Non-monotonic Reasoning on Beowulf Platforms

E. Pontelli', M. Balduccini?, and F. Bermudez!

!Dept. Computer Science 2Dept. Computer Science
New Mexico State University Texas Tech University
epontell@cs.nmsu.edu marcello.balduccini@ttu.edu

Abstract. Non-monotonic logic programming systems, such as the various imple-
mentations of Answer Set Programming (ASP), are frequently used to solve problems
with large search spaces. In spite of the impressive improvements in implementation
technology, the sheer size of realistic computations required to solve problems of in-
terest often makes such problems inaccessible to existing sequential technology. This
paper presents some preliminary results obtained in the development of solutions for
execution of Answer Set Programs on parallel architectures. We identify different
forms of parallelism that can be automatically exploited in a typical ASP execution,
and we describe the execution models we have experimented with to take advantage
of some of these. Performance results obtained on a Beowulf system are presented.

1 Introduction

In recent years we have witnessed a rapid development of logical systems—non-monotonic
logics—that provide the ability to retract existing theorems via introduction of new axioms.
In the context of logic programming, non-monotonic behavior has been accomplished by
allowing the use of negation as failure (NAF) in the body of clauses. The presence of NAF
leads to a natural support for non-monotonic reasoning, allowing for intelligent reasoning in
presence of incomplete knowledge. NAF is also important for various forms of database tech-
nology (e.g., deductive databases). Stable model semantics [8] is one of the most commonly
accepted approaches to provide semantics to logic programs with NAF. Stable model seman-
tics relies on the idea of accepting multiple minimal models as a description of the meaning
of a program. In spite of its wide acceptance and its extensive mathematical foundations,
stable models semantics have only recently found its way into mainstream “practical” logic
programming. The recent successes have been sparked by the availability of very efficient
inference engines (such as smodels [15], DeRes [3], and DLV [6]) and a substantial effort to-
wards understanding how to write programs under stable models semantics [14,12]. This has
led to the development of a novel programming paradigm, commonly referred to as Answer
Set Programming (ASP). ASP is a computation paradigm in which logical theories (Horn
clauses with NAF) serve as problem specifications and solutions are represented by collection
of models. ASP has been concretized in a number of related formalism—e.g., disjunctive logic
programming and Datalog with constraints [6, 5]. In comparison to other non-monotonic log-
ics, ASP is syntactically simpler and, at the same time, very expressive. The mathematical
foundations of ASP have been extensively studied; in addition, there exist a large number
of building block results about specifying and programming using ASP—e.g., results about
dealing with incomplete information and abductive assimilation of new knowledge. ASP has
been successfully adopted in various domains (e.g., [1,2,11,16]).

In spite of the continuous effort in developing fast execution models for ASP [6, 5, 15],
computation of significant programs remains a challenging task, limiting the scope of appli-
cability of ASP in a number of domains (e.g., planning). In this work we propose the use of
parallelism to improve performance of ASP engines and improve the scope of applicability
of this paradigm. The core of our work is the identification of potential sources for implicit

exploitation of parallelism from a basic execution model for ASP programs—specifically the
execution model proposed in the smodels system [15]. We show that ASP has the potential to
provide considerable amounts of independent tasks, which can be concurrently explored by
different ASP engines. Exploitation of parallelism can be accomplished in a fashion similar
to the models proposed to parallelize Prolog [10] and constraint propagation [13].

Building on recent theoretical results regarding efficiency of parallel search in computa-
tion trees [19], we provide the design of an engine which exploits the two forms of parallelism
identified (Vertical Parallelism and Horizontal Parallelism). The engine design is optimized
to take advantage of the specific features of the smodels execution, including features such as
lookahead. The effectiveness of our engine design in extracting parallelism is demonstrated
via implementations on a distributed memory system (a Pentium-based Beowulf architec-
ture) and the execution of a number of ASP benchmarks. We also investigate the use of
parallelism to improve the performance of the local grounding preprocessor [22] used in
smodels-type systems. The work proposed—which continues the work on shared memory
platforms presented in [18]—along with the work concurrently conducted by Finkel et al.
[7], represents the first exploration in the use of scalable architectures for ASP computations
ever proposed.

The paper is organized as follows. In the next section we present an introduction to
answer set programming. In Section 3 we describe the parallelization of local grounding. In
Sections 4, 5, and 6 we discuss the design of the engine for the computation of the answer
sets of logic programs. Performance results are presented in Section 7, while optimization,
related work and conclusions are discussed in Sections 8 and 9.

2 Answer Set Programming

From Answer Set Semantics to Answer Set Programming: Answer Sets Semantics
(AS) [8] (a.k.a. Stable Models Semantics) was designed in the mid eighties as a tool to
provide semantics for logic programming with negation as failure. The introduction of NAF
in logic programming leads to various complications. In particular, it leads to the loss of
a key property of logic programming: the existence of a unique intended model for each
program. In standard logic programming there is no ambiguity in what is true and what
is false w.r.t. a given program. This property does not hold true anymore when NAF is
allowed in the programs—i.e., programs may admit distinct independent models. Various
classes of proposals have been developed to tackle the problem of providing semantics to
logic programs with NAF. In particular, one class of proposals allows the existence of a
collection of intended models (answer sets) for a program [8]. Answer Sets Semantics (AS)
(also known as Stable Models Semantics) is the most representative approach in this class,
and there is intuitive as well as formal evidence showing that AS “properly” deals with
negation as failure. AS relies on a simple definition: Given a ground program P and given
a “tentative” model M, we can define a new program PM (the reduct of P w.r.t. M) by:
(i) removing all rules containing atoms under NAF which are contradicted by M, and (ii)
removing all the atoms under NAF from the remaining rules. PM contains only those rules
of P that are applicable given M. PM is a standard logic program, without negation as
failure, which admits a unique intended model M'. M is an answer set (or stable model) if
M and M’ coincide. In general, a program with NAF may admit multiple answer sets.

Ezxample 1. Given a database containing information regarding people working in different
departments, e.g.,

dept (hartley,cs). dept(pfeiffer,cs). dept(gerke,math). dept(prasad,ee).
we would like to select the existing departments and one (arbitrary) representative employee
from each of them:
depts_employee(Name,Dep) :- dept (Name,Dep), not other_emps(Name,Dep) .
other_emps (Name ,Dep) :- dept(Namel,Dep), depts_employee(Namel,Dep), Name # Namel.

