
Logic Programs with Consistency-Restoring Rules

Marcello Balduccini and Michael Gelfond
Computer Science Department

Texas Tech University
Lubbock, TX 79409 USA�

balduccini, mgelfond � @cs.ttu.edu

Abstract

We present an extension of language A-Prolog by
consistency-restoring rules with preferences, give the seman-
tics of the new language, CR-Prolog, and show how the lan-
guage can be used to formalize various types of common-
sense knowledge and reasoning.

Introduction
In recent years, A-Prolog – a language of logic programs
with the answer set semantics (Gelfond & Lifschitz 1991)
– was shown to be a useful tool for knowledge represen-
tation and reasoning (Gelfond 2002). The language is ex-
pressive and has a well understood methodology of rep-
resenting defaults, causal properties of actions and flu-
ents, various types of incompleteness, etc. The devel-
opment of efficient computational systems (Simons 1996;
Calimeri et al. 2002; Lin & Zhao 2002; Pontelli, Balduc-
cini, & Bermudez 2003) has allowed the use of A-Prolog
for a diverse collection of applications (Heljanko 1999; Bal-
duccini, Gelfond, & Nogueira 2000; Nogueira et al. 2001;
Soininen & Niemela 1999; Aiello & Massacci 2001).

It seems however that A-Prolog lacks the ability to grace-
fully perform the reasoning needed for certain types of con-
flict resolution, e.g. for finding the best explanations of
unexpected observations. To solve the problem we devel-
oped CR-Prolog - an extension of A-Prolog by consistency-
restoring rules (cr-rules) with preferences - which is capable
of such reasoning. To illustrate the problem and its solution
we consider several reasoning tasks performed by an intelli-
gent agent acting in dynamic domains in the sense of (Baral
& Gelfond 2000).

The paper is structured as follows. We start with background
material needed to understand modeling of dynamic system
in A-Prolog. Next, we introduce the syntax and semantics
of CR-Prolog, give examples of using CR-rules with pref-
erences for representing agent’s knowledge, and show how
this knowledge can be used to perform fairly sophisticated
reasoning tasks. Finally, we discuss related work and future
research directions.

Copyright c
�

2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Modeling dynamic systems
In this section we briefly review the basic ideas of A-Prolog
based modeling of dynamic systems. We assume that the
dynamic system, consisting of an agent and its environment,
satisfies the following simplifying conditions.

1. The environment can be viewed as a transition diagram
whose states are sets of fluents (relevant properties of
the domain whose truth values may depend on time) and
whose arcs are labeled by actions.

2. The agent is capable of making correct observations, per-
forming actions, and remembering the domain history.

3. Normally the agent is capable of observing all relevant
exogenous events occurring in its environment.

The above assumptions determine the structure of the
agent’s knowledge base. It consists of three parts:

� An action description, which specifies the transition dia-
gram representing possible trajectories of the system. It
contains descriptions of domain’s actions and fluents, to-
gether with the definition of possible successor states to
which the system can move after an action � is executed
in a state � .

� A recorded history, which contains observations made by
the agent together with a record of its own actions. It de-
fines a collection of paths in the diagram which, from the
standpoint of the agent, can be interpreted as the system’s
possible pasts. If the agent’s knowledge is complete (e.g.,
it has complete information about the initial state and the
occurrences of actions, and the system’s actions are deter-
ministic) then there is only one such path.

� A collection of agent’s goals.
All this knowledge is used and updated by the agent who
repeatedly executes steps of the following observe-think-act
loop:

Observe-think-act loop

1. observe the world;
2. interpret the observations;
3. select a goal;
4. plan;
5. execute part of the plan.

We will illustrate this design with the following simple ex-
ample:

b

r s1

s2

+

-

Figure 1:
���

Example 1 Consider a system � consisting of an analog cir-
cuit

���
from Figure 1. We assume that switches ��� and �	�

are mechanical components which cannot become damaged.
Relay r is a magnetic coil. If not damaged, it is activated
when �
� is closed, causing ��� to close. Undamaged bulb
b emits light if � � is closed. For simplicity of presentation
we consider an agent capable of performing only one ac-
tion, ��
����	����� ��� . The environment can be represented by two
damaging exogenous1 actions: ����� , which causes b to be-
come faulty, and ����� , which damages r and also b assuming
that b is not protected.

To model the system we introduce fluents:
��
������������ � � - switch � � is closed;
�!�
��" � - component " is malfunctioning;# �
��$��%� � - bulb � is protected from power surges;
���&$('*)+����� � - relay � is active;
��, ��� � - bulb � is on.

The action description, -/. , of � consists of the rules in
the first three sections of program 0�1 (Figure 2). Statement2 ��3�45$ � says that ”fluent 3 holds at time $ ”; �!� ��46$ � stands for
”action � occurred at time $ ”.

The first section of 071 contains dynamic causal laws (Gel-
fond 2002) of � expressed in A-Prolog. Its first rule, which
corresponds to a statement “ � causes 3 if 8 ” of action lan-
guage - and its extensions, says that closing switch � �
causes the switch to be closed. (We assume that all actions
have unit durations.)

The second section of 0 1 contains relations between fluents
frequently referred to as domain constraints. In action lan-
guages they are normally described by statements “ 3 if 8 ”.
The first rule, for example, says that relay � is active if
switch �
� is closed and � is not malfunctioning.

The third section contains executability conditions of ac-
tions. The only rule of this section says that it is impossible
to close switch ��� if it is already closed.

1By exogenous actions we mean actions performed by the
agent’s environment. This includes natural events as well as ac-
tions performed by other agents.

