
USA-Smart: Improving the Quality of Plans in Answer
Set Planning

Marcello Balduccini

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA
phone: +1 806 742 1191

fax: +1 806 742 3519

marcello.balduccini@ttu.edu

Abstract. In this paper we show how CR-Prolog, a recent extension of A-Prolog,
was used in the successor of USA-Advisor (USA-Smart) in order to improve the
quality of the plans returned. The general problem that we address is that of im-
proving the quality of plans by taking in consideration statements that describe
“most desirable” plans. We believe that USA-Smart proves that CR-Prolog pro-
vides a simple, elegant, and flexible solution to this problem, and can be easily
applied to any planning domain. We also discuss how alternative extensions of
A-Prolog can be used to obtain similar results.

Keywords: planning, answer set programming, preferences.

1 Introduction

In recent years, A-Prolog – the language of logic programs with the answer set
semantics [11] – was shown to be a useful tool for knowledge representation and
reasoning [10]. The language is expressive and has a well understood method-
ology of representing defaults, causal properties of actions and fluents, various
types of incompleteness, etc. The development of efficient computational sys-
tems [15,6,14,18] has allowed the use of A-Prolog for a diverse collection of
applications [12,17,19,16].

In previous papers [17,2], we have shown how A-Prolog was used to build a
decision support system for the Space Shuttle (USA-Advisor). USA-Advisor is
capable of checking the correctness of plans and of finding plans for the opera-
tion of the Reaction Control System (RCS) of the Space Shuttle. Plans consist
of a sequence of operations to open and close the valves controlling the flow of
propellant from the tanks to the jets of the RCS.

Under normal conditions, pre-scripted plans exist that tell the astronauts what
should be done to achieve certain goals. However, failures in the system may

render those plans useless, and the flight controllers have to come up with alter-
native sequences that allow the completion of the mission and ensure the safety
of the crew. USA-Advisor is designed to help in this task by ensuring that plans
meet both criteria. Moreover, its ability to quickly generate plans allows the
controllers to concentrate on higher-level tasks.

In this paper we show how CR-Prolog [1,3], a recent extension of A-Prolog,
was used in the successor of USA-Advisor (USA-Smart) in order to improve
the quality of the plans returned. The general problem that we address here is
that of improving the quality of plans by taking in consideration statements that
describe “most desirable” plans. We believe that USA-Smart proves that CR-
Prolog provides a simple, elegant, and flexible solution to this problem, and can
be easily applied to any planning domain.

The present work builds on the ability of CR-Prolog to return “most reasonable”
solutions to a problem encoded by a CR-Prolog program. Besides regular A-
Prolog rules, the programmer specifies a set of rules (cr-rules) that may possibly
be applied – although that should happen as rarely as possible – as well as
a set of preferences on the application of the cr-rules. The “most reasonable”
solutions correspond to those models that best satisfy the preferences expressed,
and minimize the applications of cr-rules.

The paper is structured as follows. We start with a brief, informal, presentation
of CR-Prolog. Next, we describe the Reaction Control System and the design
of USA-Smart. In the following two sections we present the planner used in
USA-Smart. Finally, we discuss related work, summarize the paper, and draw
conclusions.

2 CR-Prolog

CR-Prolog is an extension of A-Prolog that consists of the introduction of consistency-
restoring rules (cr-rules) with preferences.

CR-Prolog programs consist of regular rules and cr-rules. Aregular rule is a
statement:

r : h1 or h2 or . . . or hk : − l1, . . . , lm,
not lm+1, . . . , not ln

(1)

wherer is the name of the rule,hi’s andli’s are literals,h1 or . . . or hk is the
head, andl1, . . . , lm, not lm+1, . . . , not ln is the body. The intuitive reading of
(1), in terms of the beliefs that a rational agent complying with the rule should
have, is: “if the agent believesl1, . . . , lm and does not believelm+1, . . . , ln,

then it must believe one element of the head of the rule.”1 In order to increase
the readability of the programs, we allow regular rules withchoice atomsin the
head [15]:

r : L{p(X̄) : q(X̄)}U : − l1, . . . , lm,
not lm+1, . . . , not ln

(2)

Intuitively, the head of this rule defines subsetp ⊆ q, such thatL ≤ |p| ≤ U .
Although this form can be translated in rules of type (1), it allows for more
concise programs, in particular when writing planners.