The rules assert that Name/Dep should be in the solution only if no other member of the
same department has already been selected. AS produces 2 possible answer sets (for the
depts_employee predicate):

{(hartley, cs), (gerke, math), (prasad, ee)}

{(pfeiffer, cs), (gerke, math), (prasad, ee)}

As recognized by a number of authors [12,14], the adoption of AS requires a paradigm
shift to reconcile the peculiar features of AS with the traditional program view of logic
programming. First of all, we need to provide programmers with a way of handling multiple
answer sets. One could attempt to restore a more “traditional” view, where a single “model”
exists. This has been attempted, for example, using skeptical semantics [12], where a formula
is considered entailed from the program only if it is entailed in each answer set. Nevertheless,
skeptical semantics is often inadequate—e.g., in many situations it does not provide the de-
sired result, and in its general form provides excessive expressive power [12]. The additional
level of non-determinism, is indeed a real need for a number of applications. Maintaining
multiple answer sets bears also close resemblance to similar proposals put forward in other
communities—such as the choice and witness constructs used in the database community.
This creates an additional level of non-determinism on top of the non-determinism in tra-
ditional logic programming. Both are forms of don’t know non-determinism: the difference
is in the granularity of the choices made at each level.

Additionally, the presence of multiple answer sets leads to a new set of requirements on
the computational mechanisms used. Given a program, the goal of the computation is not to
provide a goal-directed tuple-at-a-time answer (i.e., a true/false answer or a substitution),
as in traditional logic programming, but the objective is to return whole answer sets—i.e.,
set-at-a-time answers. The traditional resolution-based control used in logic programming
is largely inadequate, and should give place to different control and execution mechanisms.

To accommodate for all these novel aspects, we embrace a different view of logic pro-
gramming under AS, interpreted as a novel programming paradigm—that we will refer to
as Answer Sets Programming (ASP) [14,12]. In simple terms, the goal of an ASP pro-
gram is to identify a collection of answer sets—i.e., each program is interpreted as a
specification of a collection of sets of atoms. Each rule in the program plays the role
of a constraint [14] on the collection of sets specified by the program: a generic rule
Head : — By,...,B,,notGy,...,not Gy, indicates that, whenever By, ..., B, are part of an
answer set and G, ...,G,, are not, then Head has to be in the answer set as well. The shift of
perspective from traditional logic programming to ASP is very important. The programmer
is led to think about writing programs as manipulating sets of elements, and the outcome of
the computation is a collection of sets. This perspective comes natural in a large number of
application domains—e.g., graph problems deal with set of nodes/edges, planning problems
deal with sets of actions. ASP has received consideration in knowledge representation and
deductive database communities, as it enables to represent default assumptions, constraints,
uncertainty and non-determinism in o direct way [2].

Sequential Implementation Technology: Various execution models have been proposed
in the literature to support computation of answer sets and some of them have been applied
as inference engines to support ASP systems [3,14,6]. In this work we adopt an execution
model which is built on the ideas presented in [14] and effectively implemented in the popular
smodels system [15]. The choice is dictated by the relatively simplicity of this execution
model and its apparent suitability to exploitation of parallelism. The system consists of
two parts: a preprocessor (called Ilparse in the smodels system [22]) that is in charge of
creating atom tables and performing program grounding, and an engine, which is in charge of
computing the answer sets of the ground program. The work performed by the preprocessor
is based on a local grounding for programs with a restricted syntax (strongly range restricted
programs [22]). Intuitively, rules are required to contain domain predicates—i.e., predicates

not relying on any recursive definition—and each variable in a rule is required to appear
in a domain predicate. Domain predicates and their extensions are identified and computed
through dependency graphs. These are used to perform local grounding of each rule—taking
a natural join of the positive domain predicates in the body and then checking them against
the negative ones.

Our main interest is focused on the engine component. A detailed presentation of the
structure of the smodels engine [15] is outside the scope of this paper. In this section we
propose an intuitive overview of the basic execution algorithm. Fig. 1 presents the overall
execution cycle for the computation of stable models: the computation of answer sets can
be described as a non-deterministic process—since each program II may admit multiple
distinct answer sets. The computation is an alternation of two operations, expand and
choose_literal. The expand operation is in charge of computing the truth value of all those
atoms that have a determined value in the current answer set (i.e., there is no ambiguity
on whether they are true or false). The choose_literal is in charge of arbitrarily choosing
one of the atoms not present in the current answer set (i.e., atoms which do not have a
determined value) and “guessing” a truth value for it. We will refer to B as partial answer
set. The general objective is to try to expand a partial answer set into a stable model.

The meaning of the partial answer set is that, if atom a belongs to B, then a will belong
to the final model. If not a belongs to B, a will not belong to the final model.

Non-determinism originates from the execution of choose literal(ll, B), which selects
an atom [/ such that neither [nor its negation are present in B. The chosen atom is added
to the partial answer set and the expansion process is restarted. The choice of literals makes
use of lookahead [15] to quickly exclude literals not leading to answer sets (see Sect. 6).

function compute (II : Program)
B := expand(II, 0);

while ((B is consistent) and function expand (I : Program, A : LiteralsSet)
(B is not complete)) B := A ;

1 := choose_literal(Il, B); do
B := expand(/l , BU {1 }); B’ := B;

endwhile B := apply._rule(lI, B);

if (B stable model of IT) then while (B # B’);
return B; return B;

Fig. 1. Basic Execution Model for ASP Fig. 2. Expand procedure

Each non-deterministic computation can terminate either successfully—i.e., B assigns
a truth value to all the atoms and it represents an answer set of II—or unsuccessfully—
if either the process tries to assigns two distinct truth values to the same atom or if B
does not represent an answer set of the program (e.g., truth of certain selected atoms is
not “supported” by the rules in the program). As in traditional logic programming, non-
determinism is handled via backtracking to the choice points generated by choose_literal.
Observe that each choice point produced by choose_literal has only two alternatives:
one assigns the value true to the chosen literal, and one assigns the value false to it. The
expand procedure mentioned in the algorithm in Figure 1 is intuitively described in Figure
2. This procedure repeatedly applies expansion rules to the given set of literals until no
more changes are possible. The expansion rules are derived from the program II and allow
to determine which literals have a definite truth value w.r.t. the existing partial answer
set. This is accomplished by applying the rules of the program IT in different ways [15].
Efficient implementation of this procedure requires care to avoid unnecessary steps, e.g., by
dynamically removing invalid rules and by using smart heuristics in choose_literal [15].

