Alan: An Action Language for Non-Markovian Domains

Graciela Gonzalez

Chitta Baral

Michael Gelfond

Dept. of Computer Science Dept. of Computer Science and Eng. Dept. of Computer Science

Sam Houston State University
Huntsville, TX, 77341 U.S.A.
csc_ghg@shsu.edu

Abstract

In this paper we present the syntax and semantics
of a temporal action language named Alan. The
language allows the specification of systems where
the future state of the world depends not only on
the current state, but also on the past states of the
world, that is, where the Markov property does not
hold. To the best of our knowledge, Alan is the first
action language which incorporates causality with
temporal formulas. In the process of defining the
effect of actions we define the closure with respect
to a path rather than to a state, and show that the
non-Markovian model is an extension of the tradi-
tional Markovian model. Finally, we establish the
relationship between theories of Alan and logic pro-
grams.

1 Introduction and motivation

There are certain areas of knowledge where conditions for ac-
tions are better described when one is allowed to reference not
only the current state of the world, but also past states. For ex-
ample, consider a multimodal interaction navigation system
that needs to process utterances and touch-screen input. If
the user utters ~’go there” and then points to an intersection on
the screen, then the system should generate driving directions
from the current location of the user to the given intersection.
Just the utterance or just the pointing might have different
meanings if not in the given sequence. would not have the
same effect. Consider also a diagnostic system where facts
that occur over a period of time are used to help make more
accurate diagnosis. For example, a patient who presents a dry
cough and trouble breathing with no other previous symptoms
might not be suspected of having SARS, unlike one with the
same current symptoms, but who suffered from fever before
generalized body aches, all of these preceded by a trip to a
SARS-infected area.

Multimedia presentations are also rich in temporal relation-
ships. Consider the following description.

A tutorial about endangered species is available at the local
zoo for the public to explore. All the contents of the tutorial
are in a database, and it shows each animal as a multime-
dia presentation. A video clip of the animal is followed by
descriptive paragraph, read aloud and shown as text. With

Arizona State University
Tempe, AZ 85287, U.S.A.
chitta@asu.edu

Texas Tech University
Lubbock, TX, 79409 U.S.A.
mgelfond @cs.ttu.edu

the description, pictures of the animal and its habitat are dis-
played, each for 5 seconds. Once the paragraph is read, back-
ground music is played while all the pictures are shown.

Now suppose we would like to study weather the user
clicked anywhere on the screen while the video was playing,
or if showing the pictures took more than twice the time it
took to read the descriptive paragraph. In order to be able to
answer such queries, and many others, we first need to model
the presentation. A model of a presentation provides a declar-
ative description of its contents and the relationships among
the different elements that define it.

A particularly challenging aspect of the application area is
to model constraints that require knowledge of events that oc-
curred sometime during the presentation, but not necessarily
in the current state. Say that at the end of the presentation of
one animal, the user is asked to answer a question about it,
and is given two chances to answer it. If the wrong answer
is entered twice, the portion of the presentation that showed
the relevant content is shown again. To model the effect of
submitting an incorrect answer, we would need to refer to
weather or not an incorrect answer has been submitted some-
time in the past. The two incorrect attempts might not even
be one after the other, since the user could have gone back
and watched some portion of the presentation again before
coming back to the questions.

We present here the syntax and semantics of a temporal ac-
tion language named Alan, introduced in [8], which can han-
dle such domains. It was originally designed to model com-
plex interactive multimedia presentations, joining the quest
for a model of the complex temporal relationships in multi-
media objects and presentations ongoing in the literature for
some years [10; 11; 12; 18; 20].

The syntax of the proposed language is based on the action
description language A [6] and its successors (such as [3;
14]). Other action description languages are also outlined
in [19]. In these languages the effect of actions are repre-
sented using effect propositions of the form a causes M\ if
p, where a is an action and)\ and p are fluent formulas. In-
tuitively, the meaning of such a proposition is that if p is true
in a state then executing a in that state causes A to be true
in the resulting state. Most of these languages (except [16;
5]) are Markovian, in the sense that the effect of an action
depends only on the state the action is executed.

