as variables for time. Therefore, we write

step(0..n).

time(0..m).

Assume that n and m are sufficiently large for our applications. Then we add the

rules

#domain step(I; I1).

#domain time(T ; T1; T2).

for declaring the variables I, I1, T, T1 and, T2 in the language of SMODELS. The

first domain declaration asserts that the variables I and I1 should get their domain

from the literal step(I).

21

3.2 General translations

Let us look at a general translation of an action description of H into rules

of A-prolog. If a is an elementary action occurring in a statement that is being

translated, it is translated as

o(a, T, I)

which is read as “action a occurs at time T of step I.” If a is a compound action then

for each elementary action ae ∈ a, we write o(ae, T, I).

If l is a literal of H occurring in the any part of the statement that is being

translated, other than the head of a dynamic causal law then it will be written as

α0(l, T, I).

α0(l, T, I) is a function that denotes a translation of literal l. A literal, l, occurring

in the head of a dynamic causal law will be written as

α0(l, 0, I + 1).

In this thesis we limit ourselves to translating action descriptions of H in which the

heads of dynamic causal laws are either f-atoms or their negations. The general

translations look as follows:

22

Statement (2.1) will be translated as

α0(l0, T, I) : − α0(l1, T, I),

. ,

α0(ln, T, I).

(3.1)

Statement (2.2) will be translated as

α0(l0, 0, I + 1) : − o(ae, T, I),

α0(l1, T, I),

. ,

α0(ln, T, I).

(3.2)

Statement (2.3) will be translated as

: − o(a, T, I),

α0(l1, T, I),

. ,

α0(ln, T, I).

(3.3)

In statement (2.3) if a is the non-empty compound action {a1, . . . , am} then

o(a, T, I) in rule (3.3) will be replaced by o(a1, T, I), . . . , o(am, T, I). We will not

translate (2.3) when a is empty.

α0(l, T, I) will be replaced by

• val(V, c, 0, I) if l is an atom of the form c(0) = v.

23

val(V, c, 0, I) is read as “V is the value of process c at time 0 of step I.”

E.g. height(0) = Y will be translated as val(Y, height, 0, I).

• −val(V, c, 0, I) if l is of the form c(0) 6= v.

−val(V, c, 0, I) is read as “V is not the value of process c at time 0 of step I.”

• val(V, p, T, I) if l is an atom of the form p = v other than c(0) = v.

val(V, p, T, I) is read as “V is the value of process p at time T of step I.”

E.g. height(end) = 0 will be translated as val(0, height, T, S).

• −val(V, p, T, I) if l is of the form p 6= v other than c(0) 6= v.

−val(V, p, T, I) is read as “V is not the value of process p at time T of step I.”

α0(l, 0, I + 1) will be replaced by

• val(V, p, 0, I + 1) if l is of the form p = v.

• −val(V, p, 0, I + 1) if l is of the form p 6= v.

Note that when translating the f-atom, end = y we will not follow the above

conventions. Instead we translate it as end(T, I) where T denotes the end of step

I. Observations of the form obs(v, p, t, i) and hpd(a, t, i) are translated as facts of

A-Prolog programs. Before we look at some examples we will discuss domain inde-

pendent axioms.

24

3.3 Domain independent axioms

Domain independent axioms define properties that are common to every do-

main. We will denote such a collection of axioms by Π. Given a domain description

D, and α0(D) that maps D into rules of A-prolog, we will construct α(D) that adds

Π to α0(D). Therefore,

α(D) = Π ∪ α0(D).

Let us look at the axioms constituting Π.

End of state axioms

These axioms will define the end of every state s. The end of a state is the local

time at which an action terminates s. When it comes to implementation we talk

about the end of a step instead of state. Therefore, we write

end(T, I) : −o(A, T, I). (3.4)

If no action occurs during a step then end will be the maximum time point allowed

for that step. This is accomplished by using the choice rule

{end(m, I)}1. (3.5)

The consequence of the rule (3.5) is that the number of end(m,I) that will be true is

either 0 or 1. A step cannot have more than one end. This is expressed by (3.6).

: − end(T1, I),

end(T2, I),

neq(T1, T2).

(3.6)

25

Every step must end. Therefore, we write

ends(I) : − end(T, I). (3.7)

: − not ends(I). (3.8)

Every step, i, is associated with an interval [0, e] where 0 denotes the start time and

e denotes the end time of i. We will use the relation out to define the time points,

t /∈ [0, e] and in to define the time points, t ∈ [0, e].

out(T, I) : − end(T1, I),

T > T1.

(3.9)

in(T, I) : −not out(T, I). (3.10)

By using these relations in our rules we can avoid computing process values at time

points, t /∈ [0, e].

Inertia axiom

The inertia axiom states that things normally stay as they are. It has the following

form:

val(Y, P, 0, I + 1) : − val(Y, P, T, I),

end(T, I),

not − val(Y, P, 0, I + 1).

(3.11)

Intuitively, rule (3.11) says that actions are instantaneous. In example (2.1),

height at global time 0 is 50 when the instantaneous action drop occurs at 0.

26

Reality check axiom

This axiom guarantees that the agent’s predictions match with his observations.

: − obs(Y, P, T, I),

¬val(Y, P, T, I).

(3.12)

Other axioms

The axiom

o(A, T, I) : −hpd(A, T, I). (3.13)

says that if action A was observed to have happened at time T of step I then it must

have occurred at time T of step I. And we have

val(Y, P, 0, 0) : − obs(Y, P, 0, 0). (3.14)

for defining the initial values of processes. A fluent remains constant throughout the

duration of a step. This is expressed by the axiom (3.15).

val(Y, P, T, I) : − val(Y, P, 0, I),

process(P, fluent),

in(T, I).

(3.15)

Axiom (3.16) says that no process can have more than one value at the same time.

−val(Y 1, P, T, I) : − val(Y 2, P, T, I),

neq(Y 1, Y 2).

(3.16)

27

3.4 Example translations

Now let us refer back to Examples 2.1 and 2.2 and see how the corresponding causal

laws will be translated. In Example 2.1 the dynamic causal law

drop causes ¬holding.

is translated as

val(false, holding, 0, I + 1) : −o(drop, T, I).

catch causes holding.

is translated as

val(true, holding, 0, I + 1) : −o(catch, T, I).

Next we look at the executability conditions.

impossible drop if ¬holding.

is translated as

: − o(drop, T, I),

val(false, holding, T, I).

impossible drop if height(end) = 0

is translated as

28

: − o(drop, T, I),

val(0, height, T, I).

impossible catch if holding

is translated as

: − o(catch, T, I),

val(true, holding, T, I).

Next we look at state constraints.

height = f0(Y, T) if height(0) = Y,

holding.

is translated as

function f0.

val(f0(Y, T), height, T, I) : − val(Y, height, 0, I),

val(true, holding, T, I),

in(T, I),

range(height, Y).

The function f0 is a user defined function that is linked to lparse. Such functions

29

are meant to be called directly from logic programs. Note that the function has to

be declared before it appears in any rule. For more information on how to use them

refer to the lparse user manual.

height = f1(Y, T) if height(0) = Y,

¬holding.

is translated as

function f1.

val(f1(Y, T), height, T, I) : − val(Y, height, 0, I),

val(false, holding, T, I),

in(T, I),

range(height, Y).

where f1 is also a user defined function that is linked to lparse. The value returned

by the function f1 given Y and T, will determine the value of height at T.

Now let us look at the translations for the causal laws in Example 2.2. The

dynamic causal law

bounce(W) causes velocity = V if velocity = −V.

is translated as

30

val(V 1, velocity, 0, I + 1) : − o(bounce(W), T, I),

val(V, velocity, T, I),

V 1 = −1 ∗ V,

wall(W),

range(velocity, V),

range(velocity, V 1).

And the state constraint

position = f2(Y0, V, T) if position(0) = Y0,

velocity = V.

is translated as

val(f2(Y 0, V, T), position, T, I) : − val(Y 0, position, 0, I),

val(V, velocity, T, I),

in(T, I),

range(position, Y 0),

range(velocity, V).

where f2 is a user defined function. The following hypothesis establishes the rela-

tionship between the theory of actions in H and logic programming.

31

Hypothesis

Given a domain description D = 〈AD, Γn〉 where AD is an action description of

H(Σ,G, ∆) and Γn is the recorded history upto moment n; if the initial situation of

Γn is complete, i.e. for any process p of Σ, Γn contains obs(v, p, 0, 0) then M is a

model of Γn iff M is defined by some answer set of α(D).

A proof of the above hypothesis will not be presented in this thesis. If proven it

means that our translations are indeed correct. In the next chapter we will look at a

complex example and some experimental results.