3 Parallel Local Grounding

The first phase of the execution is characterized by the grounding of the input program.
Although most interesting programs
invest the majority of their execu-

function ParallelGround (IT)
IIg ={a|a is instance of domain predicate}

tion time in the actual computation I=1I\Ig

of models, the execution of the lo- forall R' € IT

cal grounding can still require a non- RY, = GroundRule(R')
negligible amount of time. We de- endall

cided to investigate simple ways to s =JRg

exploit parallelism also from the pre- |end
processing phase. The structure of

the local grounding process, as illus-
trated in [22], is based on taking advantage of the strong range restriction to individually
ground each rule in the program. The process can be parallelized by simply distributing the
task of grounding the different rules to different agents, as in Fig. 3. The forall indicated in
the algorithm represents a parallel computation: the different iterations are independent of
each other. The actual solution adopted in our system is based on the use of a distribution
function which statically computes a partition of the program IT (after removing all rules
defining the domain predicates) and assigns the elements of the partition to the available
computing agents. The choice of performing a static assignment is dictated by (i) the large
amount of work typically generated, and (7i) the desire to avoid costly dynamic scheduling
in a distributed memory context. The various computing agents provide as result the ground
instantiations of all the rules in their assigned component of the partition of II. The parti-
tioning of II is performed in a way to attempt to balance the load between processors. The
heuristic used in this context assigns a weight to each rule (an estimation of the number of
instances based on the size of the relations of the domain predicates in the body of the rule)
and attempts to distribute balanced weight to each agent. Although simplistic in its design,
the heuristics have proved effective in the experiments performed.

The preprocessor has been implemented as part of our ASP system, and it is designed to
be compatible in input/output formats with the Ilparse preprocessor used in smodels. The
preprocessor makes use of an internal representation of the program based on structure
sharing—the input rule acts as skeleton and the different instantiations are described as en-
vironments for such skeleton. The remaining data structures are essentially identical to those
described for the Iparse system [22]. The implementation of the preprocessor, developed on
a Beowulf system, has been organized as a master-slave structure, where the master agent
is in charge of computing the program partition while the slaves are in charge of grounding
the rules in each partition.

4 Parallelizing the ASP Engine

The structure of the computation of answer sets previously illustrated can be easily inter-
preted as an instance of a constraint-based computation [21], where the application of the
expansion rules (expand procedure) represents the propagation step of the constraint com-
putation, and the selection of a literal in choose literal represents a labeling step. From
this perspective, it is possible to identify two sources of non-determinism: horizontal non-
determinism: which arises from the choice of the next expansion rule to apply (in expand),
and vertical non-determinism: which arises from the choice of the literal to add to the
partial answer set (in choose_literal). These two forms of non-determinism bear strong
similarities respectively to the don’t care and don’t know non-determinism traditionally rec-
ognized in constraint and logic programming [10]. The goal of this project is to explore
avenues for the exploitation of parallelism from these two sources of non-determinism—by
exploring the different alternatives available in each point of non-determinism in parallel.
In particular, we will use the terms (i) Vertical Parallelism to indicate a situation where

Fig. 3: Parallel Preprocessing

separate threads of computation are employed to explore alternatives arising from vertical
non-determinism; and, (%) Horizontal Parallelism to indicate the use of separate threads
of computation to concurrently apply different expansion rules to a given set of literals.
Horizontal parallelism is aimed at the use of different computation agents to construct one
of the models of the program—thus, the different agents cooperate in the construction of
one solution to the program. Vertical Parallelism on the other hand makes use of separate
computing agents for the computation of different models of the program—each execution
thread is working on a differen answer set of the program. In the rest of this paper we
focus on the exploitation of Vertical Parallelism, and on a particular form of Horizontal
Parallelism, that we call Parallel Lookahead.

5 Vertical Parallelism

The essential idea behind Vertical Parallelism is the concurrent exploration of different al-
ternatives associated to the guessing of the truth value of chosen literals (choose_literal
operation). Each time a literal is guessed, two independent computations can be spawned,
one which assumes the literal to be true and one that assumes the literal to be false. Ex-
ploitation of Vertical Parallelism shares the same roots as or-parallelism for Prolog [10] and
search parallelism in constraint programming [20,17]. Recent studies have underlined the
inherent complexity of maintaining the correct view of execution during parallel search [19].

The overall design of the engine used for our experiments has been directly derived from
the design of the engine used in the smodels system [15]. In this paper we are drawing our
experience from two prototypical implementations (both having a very similar structure),
one developed at New Mexico State University (NMSU) and one concurrently developed at
Texas Tech University (TTU). The design used builds on the design previously proposed by

Rules the authors for executing ASP on shared
Atomi M memory architectures [18].
= ;/_/// E ,Z’g% Answer set programs are internally repre-
= sented using a collection of structures (both
T K for rules and atoms) which are interlinked
Fuel to allow direct access from each rule to the

associated atoms and from each atom to
the rules in which such atom appears (fol-
lowing the scheme for linear-time computa-
tions originally described in [4]). Since we
Core are relying on a share-nothing model, each
Faise | Atom Array (partial model) (guessed atoms) | processor maintains a copy of the represen-
tation of the program. Each agent makes
use of two stacks for supporting its compu-
tation. One stack (called trail) is used to represent the current partial answer set—each
element in the current answer set is represented by an entry in the stack. Each entry is a
pointer to the data structure representing the atom—and the truth value in the data structure
identifies whether the atom appears positively or negatively in the answer set. For efficiency
reasons the truth values are maintained in a separate array structure (the Atom Array in
Fig. 4). The second stack, called core, keeps track of the answer set elements which have
been “guessed” during the computation. The elements in the core allow to identify the com-
putation points where unexplored alternatives may be available—to support backtracking
and/or work sharing between agents. This structure is depicted in Fig. 4.