We propose instead a non-Markovian action description

language, allowing p to be a formula with past temporal oper-
ators and action occurrence statements. In that case the effect
of a is not with respect to a state but is with respect to a his-
tory of states. Infinite domains are avoided by using only past
temporal operators in the language. The idea of using tem-
poral logic to extend Markovian formalisms to capture non-
Markovian domains has been explored before in [1], where
the area of interest is rewarding behaviors and planning, and
by one of the authors of this paper in a limited-audience work-
shop.

The new contribution of this paper is in regards to con-
straints, i.e. statements of the form \ if p which relate fluents
of the domain. In earlier formulations of causality p and A
were fluent formulas. In this paper we allow p to have tem-
poral operators and thus refer to the past history. This ne-
cessitates a new definition of transition due to actions, which
we provide, showing it is an extension of the definition of
possible next states for the Markov case first introduced in
[13], and later used for action language AC in [14] and B [7].
We also discuss how the language we propose can be used
in modelling multimedia presentations. The non-Markovian
nature of Alan results in a succinct representation of complex
temporal relations. Examples of such representations are pre-
sented in [9]. Some alternative approaches are discussed in
[18], though there is still some way to go towards an ontol-
ogy of multimedia presentations.

Often it is noted that references to the history (using tem-
poral operators) can be eliminated by recording the history as
part of a state. Similarly, instead of using action occurrence as
part of the p above, new fluents can be introduced that record
the action occurrence in a state. That is, it is always pos-
sible for a Markovian model to replace a non-Markovian one
with more fluents, and possibly even more actions. The major
drawback of such an approach is that it leads to an increase
in the number of fluents and hence in an increase in the to-
tal number of possible states, making processing more time-
consuming. This is also a step backward from the perspec-
tive of knowledge representation and elaboration tolerance.
In this regard note that the reason we use action languages in
the first place (rather than a transition table listing state tran-
sitions due to actions) is to have a succinct representation.
The motivation behind using constraints instead of compil-
ing them (which will lead to additional effect propositions)
is also similar. Our proposal of using temporal operators and
action occurrences to refer to the history rather than adding
new fluents is along the same lines.

The emphasis of this paper is on the semantics and for-
malization of the language, and is organized as follows. We
first present the language Alan, with its three component lan-
guages: an action description language Alan 4, a language for
describing observation Alanp, and a query language Alang.
For each language we include its semantics. We then estab-
lish the relationship between theories of Alan and logic pro-
grams and briefly outline how this relationship can be used
to reason about various properties of dynamic domains. For
more extended examples of its application in modelling mul-
timedia, the reader is referred to [9].

2 The Language Alan

We refer to our proposed language as Alan as a short form
for (Action LAnguage for Non-markovian domains). We as-
sume a fixed action signature > = (F, A) for the language,
consisting of two disjoint, nonempty sets of symbols: a set
F' of fluents, and a set A of elementary actions. As in all
action languages, a fluent is a proposition whose truth value
might vary from one state of the world to the next. A fluent
literal is a fluent f or its negation —f. By a compound action
we will mean a set {a1,...,a,} of elementary actions. In-
tuitively, execution of a compound action corresponds to the
simultaneous execution of its components. Similar to other
action languages Alan can be divided in three parts: an ac-
tion description language Alan 4, a language for recording the
agent’s observations Alano, and a query language Alang. In
the following subsections we present each of these languages,
together with their corresponding semantics.

2.1 Alany: an action description Language
We start with describing the syntax of Alan 4.

Syntax of Alan 4.

We define two kinds of formulas over ¥: “state formulas” and
“temporal formulas™. We refer to state and temporal formulas
simply as formulas when their kind is clear from context or
something applies to both.