32

CHAPTER 4

EXAMPLE DOMAIN

In this chapter we will look at an example domain and show how our language

can be used to model it. First we will understand the physics of the system and then

construct an action description describing the system. Later we will translate the

statements of the action description into rules of A-prolog. Finally, we will look at

some sample scenarios and experimental results.

Example 4.1 Consider a rectangular water tank with a faucet on the top and a drain

at the bottom. The faucet is the source of water to the tank and the drain is an

outlet. The faucet can be opened and closed. We are interested in predicting the

volume of water in the tank. Let us first understand the physics of the system.

Assume that the velocity at which the water flows out of the faucet into the tank

(called inflow rate) is approximately 3 m/sec when the faucet is open and 0 when it

is closed. The volume of water flowing into the tank per second, denoted by Vin, is

determined by the following equation:

Vin = inflow rate ∗ cf. (4.1)

where cf is the cross section area of the faucet opening. Now we will define the

outflow rate which is the velocity at which the water flows out of the drain. We

33

apply Bernoulli’s equation of law of conservation of energy to an open tank under

atmospheric pressure to derive

outflow rate =
√

2 ∗ g ∗ h. (4.2)

where g is acceleration due to gravity and h is the height of the water level in the

tank. Now we can define the volume of water flowing out of the tank per second,

denoted by Vout, as follows

Vout = outflow rate ∗ cd. (4.3)

where cd is the cross section area of the drain opening. If Vt is the volume of the tank

at current time, t, then

Vt+1 = Vt + Vin − Vout. (4.4)

Now let us construct an action description AD2 describing the above system. Sig-

nature Σ2 contains the actions turn(open) and turn(close) for opening and clos-

ing the faucet, continuous processes volume and outflow rate and fluents open,

inflow rate, volume(0), volume(end), outflow rate(0) and outflow rate(end). The

range(volume) and range(outflow rate) is the set of non-negative real numbers;

open is a boolean fluent; range(inflow) contains 0 and 3. Let G2 contain functions

f3(Y,N, T) =



















Y if T = 0.

f3(Y,N, T − 1) + N ∗ cf − f4(Y,N, T − 1) ∗ cd if T > 0.

f4(Y,N, T) =
√

2 ∗ g ∗ f3(Y,N, T)/(l ∗ b).

34

where Y ∈ range(volume), N ∈ range(inflow rate) and the constants cf , cd, g,

l and b denote the cross section area of the faucet, cross section area of the drain,

acceleration due to gravity, length and breadth of the tank respectively. Now let us

look us at the causal laws. The effects of the action turn(open) will be given by the

causal law

turn(open) causes open. (4.5)

which says that opening the faucet at time end in a state s causes open to be true in

any successor state of s. The executability condition will have the form

impossible turn(open) if open. (4.6)

which says that it is not possible to open the faucet at time end in a state s if it is

already open. The effects of the action turn(close) are given by the causal law

turn(close) causes ¬open. (4.7)

which says that closing the faucet at time end in a state s causes open to be false in

any successor state of s. The executability condition will have the form

impossible turn(close) if ¬open. (4.8)

which says that it is not possible to close the faucet at time end in a state s if it is

already closed. The fluent inflow rate is defined by the state constraints

inflow rate = 3 if open. (4.9)

35

which says that in any state, s, inflow rate is 3 when the faucet is open and

inflow rate = 0 if ¬open. (4.10)

which says that in any state, s, inflow rate is 0 when the faucet is closed. The

process volume is defined by the state constraint

volume = f3(Y,N, T) if volume(0) = Y,

inflow rate = N.

(4.11)

which says that in any state, s, volume is defined by the function f3(Y,N, T) where

Y is volume at time 0 and N is the inflow rate. The definition of f3 is obtained by

rewriting equation (4.4). The process outflow rate is defined by the state constraint

outflow rate = f4(Y,N, T) if volume(0) = Y,

inflow rate = N.

(4.12)

which says that in any state, s, outflow rate is defined by the function f4(Y,N, T)

where Y is the volume at time 0 and N is the inflow rate. The definition of f4 is

obtained by rewriting the equation (4.2). In equation (4.2), the height of water level,

h, is obtained by dividing the volume of water in the tank by the length and breadth

of the tank. For example, if the length and breadth of the tank are 3 and 4 meters

respectively and the volume of water in the tank is 36 cubic meters, then the height

of water level is 3 meters. Therefore, h is substituted by f3(Y,N, T)/(l ∗ b) in the

definition of f4.

Let α be a mapping from action description AD2 into rules of A-prolog. α(AD2)

contains the following rules:

36

Statement (4.5) is translated as

val(true, open, 0, I + 1) : − o(turn(open), T, I). (4.13)

Statement (4.6) is translated as

: − o(turn(open), T, I),

val(true, open, T, I).

(4.14)

Statement (4.7) is translated as

val(false, open, 0, I + 1) : −o(turn(close), T, I). (4.15)

And (4.8) is translated as

: − o(turn(close), T, I),

val(false, open, T, I).

(4.16)

Statement (4.9) is translated as

val(3, inflow rate, T, I) : −val(true, open, T, I). (4.17)

And (4.10) is translated as

val(0, inflow rate, T, I) : −val(false, open, T, I). (4.18)

Statement (4.11) contains a complex recursive function f3 which in turn calls

the function f4. One way of implementing such functions is to link them to lparse.

Lparse uses pointer arithmetic to deal with the arguments of the user defined func-

tions. It is capable of handling simple recursion but fails to give expected results when

37

functions interact recursively with each other. Therefore, we simplify these functions

considerably, so that lparse can handle them. Therefore the translations of (4.11) and

(4.12) contain modified versions of f3 and f4. We will call these modified versions as

f ′

3 and f ′

4 respectively.

The following equation defines the relationship between f3 and f ′

3.

f ′

3(Y,N, T) = f3(Y,N, 1) if f3(Y0, N, T − 1) = Y.

Therefore, (4.11) is translated as

function f3′.

val(f3′(Y 0, N), volume, T + 1, I) : − val(Y 0, volume, T, I),

val(N, inflow rate, T, I),

in(T + 1, I),

range(inflow rate,N),

range(volume, Y 0).

(4.19)

The following equation defines the relationship between f4 and f ′

4.

f ′

4(Y, T) = f4(Y,N, 0) if f3(Y0, N, T) = Y.

Therefore, (4.12) is translated as

function f4′.

val(f4′(Y), outflow rate, T, I) : − val(Y, volume, T, I),

range(volume, Y).

(4.20)

38

For a complete listing of the translations along with declarations and domain inde-

pendent axioms please refer to Appendix A.

Sample scenario and results

Let Γ be the collection of observations:

obs(25, volume, 0, 0).

obs(false, open, 0, 0).

hpd(turn(open), 0, 0).

hpd(turn(close), 3, 1).

The program α(AD2, Γ) is obtained by adding Γ to α(AD2). In order to run this

program the variables and processes are declared as usual. For instance, I and T take

integer values from the intervals [0,2] and [0,6] respectively. range(volume) is the set

of integers from the interval [0,60].

The program was run on Sparc Ultra 10 running Solaris 8 using the 1.0.9 ver-

sion of lparse and 2.26 version of SMODELS. The corresponding answer set returned

from the program was as expected. The average run time was 7.2 seconds of which

SMODELS took 3.3 seconds and lparse and SMODELS together took 7 seconds.

SMODELS directives are used to get a better looking output. The resulting answer

set is:

39

% process name(V alue, Local time, Step).

outflow rate(6, 0, 0). volume(25, 0, 0). inflow rate(0, 0, 0).

outflow rate(6, 0, 1). volume(25, 0, 1). inflow rate(3, 0, 1).

outflow rate(6, 1, 1). volume(28, 1, 1). inflow rate(3, 1, 1).

outflow rate(7, 2, 1). volume(31, 2, 1). inflow rate(3, 2, 1).

outflow rate(7, 3, 1). volume(33, 3, 1). inflow rate(3, 3, 1).

outflow rate(7, 0, 2). volume(33, 0, 2). inflow rate(0, 0, 2).

outflow rate(6, 1, 2). volume(26, 1, 2). inflow rate(0, 1, 2).

outflow rate(5, 2, 2). volume(20, 2, 2). inflow rate(0, 2, 2).

outflow rate(4, 3, 2). volume(15, 3, 2). inflow rate(0, 3, 2).

outflow rate(4, 4, 2). volume(11, 4, 2). inflow rate(0, 4, 2).

outflow rate(3, 5, 2). volume(7, 5, 2). inflow rate(0, 5, 2).

outflow rate(2, 6, 2). volume(4, 6, 2). inflow rate(0, 6, 2).

The following answer set was obtained when local time was mapped into global

time. Additional rules were added to the translated program in order to do this

mapping. We will not talk about these rules in this thesis.