To give the semantics of action description -9. , we need to
define states of the corresponding transition diagram : and
its transition relation ; �=<+4 ��4 �>��? . By a state we mean a com-
plete and consistent collection of fluent literals of -/. which
satisfy its domain constraints. To define the transition rela-
tion we consider the program 07@ consisting of the first four
sections of 0 1 . Rules of the fourth part formalize the fa-
mous Inertia Axiom from (Hayes & McCarthy 1969) which
says that “things tend to stay as they are”. The simplicity of
representation of this (and other) defaults is due to the de-
fault (or stable) negation “not” of A-Prolog. The transition
relation of : is given by the following

Definition 1 (Successor State) Let 09@ be the action de-
scription plus the Inertia Axioms from 0�1 , ACBD; � < 4 ��4 � � ?
be a transition, and

2 � �=<+46E � B � 2 �%3�46E ��F 3HG �=< �JI��K 2 ��3�46E ��F K 3LG �M< � . Each answer set, - , of 0 @ I2 � � < 4NE � IO�!� ��4NE � , defines a successor state, � � , in A as:

� � B � 3 F 2 ��3�4�P � GO- �QI ��K 3 F K 2 �%3�4�P � GR- �TS
Using this definition one can easily check that the execution
of action ��
����	����� ��� in state ��UVB � # �
��$���� � � moves the sys-
tem to state ��WXB � ��
����	���Y�%��� � 46��
����	���Y�%��� � 4N��, ��� � 4 # �
��$��%� � � .
(Whenever possible we omit negative fluent literals from
the representation of states.) Notice also that if � < B� # �
��$��%� � 4N��
����	���Y�%�
� � � and � is ��
����	�+�%�
� � , then the corre-
sponding program has no answer set and hence � is not exe-
cutable in � < .
This approach of defining : dates back to (Baral & Lobo
1997). The more commonly used alternative specifies : by
a collection of statements in a “high level” action language
with the successor relation defined in the style of McCain
and Turner (McCain & Turner 1995; 1997; Turner 1997;
Balduccini & Gelfond 2002). For a number of action lan-
guages, these approaches were shown to be equivalent.
Since we believe that some knowledge of A-Prolog will
be needed by a system designer and that the distance be-
tween statements in action languages and the correspond-
ing logic programming rules is fairly short we use the A-
Prolog based approach. Moreover, this approach is rather
general and can be applied to action descriptions with defea-
sible causal laws, non-deterministic actions, etc. for which
McCain-Turner style definitions are either non-existent or
more complex.

Recorded history Z\[(where , is the current time step) is
given by a collection of statements of the form:

1. �����+��
545$ � - ‘fluent literal
 was observed to be true at mo-
ment $ ’;

2.
2 # ��� ��45$ � - action �]G^- was observed to happen at mo-
ment $

where $ is an integer from the interval _ EM46, � .
The trajectories ; � < 4�S�S�S`? of the system defined by Za[can be
extracted from the answer sets of 0�17I]Z\[. Note that the
axioms in the last two sections of 0 1 establish the relation-
ship between relations ����� , 2 # � and

2
, � . The former cor-

respond to undoubtedly correct observations while the lat-
ter correspond to predictions made by the agent, and may

%% DYNAMIC CAUSAL LAWS���������
	���
���	���������������� ����������	�� ��	
�����!�"��#
����$&%���%����!�'����� � ����%�(*)+	����,��#
����$&%���(����!�'�-�.� � ����	�(0/��1�"��#
����$&%���%����!�'����� � 23���546(0�.7���%����!�"���!�8��	�(./��!�,��#

%% DOMAIN CONSTRAINTS����$&��7!9;:&�&��(����!�,� � ����������	.��
���	 � �����,���<23����$&%*��(
�����,��#23����$&��7!9�:&� ��(����!�,� � ����$&%*��(
�����,��#23����$&��7!9�:&� ��(����!�,� � 23���������
	���
���	 � �����,��#
���������
	���
���	.=������,� � ����$&��7�9;:&� ��(
�����,��#
�����0>?��%������,� � ����������	.��
���	.=������,���<23����$&%*��%������,��#
23�����0>@��%������,� � ����$&%*��%������,��#23�����0>@��%������,� � 23���������
	���
���	.=������,��#

%% EXECUTABILITY CONDITION�A�������B�
	�� ��	 � �����,���<���������
	���
���	 � �����,��#

%% INERTIA���;CD���'�E��� � ���;CD�F�,���
not

23���;CD���'������#23���;CD���G�E�.� � 23���;CD�F�,���
not

���;CD���'������#

%% REALITY CHECKS�A�0%�	
�;CD���,���
not

�H�;CI�!�"��#�A�0%�	
��23CD���,���
not

23���;CD�F�,��#

%% AUXILIARY AXIOMS���;JK�!�,� � ��4+
��;JK���,��#���;CD�<L�� � �0%�	
�;CD�<L
��#23���;CD�<L
� � �0%�	
��23CD��L
��#

Figure 2: 0 1

be defeated by further observations. The “reality checks”
axioms ensure that the agent’s predictions do not contra-
dict his observations. One can easily check, for instance,
that Za�9B �����+� � U 46E � I � 2 # ������
��������%��� � 46E � � defines the tra-
jectory ; ��U�4N��
����	����� �&� 4 � W ? . Here �����+� �>46$ � B �
 F
 G � � .
The program corresponding to history Z � B �����+� ��U�46E � I� 2 # ������
��������%��� � 46E � I �����T� K ��
����	�������
� � 4�P � � is inconsistent
(thanks to the reality checks of 0 1), and hence Z � defines
no trajectories.

Finally, the goals of the agent can be represented by rules of
the form: M

not �!� ��
 S
The agent will be able to use this knowledge for planning,
diagnosing, consistency checking, and other tasks. For ex-
ample the diagnostics agent in (Balduccini & Gelfond 2002)
finds possible explanation of observations N by finding an-
swer sets of the program 0�1 ION I .QP < , where .QP < is the
following “diagnostic module”:

�!��- 45: � or
K �!��- 45: �

M
ESR :UT , 4WV ���&$���- � S

where V ���&$���- � is satisfied by exogenous actions (in our
case �����M� and �����). This is of course done only if the corre-
sponding observations are inconsistent with the agent’s pre-
dictions, i.e. when the program 0 1 IXN is inconsistent. To
see how this works let us go back to action description from
Example 1.