A cr-rule is a statement of the form:

r : h1 or h2 or . . . or hk +− l1, . . . , lm,
not lm+1, . . . , not ln

(3)

The cr-rule intuitively says that, if the agent believesl1, . . . , lm and does not
believelm+1, . . . , ln, then it “may possibly” believe one element of the head.
This possibility is used only if there is no way to obtain a consistent set of beliefs
using regular rules only. (For the definition of the semantics of CR-Prolog, see
[3].)

Let us see how cr-rules work in practice. Consider the following program:

r1 : p or q +−not t.
r2 : s.

Since the program containing onlyr2 is consistent,r1 need not be applied.
Hence, there is only one answer set:{s}. On the other hand, program

r1 : p or q +−not t.
r2 : s.
r3 : : −not p, not q.

has two answer sets:{s, p} and{s, q}. (An empty head means that the body of
the rule must never be satisfied.)

Preferences between cr-rules are encoded by atoms of the formprefer(r1, r2),
wherer1 and r2 are names of cr-rules. The intuitive reading of the atom is
“do not consider sets of beliefs obtained usingr2 unless you have excluded
the existence of belief sets obtained usingr1.” We call this type of preference
binding.

1 As usual with the semantics of epistemic disjunction, the rule forces the agent to believe only
oneliteral, bu he may be forced to believe also other elements of the head by other rules in the
program.

To better understand the use of preferences, consider programΠ1:

r1 : p +−not t.
r2 : q +−not t.
r3 : prefer(r1, r2).

Π1 has one answer set:{prefer(r1, r2)}. Notice that cr-rules are not applied,
and hence the preference atom has no effect. Now consider programΠ2 = Π1∪
{r4 : : −not p, not q}. Now cr-rules must be used to restore consistency. Since
r1 is preferred tor2, the answer set is:{p, prefer(r1, r2)}. Finally, consider
Π3 = Π2 ∪ {r5 : : −p}. Its answer set is:{q, prefer(r1, r2)}.
In the rest of the discussion, we will omit rule names whenever possible. Now
we describe in more detail the RCS and present the design of USA-Smart.

3 The RCS and the Design of USA-Smart

The RCS is the Shuttle’s system that has primary responsibility for maneuvering
the aircraft while it is in space. It consists of fuel and oxidizer tanks, valves
and other plumbing needed to provide propellant to the maneuvering jets of the
Shuttle. It also includes electronic circuitry: both to control the valves in the
propellant lines and to prepare the jets to receive firing commands.

The RCS is divided in three subsystems: the forward RCS, the left RCS, and
the right RCS. Each subsystem controls jets located in different parts of the
craft. For most maneuvers, two or more subsystems have to be used concur-
rently. Each subsystem has its own propellant tanks, plumbing, circuitry, and
jets. There is almost no connection between the subsystems, with the only im-
portant exception of the crossfeed, which connects the plumbing of the left and
right subsystems. The crossfeed is valve-controlled, and is intended to be used
when one of the two subsystems is affected by faults that prevent the use of its
own propellant. It is NASA’s policy to use the crossfeed as sparingly as possible,
in order to keep the level of propellant in the two subsystems balanced.