% process name(V alue, Global time).

outflow rate(6, 0). volume(25, 0). inflow rate(changed(0, 3), 0).

outflow rate(6, 1). volume(28, 1). inflow rate(3, 1).

outflow rate(7, 2). volume(31, 2). inflow rate(3, 2).

outflow rate(7, 3). volume(33, 3). inflow rate(changed(3, 0), 3).

40

outflow rate(6, 4). volume(26, 4). inflow rate(0, 4).

outflow rate(5, 5). volume(20, 5). inflow rate(0, 5).

outflow rate(4, 6). volume(15, 6). inflow rate(0, 6).

outflow rate(4, 7). volume(11, 7). inflow rate(0, 7).

outflow rate(3, 8). volume(7, 8). inflow rate(0, 8).

outflow rate(2, 9). volume(4, 9). inflow rate(0, 9).

As we can see inflow rate is not uniquely defined at global time 0 and 3. It changes

from 0 to 3 at global time 0 and from 3 to 0 at global time 3.

41

CHAPTER 5

PLANNING AND DIAGNOSIS

In this chapter we will look at some examples on how to do planning and

diagnosis in a hybrid domain. The existing theories for planning and diagnosis can

be applied to hybrid domains.

5.1 Planning

The ability to plan is an important characteristic of an agent. A plan is a

sequence of actions that satisfies the agent’s goal. By goal we mean a finite set of

literals of H the agent wants to make true.

A planning problem can be solved in different ways. Answer set programming

techniques is one of them. In this approach, the answer sets of an A-prolog program

encode possible plans. These plans are generated by so called ‘planning modules’.

In our examples the planning module is often a simple choice rule. Answer

set planning does not require any specialized planning algorithms. The reasoning

mechanism used for planning is the same as the one used for deducing answer sets.

Let us now look at an example that involves planning.

Example 5.1 Consider a car moving along X-axis with uniform velocity. The domain

consists of two actions start(V) and stop. start(V) causes the car to move with

42

a velocity, V and stop causes the velocity to be 0. position of the car changes

continuously with time as long as velocity is not zero.

Let us construct an action description AD3 describing the above domain. The cor-

responding signature Σ3 contains the actions start(V) and stop, continuous process

position, and fluents velocity, position(0), and position(end). The range(velocity)

is the set of real numbers and the range(position) is the set of non-negative real

numbers. Let G3 contain the function

f5(Y0, V, T) =



















Y0 if T = 0.

f5(Y0, V, T − 1) + V if T > 0.

where Y0 ∈ range(position), V ∈ range(velocity) and T is a variable for time. The

action description AD3 contains the following statements. The effects of the action

start(V) where V ∈ range(velocity) will given by the causal law:

start(V) causes velocity = V. (5.1)

which says that performing the action start(V) at time end in a state s causes velocity

to be V in any successor state of s. The executability condition will have the form:

impossible start(V) if velocity 6= 0. (5.2)

which says that in any state, s, it is not possible to perform start(V) at time end

if the velocity is not zero. In other words, the car cannot be started if it is already

moving. The effects of the action stop will be given by the causal law:

stop causes velocity = 0. (5.3)

43

which says that performing the action stop at time end in a state s causes the velocity

of the car to be 0 in any successor state of s. The executability condition will have

the form:

impossible stop if velocity = 0. (5.4)

which says that in any state, s, it is not possible to stop the car at time end if the

velocity is 0. In other words, the car cannot be stopped if it is not moving. position

is defined by the state constraint

position = f5(Y0, V, T) if position(0) = Y0,

velocity = V.

(5.5)

which says that position is defined by Newtonian equations in any state.

We will now consider the program α(AD3), obtained by translating the statements

of AD3. The actions and processes of the domain will be declared as

action(start(V), agent) : − range(velocity, V),

V > 0.

action(stop, agent).

process(velocity, fluent).

process(position, continuous).

Statement (5.1) will be translated as

val(V, velocity, 0, I + 1) : − o(start(V), T, I),

range(velocity, V).

44

Statement (5.2) will be translated as

: − o(start(V), T, I),

val(V 0, velocity, T, I),

V 0 6= 0,

range(velocity, V),

range(velocity, V 0).

Statement (5.3) will be translated as

val(0, velocity, 0, I + 1) : −o(stop, T, I).

Statement (5.4) will be translated as

: − o(stop, T, I),

val(0, velocity, T, I).

Statement (5.5) will be translated as

function f5.

val(f5(Y 0, V, T), position, T, I) : − val(Y 0, position, 0, I),

val(V, velocity, T, I),

in(T, I),

range(position, Y 0),

range(velocity, V).

45

Now consider the recorded history, Γ1

obs(0, velocity, 0, 0).

obs(0, position, 0, 0).

These observations say that initially the car is not moving and positioned at 0. The

program α(AD3, Γ1) is obtained by adding Γ1 to α(AD3).

Now suppose that the goal of an agent acting in this domain is to drive to a

certain position on the X-axis and stop there. We will use the rule

goal(T, I) : − val(8, position, T, I),

val(0, velocity, T, I).

(5.6)

to say that the goal is to reach position 8 and stop there. To achieve this goal, the

values of I and T must satisfy the rule

success : − goal(T, I). (5.7)

Failure is not an option. Therefore, we write

: − not success. (5.8)

The rules (5.6), (5.7), and (5.8) will be added to the program α(AD3, Γ1). We know

that I takes integer values from some interval [0, n]. This means that we can look for

plans of no more than n consecutive steps. Candidate plans will be generated by the

choice rule, PM0:

{o(A, T, I) : action(A, agent)} : −I < n.

46

For any value of I ranging from 0 to n− 1, if the goal is not satisfied, PM0 will select

a candidate action. PM0 is also called the planning module.

Answer sets of the program α(AD3, Γ1) ∪ PM0 will encode candidate plans,

i.e. possible sequences of actions that satisfy success.

In our example, I and T take integer values from the intervals [0,2] and [0,6] re-

spectively. A total of 21 different candidate plans were generated and the average run

time was 4.6 seconds of which SMODELS took 2.75 secs and Lparse and SMODELS

together took 4.4 seconds. One of the candidate plans

o(start(2), 4, 0).

o(stop, 4, 1).

is to start driving with a velocity of 2 at time point 4 of step 0 and then stop at time

point 4 of step 1 at which point the car is positioned at 8.

5.2 Diagnosis

In this section we are interested in the agent’s ability to diagnose. Diagnosis

involves finding possible explanations for discrepancies between agent’s predictions

and system’s actual behavior.

The algorithms used in [1; 3] to perform diagnostic tasks are based on encoding

agent’s knowledge in A-prolog and reducing the agent’s task to computing answer sets

of logic programs. We will use a similar approach to do diagnosis in hybrid domains.

47

The first step of an observe-think-act loop of an intelligent agent is to observe

the world, explain observations, and update the knowledge base. We will try to

provide the agent with the reasoning mechanism to explain observations.

We assume that the agent is capable of making correct observations, perform-

ing actions and remembering the domain history. We also assume that normally the

agent is capable of observing all relevant exogenous actions occurring in its environ-

ment.

Now let us look at some terminology. Let D be a diagnostic domain.

Definition 5.1 By a diagnostic domain we mean the pair 〈Σ, TD〉 where Σ is a domain

signature and TD is a transition diagram over Σ.

Consider an action description, AD of H that describes D. Let Γn be a recorded

history of D up to moment n. Now, consider a mapping α, that maps the domain

description D = 〈AD, Γn〉 into rules of A-Prolog. The resulting logic program will be

denoted by α(AD, Γn).

The recorded history, Γn contains a record of all actions, the agent performed

or observed to have happened upto moment n− 1. This knowledge enables the agent

to make predictions about values of processes at the current moment, n.

To test these predictions, the agent observes the current value of some pro-

cesses. We simply assume that there is a collection, P, of processes which are observ-

able at n. The set

On = {obs(v, p, t, n) : p ∈ P}

48

contains the corresponding observations. At this point it is convenient to split the

domain’s history into two parts. The previously recorded history, Γn and the current

observations On. A pair

C = 〈Γn, On〉

will be often referred to as system’s configuration. If new observations are consistent

with the agent’s view of the world, i.e. if C is consistent, then On simply becomes

part of recorded history. In other words Γn+1 = C. Otherwise, the agent has to start

seeking the explanation(s) of the mismatch.

Let

conf(C) = α(AD, Γn) ∪ On.

C is consistent iff conf(C) has an answer set.

Definition 5.2 The configuration C is a symptom of system’s malfunctioning iff the

program conf(C) has no answer set.

An explanation of the symptom can be found by discovering some unobserved past

occurrences of exogenous actions. Let E denote a set of elementary exogenous actions

corresponding to D.