Example 2 Suppose that initially all switches are open, the
bulb is off and protected from power surges, and that the
agent operating this device is given the goal of lighting the
bulb. The agent starts at time 0 by observing the initial state
N < . Since 071QI'N < is consistent no explanation is required,
the agent selects the goal of lighting the bulb, and generates
a plan, ��
����	�+�%�
� � , to achieve it. As shown in (Dimopoulos,
Koehler, & Nebel 1997; Lifschitz 1999) this can be done by
extracting occurrences of actions (i.e. statements of the form
�!� ��45$ �) from an answer set of program 0�1�IYN < I 8ZP where
8ZP is

�!��- 45: � or
K �!��- 45: �

M
,-R : 4 � ���&$���- � S

where � �+��$���- � is satisfied by agent actions (in our case
��
����	����� �&�). The plan is executed at step [and the agent
goes back to observe the world. Suppose that the agent
discovers that the bulb is not lit, i.e. N�� B N < I� 2 # ������
��������%� ��� 46E � 4N�����+� K ��, ��� � 4�P � � . Since 071XI\N � is in-
consistent, the agent performs diagnosis at step] by comput-
ing the answer sets of 0 1 ISN�� I .QP < . In this case, there is
only one answer set, corresponding to the occurrence of ac-
tion �&�
�=� at time E . Since the bulb is broken, the agent has no
way to achieve its goal. However, if more complex actions
were introduced – like �
� # �+'*���%" � , to repair a component –
the agent could generate a new plan �
� # �+'*���%� � 4N��
����	����� � � ,
which would finally allow it to light the bulb.

Expanding the language
Notice that checking consistency and finding a diagnosis
in the above algorithms is achieved by two calls to lp-
satisfiability checkers – inference engines computing answer

sets of logic programs. Such multiple calls require the rep-
etition of a substantial amount of computation (including
grounding of the whole program). Even more importantly,
we have no way to declaratively specify preferences between
possible diagnoses, and hence may be forced to eliminate
unlikely diagnoses by performing extra observations. To
avoid these problems, we expand A-Prolog by consistency-
restoring rules with preferences. We call the new language
“CR-Prolog”.

Cr-rule is a statement of the form:

� � 2 � or S�S�S or
2����M
��
4�S�S�S�46
�� 4

not
 � � � 4�S�S�S�4 not
 [(1)

where � is the name of the rule, and
2 � 4�S�S�S�4 2 � 46
 � 4�S�S�S�4N
 [

are literals. The rule says that if
��
4�S�S�S�4N
�� belong to a set of
agent’s beliefs and none of
�� � ��4�S�S�S�4N
 [belongs to it then
the agent “may possibly” believe one of the

2 � 4�S�S�S�4 2 � . This
possibility is used only if the agent has no way to obtain a
consistent set of beliefs using regular rules only.

Consider for instance program 0 < :
0 < � � �

M
not �
S

�
� � � �M S
0 < has an answer set

� � � , computed without the use of cr-
rule � � . Now consider 0
	< B 0 < I �
K �YS � . If � � is not used,
0�	< in inconsistent. Consistency can be restored by using
��� which allow the reasoner to believe in � , leading to the
answer set

�
K ��4N� � .

Cr-rules can be used by an agent to remove the need for mul-
tiple calls to lp-satisfiable checkers. Consider the program
from Example 1 with a new diagnostic module, .QP
���< :

.QP ���<�� �!��- 45: � � �!��- 45: � �M : T , 4�V ���&$���- � S
which say that some (unobserved) exogenous actions may
possibly have occurred in the past. This fact can be used by
the agent to restore consistency of his beliefs. To see how
this is done consider recorded histories N � 4�N � 4 and N
� with, B P . (To save space, we will omit observations of negative
fluent literals.)� ������ � �*46
���������	�� ��	 � ���<L
��#�0%�	
�546(0�.7���%�����L
��#�0%�	
���0>?��%���������# � =����� � ��46
������B�
	�� ��	 � ���<L
��#�*%�	 �54+(*�.7���%����FL
��#�*%�	 ��2 �0>?��%���������#��� ��� �*46
���������	�� ��	
�<���<L
��#�0%�	
��2 �0>@��%������.��#

According to our semantics the answer set of 0�1�I N � I
.QP����< contains no occurrences of exogenous actions - no
cr-rules are used at this point; Consistency of the “regular
part” of 071 I N � I . P ���< can be restored only by rule
�!�������M�T4NE � . The problem is explained by the occurrence of
�����M� . 0 1 I N � I .QP ���< has two answer sets, one obtained us-
ing �!�������M�T46E � , and the other obtained using �!�����	��4NE � . The
agent concludes that either �����M� or ���	� occurred at time E .
The agent’s selection of cr-rules can be guided by the prefer-
ence relation # �
��3>�	�!� � � 45� �	� which says that sets of beliefs

obtained by applying � � are preferred over those obtained by
applying � � .
For example, we might want to say that �����M� occurs more
often then ����� and hence an explanation based on an unob-
served past occurrence of �����M� is preferred to one based on
similar occurrence on ���	� . The rule

0� 1 �"! # ���
3>�	�!� �!���&�
�=� 46: � 46�!�����	��46: �5� S
formalizes this intuition. Given 071�I N���I .QP ���< I^0� 1 ,
our agent will use this rule to conclude that �&�
�=� occurred at
time E . It will not conclude that ����� occurred, since this cor-
responds to a less preferred set of beliefs. The agent may
derive that ���	� occurred only if additional information is
provided, showing that �����M� cannot have occurred. Now we
give a precise definition of our language.

Syntax and Semantics
Let # be a signature containing symbols for constants, vari-
ables, functions, and predicates. Terms, atoms, and literal
are defined as in FOL. Literals and terms not containing vari-
ables are called ground. The sets of ground terms, atoms and
literals over # will be denoted by $ �	�%$ �+�&# � , �+$ �%$R�+�&# � ,
and
 '*$��&# � . Let 8 be a set of predicate symbols from # . By

�T$ �%$R�+�^N8 � we denote the set of all atoms from �+$ �%$R�+�&# �
formed by predicate symbols from 8 . (Whenever possible
we drop the first argument and simply write �+$ �%$R�+��8 �).
A regular rule of CR-Prolog is a statement of the form:

� � 2 � or S�S�S or
2 � M
 � 4�S�S�S�46
 � 4

not
 � � � 4�S�S�S�4 not
 [(2)

where
2 � 4�S�S�S�4 2 � 46
 � 4�S�S�S�4N
 [are literals, and � is a term rep-

resenting the name of the rule. (Names of regular rules are
not needed for the definition of the semantics of programs
with cr-rules, and can thus be safely dropped.) A cr-rule is a
statement of the form (1). Preferences between cr-rules are
expressed by atoms of the form # �
�
3>�	����� � 46� �	� . If all pref-
erences in a program are expressed as facts, we say that the
program employs static preferences. Otherwise, preferences
are dynamic.
Definition 2 An CR-Prolog program, 0 , is a pair ;^('�?
consisting of signature # and a set ' of rules of form (2)
or (1).
The signature # is often denoted by ��'%� ��0 � ; the set of
atoms (literals) of ��'%� ��0 � is denoted by �+$ �%$ �+��0 � (
�'%$���0 �);
�*)>
��
�+��0 � stands for the set of rules of 0 . If + is a
rule of 0 then

2 � ���Y�,+ � B � 2 � 4�S�S�S�4 2 � � ; �&�
�.- �,+ � B�
 � 4�S�S�S�46
 � 4 not
 � � � 4�S�S�S�4 not
 [� .