The RCS is computer controlled during takeoff and landing. While in orbit,
however, astronauts have the primary control. When an orbital maneuver is re-
quired, the astronauts must perform whatever actions are necessary to prepare
the RCS. These actions generally require flipping switches, which are used to
open or close valves, or to activate the proper circuitry. Acting on the valves will
allow propellant to reach the jets that are involved in the maneuver. When the
operation is complete, the jets are “ready for the maneuver.” In emergency situ-
ations, such as when some switches are faulty, the astronauts communicate the
problem to the ground flight controllers, who will come up with a sequence of

computer commands to perform the desired task and will instruct the Shuttle’s
computer to execute them. At the same time, they will send to the astronauts a
sequence of operations on the switches that must be combined with the com-
puter commands. Instructing the computer to operate the valves is quite com-
plex, since it requires modifying the computer’s software and uploading it to
the Shuttle. For this reason, flight controllers prefer the use of switches, when
possible.

During normal Shuttle operations, there are pre-scripted plans that tell the astro-
nauts which switches should be flipped to achieve certain goals. The situation
changes when there are failures in the system. The number of possible sets of
failures is too large to pre-plan for all of them. Continued correct operation of
the RCS in such circumstances is necessary to allow for the completion of the
mission and to help ensure the safety of the crew.

USA-Smart is designed to help achieve this goal by generating plans for emer-
gency situations, and by verifying the correctness, and the safety, of the plans
proposed by the flight controllers.

Like its predecessor, USA-Smart consists of a collection of largely independent
modules, represented by lp-functions2, and a graphical Java interface. The in-
terface provides a simple way for the user to enter information about the history
of the RCS, its faults, and the task to be performed. The two tasks possible are:
checking if a sequence of occurrences of actions satisfies goalG, and finding
a plan forG of a length not exceeding some number of steps,N . Based on
this information, the graphical interface verifies if the input is complete, selects
an appropriate combination of modules, assembles them into a CR-Prolog pro-
gram,Π, and passesΠ as input to a reasoning system for computing answer sets
(in USA-Smart this role is played byCRMODELS3, which performs the underly-
ing computations usingSMODELS4[15]). In this approach the task of checking
a planP is reduced to checking if there exists a model of the programΠ ∪ P .

Plan generation is performed by the planning module; the corresponding cor-
rectness theorem [16] guarantees that there is a one-to-one correspondence be-
tween the plans and the set of answer sets of the program. Finally, the Java inter-
face extracts the appropriate answer from theCRMODELSoutput and displays it
in a user-friendly format.

The modules used by USA-Smart are:
2 By lp-function we mean a CR-Prolog programΠ with input and output signaturesσi(Π) and
σo(Π) and a setdom(Π) of sets of literals fromσi(Π) such that, for anyX ∈ dom(Π),
Π ∪X is consistent, i.e. has an answer set.

3 http://www.krlab.cs.ttu.edu/Software
4 http://www.tcs.hut.fi/Software/smodels

– the plumbing module;
– the valve control module;
– the circuit theory module;
– the planning module.

The first three modules describe the behavior of the RCS, and are examined in
detail in [17,2]. The planning module establishes the search criteria used by the
program to find a plan.

4 Planning in USA-Smart

The structure of the planning module follows thegenerate, (define) and testap-
proach described in [7,13,9]. Since the RCS contains more than 200 actions,
with rather complex effects, and may require very long plans, this standard ap-
proach needs to be substantially improved. This is done by adding various forms
of heuristic, domain-dependent information5. In particular, the generation part
takes advantage of the division of the RCS in three, largely independent, subsys-
tems. A plan for the RCS can therefore be viewed as the composition of three
separate plans that can operate in parallel.

Plan generation is implemented using the following rule,AGEN :

0{occurs(A,T): action_of(A,R)}1 :- subsystem(R),
involved(R,T).

The intuitive reading ofinvolved(R,T) is “subsystemR is involved at time
T in the maneuver being performed”, andaction of(A,R) means “A is an
action that operates on subsystemR.” Overall,AGEN selects at each time step,
T , at most one action,A, for each subsystem,R, that is involved in the maneu-
ver. (To save space, we omit from the rules the specification of the domains of
variables.)