Definition 5.3 An explanation, E, of symptom C is a collection of statements

E = {hpd(a, t, i) : 0 ≤ i < n and a ∈ E}

such that Γn ∪On ∪ E is consistent.

49

Answer set programming provides a way of computing explanations for inconsistency

of C. Such a computation can be viewed as ‘planning in the past’.

We construct a program called diagnostic module, DM, that computes explanations.

The simplest diagnostic module, DM0, is defined by the choice rule of SMODELS.

{o(A, T, I) : action(A, ex)} : −0 ≤ I < n.

where ex stands for exogenous action.

Finding diagnoses of the symptom, C, is reduced to finding answer sets of the

program conf(C) ∪ DM0. A set E of occurrences of exogenous actions is a possible

explanation of inconsistency of C iff there is an answer set Q of conf(C) ∪DM0 such

that

E = {o(A, T, I) : action(A, ex) ∧ o(A, T, I) ∈ Q ∧ hpd(A, T, I) /∈ Q}.

Let us introduce some faults in Example 4.1 of the water tank and see how a diagnosis

is done when the agent’s predictions do not match with reality.

First we introduce the exogenous action ‘break’ which causes the faucet to

malfunction. By malfunction, we mean that the faucet will be unable to output any

water even when it is open. We will introduce the boolean fluent ‘broken’ to denote

that the faucet is broken.

We extend the signature, Σ2 in Example 4.1 to include the exogenous action

break and fluent broken. A few additions and modifications will be made to the action

description AD2 of Example 4.1. The effects of the action break will be given by the

50

causal law:

break causes broken. (5.9)

which says that the exogenous action break causes the faucet to be broken. The

executability condition is of the form

impossible break if broken. (5.10)

which says that the faucet cannot break if it is already broken.

Statements (5.9) and (5.10) are now part of AD2. The statements (4.9) and (4.10)

will be modified to accomodate the effects of break.

inflow rate = 3 if open,

¬broken.

(5.11)

inflow rate = 0 if open,

broken.

(5.12)

Let us now look at the translations of the above statements. First we must declare

the exogenous action break and the fluent broken.

action(break, ex).

process(broken, fluent).

broken is a boolean fluent. Therefore, range(broken) is defined as

range(broken, true).

range(broken, false).

51

Now, α(AD2) from example (4.1) will contain the rules (4.13), (4.14), (4.15), (4.16),

(4.18), (4.19), (4.20), and the following rules:

Statement (5.9) is translated as

val(true, broken, 0, I + 1) : −o(break, T, I).

Statement (5.10) is translated as

: − o(break, T, I),

val(true, broken, T, I).

Statement (5.11) is translated as

val(3, inflow rate, T, I) : − val(true, open, T, I),

val(false, broken, T, I).

Statement (5.12) is translated as

val(0, inflow rate, T, I) : − val(true, open, T, I),

val(true, broken, T, I).

Example 5.2 Consider the recorded history, Γ1 containing the observations

hpd(turn(open), 0, 0).

obs(false, open, 0, 0).

obs(25, volume, 0, 0).

obs(0, inflow rate, 0, 0).

obs(false, broken, 0, 0).

52

Let O1 = {obs(0, inflow rate, 0, 1)}. obs(0, inflow rate, 0, 1) says that inflow rate

was observed to be 0 at time 0 of step 1. Obviously, val(3, inflow rate, 0, 1) predicted

by Γ1 contradicts the observations.

This discrepancy can be explained by unobserved occurrence of action break

at time 0 of step 0. We will now see how to compute the possible explanations.

The program conf(C) = α(AD2, Γ1) ∪ O1 is inconsistent. Therefore, we aug-

ment it with the diagnostic module, DM0

{o(A, T, I) : action(A, ex)} : −0 ≤ I < n.

The resulting program conf(C) ∪DM0 is consistent and has an answer set that con-

tains o(break, 0, 0) which is the possible explanation for the inconsistency of conf(C).

The average run time for this program was 4.9 seconds of which SMODELS took 2.1

seconds and Lparse and SMODELS together took 4.7 seconds.

Example 5.3 Let us look at another scenario where answer set programming alone

may not be enough to find explanations.

Consider the history, Γ1

hpd(turn(close), 3, 0).

obs(true, open, 0, 0).

obs(25, volume, 0, 0).

obs(3, inflow rate, 0, 0).

obs(false, broken, 0, 0).

53

and the new observation, O1 = {obs(17, volume, 0, 1)}. The program conf(C) =

α(AD2, Γ1) ∪ O1 is found to be inconsistent. So it is augmented with the diagnostic

module DM0. The resulting program is still inconsistent.

The diagnostic module, DM0 will compute only those explanations in which

the unobserved exogenous actions occur in parallel with agent’s action.

In Example 5.3, Γ1 predicts val(33, volume, 0, 1) which contradicts the ob-

servation obs(17, volume, 0, 1). Therefore, we add DM0 to find explanations. DM0

will look for an exogenous action that occurs at the same time as the agent action

turn(close). But fails to find one.

In reality an unobserved exogenous event must have happened before the

agent action was executed. A possible explanation for the unexpected observation

obs(17, volume, 0, 1) is the unobserved occurrence of break at time 1 of step 0.

Similarly, there may arise situations in which break could have happened at

time point 0 or time point 2 of step 0. DM0 will be unable to explain the unexpected

observations in both situations.

Therefore, answer set programming alone is not enough to do diagnosis in such

situations. We have some ideas on how to approach such problems. But before we

talk about them, there are other issues such as grounding that must be addressed.

In most of our examples agent’s knowledge is encoded in A-prolog and inference

engines such as SMODELS are used to reason about such knowledge. Computing

values of processes may involve trignometric functions, differential equations, complex

54

formulas etc. Existing answer set solvers cannot carry out such computations. Also

when numbers become large, the solvers run out of memory. Besides this, SMODELS

grounds all variables in the program leading to poor efficiency.

In the following paragraphs, we propose an agent architecture for hybrid do-

mains which will overcome computational problems and aid in efficient diagnosis.

A solution to the computation problem is to limit the answer set solver to

reason about effects of actions and leave the computations to an external program.

The external program will be called monitor. The agent and the monitor will interact

with each other in the following manner.

The agent’s task will be reduced to computing the answer sets of an A-prolog

program. The answer sets will contain information about the values of processes at

time 0 and the functions associated with these processes. The only change is that

these functions are not evaluated yet.

The answer sets will be input to the monitor which then evaluates the functions

asssociated with processes. Each time the agent performs an action the initial values

and functions will be input to the monitor. The monitor will record all occurrences

of agent actions.

The monitor will be capable of observing actions that occur naturally or trig-

gered by other actions in the environment. It will report such observations to the

agent. The agent will do the reasoning and send new input to the monitor.

55

An important function of the monitor is to help the agent diagnose. The

computations done by the monitor will become the predictions of the monitor. The

monitor will record observations with the help of sensors and then compare these

observations with its predictions. If there is discrepancy it will inform the agent of all

those observations that did not match, along with the time at which the discrepancy

was found.

With this information the agent’s task will become easier. Now the agent

already knows when the exogenous action(s) occurred. It still needs to find out what

exogenous action(s) took place . For this the agent will use answer set programming

techniques. Once the correct explanation is found, the agent reasons about the effects

of the exogenous action(s) and sends input to the monitor. The monitor will record

the occurrence of exogenous action(s).

The Figure 5.1 summarizes the interaction between monitor and agent.

monitor

agent environment

actuators

1

2 3

4

5 6

@
@

@
@@I

@
@

@
@

@R

�
�

�
��

�
�

�
���

�
�

�
��	

@
@

@
@R

Figure 5.1: Architecture of an agent in a hybrid domain

56

The labeled arcs denote the following:

1 - The agent inputs initial values and functions associated with processes to the

monitor.

2 - Monitor informs the agent about discrepancies, actions triggered in the envi-

ronment, initial situation, etc.

3 - Monitor observes the environment.

4 - Monitor records observations.

5 - The agent sends messages to the actuators to perform actions.

6 - The actuators perform actions in the environment.

Finally we say that with the help of monitor we will be able to find an explanation

for the inconsistency in Example 5.3, overcome computational problems, and improve

efficiency considerably. There are still some pending issues such as grounding in

SMODELS which can be overcome by delayed grounding.

Example 5.4 Now let us see an example in which the monitor detects inconsistency

and reports it to the agent and the agent uses answer set programming techniques to

find out an explanation for inconsistency. We will use the water tank example again.

Consider the recorded history, Γ1 consisting of

57

obs(3, inflow rate, 0, 0).

obs(25, volume, 0, 0).

obs(false, broken, 0, 0).

obs(true, open, 0, 0).