Programs of CR-Prolog are closely related to abductive logic
programs (Kakas & Mancarella 1990; Kakas, Kowalski, &
Toni 1998; Gelfond 1991) - pairs ;�0 4 � ? where 0 is a
program of A-Prolog and

�
is a set of atoms, called ab-

ducibles2. The semantics of the language is based on a trans-
2Recall that the semantics of an abductive program is given by

the notion of generalized answer set - an answer set / �,0 �
of 1320

where
05476

; / �,0O����8 / �,0 =��
if
0O��9:0 =

. We refer to
answer set as minimal if it is minimal with respect to this ordering.

formation
2 �!��0 � of its programs into abductive programs.

The hard reduct
2 �!��0 � BD; ��� 4 �T$ �%$R�+� � � #T#
 � � ? is defined

as follows:

1. ��'%� � � � � B ;�����, ��$���0 � 4 � � # #
 45' � # �
�
3>�	�	�
��� � I# �
���Y��0 � ? . We assume that � # #
 and ' � # �
��3>�	���
��� do
not occur in ��'%� ��0 � .

2. every regular rule of 0 belongs to
���

;

3. for every consistency-restoring rule + G �%)>
��
�+��0 � , the
following regular rule belongs to

���
:

2 � ������+ � M ���
�.- ��+ � 4 � # #
6� � �
where � is the name of rule + ;

4. finally, if # �
�
3>�	� G # ��������0 � , ���
contains the following

set of rules, denoted by 0 :������������ �����������

% transitive closure of predicate prefer$R� U � ' � # ���
3>�	���
�	���,' PT4 '] �
M # �
��3>�	�!�,' PT4 '] � S$ �6W � ' � # ���
3>�	���
�	���,' PT4 '] �
M # �
��3>�	�!�,' PT4 '	� � 4
' � # �
�
3>�	�	�
�����,'	�M4('] � S

% no circular preferences$O� � M
' � # �
��3>�	���
���Y� ' 4(' � S

% prohibits application of a lesser rule if
% a better rule is applied$ � � M

� # #
5�,' P � 4 � #T#
5� '] � 46' � # �
�
3>�����
���Y� ' P 4 '] � S
where ' � , ' � , ' � denote names of rules.

We need two preliminary definitions:

Definition 3 A set of literals, " , is a candidate answer set
of 0 if " is a minimal generalized answer set of

2 ����0 � .
Definition 4 Let " , . be candidate answer sets of 0 . " is
better than . ("�
 .) if� � #T#
6� � ��� GR" � � # #
5� � ��� G .

'(� # ���
3>�	���
�	��� �
�
46��� � G "�
O.RS (3)

We can now give the definition of answer set of a program.

Definition 5 Let " be a candidate answer set of 0 , and �"
be "�� �+$ �%$R�+� � � #T#
 46' � # �
�
3>�	������� � � . �" is an answer set
of 0 if there exists no candidate answer set, . , of 0 which
is better than " .

One can notice that Definition 4 has some similarities with
Pareto-optimality (Pareto 1896). In fact, our definition and
(a suitably modified version of) Pareto-optimality appear3 to
yield the same answer sets in all cases, except when conflict-
ing preferences have been specified. When this happens, our
definition behaves in a more conservative way, returning no
answer set instead of all candidate answer sets, like Pareto-
optimality does.

Example 3 Consider the following program:

0 �
���� ���
� � � # M

�
4 not ��S
��� � �
S
� � � � �M �
S

3This conclusion is based on experimental results. A formal
verification of the statement is the subject of future research.

Intuitively, �*� should not be applied, since program 0 � �� � � � is consistent. Hence, the only answer set of 0 � should
be

� # 45� � .
Let us check that this intuition is captured by our definition.
The first element of

2 �!��0�� � is
� ��� B � 	��� I 0 , where� 	� � is:

� 	� �
��� �� � � � # M

�
4 not ��S
��� � �
S
�%	� � �

M
�
4 � # #
5��� � � S

The only minimal generalized answer set of
2 �!��0�� � is

" B � # 45� � . (Notice that
� # 46�
4N�T4 � # #
5��� � � � is a general-

ized answer set of
2 ����0 ��� , but it is not minimal.) Hence, "

is the unique answer set of 0 � .
Example 4 Consider the following program:

0 �

������������������� ������������������

� � � # M
not ��S

� � � �
M

not �TS
� � � � M

$&S
��� � �

M
$&S

��� � M # 45�
S
��� � � �M S
��� � � �M S
��� � $ �M S
��� � # ���
3>�	�!� ��� 46��� � S

(Notice that the program consisting of regular rules of 0�� is
inconsistent.)

� ��� B � 	� � IJ0 , where
� 	� � is:

� 	� �

������������������ �����������������

� � � # M
not ��S

�	� � �
M

not �TS
� � � � M

$&S
� � � �

M
$&S

� � � M # 45�
S
� 	� � � M

� #T#
5����� � S
� 	� � �

M
� #T#
5����� � S

� 	� � $
M

� #T#
5����� � S
��� � # ���
3>�	�!� ��� 46��� � S

The minimal generalized answer sets of
2 �!��07� � (and hence

candidate answer sets of 07�) are shown below (we skip the
formed by ' � # ���
3>�	���
�	�):

"X�XB � # ���
3>�	�!� � � 46� � � 4 � # #
5��� � � 4 ��46� �
" � B � # ���
3>�	�!� ��� 46��� � 4 � # #
5����� � 4N�T4 # �
"��/B � # ���
3>�	�!� ��� 46��� � 4 � # #
5��� ��� 45$&4!��4N� �

According to Equation (3), " �
 " � . Hence, �" � is not an
answer set of 0 � , and the answer sets of 0 � are �" � and �"�� .