The precise definition ofinvolved(R,T) is given by the following two rules.
The first rule says that subsystemR is involved in the maneuver at timeT if the
goal for that subsystem has not yet been achieved.

involved(R,T) :- subsystem(R),
not goal(T,R).

The second rule says that subsystemR1 is involved in the maneuver at timeT
if the crossfeed must be used, and ifR1 is connected through the crossfeed to
another subsystem,R2, whose goal has not yet been achieved.

5 Notice that the addition does not affect the generality of the algorithm.

involved(R1,T) :- subsystem(R1), has_crossfeed(R1),
subsystem(R2), has_crossfeed(R2),
neq(R1,R2),
not goal(T,R2).

In our approach, the test phase of the search is the one that most directly controls
the quality of plans. Tests are expressed by constraints, so that, when a sequence
of actions is not a desirable solution according to some test, the body of the
corresponding constraint is satisfied. This guarantees that only “desirable plans”
are returned.

The first step is ensuring that the models of the program contain valid plans.
This is obtained by the constraint:

:- not goal.

The definition ofgoal is:

goal :-
goal(T1,left_rcs),
goal(T2,right_rcs),
goal(T3,fwd_rcs).

The rationale for this definition is that the goal of preparing the Shuttle for a
maneuver is split into several subgoals, each setting some jets, from a particular
subsystem, ready to fire. The overall goal is stated as a composition of the goals
of the individual subsystems.

Several other constraints that are used to encode heuristic, domain-dependent
information are described in [17,2].

In order to improve the quality of plans with respect to the results obtained with
USA-Advisor, the planner of USA-Smart must be able to:

1. avoid the use of the crossfeed if at all possible;
2. avoid the use of computer commands if at all possible;
3. avoid the generation of irrelevant actions.

Notice that these requirements are in some sense defeasible. The planner is al-
lowed to return a solution that does not satisfy some of the requirements, if no
better solution exists.

The A-Prolog based planner used in USA-Advisor is unable to cope with re-
quirements of this type. In fact, A-Prolog lacks the expressive power necessary
to computebestor preferredsolutions.

The adoption of CR-Prolog solves the problem. The key step in encoding a
defeasible test is the introduction of a cr-rule that determines whether the corre-
sponding constraints must be applied. Since cr-rules are used as rarely as possi-
ble, the test will be ignored only when strictly necessary. Moreover, preferences
on cr-rules allow to specify which tests are more important.

Consider requirement 1 above. The corresponding test is encoded by:

r1(R,T): xfeed_allowed(R,T) +- subsystem(R).

:- subsystem(R), action_of(A,R),
occurs(A,T),
opens_xfeed_valve(A),
not xfeed_allowed(R,T).

The cr-rule says that the use of the crossfeed may possibly be allowed at any
time stepT . The constraint says that it is impossible for actionA of subsystem
R to occur atT if A opens a crossfeed valve, and the use of the crossfeed is not
allowed inR at time stepT .

Requirement 2 is encoded in a similar way.

r2(R,T): ccs_allowed(R,T) +- subsystem(R).

:- subsystem(R), action_of(A,R),
occur(A,T),
sends_computer_command(A),
not ccs_allowed(R,T).

The cr-rule says that computer commands may possibly be allowed at any time
stepT . The constraint says that it is impossible for actionA of subsystemR to
occur atT if A sends a computer command and computer commands are not
allowed inR at time stepT .

As we mentioned above, CR-Prolog also allows to express the relative impor-
tance of defeasible tests. For example, if the flight controllers decide that mod-
ifying the software of the Shuttle’s computer is preferable to losing the balance
of the propellant between the left and right subsystems, the following rule can
be added to the planner:

prefer(r2(R2,T2),r1(R1,T1)).