Suppose that the monitor observes that inflow rate is 0 at time 3 of step 0. But the

predicted value is 3. Since there is a discrepancy it sends a message to the agent that

inflow rate was observed to be 0 at time 3 of step 0. This will be represented by the

fact:

error(0, inflow rate, 3, 0). (5.13)

Now we write the general rule

obs(Y, P, 0, I + 1) : − error(Y, P, T, I). (5.14)

which states that since an error was detected at time T of step I it must be true that

an exogenous action must have occurred at this time, and therefore Y will be the

observed value of process P at time 0 of the next step, I+1. We also need the rule

end(T, I) : − error(Y, P, T, I). (5.15)

to make sure that the step ends at time T when the discrepancy was detected.

The maximum number of steps is incremented by one and the rules (5.13), (5.14),

(5.15) are added to the program α(AD2, Γ1). The resulting program is inconsistent.

58

Therefore we augment it with the diagnostic module, DM1 to restore consistency.

{o(A, T, I) : action(A, ex)} : − error(Y, P, T, I),

I < n.

(5.16)

The answer set of the resulting program contains o(break, 3, 0) which is indeed the

correct explanation. The average run time for this program was 4.9 seconds of which

SMODELS took 2.1 secs and Lparse and SMODELS together took 4.6 seconds.

59

CHAPTER 6

RELATED WORK

In this chapter we will compare language H with two other languages used

for similar purposes. The first language is called situation calculus [13; 14] and the

second one is called ADC [4] which stands for Actions with Delayed and Continuous

effects.

6.1 Situation calculus

In this section we will compare language H with situation calculus. Situation

calculus was introduced by John McCarthy in 1963 as a language for representing

actions and their effects. But it was Reiter who enhanced situation calculus with fea-

tures like time, concurrency, and natural actions to be able to model hybrid systems.

Situation calculus or sitcalc for short uses an approach based on first-order

logic for modeling dynamical systems. The statements of the language are formulas

of first-order logic. We on the other hand , use an action language/logic programming

approach to modeling dynamical systems.

Situation calculus does not use transition function based semantics to char-

acterize actions. By transition function based semantics we mean the approach in

which the world is viewed as a dynamical system represented by a transition diagram

60

whose nodes correspond to possible physical states of the world and whose arcs are

labeled by actions.

Situation calculus uses the term situation to denote a possible world history.

A situation is a finite sequence of actions. An initial situation denotes an empty

sequence of actions.

In [14] Reiter points out the difference between the terms situation and state

as - a state is a snapshot of the world while situation is a finite sequence of actions.

A state is a collection of fluents that hold in a situation. Two states are the same if

they assign the same truth values to all the fluents. Two situations are the same iff

they result from the same sequence of actions applied to the initial situation. Two

situations may be different yet assign the same truth values to the fluents. Situations

do not repeat while states can repeat.

E.g. Consider the blocks world domain. Let move(a, b), move(c, a) denote a

situation, s, resulting from performing the action move(a, b) followed by move(c, a).

A state, st, corresponding to the situation s will contain the fluents on(a, b) and

on(c, a).

Let us talk about some situation calculus terminology. The symbol do(a, s)

denotes a successor situation to s, resulting from performing action a in situation

s. Relations whose truth values vary from situation to situation are called relational

fluents. For example, on(x, y, s) denotes that block x is on y in situation s. Functions

whose values vary from situation to situation are called functional fluents. For exam-

61

ple, height(s) denotes the height of an object in situation s. Since the language is

based on first-order logic, the full set of quantifiers, connectives and logical symbols

are used, making the language powerful and expressive.

But there are some limitations. Situation calculus does not encourage the

use of state constraints because they are a source of deep theoretical and practical

difficulties in modeling dynamical systems. Let us understand why.

We know that the statements of the language are formulas of first-order logic.

A state constraint will be written as A ⊃ B where A and B are first-order formulas.

The contrapositive ¬B ⊃ ¬A will also be true in this case.

For example, the state constraint

on(x, y, s) ∧ on(x, z, s) ⊃ y = z.

expresses a truth about the blocks world domain. But the contrapositive is not

necessarily true.

y 6= z ⊃ ¬on(x, y, s) ∨ ¬on(x, z, s).

This shows that using classical implication for knowledge representation does

not give expected results. For this and other practical reasons situation calculus does

not encourage the use of state constraints.

In situation calculus, the axioms for representing actions and their effects

presuppose that actions are deterministic. Therefore, the action theories contain

deterministic actions only. On the other hand, action theories of H contain both

deterministic and non-deterministic actions.

62

Sitcalc requires that the initial situation be complete. We do not have such re-

strictions for language H. And the implementation in A-Prolog is capable of handling

incomplete initial situations.

In [14] Reiter introduced the term process in order to overcome the problems

associated with concurrent execution of actions with durations. Reiter conceives

actions with duration as processes, represented by relational fluents, and introduces

durationless actions that initiate and terminate these processes.

For example, instead of the action walk(x,y) we might have instantaneous ac-

tions startWalk(x,y) and endWalk(x,y) and the process of walking from x to y, repre-

sented by relational fluent walking(x,y,s). startWalk(x,y) causes the fluent to become

true, endWalk(x,y) causes it to become false. With this device of instantaneous start

and end actions, arbitarily complex concurrency can be represented. For example,

{startWalk(A,B), startChewGum}, {endChewGum, startSing},

{endWalk(A,B)}

is the sequence of actions beginning with simultaneously starting to walk and starting

to chew, followed by simultaneouly ending to chew and starting to sing, followed by

ending to walk (at which time the singing process is still going on).

Since we assume that actions of H are instantaneous we adopt Reiter’s ap-

proach to model actions with durations and delayed effects. The only difference is

that the term process refers to both fluents and continuous processes.

Reiter adds explicit representation for time to situation calculus which allows

63

to specify the exact times, or a range of times, at which actions in a world history

must occur. The temporal argument is added to all instantaneous actions, denoting

the actual time at which an action occurs. For example, bounce(ball,wall,7.3) is the

instantaneous action of ball bouncing on wall at time 7.3. Here time refers to global

time unlike our approach where local time is used.

New function symbols are introduced in the language to handle the temporal

argument. A new function symbol time : action → reals is introduced. time(a) de-

notes the time of occurrence of action a. For example, time(bounce(ball,wall,7.3))=7.3.

Another function symbol start : situation → reals is introduced. start(s)

denotes the start time of situation s. Therefore,

start(do(a, s)) = time(a).

The start time of the initial situation, s0 is arbitrary and may or may not

be defined depending on the application. In our approach the initial state starts at

global time 0.

In sitcalc, every action takes time as one of its arguments and every fluent takes

situation as one of its arguments. In our approach, the time and state parameters

are not explicitly mentioned in the statements of H but it is implied that they are

associated with every action and process.

The value of a fluent with the situation argument s is its value at the start

time of s. For example, the functional fluent height(s) denotes height at the start

time of s and height(do(a, s)) denotes height at the start time of do(a, s).

64

The language does not provide any features to compute the value of a fluent

at a time other than the start time of a situation. If there is an action that occurs at

every time point then it is possible to define fluent values at every time point.

In language H, we have a collection G of functions for defining continuous

processes. For instance in example (2.1) from chapter 2 we have functions f0 and f1

for defining height.

Let us do an axiom by axiom comparision of situation calculus and H. For this

we will model the Example 2.1 from chapter 2 in situation calculus. In that example

we had actions drop and catch and processes holding and height. The continuous

process height will be treated as a functional fluent. holding will be treated as a

relational fluent.

To reason about the effects of actions situation calculus uses three kinds of

axioms namely action precondition axioms, successor state axioms and unique names

axiom for actions.

Action precondition axioms specify conditions that must be satisfied in order

for an action to be executed in any situation. They can be considered as counterparts

of executability conditions of language H. They are more powerful than executability

conditions in the sense that they can be used to determine the occurrence times of

natural actions. The following example demonstrates how to use action precondition

axioms to predict the occurrence times of a natural action such as bounce.

65

Example 6.1

poss(bounce(t), s) ≡ isFalling(s) ∧

{height(s) + vel(s)[t− start(s)]−

1

2
G[t− start(s)]2 = 0}.

Note that in situation calculus lower case letter are used to denote variables and

upper case letters are used to denote constants. height(s) and vel(s) are the height

and velocity of the ball at start of situation s. poss(bounce(t), s) means that bounce

is physically possible at time t during situation s.

The action precondition axioms for drop and catch from Example 2.2 will be

poss(drop(t), s) ≡ holding(s) ∧ height(s) 6= 0.

poss(catch(t), s) ≡ ¬holding(s).