Example 5 Consider the following program:

0��

������������������������� ������������������������

�
� � �
M # S

�	� � �
M

�
S
�*� � �

M ��S
� � � �

M
�TS

���NU � M
not ��S

��� W � M
not ��S

��� � # �M S
��� � � �M S
��� � � �M S
��� � � �M S
� �(< � # ���
3>�	�!� ��� 46��� � S
� �6� � # ���
3>�	�!� � � 46��� � S

The candidate answer sets of 0 � are:

"X�XB � # �
�
3>�	����� � 45� � � 4 # �
�
3>�	�!� ���+46� � � 4
� #T#
6� ��� � 4 � #T#
6� ��� � 4 # 4N�T4 �Y4�� �

" � B � # �
�
3>�	�������+45��� � 4 # �
�
3>�	�!� � � 46��� � 4
� #T#
6� ��� � 4 � #T#
6� � � � 46�
4 ��4 ��4�� �

Since "X�
 "Q� and " �
 "X� , 0 � has no answer set.

The reader can also check that the intuitive reasoning de-
scribed in Example 1 is captured by our semantics, and 0 1 ,
together with N � 4�S�S�S�4�N
� , entails the expected conclusions.

Applications of Consistency-Restoring Rules
Cr-rules can be used to encode types of common-sense
knowledge which, to the best of our knowledge, have no
natural formalization in A-Prolog. In this section, we give
examples of such use.

Example 6 (Dynamic Preferences) Consider diagnostic
module .QP ���< used by the agent from Example 1 to solve
its diagnostic problems. Suppose we would like to supply
him with the following additional information: “Bulbs
blow-ups happen more frequently than power surges unless
there is a storm in the area. ” This information can be
encoded by the preferences:

.QP � � # �
�
3>���!�����%�����M�T45: � 45�!�����	�>45: �6�
M K 2 ����$ ���%$ 4NE � S# �
�
3>���!�����%�����>45: � 45�!�%�����M�T45: �6�
M 2 ����$ ���%$ 4NE � S

Let .QP ���� B .QP ���< I/. P , and consider recorded history
N � :

N � � ! 2 # ������
����	����� ��� 46E � S
�����T�%��$ ���*$]46E � S
�����T� K ��, ��� � 4�P � S

(Recall that if �����+�%3�46E � is not in N � then �����+� K 3�4NE � is.)
Obviously N � requires an explanation. It is storming and
therefore the intuitive explanation is �!�%�����>46E � . It is not dif-
ficult to check that this is indeed the case. The program
0 1 IEN ��I].QP ���� has two candidate answer sets. Due to
the second rule of .QP only one of them, containing ���	� ,
is the answer set of the program and hence �!�%���	�>46E � is the
explanation of N � .

The results obtained by the use of cr-rules match the intuitive
answers also in more complex cases. Consider recorded his-
tory N � :

N � � ����� ����
2 # �Y����
����	����� ��� 46E � S
�����+����$ ���%$ 4NE � or �����+� K ��$ ���%$ 4NE � S
�����+� K ��, �%� � 4�P � S
�����+� K �!�
�%� � 4�P � S

This time, we do not know if there has been a storm at E , but,
at time P , the bulb is observed to be intact. Common-sense
should tell the agent that there was a power surge. Nothing
can be said, however, on whether there has been a storm.
Indeed one can check that the answer sets of 0 1 I N � I
.QP ���� contain sets of facts:

� �����+����$ ���%$ 4NE � 46�!�����	�>46E � �� �����+� K ��$ ���%$ 4NE � 46�!�����	�>46E � �
which correspond to the intuitive answers.

To illustrate more complex interaction of planning and diag-
nostic reasoning let us consider the following elaboration of
the Yale Shooting Scenario.

Example 7 “John has a gun, which he can load. A loaded
gun can be fired in order to kill the turkey. Sometimes, if
bullets are wet, the gun misfires. Also, sometimes loading
the gun fails if John is in a hurry. Finally, in some cases, the
turkey could be too big to be killed by a gun.”

The knowledge contained in this story can be represented
with the action description, 0 � �
�������������������������������������� �������������������������������������

% normally, shooting a loaded gun kills the turkey.2 ���+� ���=46: � P �
M 2 ��
�� ���+�	����� � 45: � 4K 2 � �!�
��� 2 �
��$ � 45: � 4
�!��� 2 �
��$���� � 46: � S

% shooting always unloads the gun.K 2 ��
�� ���T������� � 46: � P �
M 2 ��
�� ���+�	����� � 45: � 4
�!��� 2 �
��$���� � 46: � S

% normally, loading makes the gun loaded.2 ��
�� ���T������� � 46: � P �
M
�!��
�� �+����� � 45: � 4K 2 � �!�
��
�� �+� � 46: � S

% wet bullets sometimes cause misfiring.

� � � : � � 2 � �!�
�%� 2 �
��$ � 45: � �M 2 ���/�	$ �)>
�
��	$&46: � 4
�!��� 2 �
��$���� � 46: � S

% big turkeys sometimes do not die.

���+� : � � 2 � �!�
�%� 2 �
��$ � 45: � �M 2 �%��'%� $)����!�*-�46: � 4
�!��� 2 �
��$���� � 46: � S

% loading sometimes fails if John is in a hurry.

� �+� : � � 2 � �!�
��
�� ��� � 45: � �M 2 � 2)����%-+'*,>�>45: � 4
�!��
�� �+����� � 45: � S

% it is more likely for loading to fail than
% for bullets to misfire.# �
�
3>���!��� �+� : ��� 45� � � : �	�5� S

(A particular gun becomes a parameter of our actions and
a fluent
�� ���T������� � since later we look at scenario with two
guns.)

If we add to 0 � � the history���������� ���������

�����+���/�	$ �)�
�
��	$&46E � S
�����+�%��'%� $)Y���!�*->46E � S
�����+� 2)����*-�'*,>�>46E � S
% Closed World Assumption on initial stateK �����+� � 46E �

M
not �����+� � 46E � S

2 # ����
�� �+��� �>P � 46E � S2 # ����� 2 �
��$�� �>P � 4�P � S
we obtain a unique answer set, stating that the turkey is

dead at time] . Note that this conclusion does not require
the application of cr-rules.