The architecture for vertical parallel ASP that we envision is based on the use of a number
of ASP engines (or-agents) which are concurrently exploring the search tree generated by
the search for answer sets—specifically the search tree whose nodes are generated by the
execution of the choose_literal procedure. Each or-agent explores a distinct branch of the

Fig. 4: Structure of an Engine

tree; idle agents are allowed to acquire unexplored alternatives generated by other agents.
As ensued from research on parallelization of search tree applications and non-
deterministic languages [19,10], the issue of designing the appropriate data structures to
maintain the correct state in the different concurrent branches is essential to achieve effi-
cient parallel behavior. Straightforward solutions have been formally proved to be inefficient,
leading to unacceptable overheads [19]. The major issue in the design of such architecture
is to provide efficient mechanisms to support sharing of unexplored alternatives between
agents. Each node P of the tree is associated to a partial answer set B(P)—the partial an-
swer set computed in the part of the branch preceding P. An agent acquiring an unexplored
alternative from P needs to continue the execution by expanding B(P) together with the
literal selected by choose_literal in node P. Efficiently computing B(P) for the different
nodes P in the tree is a known difficult problem [19]. Due to the irregular structure of the
computation (branches in the computation tree may have different and unpredictable size)
effective parallel implementation of ASP requires the use of dynamic distribution of work.
Mechanisms have to be designed to allow dynamic exchange of tasks during the computation.
Exploitation of Vertical Parallelism requires tackling two major issues: (3) work sharing:
i.e., allowing idle agents to acquire unexplored tasks from active agents, efficiently reproduc-
ing the necessary computation state to restart execution; (4i) scheduling: i.e., guiding idle
agents in the search for unexplored tasks. In [18] we have sketched solutions to these issues
in the context of shared memory architectures. In the successive sections we explore how
these problems have been tackled and solved in the context of share-nothing architectures.

5.1 Work Sharing

The results presented in [19] lead to the following conclusions in the context of parallel ASP:
at least one of the following operations will incur a cost which is 2(Ign) (where n is the size
of the computation tree): (i) access to the atoms in the partial answer set; (ii) execution of a
choose_literal operation; (74) acquisition of unexplored alternatives from another agent.
Practical experience [10] suggests that parallel engine designs where operations (3) and (ii)
are performed in constant time are preferable—i.e., the non-constant time cost should be
concentrated in operation (4ii). The intuition behind this is that, since the non-constant time
cost is unavoidable, it is favorable to locate it in operations whose frequency can be controlled
by the engine—and only operation (iii) has this property. On top of this, the majority of
the methods proposed in the literature for handling work sharing in parallel search (see
[10] for a survey on the topic) heavily rely on the use of shared data structures, and are
thus unsuitable for a share-nothing architecture—as the Beowulf platforms we intend to use
in this project. We have identified two methods suitable to support ASP on a distributed
memory architectures: model copying and model recomputation.

Model Recomputation: The idea of recomputation-based sharing of work is derived by
similar schemas adopted in the context of or-parallel execution of logic programs [10]. In the
recomputation-based scheme, an idle agent obtains a partial answer set from another agent
in an implicit fashion. Let us assume that agent .4 wants to send its partial answer set B to
agent B. To avoid copying the whole partial answer set B, the agents exchange only a list
containing the literals which have been chosen by .4 during the construction of B. These
literals represent the “core” of the partial answer set. In particular, we are guaranteed that
an expand operation applied to this list of literals will correctly produce the whole partial
answer set B. This communication process is illustrated in Fig. 5. The core of the current
answer set is represented by the set of literals which are pointed to by the choice points in the
core stack (see Fig. 4). In particular, to make the process of sharing work more efficient, we
have modified the core stack so that each choice point not only points to the trail, but also
contains the corresponding chosen literal (the literal it is pointing to in the trail stack). As
a result, when sharing of work takes place between agent A and agent B, the only required
activity is to transfer the content of the core stack from A to B. Once B receives the chosen

literals, it will proceed to install their truth values (by recording the literals’ truth values
in the Atom Array) and perform an expand operation to reconstruct (on the trail stack)
the partial answer set. The last chosen literal will be automatically complemented to obtain
the effect of backtracking and constructing the “next” answer set. This copying process can
be also made more efficient by making it incremental: agents exchange only the difference
between the content of their core stacks. This reduces the amount of data exchanged and
allows to reuse part of the partial answer set already existing in the idle agent.

Backtracking installation
Literal
1
‘"*ﬂﬁ/
-
) | _aomc [——~
I copying
atomd atomd
alomb atom b
doma [aoma .
Trail Core |_Atom Arra Trail ||, Trail . Trail AtomArray
Processor i Processor j Processor i Processor j
Fig. 5. Recomputation Sharing of Work Fig. 6. Copy-based Sharing of Work

Model Copying: The copying-based approach to work sharing adopts a simpler approach
then recomputation. Upon work sharing from agent A to B, the entire partial answer set
existing in A is directly copied to agent B. The use of copying has been frequently adopted
to support computation in constraint programming systems [20] as well as to support or-
parallel execution of logic and constraint programs [10]. The partial answer set owned by A
has an explicit representation within the agent A: it is completely described by the content
of the trail stack. Thus, copying the partial answer set from .4 to B can be simply reduced
to the copying of the trail stack of A to B. This is illustrated in Figure 6. Once this copying
has been completed, B needs to install the truth value of the atoms in the partial answer
set—i.e., store the correct truth values in the atom array. Computation of the “next” answer
set is obtained by identifying the most recently literal whose value has been “guessed” and
performing local backtracking to it. The identification of the backtracking literal is immediate
as this literal lies always at the top of copied trail stack. As in the recomputation case, we can
improve performance by performing incremental copying, i.e., by copying not the complete
answer set but only the difference between the answer set in A and the one in B.

Hybrid Scheme: The experiments performed on shared memory architectures [18] have
indicated that Model Copying behaves better than Model Recomputation in most of the
cases. This is due to the high cost of recomputing parts of the answer set w.r.t. the cost of
simply performing a memory copying operation. This property does not necessarily hold any
longer when we move to distributed memory architectures (as the Beowulf platform used in
this project), due to the considerably higher cost for copying data between agents.