Notice that preferences are not restricted to occur as facts. The rule

prefer(r2(R2,T2),r1(R1,T1)) :- computer_reliable.

says that the use of computer commands is preferred to the use of the crossfeed
only if the on-board computer is reliable. In this case, if we want to make sure
that computer commands are used only as a last resort, we can add:

prefer(r1(R1,T1),r2(R2,T2)) :- -computer_reliable.

(Here “-” is classical negation.)

Avoiding the generation of irrelevant actions (requirement 3 above) is obtained
by a test that ensures that all non-empty time steps in the plan for a subsystem
are strictly necessary. The test is encoded as:

r3(R,T): non_empty(R,T) +- subsystem(R).

:- subsystem(R), action_of(A,R),
occurs(A,T),
not non_empty(R,T).

The cr-rule says that any time stepT of the plan for subsystemR may possibly
be non-empty. The constraint says that it is impossible for actionA of subsystem
R to occur at time stepT if T is empty in the plan forR.

Experimental results confirm that the plans generated by USA-Smart are of a
significantly higher quality than the plans generated by USA-Advisor.

We have applied USA-Smart to800 problem instances from [16], namely the
instances with3, 5, 8, and10 mechanical faults, respectively, and no electrical
faults. For these experiments, we did not include in the planner the preference
statements previously discussed.6

The planning algorithm iteratively invokes the reasoning system with maximum
plan lengthL, checks if a model is returned, and iterates after incrementing
L if no model was found. If no plans are found that are10 or less time steps
long, the algorithm terminates and returns no solution. This approach guarantees
that plans found by the algorithm are the shortest (in term of number of time
steps between the first and the last action in the plan). Notice that the current
implementation ofCRMODELS returns the models ordered by the number of
(ground) cr-rules used to obtain the model, with the model that uses the least cr-
rules returned first. Hence, the plan returned by the algorithm is both the shortest
and the one that uses the minimum number of cr-rules.

Overall, computer commands were used27 times, as opposed to1831 computer
commands generated by USA-Advisor. The crossfeed was used10 times by

6 This decision is due to the fact that the current version ofCRMODELShandles preferences very
inefficiently. Work is well under way in the implementation of a new, efficient algorithm that
will be able to deal with preferences efficiently.

USA-Smart, and187 times by USA-Advisor. Moreover, in327 cases over800,
USA-Smart generated plans that contained less actions than the plans found by
USA-Advisor (as expected, in no occasion they were longer). The total number
of irrelevant actions avoided by USA-Smart was577, which is about12% of the
total number of actions used by USA-Advisor (4601).

In spite of the improvement in the quality of plans, the time required by USA-
Smart to compute a plan (or prove the absence of a solution) was still largely
acceptable. Many plans were found in seconds; most were found in less than
2 minutes, and the program almost always returned an answer in less than20
minutes (the maximum that the Shuttle experts consider acceptable). The only
exception consists of about10 cases, when planning took a few hours. These
outliers were most likely due to the fact thatCRMODELS is still largely unopti-
mized.

5 Advanced Use of Preferences

The quality of plans is significantly influenced by the set of preferences included
in the planner. We have shown in the previous section a simple example of
preferences used in USA-Smart. Now we examine more complex preferences,
the way they interact with each other, and the effect on the solution returned by
the planner.

The first preference that we show deals with the source of the propellant that is
delivered to the jets. In the Space Shuttle, the RCS can optionally be powered
with fuel coming from the three main jets of the craft, that are controlled by
the Orbital Maneuvering System (OMS). However, the propellant cannot be
delivered back from the RCS to the OMS if later needed. Since the OMS jets are
critical for safe re-entry, the use of the OMS propellant for the RCS is avoided
unless there is no other choice. Summing up, either the crossfeed or the OMS-
feed may possibly be used to deliver propellant to the jets, butthe OMS-feed
should not be used unless no plan can be found, that uses the crossfeed. This
statement can be encoded by the following rules: (to simplify the presentation,
we will make the decisions independent of time and of subsystem – e.g. if the
use of the crossfeed is allowed, it may occur at any time step in any subsystem)

xfeed: xfeed_allowed +-.
oms: omsfeed_allowed +-.

prefer(xfeed,oms).