Definition 1 (State Formula) A state formula is an expres-
sion defined as follows:

1. A fluent literal is a state formula.

2. A statement of the form “occurs a.”, where a. is an el-
ementary action from %, is a state formula.

3. If pis a state formula, then —p, is a state formula.

4. If p1 and p> are state formulas, then p1 N\ p2 and p1 V pa
are state formulas.

5. Nothing else is a state formula. a

Definition 2 (Temporal Formula) A temporal formula in
Alan is defined as follows:

1. A state formula is a temporal formula.
2. If p1 and py are temporal formulas, then

o lasttime p1,
e previously p,
e p1 before p;
e p; since po

are temporal formulas (sometimes referred to as tempo-
ral atoms).

3. If p is a temporal formula, then —p, is a temporal for-
mula.

4. If p1 and py are temporal formulas, then py N ps and
p1 V p2 are temporal formulas.

5. Nothing else is a temporal formula. a

The temporal connectives specified above [16] can be used!
to express other useful temporal notions. For example, a
statement always p, which says that p has always been true
in the past, can be written as —previously —p. The statement
never p (p has never been true in the past) can be written as
—previously p or always —p.

Action descriptions of Alan consist of propositions, some-
times referred to as causal laws, which are defined as follows:

Definition 3 (Proposition) If a is an action, a. is an elemen-
tary action, X\ is a fluent literal, and p is a formula, in the
language Alan 4:

1. a constraint is an expression
Aifp

2. a causal proposition is an expression
a. causes \if p

3. an impossibility proposition is an expression
impossible a if p

4. adefinition proposition is an expression

defined \ if p
and a proposition is any expression of the form (1) through
(4) above. a

In the above definition, p is said to occur in the “body” of
the expressions, and A and a occur in the “head”; p’s are often
referred to as preconditions of causal laws.

Definition 4 (Action Description) A collection of proposi-
tions is called an action description. O

Intuitively, to model a multimedia presentation, the possi-
ble behaviors of the display elements are encoded as an ac-
tion description in Alan. These includes the behavior of the
video and audio players, and others such as buttons or links.
Particularities of the display system (buttons or other GUI el-
ements) are represented as objects and are used as parameters
for actions and fluents in predicates.

Semantics of Alan 4.

In the theories of actions an action description « serves as
a formal model capturing aspects of reality relevant to the
agent. Its main goal is to concisely define a collection of
acceptable paths or “possible trajectories” of the agent’s do-
main. In Markovian models such paths are characterized by
transition diagrams in which possible states of the domain
after the execution of action @ depend only on a and the cur-
rent state of the system. In contrast, to determine to which
states the domain can move after the execution of @ in a non-
Markovian model the current state is not enough. One needs
to know the domain’s previous history. To describe the set of
possible trajectories of o we will need some auxiliary defini-
tions.

Let « be an action description of Alan. A set X of fluent
literals from X is called complete if for any fluent f in 3,
feXor—f e X; X is called consistent if there is no fluent
fsuchthat f,—f € X. A partial state of « is a consistent set

'This is true only when we have a history of complete states.
Otherwise, they may need to be written independently. We will ex-
plore this further in the sequel.

of fluent literals of X. Partial states will be denoted by con-
secutively indexed letters s. If s is complete and consistent,
it is called a complete state or simply, a state. A path w of
a is a sequence (S, ag, - - ., an_1, Sp), Where a’s are (possi-
bly compound) actions and s, ..., s,—1 are states and s,, is
a partial state. When necessary, n will be referred to as the
length of 7. By m; we denote the prefix of 7 that ends at s;.
o is equal to sg, and it is called the initial state of the path. 7
is an incomplete path if s,, is not a complete state; otherwise
we refer to it as a complete path. Given a fluent literal A, by
Awedenote —f if A\ = f,or fif A\ =—f.

Now we will define the truth of formulas (F') with respect
to paths (7).

Definition 5 (Truth of formulas) Given a complete path m,
of length n, an action a, and state formulas p, q:

. A fluent literal \ is true in 7, iff A\ € sy,.

‘occurs a’ is true in Ty, iff a € ap—_1.