Successor state axioms define the value of a relational fluent or functional

fluent in the successor situation resulting from performing an action in the current

situation. It has two parts. The first part defines what action causes the fluent to

have a new value in the successor situation. The second part captures inertia. It says

that the fluent will retain its value from the current situation if the action had no

effect on the fluent. Let us define the fluents holding and height from Example 2.2

using successor state axioms of situation calculus.

holding(do(c, s)) ≡ (∃t) catch(t) ∈ c ∨

holding(s) ∧ ¬(∃t)drop(t) ∈ c.

(6.1)

66

¬holding(do(c, s)) ≡ (∃t) drop(t) ∈ c ∨

¬holding(s) ∧ ¬(∃t)catch(t) ∈ c.

(6.2)

height(do(c, s)) = h ≡ holding(s) ∧ h = height(s) ∨

¬holding(s) ∧ h = height(s)− 1

2
G time(c)2.

(6.3)

The concurrent action c in the above statements is a collection of simple actions that

occur at the same time. As you can see the successor state axiom for a fluent f

provides the dual functionality of a dynamic causal law of H with f in the head and

the inertia axiom for f in a single statement. Note that we use state constraints to

define height in Example 2.1.

Consider the axiom (6.2). Suppose that in the initial situation S0, holding is

true. Now suppose that action drop occurs at global time 0 causing holding to be

false in the resulting situation S1. This means that holding is false at 0. In other

words, it is uniquely defined at 0. This is possible because the start time of S0 is not

defined.

In our approach we use local time. Suppose that at local time 0 of the initial

state , holding is true. Now suppose that the ball is dropped at this time. This causes

holding to be false at local time 0 of the successor state. Since both these local times

map to the same global time 0, holding is not uniquely defined at 0. Global time 0

is the point of transition for the value of holding from true to false.

67

Coming to implementation, axioms of situation calculus are translated into

rules of Prolog. The resulting program can be verified for correctness by querying

the prolog interpreter for fluents values and occurrence times of actions. The existing

prolog systems support floating point numbers, thereby allowing fluent values and

occurrence times of actions to be real numbers. Reiter’s group uses the Eclipse Prolog

system primarily because, as implied by its name - the ECLiPSe Constraint Logic

Programming System - provides built in constraint solving libraries that are used for

temporal reasoning.

Most of the existing prolog systems suffer from floundering, omit ‘occurs check’

and are not capable of generating multiple models. Eclipse Prolog overcomes some

problems involving non-ground negative atoms but suffers from other drawbacks.

We translate statements of H into rules of A-Prolog. A-Prolog uses a reasoning

algorithm that is completely different from the one Prolog uses and overcomes many

of Prolog’s shortcomings. A-Prolog programs can have multiple models which means

that A-prolog can handle non-determinism. It is also capable of representing defaults.

The task of predicting the values of processes and the occurrence times of

actions is reduced to computing answer sets of A-Prolog programs. We use existing

answer set solvers like SMODELS to compute answer sets of our programs.

Reiter’s main goal was to model natural actions- actions that occur in response

to known laws of physics. For example, a ball bouncing on the floor after being

dropped. The occurrence time of bounce is determined by Newtonian equations.

68

In order to represent such an action the laws of physics are embodied in action

precondition axioms as in example 6.1.

In our language H there are no special axioms that will define when a natural

action such as bounce will occur. In chapter 2 we mentioned that this task will be

accomplished by writing action triggers. Let us look at an example where we write

triggers.

Suppose that a book was dropped from a height h above the ground. The

time at which it hits the ground is equal to
√

2 ∗ h/g where g is acceleration due

to gravity. In order to determine the time of occurrence of hit ground we need to

know the initial value of height plus we need to know whether the book is falling or

someone is holding it. For this we will use the fluent holding.

We will define the relation act poss that defines the possible time, t, at which

hit ground can occur as follows:

function f.

act poss(hit ground, f(H), I) : − val(H, height, 0, I),

H > 0,

val(false, holding, 0, I).

f is a user defined function that is linked to lparse that returns the value
√

2 ∗H/g.

The following rule says that the action hit ground will occur at time t of step i if t

69

is the time at which it is supposed to occur and t is a time point during step i.

o(hit ground, T, I) : − act poss(hit ground, T, I),

in(T, I).

An other approach to modeling natural worlds is to get rid of natural actions

and just have processes. The effects of actions will then be captured by process

definitions. This may probably lead to complex process definitions but it gives us

another approach to compare with.

Example 6.2 Let us revisit the Example 2.2 from chapter 2 . We will model this

example again but with a different approach. We will get rid of the natural action

bounce.

The action description AD1 that we constructed previously will be modified.

Let us call this modified version as AD
′

1. Please note that velocity will be treated as

a continuous process now.

The corresponding signature Σ
′

1 contains the continuous processes position

and velocity and fluents position(0), position(end), velocity(0), velocity(end).

G
′

1 contains the functions

f0(Y0, V0, T) =



















Y0 if T = 0.

f0(Y0, V0, T − 1) + f1(V0, Y0, T − 1) if T > 0.

70

f1(V0, Y0, T) =















































































V0 if T = 0.

V0 if f0(Y0, V0, T) 6= wp1 and

f0(Y0, V0, T) 6= wp2 and

T > 0.

−V0 otherwise.

where Y0 ∈ range(position), V0 ∈ range(velocity) and wp1, wp2 are constants de-

noting the position of the walls w1 and w2 respectively. The process position will be

defined by the state constraint

position = f0(Y0, V0, T) if position(0) = Y0,

velocity(0) = V0.

which says that position will be defined by Newtonian equations in any state. velocity

is defined by the state constraint

velocity = f1(V0, Y0, T) if velocity(0) = V0,

position(0) = Y0.

which says that the direction of velocity will change only when the position of the

ball is the same as the position of a wall. This is of course when velocity is not zero.

The effects of the action bounce are captured by the function f1.

When we look at Examples 6.2 and 2.2, and the way they are modeled in

H there is not much difference. The advantage of Example 6.2 is that when we

implement it using A-Prolog, the answer set solver need not compute occurrence

times of bounce.

71

When we implement Example 2.2 we have to write extra rules that will com-

pute the occurrence times of bounce. These computations cost us time. The approach

suggested by Example 6.2 is just one way of improving efficiency.

Let us discuss some of the limitations of H. Language H is not capable of

representing the effects of several concurrently executing actions on a process. We

will use the features of SMODELS to reason about such effects. Let us look at the

following example.

Example 6.3 Consider the actions deposit and withdraw that effect the balance of

a bank account. Now suppose that multiple deposits and withdrawals were made

from the same account at the same time. The resulting balance can be computed by

adding all the deposits to the existing balance and subtracting all the withdrawals

from it. We will now see how to do this using weight rules of SMODELS.

Let us construct an action description, AD4 of H describing the above domain. The

corresponding signature Σ4 contains the actions deposit(A,X) and withdraw(A,X)

which denote depositing X dollars into account A and withdrawing X dollars from

account A respectively and the fluents increase(A), decrease(A) and balance(A).

increase(A) and decrease(A) are numerical fluents that denote the increase and de-

crease in account A respectively. The range(balance(A)), range(increase(A)) and

range(decrease(A)) is the set of real numbers.

The effects of the action deposit(A,X) will be given by the causal law:

deposit(A,X) causes increase(A) = X.

72

which says that depositing X dollars into account A at time end in a state s causes

an increase of X dollars in account A in any successor state of s. It is translated as

val(X, increase(A), 0, I + 1) : − o(deposit(A,X), T, I),

account(A),

range(balance(A), X).

The effects of the action withdraw will be given by the causal law:

withdraw(A,X) causes decrease(A) = X.

which is translated as

val(X, decrease(A), 0, I + 1) : − o(withdraw(A,X), T, I),

account(A),

range(balance(A), X).

We cannot define balance(A) using our language but we can write the following rules

in the language of SMODELS.

#weight val(X,P, T, I) = X.

73

val(X, balance(A), 0, I + 1) : − val(X0, balance(A), 0, I),

X1[val(X3, increase(A), 0, I + 1) : range(balance(A), X3)]X1,

X2[val(X4, decrease(A), 0, I + 1) : range(balance(A), X4)]X2,

X = X0 + X1 −X2,

range(balance(A), X0),

range(balance(A), X1),

range(balance(A), X2),

range(balance(A), X),

account(A).

The total increase and decrease in each account A, is computed by using the weight

literals

X1[val(X3, increase(A), 0, I + 1) : range(balance(A), X3)]X1,

X2[val(X4, decrease(A), 0, I + 1) : range(balance(A), X4)]X2.

To be able to determine whether these weight literals are satisfied the weight decla-

ration ‘#weight val(X,P, T, I) = X.’ is used to assign weights to each atom of the

form val(X,P, T, I). In this case the weight of the atom val(X,P, T, I) is X.