A similar preference can be included in the planner if we model the capability
of the crew to repair damaged switches in the control panels of the RCS. Since

such repairs may take a very long time, and short-circuits may occur during
the process, either computer commands or switch repairs may be possibly in-
cluded in the plan, but switch repairs should be included only if no plans that
use computer commands are found. The statement is encoded by:

ccs: ccs_allowed +-.
rep: repair_allowed +-.

prefer(ccs,rep).

It is interesting to examine the interaction between the two preferences above.
Suppose that we are given an initial situation in which:

– jets in the left subsystem must be used;
– leaking valves prevent the use of the propellant in the tanks of the left sub-

system;
– the wires connecting the on-board computer to the valves that control the

crossfeed are damaged;
– the switches that enable the OMS-feed are stuck.

Clearly the only reasonable choices available to deliver propellant to the jets
are:

1. via the OMS-feed using computer commands, or
2. via the crossfeed after repairing the switches.

Let us imagine the reasoning of a flight controller trying to decide between the
two alternatives. Should the plan use the propellant in the OMS tanks ? Since
it is quite risky, that is normally done only if the crossfeed cannot be used, and
alternative 2 allows the use of the crossfeed. On the other hand, alternative 2
requires the repair of the switches. That, again, is dangerous, and is normally
done only is there is no way to use computer commands. Hence, he is back
to alternative 1. It is reasonable to expect that, after some thinking, the flight
controller would discuss the problem with his colleagues in order to consider
all the relevant aspects of the remaining part of the mission (notice that these
data arenot available to USA-Smart). Only after taking all these elements into
account, he would finally be able to make a decision.

Given the above encoding of the preferences, and an appropriate encoding of
the initial situation, USA-Smart would reason in a way that mimics the flight
controller’s thoughts. Alternative 1 uses the OMS-feed, and there is another
alternative that uses the crossfeed, while ruleprefer(xfeed,oms) says that
the OMS-feed can be used only if there is no way to use the crossfeed. Hence,

alternative 1 cannot be used to generate a plan. Similarly, alternative 2 cannot be
used to generate a plan. Therefore, the problem has no solution, with the given
information.7

The behavior of the planner is due to the use of binding preferences. According
to the informal semantics described in Section 2, ruleprefer(xfeed,oms)
is best seen as an order that describes how reasoning must be performed. When
conflicts arise on the specification of how reasoning should be performed, the
reasoner does not return any of the conflicting belief sets, following the intuition
that such conflicts must be considered carefully.

On the other hand, there are cases when it is desirable to specify weaker pref-
erences, that can be violated if conflicts arise. This typically happens when the
situation is not particularly dangerous. The example that follows describes the
use of weaker preferences in the domain of the RCS.

In the RCS, it is possible in principle to allow the propellant to reach (lightly)
damaged jets, as well as go through valves that are stuck open. None of the
options is particularly dangerous: a specific command must be sent to turn on
the jets, so propellant can be safely allowed to reach damaged jets8; stuck valves
can be safely traversed by the propellant without any leaks (unless they are also
leaking). Nonetheless, severe problems may occur in an (unlikely) emergency
in which it is necessary to shut off quickly the flow of propellant, if the only
valve that is in the path is stuck. For this reason, it seems reasonable to prefer
the delivery of propellant to damaged jets over the use of stuck valves. This idea
is formalized in CR-Prolog by:

d: dam_jets_allowed +-.
v: stuck_valves_allowed +-.

prefer(d,v) :- not -prefer(d,v).
p1: -prefer(d,v) +-.

The last two rules encode a weaker type of preference. The first is a default say-
ing that,normally, cr-rulev cannot be considered unless there are no solutions
that use cr-ruled. The second rule encodes a strong exception to the default,
saying that the preference betweend andv may be possibly violated.