P A qis true in w, iff both p and q are true in ,.
pV q is true in m, iff either p or q are true in T,
—p is true in wy, iff p is not true in T,

. lasttime p is true in w, iff n > 0 and p is true in w,_1.

NS LA W~

. previously p is true in 7, iff n > 0 and for some 0 <
1 < n, pistrue in m;.

8. p before q is true in w, iff for some 0 < j < n, pis true
in 7j, and for every i < j, q is false in m;

9. p since q, is true in , iff for some 0 < j < n, q is true in
74, and for every j < i < n, pis true in m; O

Our next goal is to define truth of formulas for incomplete
paths, but first we need some preliminary notions. A path
T = (80,00, - - -, An_1, Sy is said to be closed under the con-
straints and definition propositions of an action description «
if:

1. for every constraint (A if p) from q, if p is true in 7 then

A € sp, and

2. for every definition proposition (defined) if p) from «,
if p is true in w then A € s,; if —p is true in 7 then
A € sp.

We now say that a complete path 7 = (sg,ag, ..., Gn—1,5n)
is an extension of an incomplete path

= <50a ag,---,8n—1,0n—1; S;)
if s}, C sp, sy is a complete state and 7 is closed under the
constraints and definition propositions.

Definition 6 (Truth of formulas for incomplete paths) A
formula p is true in a (possibly incomplete) path , if it is
true in every extension of T, and p is false in m, if it is false
in every extension of my,. a

Using the above definitions we can now say that a formula
F' is unknown in an incomplete path 7 if neither F' nor —F
is true in 7. We now characterize the collection of possible
trajectories defined by an action description .

Definition 7 (Executable actions) Let o be an action de-
scription over signature Y, a be an action of o, and T be a
path over ¥.. We say that a is executable after 7 if o contains

no proposition (impossible a. if p) such that a. C a and p is
true in . O

We now define the effects of an action, also with respect to
a path.

Definition 8 (E(a, 7), direct effects of an action) Let o be
an action description, ™ be a path over «’s signature %, and
a be an action executable after w. The direct effects of a on
m, denoted by E(a,), is the set of all fluent literals X from &
such that « contains an effect proposition (a. causes \ if p)
where

1. a. € a;
2. pistruein . O

The next important definition adapts a simpler definition
from [13] to the non-Markovian case.

Definition 9 (Closure C,(7)). Consider an action descrip-
tion « over signature 3 and a path ™ = (s, ag, . . ., Gp—1,0)
where s;’s are states, v is a partial state, and a’s are actions
of a.. The closure of T with respect to «, denoted by Cy,(7),
is the path ™' = {sg,a1,81,...an_1,w) such that w is the
smallest set of fluent literals from X satisfying the following
conditions:

1. v Cw,

2. for every constraint (\if p) from o, if p is true in ' then
A € w,

3. for every definition proposition (defined \ if p) from «,
_ ifpistrue in wthen A\ € w; if —p is true in 7 then
A€ w. m|

‘We are now ready to define the semantics of action descrip-
tion a of Alan, i.e. the set of possible trajectories of a.

Definition 10 (Possible Trajectory) Let o be an action de-
scription of Alan.

1. For a complete state s, (s) is a possible trajectory of «

if (s) = Ca((s))-

2. If mp—1 is a possible trajectory of « then a path 7, =

(mn—1, a, sp) is a possible trajectory of o« whenever:
(a) a is executable after m,, 1,

(b) sy, is complete,

(c) T = Co((Tn-1,a,(5n-1Nsy) UFE(a,m, 1)) O

Note that because of the non-Markovian nature of Alan, ex-
ecutability of an action in a non-Markovian system can only
be determined in reference to a path, rather than to a state,
as is done in traditional action languages. Thus we can only
speak about an executable sequence of actions having a pos-
sible trajectory from a particular state in a particular history,
and not from every state, since even determining whether the
sequence is executable or not depends on that history. The
same applies to the direct effects of an action since the con-
ditions upon which the direct effects of the action are deter-
mined (the body of propositions) can only be evaluated over
a path.