To capture the best of both worlds, we have switched in our prototype to a hybrid work
sharing scheme, where both Model Recomputation and Model Copying are employed. The
choice of which method to use is performed dynamically (each time a sharing operation is
required). Various heuristics have been considered for this selection, which take into account
the size of the core and the size of the partial answer set. Some typical observations that have
been made from our experiments include: () if the size of the core is sufficiently close to the
size of the answer set, then recomputation would lead to a loss w.r.t. copying. (%) if the size
of the answer set is very large compared to the size of the core, then copying appears still
to be more advantageous than recomputation. This last property is strongly related to the
speed of the underlying interconnection network—the slower the interconnection network,
the larger is the partial answer set that we can afford to recompute. We have concretized these
observations by experimentally identifying two thresholds (low and high) and a function f

which relates the size of the core and the size of the answer set; Recomputation is employed
whenever low < f(sizeof (Core), sizeof (Partial Answer Set)) < high.

5.2 Scheduling

In the context of our system, two scheduling decisions have to be taken by each idle processor
in search of work: (1) select from which agent work will be taken; (2) select which unexplored
alternative will be taken from the selected agent. In the current prototype, we have tackled
the first issue by lazily maintaining in each agent (P): (a) an approximated view of the
load in each other agent. Each agent maintains an array with an entry for each agent in the
system; the i* entry in the array indicates what is believed to be the load in the it agent.
The entries in the load array are managed by broadcasting the updated load whenever a
sharing operation occurs; (b) an approximated view of what is the lowest choice point in
common with each other agent in the system. This information is updated via multicast
each time an agent backtracks over a copied choice point. The scheduling strategy gives
preference to agents which are “near” the idle one (allowing for incremental copying) and
which have a sufficiently high load.

Regarding the selection of the unexplored alternatives, in [18] we explored two ap-
proaches, respectively called top and bottom scheduling. Top scheduling selects alternatives
from choice points which lie closer to the root of the tree (i.e., the oldest choices made
during the computation), while in bottom scheduling the most recently guessed literals are
considered. From the experiments reported in [18] we observed that in general top scheduling
leads to faster sharing operations (as they typically allows the agents to deal with smaller
answer sets), but to more frequent calls to the scheduler. Considering the higher cost of
communication in presence of share-nothing architectures, we have reverted to a variation
of bottom scheduling, similar to the Stack Splitting method presented in [9]. In a single
sharing operation, two agents share not just one unexplored alternative (taken from the
youngest choice point), but a set of them—half of the unexplored alternatives available in
the active agent. This method has been implemented as follows: (i) the last choice point is
easily detected as it lies on the top of the core stack; this allows to determine what is the
part of the trail that has to be copied/recomputed; (%) splitting is performed by allowing
the idle agent to take control of each other choice point in the core stack.

6 Horizontal Parallelism: Parallel Lookahead

The (sequential) smodels algorithm presented earlier builds the stable models of an answer
set program incrementally. The algorithm presented in Fig. 1 can be refined to introduce
the use of lookahead during the “guess” of a literal. The algorithm is modified as follows:
(1) Before guessing a literal to continue expansion, unexplored literals are tested to verify
whether there is a literal [such that expand(II, B U {l}) is consistent and expand(II, B U
{not1}) is inconsistent. Such literals can be immediately added to B. (2) After such literals
have been found, choose_literal can proceed by guessing an arbitrary unexplored literal. Step
1 is called the lookahead step. It is important to observe that any introduction of literals
performed in this step is deterministic and does not require the creation of a choice point.
In addition, the work performed while testing for the various unexplored literals can be used
to choose the “best” literal to be used in step 2, according to some heuristic function.
During the lookahead step, every test performed on a pair ([, not [) is substantially in-
dependent from the tests run on any other pair (I’, not I'). Each test involves up to two calls
to expand (one for [, the other one for not 1), thus resulting in a comparatively expensive
computation. These characteristics make the lookahead step a natural point where the al-
gorithm could be parallelized. Notice that Parallel Lookahead is an instance of the general
concept of Horizontal Parallelism, since the results of the parallel execution of lookahead are
combined, rather than being considered alternative to each other, as in Vertical Parallelism.

The appeal of exploiting Horizontal Parallelism at the level of 1lookahead, rather than at the
level of expand, lies in the fact that the first involves a coarser-grained type of parallelism.
Basic Design: The parallelization of the lookahead step is obtained in a quite straightfor-
ward way by splitting the set of unexplored literals, and assigning each subset to a different
agent. Each agent then performs the test described in step 1 on the unexplored literals that
it has been assigned. Finally, a new partial answer set, B’ is built by merging the results
generated by the agents. Work sharing is based on the Model Copying technique.

Notice that, even in the parallel implementation, the lookahead step can be exploited in

order to determine the best literal to be used in choose 1iteral (provided that the results
returned by the agents are suitably combined). This significantly reduces the computation
performed by choose literal, and provides a simple way of combining Vertical and Hori-
zontal Parallelism by applying a work-sharing method similar to the Basic Andorra Model
[10], studied for parallelization of Prolog computation.
Scheduling: The key for the integration of Vertical and Horizontal Parallelism is in the way
work is divided in work units and assigned to the agents. Our system is based on a central
scheduler, and a set of agents that are dedicated to the actual computation of the answer
sets. Every work unit corresponds to a lookahead step performed on a partial answer set,
B, using a set of unexplored literals, U. Work units related to different partial answer sets
can be processed at the same time by the system. Whenever all the work units associated
with certain partial answer set have been completed, the scheduler gathers the results and
executes choose literal — which, as we stated before, requires a very small amount of
computation, and can thus be executed directly on the scheduler. choose_literal returns
two (possibly) partial answer sets!, and the scheduler generates work units for both of them,
thus completing a (parallel) iteration of the algorithm in Fig. 1, extended with lookahead.
Under this perspective, Horizontal Parallelism corresponds to the parallel execution of work
units related to the same partial answer set. Vertical Parallelism, instead, is the parallel
execution of work units related to different partial answer sets. The way the search space is
traversed, as well as the balance between Vertical and Horizontal Parallelism, are determined
by: (1) the number agents among which the set of unexplored literals is split, and (2) the
priority given to pending work units. In our implementation we assign priorities to pending
work units according to a “simulated depth first” strategy, i.e., the priority of a work unit
depends first on the depth, d, in the search space, of the corresponding node, n, and second
on the number of nodes of depth d present to the left of n. This choice guarantees that, if
a computation based only on Horizontal Parallelism is selected, the order in which nodes
are considered is the same as in a sequential implementation of our algorithm. This is an
important feature, because it allows us to exploit the same search heuristics present in the
original smodels algorithm. These heuristics have been thoroughly tested in the past few
years and proved to perform very well in most applications.