For example, X1[val(X3, increase(A), 0, I + 1) : range(balance(A), X3)]X1, is

satisfied if the sum of weights of the satisfied literals of the form

val(X3, increase(A), 0, I + 1)

is equal to X1 where X1 ∈ range(balance(A)). Intuitively, it can be viewed as

aggregating over elements of a set.

74

The new balance is obtained by adding the total increase to the existing

balance and then subtracting the total decrease from it. The rule that we used to

define balance(A) is called a weight rule.

An other approach to implementing Example 6.3 is to use ASET-Prolog+ [16]

which is an extension of A-Prolog by sets and aggregates. Functions such as sum

of elements of a set and cardinality of a set are implemented in this language. The

answer sets of ASET-Prolog+ programs are computed by an inference engine called

the ASET-solver.

Like H, the language of situation calculus is not capable of representing the

effects of several concurrently executing actions on a fluent. Instead sitcalc depends on

the implementation to reason about such effects. Eclipse Prolog has built in aggregate

functions such as sum(L) which returns the sum of elements of list L. sum(L) can be

used to define balance(A) from Example 6.3.

6.2 Language ADC

The language ADC was introduced by Baral, Son, and Tuan in [4] as a lan-

guage for specifying actions with durations, continuous effects, delayed effects, and

dependency on non-sharable resources.

ADC(Actions with Delayed and Continuous effects) is the first language to use

a transition function based approach to dealing with such actions. Language H also

uses a transition function based approach for dealing with such actions.

75

In ADC, actions can have delayed and continuous effects. This means that

effects of actions might not happen immediately or can last over a period of time and

therefore actions are associated with time intervals of the form [t1, t2] where t1, t2 are

real numbers such that 0 ≤ t1 ≤ t2.

Example 6.4 The action of driving a car for 10 units of time with velocity v will be

represented as drive0,10(v).

As mentioned earlier language H adopts Reiter’s approach for dealing with ac-

tions with durations and delayed effects. For example, the action drive in example 6.4

will be represented by the fluent driving and instantaneous actions start drive(v) and

end drive. start drive(v) causes driving to be true and end drive causes driving to

be false.

Since the duration of drive is not captured in our representation, we have to

write a trigger for end drive which says that end drive will occur after 10 units of time

since start drive(v) was executed. Similarly, sitcalc will need triggers to characterize

actions with fixed durations.

When actions do not have fixed durations, ADC adopts Reiter’s approach of

using processes. The start and end actions are treated as instantaneous actions which

initiate and terminate processes.

Let us look at how actions with delayed effects are represented in languages

ADC and H.

76

Example 6.5 Consider a time bomb that explodes when the time left on its timer

becomes zero. In language ADC, we will represent the action of setting a timer to

x units of time as set timer(x). This action causes the bomb to explode which is

represented by the fluent explosion. The following proposition of ADC represents

this effect.

set timer(x) causes explosion from x to x.

In the above statement, the x in “x to x” denotes x time units relative to the

time point when set timer was executed. Therefore, the above causal law says that

set timer(x) causes explosion after exactly x time units since its execution. This

action does not have continuous effects and the only effect is at the xth time unit.

This is suggested by the “to x” in the above statement. In ADC, lower case letters

are used to denote variables.

Let us construct an action description AD6 of H describing this example. The corre-

sponding signature Σ6 contains the actions set timer(X), detonate, continuous pro-

cess time left and fluents explosion, time left(0) and time left(end). explosion is

a boolean fluent; range(time left) is the set of non-negative real numbers. Let G6

contain the function

f6(X,T) =



















X if T = 0.

f6(X,T − 1)− 1 if T > 0.

where X ∈ range(time left) and T is a variable for time. Setting the timer to X

77

time units initializes time left to X. Therefore, we write

set timer(X) causes time left(0) = X.

time left will be defined by the state constraints

time left = f6(X,T) if time left(0) = X.

which says that time left will decrement with every time unit. The action detonate

will be triggered when time left becomes 0 causing explosion. Therefore, we write

detonate causes explosion.

The trigger for detonate will not be part of AD6.

When we compare both representations, the reader might observe that there

are no time intervals associated with actions of H. Instead the time intervals are

associated with the states of the transition diagram as in Figure 1.2.

ADC contains the following propositions to characterize the effects of actions:

executable a if c1, . . . , ck. (6.4)

a needs r1, . . . , rm. (6.5)

a causes f = valf(f, f1, . . . , fn, t) from t1 to t2. (6.6)

a contributes valf(f, f1, . . . , fn, t) to f from t1 to t2. (6.7)

a initiates p from ts. (6.8)

78

a terminates p at ts. (6.9)

p is associated with f = valf(f, f1, . . . , fn, t). (6.10)

p is associated with f ← valf(f, f1, . . . , fn, t). (6.11)

When we compare these propositions with the statements of H, we see that

every proposition except for (6.7) has a counterpart in H. The executablity conditions

of H are counterparts of the propositions (6.4) and (6.5). The dynamic causal laws

of H, without the preconditions, are counterparts of the propositions (6.6), (6.8) and

(6.9).

Propositions (6.10) and (6.11) contain functions for evaluating f . The state

constraints of H with empty bodies can be viewed as counterparts of these proposi-

tions. For example, height = f0(50, T). The version of ADC presented in [4] does

have conditional effects and state constraints.

The proposition (6.7) affects the value of f at t1 by contributing an increase

specified by valf(f, f1, . . . , fn, t) during the interval [t1, t2]. Let us look at an example

from [4].

Example 6.6 Suppose that driving a car with velocity v for 10 units of time consumes

c(v) units of gasoline per unit time. This is expressed as:

drive0,10(v) contributes − c(v) ∗ t to gas in tank from 0 to 10.

And suppose that filling gas for 10 units of time will increase the amount of gasoline

79

by 2 ∗ t. This is expressed as:

fill gas0,10 contributes 2 ∗ t to gas in tank from 0 to 10.

Let us assume that while driving we can refill and that initially the gas in tank was

20. Suppose that action drive1,10(3) starts its execution at time 0 and fill gas0,10

starts it execution at time 0. Let c(3) = 1.5. The net value of gas in tank at time 1

will be = 20− 1.5 ∗ 1 + 2 ∗ 1 which is 20.5. Similarly at time 2, gas in tank = 21 and

so on.

As mentioned earlier, language H and sitcalc depend on the implementation to

represent the effects of several concurrently executing actions. Note that properties

of objects that change continuously with time are still referred to as fluents in the

language of ADC.

We will now discuss the semantics for action theories in ADC. In the presence

of time and delayed effects, the effects of an action might not happen immediately

or might last over a time interval. Therefore, a state encodes not only the fluent

values but also obligations due to delayed effects of recent actions and actions under

execution.

A state is a pair 〈I,Q〉 where I is an interpretation and Q is a set of future

effects. An interpretation I maps a fluent f to a value v ∈ dom(f). Given that

a1, . . . , an are executable in a state s, a function Φ(s, {(a1, t1), . . . , (an, tn)}, t), where

t1 ≤ t2 . . . ≤ tn ≤ t, expresses the state of the world after t units of time from the time

t0 corresponding to s assuming that the actions a1, . . . , an were started at relative (to

80

t0) times t1, . . . , tn respectively. Note that t is a number ≥ 0. If the effects of the

actions a1, . . . , an terminate at a time, t′ such that t′ < t then the values of fluents

during (t′, t] will be defined by inertia.

InADC, all notions of time are relative. In sitcalc, time is the actual occurrence

time of an action. In our approach, time is local. But it is possible to predict global

values of processes by mapping local time into global time.

The version of ADC presented in [4] does not allow conditional effects and

temporal preconditions. Examples such as 2.2 in which the effects of actions depend

on the value of some fluents temporally and conditionally, cannot be modeled using

this version of ADC. It does not contain state constraints and therefore will be unable

to model examples such as 4.1.

The authors of [4] are planning to enhanceADC by adding new features such as

those for expressing temporal preconditions, conditional effects, or state constraints.

They use a Java planner to implement their action theories. Results are satisfactory.

81

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this thesis we introduced the action language H for modeling hybrid do-

mains. We looked at many examples and showed how they are modeled in this

language. The syntax and semantics of the language were defined. We implemented

action theories of H using A-Prolog. Some examples involved planning and diagnosis.

We were able to show that language H overcomes many of the limitations of

sitcalc and ADC. It provides almost all the functionalities of sitcalc and ADC and

can model domains that cannot be modeled by the other two.

Using local time not only improves efficiency but also allows us to represent

different kinds of time units. For instance, given a transition diagram, TD, the local

time of a state, s ∈ TD, could represent time in the order of seconds, while the local

time of an other state could represent minutes or hours.