The following example shows how we can model one part
of the behavior of the multimedia presentation described in
the introduction. It illustrates the non-Markovian features of
Alan. More extensive examples were included in [9].

Example 1 A multimedia presentation shows a question and
gives the user two chances to answer it. If the wrong answer
is entered twice, the portion of the presentation that showed
the relevant content is shown again. Otherwise, the presenta-
tion ends.

We let Click(submit) be the action of clicking on the “sub-
mit” button. The fluent CLOCK(X, t) indicates the presen-
tation X is at point ¢ in time (the value of ¢ would be 0 at
the start of the presentation X), and DISPLAY _PERIOD(X, p)
that X will be displayed for a period p. Two other fluents,
IS_SELECTED(y) and IS_CORRECT(y) indicate that a choice
y is selected and is considered a correct selection, respec-
tively.

The propositions used to describe the above conditions
include:

Click(submit) causes CLOCK(main, replay_start),
DISPLAY_PERIOD(main, replay_period) if
IS_SELECTED(ans), =IS_CORRECT(ans),
previously *occurs Click(submit)’

Click(submit) causes ’occurs End(main)’ if
IS_SELECTED(ans), IS_CORRECT(ans)

Some details have been simplified for this example to em-
phasize the temporal aspect over implementation details, like
the fact that there is only one question in one presentation of
an animal. However, the formalization can easily be extended
to account for more than one question and the fact that the
presentation of an animal in the tutorial is followed by the
presentation of another animal.

Our proposed model, and in particular the definition of pos-
sible next states using histories, is an extension of the defini-
tion of possible next states introduced in [13] and later used
in action languages AC [14], and B [7]. We state this formally
in the following proposition, where Resc(a,s) refers to the set
of states to which the Markovian system can move after the
execution of a in state s.

Proposition 1. Let « be an action description consisting of
constraints, causal propositions, impossibility propositions,
and definition propositions such that all actions in those
propositions are elementary actions, and the body of the ex-
pressions (p’s in Definition 4) are only fluent formulas. Let
s be a state and a be an action. Then s’ € Resc(a,s) iff
(s, a, s’y is a possible trajectory of a. O

Intuitively, Proposition 1 means that by restricting the use
of causal laws of Alan to the syntax of [13], we have a formu-
lation of causality equivalent to that in [13]. Thus Definition
10 is an extension of the definition of Resc(a,s) presented
in [13]. The full proof of this appears in the principal au-
thor’s Doctoral dissertation [8]. The fix-point definition of
Resc(a,s) can be found in [13].

2.2 Alang: the Observation Language

In addition to knowing the set of possible trajectories of the
domain the agent may need to record the domain history up to
a given point n. We will follow [2] and limit such recording
to statements of the form

1. initially \
2. a. occurs_at t
3. A observed._at t

frequently referred to as axioms or observations. As usual
we use A to denote a fluent literal, a. denotes an elementary
action, and ¢ is a non-negative integer from [0..n]. Axioms
of type 1 state what is true in the initial state. Those of type
2 say that “action a. occurred at time point ¢”. Axioms of
type 3 state that “the fluent literal A was observed to be true
at t”. The set of axioms is often referred to as the recorded
history of the domain. Given a set of axioms S, the current
time point denoted by ¢. is the maximum element of the set
{t+1 : aoccurs.at t € S}U{t : Xobserved_at ¢t € S}.

Definition 11 (Domain Description) A domain description
D of Alan is a tuple {«,T') where « is an action description
and T is its recorded history. O

Domain descriptions in Alan are used in conjunction with the
following informal assumptions:
1. changes in the values of fluents can only be caused by
execution of actions;
2. there are no action occurrences other than those ob-
served; and

3. there are no direct effects of actions except those speci-
fied by the effect propositions of the domain.