The number of agents among which the set of unexplored literals is split is selected
at run-time. This allows the user to decide between a computation based on Horizontal
Parallelism, useful if the answer set(s) are expected to be found with little backtracking,
and a computation based on Vertical Parallelism, useful if more backtracking is expected.

7 Performance Results

In this section we show some of the experimental results collected from the implementation
of the ideas presented in the previous sections. The results have been obtained on the
Pentium-based Beowulf (purely distributed memory architectures) at NMSU—Pentium IT
(333Mhz) connected via Myrinet. The results reported have been obtained from two similar
implementations of ASP, one developed at NMSU and one at TTU. Both systems have been
constructed in C using MPI for dealing with interprocessor communication. The experiments

! Our version of choose_literal runs expand on the two partial answer sets before returning them.

have been performed by executing a number of ASP programs (mostly obtained from other
researchers) and the major objective was to validate the feasibility of parallel execution of
ASP programs on Beowulf platforms.

Parallel Local Grounding: We have analyzed the performance of the parallel prepro-
cessor by comparing its execution speed with varying number of processors. The parallel
preprocessor is in its first prototype and it is very unoptimized (compared to Iparse we have
observed differences in speed ranging from 4% to 48%). Nevertheless, the current imple-
mentation was mostly meant to represent a proof of concept concerning the feasibility of
extracting parallelism from the preprocessing phase. The first interesting result that we have
observed is that the rather embarrassingly parallel structure of the computation allowed us
to make the parallel overhead (i.e., the added computation cost due to the exploitation of
parallelism) almost negligible. This can be seen in Fig. 7, which compares the execution
times for a direct sequential implementation of the grounding algorithm with the execution
times using a single agent in the parallel preprocessor. In no cases we have observed overhead
higher than 4.1%. Very good speedups have been observed in each benchmark containing a
sufficient number of rules to keep the agents busy. Fig. 8 shows the preprocessing time for
two benchmarks using different numbers of processors. Note that for certain benchmarks the
speedup is slightly lower than linear due to slightly unbalanced distribution of work between
the agents—in the current scheme we are simply relying on a static partitioning without
any additional load balancing activities.

50000
*—e Sequential
&---4 Parallel (1 CPU)

Grounding Times

40000

g 0000 2000
£
o
£ 2000.0
: e——e color (Ladder)
10000 1500 | o—o F._a\mlly]
&—=2 Pigeon (23)
%% 1000 2000 3000 000 *—* Rpcs 2
Nodes o
60000 E
o 1000
*——e Sequential g
&---4 Parallel (1 CPU) =
40000
£
s 500
E
£
20000

s %
Nodes Number of Agents

Fig. 8. Parallel Exec. of the Preprocesso
Fig. 7. Preproc. Overhead (Pigeon,Coloring) '€ ' * et '

Parallel Literal Selection: The experiments for exploitation of Vertical Parallelism
through parallel literal selection have been conducted using the Beowulf ASP engine de-
veloped at NMSU—an evolution of the shared memory engine previously described in [18].
All timings presented have been obtained as average over 10 runs. As mentioned in Sect. 5.1,
in our design we have decided to adopt a Hybrid Method to support exchange of unexplored
tasks between agents. This is different from what we have observed in [18], where Model
Copying was observed to be the winning strategy in the last majority of the benchmarks.
In the context of distributed memory architectures, the higher cost of communication be-
tween processors leads to a higher number of situations where the model copying provides
sub-optimal performances.

Table 1 reports the execution times observed on a set of benchmarks, while Fig. 9 illus-
trates the speedups observed using the hybrid scheme on a set of ASP benchmarks. Some of
the benchmarks, e.g., T8 and P7, are synthetic benchmarks developed to study specific prop-
erties of the inference engine, while others are ASP programs obtained from other researchers.

Color is a graph coloring problem, Logistics and Strategic are scheduling problems, while
sjss is a planner. Note also that sjss is executed searching for a single model while all oth-
ers are executed requiring all models to be produced. The tests marked [*] in Fig. 9 indicate
those cases where Recomputation instead of Copying has been triggered the majority of the
times. The results presented have been accomplished by using an experimentally determined
threshold to discriminate between copying and recomputation. The rule adopted in the im-
< size(Partial Answer Set)
- sz'ze(COT‘e)
recomputation is applied, otherwise model copying is used. The intuition is that (i) if the
ratio is too low, then, there is no advantage in copying just the core, while (i7) if the ratio
is too high, then the cost of recomputing the answer set is likely to be excessive. The min
and maz used for these experiments where set to 1.75 and 12.5. Fig. 10 shows the impact of
using recomputation in the benchmarks marked with [*] in Fig. 9. Some benchmarks have
shown rather low speedups—e.g., Color on a ladder graph and Logistics. The first gener-
ates very fine grained tasks and suffers the penalty of the cost of communication between
processors—the same benchmarks on a shared-memory platform produces speedups close to
4. For what concerns Logistics, the results are, after all, quite positive, as the maximum
speedup possible is actually 5 and there seem to be no degradation of performance when
the number of agents is increased beyond 5.

plementation can be summarized as: if min < maz then model

|Name |1 Agent|2 Agents|3 Agents|4 Agents|8 Agents
Color (Ladder) 345201 | 249911 235421 292932 | 295420
Color (Random2)| 2067987 | 1162905 | 829685 604586 | 310622
Logistics 2 3937246 | 2172124 | 1842695 | 1652869 | 1041534
Strategic 76207 40169 28327 21664 12580
sjss 93347226| 46761140 | 31012367 | 22963465 | 13297326
T8 1770106 | 865175 | 590035 | 444730 | 226930
P7 1728001 | 918172 | 690924 536646 | 216040