Let us now add the further observation

�����+� K �T� ���=4�] � S
Now, cr-rules are necessary. The resulting program has
two answer sets, corresponding to one scenario in which
John did not load the gun properly, and to one in which
the gun fired as expected, but the turkey was too big to be
killed. Notice that the other possible explanation – the wet
bullets caused the gun to misfire – does not correspond to
any answer set of the program because of the preference# �
�
3>�	�!� � �+� : ��� 45� � ��: ���5� .
As was mentioned before, cr-rules can also be used in con-
struction of a planning module of an agent. The following
is an example of such a module which generates plans of
minimal length.

Example 8 Consider the domain description from Example
7 and program 0 � � defined as the union of 0 � � and planning
module 8ZP ��� :���� ���
� � � : � � $ �+V=$('�$O����: � �M ,XR : S# ���
3>�	�!� � � ��: � 46� � � : � P �5� S
���+��- 45: � � �!��- 45: � �M $ �8VY$('�$O���1P : � 45,XR : T P : S

(Here , stands for the current time of the agent’s history - in
our case E .) Cr-rule � � � : � says that any time can possibly be
the maximum planning time of the agent. The second rule
gives the preference to shortest plans. The last rules allows
the agent the future use of any of his actions.

To illustrate the workings of this module let us consider an
initial situation where the turkey is alive and the gun is un-
loaded; the agent has the goal of killing the turkey, repre-
sented as: � �!� ��

M 2 ���T� ���=46: � SM
not ��� ��
5S

The goal does not hold at the current moment E . To avoid
inconsistency with the goal constraint the agent may use
rules ���T��- 4NE � 45���+��- 4�P � 4�S�S�S where time ranges from E and
the maximum planning time P : . Without the preference
relation P : could have been determine by any rule from
� � ��E � 46� � �5P � S�S�S . The preference, however, forces the agent
to select the shortest plan for achieving the goal, in our case

� �!��
�� ���Y� ��P � 46E � 4 2 �%� 2 �
��$�� �>P � 4�P � � . It may be worth noting a
symmetry between rules � �T��- 46: � and �!��- 45: � of our plan-
ning a diagnostic modules. The first allowing the agent
to consider exogenous actions in the past while the second
makes possible the use of its own actions in the future. It is
also instructive to compare planning with cr-rules with that
using traditional planning module, 8ZP , discussed above.
In the latter case a plan of minimum length can be found by
multiple calls to lp-solver with P : B EM4�P 4�S�S�S . The single
call suffices with CR-Prolog planner.

The next example shows another advantage of 8ZP ��� with
respect to a traditional A-Prolog planner.

Example 9 Let us expand scenario from Example 8 by in-
troducing a new gun, �] , which can be used exactly like �>P .
Initially, the turkey is alive, the guns are not loaded, bullets
are not wet, the turkey is not big, and John is not hurrying.
The goal is to find the sequences of actions which kill the
turkey with the smallest number of actions.

Provided that variable � is allowed to range over
� �>P 45��] � ,

0 � � can be employed without modifications. It has now two
answer sets, corresponding to plans

� �!��
�� ���Y� ��P � 4NE � 4N�!��� 2 �
��$�� �>P � 4�P � �� �!��
�� ���Y� ��] � 4NE � 4N�!��� 2 �
��$�� �] � 4�P � �
The traditional A-Prolog planner 8ZP may return one of the
two intended plans, as well as any of the others, such as:

� �!��
�� ���Y� ��P � 46E � 4N�!��
�� ����� �] � 46E � 46�!�%� 2 �
��$�� �>P � 4�P � �� �!��
�� ���Y� ��] � 46E � 4N�!��� 2 �
��$�� ��] � 4�P � 4N�!��
�� �+��� �>P � 4�P � �
S�S�S

Removing these unintended plans is usually a non-trivial
task. The use of cr-rules provide us with a rather simple way
of doing exactly that.

Related Work
Programs of CR-Prolog closely resemble knowledge sys-
tems of (Inoue 1994) – pairs ; :/4 � ? of non-disjunctive pro-
grams in which : represents a background knowledge and�

is a set of candidate hypothesis. Though syntactically and
even semantically similar, programming methodologies of
these two approaches differ considerably. The background
theory : of knowledge system seems to be either a collec-
tion of integrity constraints or a collection of defaults whose
credibility is higher than that of

�
. This is quite differ-

ent from structuring of knowledge advocated in this paper.
The use of rules from

�
differ depending on the use of the

knowledge system. The emphasis seems to be on default
reasoning, where hypothesis are interpreted as defaults and
hence rules of

�
are fired whenever possible. This interferes

with search for explanations, which normally favors some
form of minimality and applies the rules sparingly. There
are some suggestions of using knowledge systems for this
purpose by applying different strategy for selection of rules.
In our opinion these two types of reasoning are not easily
combined together. (In some cases they may even require
different representation of knowledge for each of the rea-
soning tasks.) The notion of knowledge system is further

extended in (Sakama & Inoue 2000) by introducing priori-
ties over elements of

�
viewed as defaults. The new work

does not seem to change the methodology of knowledge rep-
resentation of the original paper. Consequently even our pri-
ority relations are quite different from each other. In our
future work we plan to investigate the precise relationship
between this work and CR-Prolog.

Now let us look at a formalism from (Lin & You 2001)
where the authors point out problems linked with the “classi-
cal” definition of abductive logic programs given by Kakas
& Mancarella (1990), and propose a new definition of ab-
duction. The problems underlined by Lin & You appear
to be linked with the use of negation as failure in place of
classical negation, which is typical of traditional logic pro-
gramming, as well as of logic programming under the stable
model semantics.

To see the problem consider program 8 �� � B � � M
��S � , set

of abducibles
� B � ��4N� � , and observation � . The minimal

abductive explanation for � given by ;�8 �� � 4 � ? is
� � B � � � .

In (Lin & You 2001), the authors notice that
� � is often seen

as representing its completion under the Closed World As-
sumption, i.e.

� � is really a shorthand for
� � B � ��4 K � � .

They, correctly, argue that such an interpretation is unintu-
itive - the Closed World Assumption should not be applied
to � , since abducibles “are assumptions which one can make
one way or the other” (Lin & You 2001).

We believe however that this criticism is not applicable to
our formalism. In the semantics of CR-Prolog, abduction
is used only to select sets of cr-rules needed to restore con-
sistency of the reasoner’s beliefs. Hence, according to our
semantics, cr-rules normally do not apply, which justifies
the Closed World Assumption for our abducibles - atoms
formed by predicate � # #
 .
Moreover, the problem primarily exists in languages not
containing classical negation. The availability of classical
negation in our language allows for more accurate formal-
ization of knowledge and removes many difficulties caused
by unjustified use of negation as failure. We will illus-
trate this point by the “canCross example” from (Lin & You
2001).