Intuitively domain description D limits possible trajectories
of « to those which satisfy axioms from I". More precisely,

Definition 12 (Model) We say that a possible trajectory
T =< 80,00,51,---50n_1,S, > of a is a model of a do-
main description D = («, ') if forany 0 < k <n

1. ay ={a: (aoccurs_at k) € T'}
2. ifinitially\ € I then X € sq.
3. if A observed_at k € T then \ € sy. a

2.3 Alang: the Query Language

One of the main purposes of a representation such as the one
given in a domain description is to be able to extract answers
to queries about a particular domain. We now define queries
and their interpretation in Alang.

Definition 13 (Query) A query in Alang is an expression of
one of the following types:

1. p holds at t
2. pholds_n [t, ti]
3. pafterAatt

where p is a formula, A is a sequence of actions, t1 is a time
point, and t and ty, are either time points or t. denoting the
current time. O

Queries of type 1 ask whether the given formula holds at
a time point. Queries of type 2 ask whether the given for-
mula holds over a period of time between time points t; and
ti. Queries of type 3 can be read as “if the sequence A of
user actions were executed at time point t, would p hold af-
terward?”. Simple queries are used to inquire about general

properties of the domain, and to verify its validity. If the for-
mula p includes variables, the system will respond with spe-
cific ground values for that variable (if any) that will make the
formula true in the given domain.

Definition 14 (Entailment) Given a domain description D
= (a,T') and a model m = (sg,a1,51...,8,) of D, 7 entails
query Q (or Q is true in) if:

1. Q = pholds_at t and p is true in 7,

2. Q =p holds_in [t1,t}] and, for every ; such that t; <
J < tg, pis true in ;.

3.0 = p after by,....b; a t 7 =<
80505+« + s Qt—15 Sty D1y St415 - -+, D)y 834 > is a
possible trajectory of o, and p is true in 7', O

3 Computing Models of Domain Descriptions

Various reasoning algorithms associated with a domain de-
scription D of Alan are based on our ability to compute the
models of D not exceeding some given length . In the the-
ory of action languages this is frequently done by

(a) mapping a domain description D and integer N > 0 into
a logic program T'(D, N') whose stable models (answer sets)
[6] correspond to models of D; and

(b) using an answer set finder (e.g. smodels [17], dlv [4]) to
compute the answer sets of T'(D, N).

The existing answer set finders are reasonably efficient
and allow computation of answer sets for programs with
hundreds of thousands ground rules. They were successfully
used for various sizeable applications. Moreover the corre-
sponding systems are improving at a very high rate which
allows us to hope for a higher scalability. In this section we
will outline a construction of T'(D, N) for a simple case of
domain descriptions whose propositions have preconditions
consisting of a single fluent literal or a temporal atom. In
addition we only consider action descriptions not containing
definition propositions. The restrictions are not essential
and are caused by the space limitations. In what follows
F will be used as a variable for fluents from signature
> of D, P and @ will stand for formulas occurring in
preconditions of its causal laws, and H will be a shorthand
for holds. Propositions of Alan will be written as atoms of
Prolog, e.g. L if P will have a form if(L, P), etc. The first
collection of rules of 7'(D, N') correspond to D’s causal laws.

Causal Laws

H(F,T+1) :- CAUSES(A,F,P), oCCURS(A,T), H(P,T).
H(F,T) :- 1r(L,P), H(P,T).

:- IMPOSSIBLE(A,P), H(P,T), OCCURS(A,T).

Recall that the last rule is a constraint which guarantees
that no answer set of the program will satisfy its premise.
The rules are written for propositions in which F' and P are
atomic fluents. If they are negative literals the corresponding
rules can be obtained by putting the negation symbol *—’ in
front of the corresponding h, e.g.

-H(F, T + 1)
—H(P,T).
The next two rules formalize the Inertia Axiom from [15].

- CAUSES(A,—F,—P), OCCURS(A,T),

Inertia

H(F,T+1) :- H(F,T), NoT —H(F,T).

—H(F,T+1):- —=H(F,T), NOoT H(F,T).