For example, consider the action set timer(X) that sets the timer on a mi-

crowave to X time units. The local time of a state resulting from performing this

action represents either minutes or seconds, depending on whether X is minutes or

seconds.

Now let us look at some future work prospects. One area for future research

is delayed grounding. By delayed grounding we mean that functional values and

82

times are grounded if and only when needed. This could reduce the program size and

improve efficiency.

Another area for future research is developing mechanisms for efficient planning

and diagnosis. In chapter 5, there were some scenarios where a diagnosis could not

be found. We had some ideas on how to do a diagnosis in such circumstances. One

of the them was to introduce an external program called monitor that would interact

with the A-Prolog programs, do most of the computations, and help in diagnosis. We

would like to pursue this idea in the future.

Hybrid systems often involve control. An agent acting in such a system should

be reactive and deliberative. A reactive agent is one that acts with respect to its sensor

data. A deliberative agent is one that acts with respect to its goals.

Example of a system that combines reactive and deliberative reasoning is the

Mars rover. If the Mars rover finds a rock that is interesting, it would come up with

a plan to reach the rock, and execute it. Hence it is deliberative in this case. On

its way to the rock it may come across obstacles. The system converts its sensory

data to motion vectors to avoid obstacles. Hence it is reactive in this case. Some-

times it replans depending on the sensor data in which case it combines reactive and

deliberative reasoning.

In this thesis we have not addressed how to combine reactive and deliberative

reasoning. We would like to address this issue in the future.

83

REFERENCES

1. M. Balduccini and M. Gelfond. Diagnostic reasoning with A-Prolog. In Jour-

nal of Theory and Practice of Logic Programming (TPLP), 3(4-5):425-461, Jul

2003.

2. M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring

Rules. In AAAI Spring 2003 Symposium, 2003.

3. C. Baral and M. Gelfond. Reasoning agents in dynamic domains. In Minker,

J,. ed., Logic-Based AI, Kluwer Academic publishers, (2000), 257-279.

4. C. Baral, T. Son and L. Tuan. A transition function based characterization of

actions with delayed and continuous effects. In Proceedings of KR’02, pages

291-302.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming,

In Logic Programming: Proceedings of the Fifth International Conference and

Symposium, 1988, pp. 1070-1080.

6. M. Gelfond and V. Lifschitz. Action Languages. In Electronic Transactions on

Artificial Intelligence, 3(6), 1998.

84

7. M. Gelfond and R. Watson. On Methodology of Representing Knowledge in

Dynamic Domains. In Proceedings of the 1998 ARO/ONR/NSF/DARPA Mon-

terey Workshop on Engineering Automation for Computer Based Systems, pp.

57-66, 1999.

8. V. Lifschitz, Two components of an action language, In Annals of Mathematics

and Artificial Intelligence, Vol. 21, 1997, pp. 305-320.

9. V. Lifschitz. Action languages, Answer Sets and planning. In The Logic Pro-

gramming Paradigm:a 25 year perspective.357-373, Springer Verlag, 1999.

10. Norman McCain and Hudson Turner. A causal theory of ramifications and

qualifications. In proceedings of IJCAI-95, pages 1978-1984, 1995.

11. Norman McCain and Hudson Turner. Causal theories of action and change. In

proceedings of AAAI-97, pages 460-465, 1997.

12. I.Niemela and P.Simons. Smodels - an implementation of the stable model

and well founded semantics for normal logic programs. In Proceedings of LP-

NMR’97, pages 420-429, 1997.

13. R. Reiter. Natural actions, concurrency and continuous time in the situation

calculus. In Principles of Knowledge Representation and Reasoning: Proceed-

85

ings of the Fifth International Conference (KR’96), pages 2-13, Cambridge,

Massachusetts, U.S.A., November 1996.

14. R. Reiter. Time, concurrency and processes. In Knowledge in action: Logical

Foundations for specifying and implementing dynamical systems, pages 149-183,

ISBN 0-262-18218-1, MIT, 2001.

15. Richard Watson and Sandeep Chintabathina. Modeling hybrid systems in ac-

tion languages. In the proceedings of the 2nd intl ASP’03 workshop, pages 356-

370, Messina, Sicily, Italy, September 2003.

16. Mary Heidt. Developing an inference engine for ASET-Prolog. Master’s thesis,

University of Texas at El Paso, Dec 2001.

86

APPENDIX A

IMPLEMENTATION OF WATER TANK EXAMPLE

A-Prolog code for implementing the water tank example 4.1 from chapter 4.

% Declarations

% actions

action(turn(open),agent).

action(turn(close),agent).

% processes

process(open,fluent).

process(inflow rate,fluent).

process(outflow rate,continuous).

process(volume,continuous).

% time

const m=6.

time(0..m).

#domain time(T;T1;T2).

% step

const n=2.

step(0..n).

#domain step(I).

% Range of processes

87

range(open,true).

range(open,false).

range(inflow rate,0).

range(inflow rate,3).

values(0..60).

% Suppose that the maximum volume of the tank

% whose length is 4 m , breadth is 3 m and height is

% 5 m is 60 cubic meter.

range(volume,Y) :- values(Y).

% The maximum value of outflow rate is 10.

range(outflow rate,Y) :- values(Y),

Y <= 10.

% Domain independent axioms

% A process cannot have two values at the same time.

−val(Y 2, PN, T, I) :- val(Y 1, PN, T, I),

neq(Y 2, Y 1),

process(PN,PT),

range(PN, Y 1),

range(PN, Y 2).

% Axioms for defining ‘end’ of a state.

88

end(T, I) :- o(AN, T, I),

action(AN,AT).

% If no action occurs during a step then the step will

% end at the last possible time unit.

{end(m, I)}1.

% No state can have more than one end.

:- end(T1, I),

end(T2, I),

neq(T1, T2).

% Every state must end.

ends(I) :- end(T, I).

:- not ends(I).

% Axioms that define ‘in’ and ‘out’.

out(T, I) :- end(T1, I),

T > T1.

in(T, I) :- not out(T, I).

% The value of fluent does not change with time.

89

val(Y, PN, T, I) :- val(Y, PN, 0, I),

in(T, I),

process(PN, fluent),

range(PN, Y).

% Inertia axiom: ”Things normally stay as they are.”

val(Y, PN, 0, I + 1) :- val(Y, PN, T, I),

end(T, I),

not − val(Y, PN, 0, I + 1),

process(PN,PT),

range(PN, Y).

% Reality Check (obs(Val,Process,T,I))

:- obs(Y, PN, T, I),

not val(Y, PN, T, I),

process(PN,PT),

range(PN, Y).

o(AN,T,I) :- hpd(AN, T, I),

action(AN,AT).

% Axiom for defining initial state.

90

val(Y,PN,0,0) :- obs(Y, PN, 0, 0),

process(PN,PT),

range(PN, Y).

% Process definitions

% 1. open

% Dynamic causal law describing effects of ‘turn(open)’

val(true, open, 0, I + 1) :- o(turn(open), T, I).

% Executability conditions for ‘turn(open)’

:- o(turn(open), T, I),

val(true, open, T, I).

% Dynamic causal law describing effects of ‘turn(close)’

val(false, open, 0, I + 1) :- o(turn(close), T, I).

% Executability conditions for ‘turn(close)’

:- o(turn(close), T, I),

val(false, open, T, I).

% 2. inflow rate

% State constraints defining ‘inflow rate’

% If the faucet is open , inflow is 3.

val(3, inflow rate, T, I) :- val(true, open, T, I).

91

% If the faucet is closed, inflow is 0.

val(0, inflow rate, T, I) :- val(false, open, T, I).

% 3. outflow rate

% State constraints defining ‘outflow rate’

% outflow rate is a function of the water level of the tank

function f4′.

val(f4′(Y), outflow rate, T, I) :- val(Y, volume, T, I),

range(volume, Y).

% 4. volume

% State constraints defining ‘volume’

function f3′.

val(f3′(Y 0, N), volume, T + 1, I) :- val(Y 0, volume, T, I),

val(N, inflow rate, T, I),

in(T + 1, I),

range(volume, Y 0),

range(inflow rate,N).

92

% History

obs(25, volume, 0, 0).

obs(false, open, 0, 0).

hpd(turn(open), 0, 0).

hpd(turn(close), 3, 1).

% Defining some relations to get better looking output.

volume(Y, T, I) :- val(Y, volume, T, I),

range(volume, Y).

outflow rate(Y, T, I) :- val(Y, outflow rate, T, I),

range(outflow rate, Y).

inflow rate(Y, T, I) :- val(Y, inflow rate, T, I),

range(inflow rate, Y).

% SMODELS directives to hide and show relations.

hide.

show inflow rate(Y, T, I),

volume(Y, T, I),

outflow rate(Y, T, I).

93