In this example, the authors consider a scenario in which a
boat can be used to cross a river, if the boat is not leaking.
If it is leaking, the river can be still crossed if there is a
bucket available to scoop the water out of the boat. The
agent observes that someone is crossing the river, and must
explain this fact.

They formalize the domain with program 8 �� �
� �+, "7�
���	�

M
�&� �+$&4 not
�� �!��'*,>��S

� �+, "7�
���	�
M
�&� �+$&4N
�� �!��'*,>��4 2 �!����)>���!�	$&S

and notice that, under the definition given by Kakas
& Mancarella, the observation has a unique mini-
mal explanation,

� �&� �+$ � . The closed world inter-
pretation discussed above gives us a “complete” ex-
planation

� ��� �T$&4 K
�� �!��'*,>��4 K 2 �!����)>���!�	$ � , which is cor-
rect. Unfortunately, perfectly plausible explanations like

� �&� �+$&46
�� ���!'%,>�>4 2 �!����)>���!�	$ � are not captured by this def-
inition. The alternative would be to interpret �&� �+$ as incom-
plete explanation which could be completed by assigning
values to other abducibles. As pointed out by the authors this
does not work either since

� �&� �+$&46
�� �!��'*,>�>4 K 2 �!���)����!�	$ � is
not an explanation. In their paper the authors propose se-
mantics of abductive programs aimed at solving this prob-
lem.

Let us now look at treatment of the same example in CR-
Prolog. We propose the following formalization:

8 ����
��������������� ��������������

� � � � �+, "7�
�����
M

�&� �+$&4 K
�� �!��'*,>�>S
� � � � �+, "7�
�����

M
�&� �+$&46
�� �!��'*,>�>4 2 �����)����M��$&SM

not � �+, "7�
����� S
� � � �&� �+$ �M S
� � � K �&� �+$ �M S
� � �
�� ���!'%,>� �M S
� � � K
�� ���!'%,>� �M S
� � � 2 �!����)>���!�	$ �M S
� � � K 2 �!����)>���!�	$ �M S

Notice that rule �
� uses classical negation (instead of the
default negation used in the first formalization). This is cer-
tainly a more faithful translation of the problem’s knowl-
edge which contains nothing about beliefs of closed world
assumptions. Notice also that the observation, represented
as a constraint, becomes part of our knowledge. The reader
can check that the program has two answer sets correspond-
ing to explanations

� � B � �&� �+$&4 K
�� �!��'*,>� � and
� � B� �&� �+$&46
�� ���!'%,>�>4 2 �!����)>���!�	$ � . Note that these explanations

do not depend on unspecified values of “abducible” -
� � will

remain a good intuitive explanation of the observation even
after we discover whether there is a bucket in the boat.

It may also be instructive to see how preferences of CR-
Prolog can be used to select some “preferred” explanations
of our observation. For example, if we believe that boats are
rarely leaking, we can introduce preference

�
�
3>�	��� � � 4 � � � S
The new program, 8 ���� , will generate only explanation

� � .
However, if later we were to observe that the boat is leaking,
adding this piece of information to the program would make
it retract

� � and return
� � .

Another work relevant to our research is the introduction of
weak constraints in DLV (Buccafurri, Leone, & Rullo 1997a;
1997b; Calimeri et al. 2002). Intuitively, a weak constraint
is a constraint that can be violated, if this is needed to ob-
tain an answer set of a program. To each weak constraint, a
weight is assigned, indicating the cost of violating the con-
straint4. A preferred answer set of a program with weak
constraints is one that minimizes the sum of the weights of

4To be precise, two different “costs”, weight and level, are as-
signed to weak constraints, but in our discussion we only consider
the weight, since even levels do not seem to solve the problem.

the constraints that the answer set violates. Consider for ex-
ample program 0�1 � � of DLV:! � or ��S��� �YS_ P � ���� ��S _] � �
where the first weak constraint (denoted by symbol ���) has
weight P and the second has weight] . In order to satisfy
the first rule, the answer sets of 0�1 � � must violate one of the
constraints. Since violating the first constraint has a lower
cost than violating the second, the preferred answer set of
0 1 � � is

� � � .

Weak constraints are of course similar to our cr-rules and
weights can often play a role of preferences. The main dis-
advantage of using weak constraints instead of cr-rules is
that weights induce a total order on the weak constraints of
the program, as opposed to the partial order that can be spec-
ified on cr-rules. This seems to be a key difference in the
formalization of some forms of common-sense knowledge,
like the one from Example 6. To the best of our knowledge,
there is no formalization of this domain in DLV with weak
constraints, that, given recorded history N � , concludes that
there are two possible alternatives compatible with N � :

� �����+�%��$ ���%$]46E � 46�!�%�����>46E � �� �����+� K ��$ ���%$]46E � 46�!�%�����>46E � �
To see the problem, consider, for example, the following

DLV formalization of our diagnostic module . P ���� with dy-
namic preferences: .QP�� � B .QP < IO0�� � , where 0�� � is:

0�� � ��� ��
��� �!�������M�T46: � 4 2 �%��$ ���%$]46E � S _ 	 � ���� �!�����	��46: � 4 2 �%��$ ���*$]46E � S _ P � ���� �!�������M�T46: � 4 K 2 �%��$ ���%$]46E � S _ P � ���� �!�����	��46: � 4 K 2 �%��$ ���*$]46E � S _ 	 � �

The first two weak constraints say that, if a storm occurred,
assuming that action �����M� occurred has a cost of 	 , while as-
suming that action ���	� occurred has a cost of P . The last two
weak constraints say that, if a storm did not occur, assuming
that action �����M� occurred has a cost of P , while assuming
that action ����� occurred has a cost of 	 . The selection of
particular weights is fairly arbitrary, but it captures the cor-
responding dynamic preferences.

The only possible explanation of recorded history N � is the
occurrence of ����� at time E . Hence, 0�1QI'N � IJ. P � � has
two candidate answer sets, containing, as expected, the two
set of facts above. Unfortunately, the answer set correspond-
ing to the second set of facts has a total cost of 	 , while the
answer set corresponding to the first explanation has a cost
of P . This forces the reasoner to prefer the first answer set,
and to assume, without any sufficient reason, the existence
of a storm.