The above rules are similar to those used in translations of
other action formalisms. The next group of rules defining the
truth of temporal literals is new.

Truth of Temporal Literals

H(lasttime P, T) :- H(P,T-1).

H(previously P, T) :- Ty < T, H(P, Tp).

HP before Q, T) :- T < T,
H_BETWEEN(—Q), 0, Tp).

H(P since Q,T) :- Ty < T, H(Q, Tp), H.BETWEEN(P, Ty, T),
H(PT).

The new relation H.BETWEEN(L, T3, T») says that literal L
holds in the interval [T}, T5). It is defined by the following
rules:

H(P,Ty),

H_BETWEEN(L,T —1,T) :-H(L,T — 1).
H_BETWEEN(L,Ty,T5) :- H(L,T;), H.BETWEEN(L, T} +
1,Ty).

Finally, the rule

:- =H(F,T), OBSERVED(F,T).

guarantees that the agent’s observations do not contradict its
expectations.

The program T'(D, N) consists of the above rules and state-
ments from « and I' represented as Prolog atoms. (An actual
program contains a few auxiliary axioms omitted in the pre-
sentation).

It is not difficult to see that for every answer set A of T'(D, N)
the statements formed by the relations occur and h from A
form a path of v of length N. We say that this path is defined
by A. Computation of models of D are based on the following
proposition.

Proposition 2.

Given an action description o« if w,_; =
(80,00, ---,0p—2,5,—1) 1is a possible trajectory of «
then

a path 7, = (s0,a0,...,an_2,8,-1,a,Sy) is a possible

trajectory of «v iff

there is an answer set A of the program T'(a,n) U
{holds(f,j) | f € s;,0 <j<n—1}U{occurs(d’,j)|d €
a;,0 < j <n—2}U{occurs(a’,n — 1) | a’ € a} such that
sn = {l] holds(l,n) € A}. ad
The above Proposition can be used to design algorithms for
performing a large number of reasoning tasks. First we can
use a large number of results from the theory of logic pro-
gramming as well as answer set finders to establish that the
program T'(D, N) is consistent, i.e. has answer sets. (Such
consistency is expected for all ’reasonable’ action descrip-
tions.) Suppose now we are given a domain description D
whose recorded history uniquely describes the initial state of
the domain, and a query) of the form, say, p holds_atk

(where £ < N). To check if this query holds in all model
of D we expand the program T'(D, N) by the constraint

- Q.

and ask an answer set finder to find an answer set of the re-
sulting program. If no such answer set exists then () holds
in all models of D. Simple additions to the program allow
us to answer similar queries even if the initial situation is not
completely described by I'. Similar techniques can be used
for performing substantially more complex reasoning tasks.
For instance to find a plan of length K, which will allow a
reasoner to achieve goal GG in a number of steps limited by IV
one can expand the program by the rules:

GOAL :- H(G,T).

- NOT GOAL.

OCCURS(AT):-T. < T < T, + K, not moccurs(A,T).
—0CCURS(A,T) :- T, < T < T, + K, not OCCURS(A,T).
Answer sets of the resulting program will correspond to pos-
sible plans for achieving G from the current moment 7.
(This is a corollary of Proposition 2.) Unlike previous answer
set planners in the literature the planners of Alan are able to
achieve goals of the form "Move to a state in which fluent f is
true but make sure that if ¢ is true now then it should be true
on your way to f.” Similar techniques can be used to combine
planning and other tasks such as diagnostic reasoning.

4 Conclusion

We have presented a temporal action language named Alan
that can be used to model non-Markovian systems. We de-
fined the notion of closure of a trajectory, used it to define
transition between trajectories, and showed that this formula-
tion is an extension of traditional markovian definitions that
define closure with respect to states and transition between
states. Alan is used in the first author’s Ph.D thesis to model
multimedia displays where temporal preconditions are preva-
lent. We expect it to be also useful in modelling other dy-
namic environments, such as the Web, multimodal interac-
tion, diagnostic systems, workflow systems, graphical user
interfaces, monitoring systems, and active databases.