Table 1. Execution Times (in ps.) on Beowulf

Speedups Speedups
(Distributed Memory Engine) (Distributed Memory Engine)
8 . . . 8 . . .
e——e Color (Ladder) [*] e P7[
S—A Colqr FRandom) A A Strategic
61 F——k L9g|st|cs sl |o oTs A
O—= Sjss [*]
(=% [=5
> =}
e ©
41 . g
joR joX
%) 0
2t 2L
0 . . . 0 . . .
0 2 4 6 8 0 2 4 6 8
Number of Agents Number of Agents

Fig. 9. Speedups from Vertical Parallelism

It is interesting to compare the behavior of the distributed memory implementation with
that of the shared memory engine presented in [18]. Fig. 11 presents a comparison between
the speedups observed on selected benchmarks in the shared memory and the distributed
memory engines. In the majority of the cases we observed relatively small degradation in

P7 Sjss

A—4A Recomputation T o———0 Recomputation
. A& ——A Copy 6 =——um Copy

Color (Ladder)

O0——o0 Recomputation
o ——e Copying

8.0

4 4 4
Number of Agents Number of Agents Number of Agents

Fig. 10. Impact of using Recomputation

the speedup. Only benchmarks where frequent scheduling of small size tasks is required lead

to a more relevant difference (e.g., Color for the ladder graph).

o Shared vs. Distributed Memory
Shared vs. Distributed Memory

7.0 %
- i ES
e——e Color (Ladder) Distrib. 7t < Dictib G
e -—-e Color (Ladder) SHMem - i ~— sjss Distrib.
*——% Strategic Distrib.) *---*§|SS SHMem
5.0 | *--—* Strategic SHMem | *——* T8 Distrib.
o #---% T8 SHMem
S 250
B (9]
n T n
ol e
30+ | .l
. ; ; 1 . . .
l'01.0 3.0 5.0 7.0 3 5 7
No. of Agents No. of Agents

Fig. 11. Comparison of Shared and Distributed Memory Engines

Parallel Lookahead: The experiments on Parallel Lookahead have been conducted using
the distributed ASP engine developed at TTU. For our tests, we have used a subset of the
benchmarks available at http://www.tcs.hut.fi/pub/smodels/tests/lp-csp-tests.
tar.gz: (1) color: c-colorability (4 colors, 300 nodes), (2) pigeon: put N pigeons in M
holes with at most one pigeon in a hole (N = 24, M = 24), (8) queens: N-queens problem
(N = 14), and (4) schur: put N items in B boxes such that, for any X,Y € {1,...,N}:
items labeled X and 2X are in different boxes, and if X and Y are in the same box, then
X +Y is in a different box (N = 35, B = 15).

The tests consisted in finding one answer set for each of these programs. Since, for all
of these programs, this can be accomplished with a comparatively small amount of back-
tracking, the engine was run so that Horizontal Parallelism was given a higher priority than
Vertical Parallelism by acting on the number of agents among which the set of unexplored
literals is split. The experiments show, in general, a good speedup for all programs. The
speedup, for 13 processors, is 5 for schur and pigeon, almost 6 for color, and 120 for
queens. The speedup measured for queens is indeed surprising. It is interesting to note that
queens requires (with smodels) the highest amount of backtracking. We conjecture that
the speedup observed is the result of the combined application of both types of parallelism.
However this issue deserves further investigation before any precise statement can be made.
The results are definitely encouraging if we consider that: to the best of our knowledge, our
system is one of the first exploiting Horizontal Parallelism; the way parallelism is handled is

Speedups (Parallel Lookahead) Speedups (Parallel Lookahead) [Detail]
T T

120 T T T T T T 10
Color

T T
Color

Pigeon -------- 3 H Pigeon --------
Queens - Queens -
100 - Schur i L Schur

80

60

speedup factor
speedup factor

40 -

20

i i
2 4 6 8 10 12 2 4 6 8 10 12
agents # agents

Fig. 12. Speedups for Parallel Lookahead Fig. 13. Speedups for Parallel Lookahead

still very primitive if compared with the other existing parallel systems; the level of refine-
ment of the algorithms for the computation of answer sets is still far beyond smodels (we
expect the optimizations exploited in smodels to significantly improve speedup).

8 Optimizations

Optimizing Vertical Parallelism: Various optimizations can be envisioned to improve the
performance of the basic vertical parallel engine. Many of the general optimization principles
discussed for parallel execution of Prolog [10] are likely to reduce the parallel overhead. We
have applied two optimizations in the development of the parallel engine. Whenever a sharing
operation is performed (either using copying or recomputation), the copying agent needs to
perform an “installation” operation used to erase the truth value of those literals which
have been removed from the partial answer set and add the truth value of those literals
copied from the remove agent. This process is typically accomplished by forcing the copying
agent to backtrack to the nearest common ancestor in the computation tree between the
position of the two agents (for removing literals) and by an explicitly installing the truth
value of the copied literals. While the installation is a fairly fast operation (especially when
recomputation is used), the backtracking step can be fairly expensive. We have introduced
an optimization which trades the cost of backtracking for the cost of copying additional data
from the remote agent. The idea is that if the common ancestor is “too far away” and close to
the root of the tree, it may be cheaper to avoid backtracking, removing all the literals from
the partial answer set (using a brute force operation, e.g., the system call memzero), and
then copy the complete answer set from the remote agent. Fig. 14 shows the improvements
observed by triggering this optimization whenever the size of the answer set at the common
ancestor is less than 512.

7.0

5.0

o—oP8)
o ---e P8 (incremental) 7 . ’ -
v— sjss sched3 L a0l NS
» - - sjss sched 3 (increm.) .
5.0 .
= . Q30 S
3 » E o
I3 ’ [
Q s @ ’ -
=3 - g S
«n oy 0 20k X &—>o Color 6
30| S 1 pid ®---@ Color 6 (increm.)
- i *——* rpcs 4
7 10 . »---x rpcs 4 (increm.) 1
1.0 . . . 0.0 ;
3 5 7 0 2 4 6 8
No. of Agents No. of Agents

Fig. 14. Speedup Curves with and without Memory Zeroing Optimization

Optimizing Parallel Lookahead: Further research is needed in order to improve the
efficiency of the system. Different types of improvements can be identified.