There are however some classes of programs of CR-Prolog
which can be reduced to DLV programs with weak con-
straints. Study of such classes may be useful not only for
improving our understanding of both formalisms, but also
for using efficient computation engine of DLV for CR-Prolog
computations.

Conclusions and Future Work
In this paper, we extended A-Prolog by cr-rules with prefer-
ences, gave the semantics of the new language, CR-Prolog,
and demonstrated how it can be used to formalize various
types of common-sense knowledge and reasoning. We could
not find natural A-Prolog formalizations for some of the ex-
amples in the paper. Formalizations in CR-Prolog however
seem to be natural, reasonably elaboration tolerant, and, we
hope, can be efficiently implemented.

So far, we have implemented a naı̈ve algorithm for comput-
ing answer sets of programs with cr-rules. We are currently
working on the development and implementation of more
efficient reasoning algorithms. We also plan to study the
ramifications of the use of different preference relations in
the definition of answer sets of CR-Prolog.

Acknowledgments
This work was partially supported by United Space Al-
liance under Research Grant 26-3502-21 and Contract
COC6771311, and by NASA under Contracts 1314-44-1476
and 1314-44-1769. The authors would like to thank the
anonymous reviewers for their useful comments which con-
tributed to the improvement of this paper.

References
Aiello, L., and Massacci, F. 2001. Verifying security proto-
cols as planning in logic programming. ACM Transactions
on Computational Logic.

Balduccini, M., and Gelfond, M. 2002. Diagnostic reason-
ing with a-prolog. Theory and Practice of Logic Program-
ming. (to appear).

Balduccini, M.; Gelfond, M.; and Nogueira, M. 2000. A-
prolog as a tool for declarative programming. In Proceed-
ings of the 12th International Conference on Software En-
gineering and Knowledge Engineering (SEKE’2000), 63–
72.

Baral, C., and Gelfond, M. 2000. Reasoning agents in
dynamic domains. In Workshop on Logic-Based Artificial
Intelligence. Kluwer Academic Publishers.

Baral, C., and Lobo, J. 1997. Defeasible specifications in
action theories. In Proceedings of IJCAI-97, 1441–1446.

Buccafurri, F.; Leone, N.; and Rullo, P. 1997a. Adding
weak constraints to disjunctive datalog. In Proceedings
of the 1997 Joint Conference on Declarative Programming
APPIA-GULP-PRODE’97.

Buccafurri, F.; Leone, N.; and Rullo, P. 1997b. Strong
and weak constraints in disjunctive datalog. In Proceed-
ings of the 4th International Conference on Logic Pro-
gramming and Non-Monotonic Reasoning (LPNMR’97),
volume 1265, 2–17.

Calimeri, F.; Dell’Armi, T.; Eiter, T.; Faber, W.; Gottlob,
G.; Ianni, G.; Ielpa, G.; Koch, C.; Leone, N.; Perri, S.;
Pfeifer, G.; and Polleres, A. 2002. The dlv system. In
Flesca, S., and Ianni, G., eds., Proceedings of the 8th Eu-
ropean Conference on Artificial Intelligence (JELIA).

Dimopoulos, Y.; Koehler, J.; and Nebel, B. 1997. Encoding
planning problems in nonmonotonic logic programs. In
Proceedings of the 4th European Conference on Planning,
volume 1348, 169–181.

Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 365–385.

Gelfond, M. 1991. Epistemic approach to formalization of
commonsense reasoning. Technical Report TR-91-2, Uni-
versity of Texas at El Paso.

Gelfond, M. 2002. Representing knowledge in a-prolog.
In Kakas, A. C., and Sadri, F., eds., Computational
Logic: Logic Programming and Beyond, Essays in Hon-
our of Robert A. Kowalski, Part II, volume 2408, 413–451.
Springer Verlag, Berlin.

Hayes, P. J., and McCarthy, J. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
Edinburgh University Press. 463–502.

Heljanko, K. 1999. Using logic programs with sta-
ble model semantics to solve deadlock and reachability
problems for 1-safe petri nets. Fundamenta Informaticae
37(3):247–268.

Inoue, K. 1994. Hypothetical reasoning in logic programs.
Journal of Logic Programming 18(3):191–227.

Kakas, A. C., and Mancarella, P. 1990. Generalized sta-
ble models: a semantics for abduction. In Proceedings of
ECAI-90, 385–391. IOS Press.

Kakas, A. C.; Kowalski, R. A.; and Toni, F. 1998. The role
of abduction in logic programming. Handbook of Logic
in Artificial Intelligence and Logic Programming. Oxford
University Press. 235–324.

Lifschitz, V. 1999. Answer set planning. In Proceedings
of IJCSLP 99.

Lin, F., and You, J.-H. 2001. Abduction in logic program-
ming: A new definition and an abductive procedure based
on rewriting. In International Joint Conference on Artifi-
cial Intelligence (IJCAI’01).

Lin, F., and Zhao, Y. 2002. Assat: Computing answer
sets of a logic program by sat solvers. In Proceedings of
AAAI-02.

McCain, T., and Turner, H. 1995. A causal theory of ramifi-
cations and qualifications. Artificial Intelligence 32:57–95.

McCain, T., and Turner, H. 1997. Causal theories of action
and change. In Proceedings of AAAI-97, 460–465.

Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.;
and Barry, M. 2001. An a-prolog decision support system
for the space shuttle. In AAAI Spring 2001 Symposium.

Pareto, V. 1896. Cours d’economie politique professe a
l’universite de lausanne.

Pontelli, E.; Balduccini, M.; and Bermudez, F. 2003. Non-
monotonic reasoning on beowulf platforms. In PADL 2003.
(to appear).

Sakama, C., and Inoue, K. 2000. Prioritized logic pro-

gramming and its application to commonsense reasoning.
Artificial Intelligence 123:185–222.
Simons, P. 1996. Computing Stable Models.
Soininen, T., and Niemela, I. 1999. Developing a declar-
ative rule language for applications in product configura-
tion. In Proceedings of the First International Workshop
on Practical Aspects of Declarative Languages.
Turner, H. 1997. Reprenting actions in logic programs and
default theories: A situation calculus approach. Journal of
Logic Programming 31(1-3):245–298.