The third author was partially supported by NASA under
contracts 1314-44-1476 and 1314-44-1769.

References

[1] F. Bacchus, C. Boutilier, and A. Grove. Structured solu-
tion methods for non-markovian decision processes. In
AAAI 97, pages 112-117, 1997.

[2] C.Baral and M. Gelfond. Reasoning agents in dynamic
domains. In J Minker, editor, Logic Based Al. Kluwer,
2000.

[3] C. Baral, M. Gelfond, and A. Provetti. Representing
Actions: Laws, Observations and Hypothesis. Journal
of Logic Programming, 31(1-3):201-243, May 1997.

[4] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch,
N. Leone, C. Mateis, G. Pfeifer, and F. Scarcello. The
dlv system: Model generator and application front ends.
In Proceedings of the 12th Workshop on Logic Program-
ming, pages 128-137, 1997.

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. Gabaldon. Non-markovian control in the situa-
tion calculus. In Proceedings of the Second Interna-

tional Workshop on Cognitive Robotics, Berlin, Ger-
many, 2000.

M. Gelfond and V. Lifschitz. Representing actions and
change by logic programs. Journal of Logic Program-
ming, 17(2,3,4):301-323, 1993.

M. Gelfond and V. Lifschitz. Action languages. ETAI,
3(6), 1998.

Graciela Gonzalez. A Display Specification Language
for Multimedia Databases, 2000. Ph. D. Thesis, Depart-
ment of Computer Science, University of Texas at El
Paso.

Chitta Baral Graciela Gonzalez and Peter Cooper. Mod-
eling multimedia displays using action based temporal
logic. In Visual and Multimedia Information Manage-
ment, IFIP TC2/WG2.6 Sixth Working Conference on
Visual Database Systems, May 29-31, 2002, Bisbane,
Australia, volume 216 of IFIP Conference Proceedings,
pages 141-155. Kluwer, 2002.

Jiirgen Hauser. Realization of an extensible document
model. in: Proceedings of the eurographics multimedia
’99 workshop. Technical report.

Na’el Hirzalla, Benjamin Falchuk, and Ahmed Kar-
mouch. A temporal model for interactive multimedia
scenarios. IEEE MultiMedia, 2(3):24-31, Fall 1995.

Cherif Keramane and Andrzej Duda. Operator based
composition of structured multimedia presentations. In
COST 237 Workshop, pages 1-17, 1997.

N. McCain and H. Turner. A causal theory of ramifica-
tions and qualifications. In C. Mellish, editor, Proc. of
IJCAI 95, pages 1978-1984. Morgan Kaufmann, 1995.

N. McCain and H. Turner. Causal theories of action and
change. In Proc. of AAAL, pages 460—465, 1997.

J. McCarthy and P. Hayes. Some philosophical prob-
lems from the standpoint of artificial intelligence. In
B. Meltzer and D. Michie, editors, Machine Intelli-
gence, volume 4, pages 463—-502. Edinburgh University
Press, Edinburgh, 1969.

G. Mendez, J Llopis, J. Lobo, and C. Baral. Temporal
logic and reasoning about actions. In Common Sense
96, 1996.

I. Niemela and P. Simons. Smodels — an implemen-
tation of the stable model and well-founded semantics
for normal logic programs. In J. Dix, U. Furbach, and
A. Nerode, editors, Proc. 4th international conference
on Logic programming and non-monotonic reasoning,
pages 420—429. Springer, 1997.

P. Pazandak and J. Srivastawa. The language compo-
nents of damsel: An embedable eventdriven declarative
multimedia specification language, 1995.

E. Sandewall. Special issue. Electronic Transac-
tions on Artificial Intelligence, 2(3-4):159-330, 1998.
http://www.ep.liu.se/ej/etai/.

[20] Thomas Wahl and Kurt Rothermel. Representing time

in multimedia systems. In International Conference on
Multimedia Computing and Systems, pages 538-543,
1994.