To see how weak preferences work, let us consider the interaction of the previ-
ous rules with:

7 With the addition of a few other cr-rules, it is actually possible to allow USA-Smart to re-
turn a model whose literals give details on the problem encountered. We do not describe this
technique here, because it is out of the scope of the paper.

8 We are assuming that the firing command is working correctly.

s: repair_switches_allowed +-.
c: repair_ccs_allowed +-.

prefer(s,c) :- not -prefer(s,c).
p2: -prefer(s,c) +-.

These rules express the fact that the crew can either repair the switches of the
control panel, or repair the wires that give the on-board computer control of the
valves of the RCS. The former repair is preferred to the latter (as working on
the computer command wires requires shutting down the on-board computer).

Now let us consider a situation in which both switches and computer commands
are damaged, and we cannot avoid delivering propellant either through a stuck
valve or to a damaged jet (without firing it). The damages to the switches are
such that, even after repairing them, the goal can be achieved only by deliver-
ing the propellant through the stuck valve. The two reasonable solutions are:
repairing the computer commands and delivering the propellant to the damaged
jet, or repairing the switches and delivering the propellant to the stuck valve.
Intuitively, since there are no major risks involved, both solutions are viable.
Because of the use of defaults, and of cr-rulesp1 andp2 , USA-Smart would
consider both solutions equivalent, and return indiscriminately one plan associ-
ated with them.9

6 Related Work

The amount of literature on planning with preferences is huge. Because of space
constraints, we will restrict the attention only to those logical approaches to
planning in which the language allows the representation ofstate contraints10.
This capability is crucial to model most of the RCS, e.g. the electrical circuits.

In its simplest form, theminimize statement ofSMODELS [15] instructs the
reasoning system to look for models that minimize the number of atoms, from
a given set, that are present in the model. In its complete form, the statement
allows to minimize the sum of the weights associated with the specified atoms.
Encoding defeasible tests usingminimize seems non-trivial because of the
possibility to specify only one statement in the program. Moreover, it is not
entirely clear how preferences on tests could be encoded. Theweak constraints
of DLV [6] provide an elegant way to encode defeasible tests. A weak constraint
is a constraint that can be violated if necessary. A numerical weight can be

9 The conclusion can be formally proven from the semantics of CR-Prolog.
10 Also calledstatic causal lawsin the context of action languages.

specified to express the cost of violating the constraint. Unfortunately, examples
show that the use of weak constraints to encode preferences for planning is
affected by the same problems that we discussed in the context of diagnosis [1].
This is true also for the approaches that rely on a translation to the language of
DLV , e.g.DLVK [8]. Another alternative is the use ofLPOD [4,5], which extends
A-Prolog by allowing the specification of a list of alternatives in the head of
rules. The alternatives are listed from the most preferred to the least preferred.
If the body of the rule is satisfied, one alternative must be selected following
the preference order. Moreover, preferences can be specified between rules, so
that the reasoning system tries to pick the best alternatives possible for preferred
rules. Preferences inLPOD are intended in the weaker meaning discussed in the
previous section (in [5], the authors argue thatParetopreference is superior to
the other types of preferences that they considered in the paper). Hence, it is
definitely possible to encode in this language both defeasible tests and the weak
preferences of Section 5. However, it is not clear if there is a way to encode
binding preferences inLPOD. The ability to encode binding preferences is very
important in USA-Smart, as it allows for a more cautious form of reasoning,
which is essential in delicate situation such as the Shuttle’s missions.

7 Conclusions

In this paper, we have shown how CR-Prolog was used in our decision support
system for the Space Shuttle in order to improve significantly the quality of the
plans returned. The general problem that we have addressed is that of improving
the quality of plans by taking into consideration statements that describe “most
desirable” plans. We believe that USA-Smart proves that CR-Prolog provides a
simple, elegant, and flexible solution to this problem, and can be easily applied
to any planning domain. We have also discussed how alternative extensions of
A-Prolog can be used to obtain similar results.