(1) Design improvements, aimed at decreasing the overhead due to communications. Im-
provements will probably need to be focused on the selection of the correct work sharing
model, for which the hybrid method is a good candidate. The development of better schedul-
ing techniques will also be important to achieve a higher efficiency.

(2) Optimization of the heuristic function used to find the “best” literal for choose_literal,
in order to exploit the features of the parallel implementation: we are currently using a
heuristic function close to the one used in smodels, designed for sequential implementations.
(8) Improvements aimed at making the system able to self-adapt according the type of logic
program whose answer sets are to be found. Research has to be conducted on techniques
for selecting the correct balance between Vertical Parallelism and Horizontal Parallelism
depending on the task to be performed.

9 Related Work and Conclusions

The problem tackled in this work is the efficient execution of Answer Set Programs. Real-
life ASP applications can easily become very time consuming, to the point that various
programs (e.g., large planning applications) are beyond the computational capabilities of
existing inference engines. The goal of this work is to explore the use of parallelism to im-
prove execution performance of ASP engines. Starting from the basic design of an inference
engine for ASP (the one proposed in the smodels system) we have identified two major
sources of parallelism— Horizontal and Vertical Parallelism. We have focused on the design
of technology to allow the exploitation of Vertical Parallelism in the context of a distributed
memory architecture. Within Vertical Parallelism, we have distinguished between standard
parallel branching and parallel lookahead to provide further scope of exploitation of paral-
lelism. The various issues related to the exploitation of this form of parallelism have been
analyzed and solutions proposed. We have also briefly explored the issue of parallelization
of the preprocessing phase required for the execution of answer set programs.

The potential for exploitation of parallelism from ASP computations has been recently

recognized by other authors as well: [7] proposes a PVM-based implementation of a smodels-
type engine with Vertical Parallelism—parallelism is extracted from the actual operation of
guessing the truth value of a chosen literal, and scheduling is centralized. The work we
propose has also strong ties to the work on parallel execution of logic programs [10] and
non-deterministic languages [19]. With respect to parallel execution of logic programs, the
vertical parallelism used in our work can be related to or-parallelism in Prolog, and horizontal
parallelism can be related to deterministic parallelism. With respect to non-deterministic
languages, there are similar aspects in the construction of the search tree — each branch
represents a solution, and the way nodes are handled involves the ability to reconstruct part
of the computation (e.g., “environments”).
Acknowledgments: The authors wish to thank G. Gupta, S. Tran, and M. Gelfond for their
help. E. Pontelli and F. Bermudez were partially supported by NSF grants CCR9875279,
CCR9900320, CDA9729848, EIA0130887, EIA9810732, and HRD9906130. M. Balduccini
was partially supported by United Space Alliance under Research Grant 26-3502-21 and
Contract COC6771311.

References

1. M. Balduccini and M. Gelfond. Diagnostic Reasoning with A-Prolog. Theory and Practice of
Logic Programming (to appear), 2002.

2. C. Baral and M. Gelfond. Logic Programming and Knowledge Representation. Journal of Logic
Programming, 19/20:73-148, 1994.

3. P. Cholewinski et al. Default Reasoning System DeReS. In Int. Conf. on Principles of Knowl-
edge Representation and Reasoning, pages 518-528. Morgan Kauffman, 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

W.F. Dowling and J.H. Gallier. Linear-time Algorithms for Testing the Satisfiability of Propo-
sitional Horn Formulae. Journal of Logic Programming, 3, 1984.

D. East and M. Truszczyniski. Datalog with Constraints. In National Conference on Artificial
Intelligence, pages 163-168. AAAI/MIT Press, 2000.

T. Eiter et al. The KR System dlv: Progress Report, Comparisons, and Benchmarks. In Int.
Conf. on Principles of Knowledge Representation and Reasoning, 1998.

R. Finkel et al. Computing Stable Models in Parallel. In AAATI Spring Symposium on Answer
Set Programming, pages 72-75, 2001. AAAI/MIT Press.

M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. In Int. Sympo-
stum on Logic Programming, pages 1070-1080. MIT Press, 1988.

G. Gupta and E. Pontelli. Stack-splitting: A Simple Technique for Implementing Or-Parallelism
on Distributed Machines. In ICLP, pages 290-304, 1999. MIT Press.

G. Gupta, E. Pontelli, M. Carlsson, M. Hermenegildo, and K.M. Ali. Parallel Execution of
Prolog Programs: a Survey. ACM TOPLAS, 23(4):472-602, 2001.

K. Heljanko and I. Niemela. Answer Set Programming and Bounded Model Checking. In AAATI
Spring Symposium, pages 90-96, 2001.

V.W. Marek and M. Truszczynski. Stable Models and an Alternative Logic Programming
Paradigm. In The Logic Programming Paradigm. Springer Verlag, 1999.

T. Nguyen and Y. Deville. A Distributed Arc-Consistency Algorithm. Science of Computer
Programming, 30(1-2):227-250, 1998.

I. Niemela. Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm. Annals of Mathematics and AI 2001.

I. Niemela and P. Simons. Smodels - An Implementation of the Stable Model and Well-Founded
Semantics for Normal LP. In LPNMR, Springer Verlag, 1997.

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-Prolog Decision
Support System for the Space Shuttle. In PADL, Springer Verlag, 2001.

L. Perron. Search Procedures and Parallelism in Constraint Programming. In Int. Conf. on
Principles and Practice of Constraint Programming, 1999. Springer Verlag.

E. Pontelli and O. El-Kathib. Construction and Optimization of a Parallel Engine for Answer
Set Programming. In PADL, 2001. Springer Verlag.

D. Ranjan, E. Pontelli, and G. Gupta. On the Complexity of Or-Parallelism. New Generation
Computing, 17(3):285-308, 1999.

C. Schulte. Comparing Trailing and Copying for Constraint Programming. In International
Conference on Logic Programmsing, pages 275—289. MIT Press, 1999.

V.S. Subrahmanian, D. Nau, and C. Vago. WFS + Branch and Bound = Stable Models.
Transactions on Knowledge and Data Engineering, 7(3):362-377, 1995.

T. Syrjanen. Implementation of Local Grounding for Logic Programs with Stable Model Se-
mantics. Technical Report B-18, Helsinki University of Technology, 1998.