The author is very thankful to Michael Gelfond for his suggestions. This work
was partially supported by United Space Alliance under Research Grant 26-
3502-21 and Contract COC6771311, and by NASA under grant NCC9-157.

References

1. Marcello Balduccini and Michael Gelfond. Logic programs with consistency-restoring rules.
In Patrick Doherty, John McCarthy, and Mary-Anne Williams, editors,International Sympo-
sium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium
Series, Mar 2003.

2. Marcello Balduccini, Michael Gelfond, Monica Nogueira, and Richard Watson. The USA-
Advisor: A Case Study in Answer Set Planning. InProceedings of the 6th International Con-
ference on Logic Programming and Nonmonotonic Reasoning, pages 439–442, Sep 2001.

3. Marcello Balduccini and Veena S. Mellarkod. CR-Prolog2: CR-Prolog with Ordered Dis-
junction. In ASP03 Answer Set Programming: Advances in Theory and Implementation,
volume 78 ofCEUR Workshop proceedings, Sep 2003.

4. Gerhard Brewka. Logic programming with ordered disjunction. InProceedings of AAAI-02,
2002.

5. Gerhard Brewka, Ilkka Niemela, and Tommi Syrjanen. Implementing ordered disjunction
using answer set solvers for normal programs. In Sergio Flesca and Giovanbattista Ianni,
editors,Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002),
Sep 2002.

6. Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovan-
battista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer,
and Axel Polleres. The dlv system. In Sergio Flesca and Giovanbattista Ianni, editors,Pro-
ceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002), Sep 2002.

7. Yannis Dimopoulos, J. Koehler, and B. Nebel. Encoding planning problems in nonmonotonic
logic programs. InProceedings of the 4th European Conference on Planning, volume 1348
of Lecture Notes in Artificial Intelligence (LNCS), pages 169–181, 1997.

8. Thomas Eiter, Wolfgang Faber, Nicola Leone, Gerard Pfeifer, and Axel Polleres. Answer set
planning under action costs.Journal of Artificial Intelligence Research, 19:25–71, 2003.

9. Selim Erdogan and Vladimir Lifschitz. Definitions in answer set programming. InProceed-
ings of LPNMR-7, Jan 2004.

10. Michael Gelfond. Representing knowledge in A-Prolog. In Antonis C. Kakas and Fariba
Sadri, editors,Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408, pages 413–451. Springer Verlag, Berlin, 2002.

11. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases.New Generation Computing, pages 365–385, 1991.

12. K. Heljanko. Using logic programs with stable model semantics to solve deadlock and
reachability problems for 1-safe Petri nets.Fundamenta Informaticae, 37(3):247–268, 1999.

13. Vladimir Lifschitz. Action Languages, Answer Sets, and Planning, pages 357–373. The
Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag, Berlin, 1999.

14. Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat
solvers. InProceedings of AAAI-02, 2002.

15. Ilkka Niemela, Patrik Simons, and Timo Soininen. Extending and implementing the stable
model semantics.Artificial Intelligence, 138(1–2):181–234, Jun 2002.

16. Monica Nogueira.Building Knowledge Systems in A-Prolog. PhD thesis, University of
Texas at El Paso, May 2003.

17. Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An A-Prolog decision support system for the Space Shuttle. InPADL 2001, pages
169–183, 2001.

18. Enrico Pontelli, Marcello Balduccini, and F. Bermudez. Non-monotonic reasoning on be-
owulf platforms. In Veronica Dahl and Philip Wadler, editors,PADL 2003, volume 2562 of
Lecture Notes in Artificial Intelligence (LNCS), pages 37–57, Jan 2003.

19. Timo Soininen and Ilkka Niemela. Developing a declarative rule language for applications
in product configuration. InProceedings of the First International Workshop on Practical
Aspects of Declarative Languages, May 1999.

