Answer Set Based Design of Autonomous, Rational Agents

Marcello Balduccini

Knowledge Representation Lab Computer Science Department Texas Tech University

October 7, 2005

Introduction

- **Goal (1)**: design an agent capable of rational, autonomous interaction.
- Goal (2): all reasoning modules written in A-Prolog and sharing the same domain model.
 - unique model: ease of development and maintenance.
 - ⋄ all reasoning in A-Prolog: demonstrates the power of the language.

• Why A-Prolog:

- ♦ high-level specification language, but also...
- ...close to implementation level;
- reasoning modules are compact and easy to understand.

Desired Agent Behavior

A Physical System

Fluents

- \bullet closed(SW)
- *lit*(*Bulb*)
- *ab*(*Bulb*)
- *ab*(*batt*)

Agent Actions

- *flip*(*SW*)
- replace(Bulb)
- replace(batt)

Exogenous Actions

• $blow_up(Bulb)$

Planning

Agent's goal: $lit(b_1)$

- Observes: switches open; bulbs off; components ok
- Finds plan: $flip(sw_1)$
- Executes: $flip(sw_1)$
- Observes: ...?

Diagnosis

[...]

• Executes: $flip(sw_1)$

- Observes: $\neg lit(b_1) \Leftarrow \boxed{ UNEXPECTED!!!}$
- **Explains**: $blow_{-}up(b_1)$ occurred concurrently with $flip(sw_1)$
- **Tests**: is $ab(b_1)$ true?
- **Answer**: ...?

Recovery

 $[\ldots]$

• **Tests**: is $ab(b_1)$ true?

- Finds plan: $replace(b_1)$
- Executes: $replace(b_1)$
- Observes: $lit(b_1) \Leftarrow SUCCESS!!!$

Another Type of Reasoning

What if...?

Receives new goal: $lit(b_2)$

- Finds plan: $flip(sw_2)$
- Executes: $flip(sw_2)$
- Observes: $\neg lit(b_2) \Leftarrow \boxed{ UNEXPECTED!!!}$
- **Explains**: $blow_{-}up(b_2)$ occurred (e.g. with $flip(sw_2)$)
- **Tests**: is $ab(b_2)$ true?
- Answer: $ab(b_2)$ false!!!

Learning

[...]

• **Explains**: "if sw_1 , sw_2 are closed, batt becomes faulty"

• **Tests**: is ab(batt) true?

• **Answer**: ab(batt) true

• Finds plan: ...?

Recovery

[...]

- Finds plan: $flip(sw_1)$; replace(batt)
- Executes: $flip(sw_1)$
- Observes: sw_1 open
- Executes: replace(batt)
- Observes: $lit(sw_2) \leftarrow \boxed{ SUCCESS!!!}$

The Agent Control Loop

Key Elements

Reasoning Processes

- Planning
- Interpreting observations 1: diagnosis
- Interpreting observations 2: (inductive) learning
- Testing explanations

Other Processes

- Observation gathering
- Execution of actions

Observe-Think-Act loop

- 1. observe the world;
- 2. interpret the observations (if needed):
 - diagnose (includes testing);
 - ♦ learn (includes testing);
- 3. select a goal;
- 4. plan;
- 5. execute part of the plan.

Agent Behavior Revisited

Agent's goal: $lit(b_1)$

• Observes: switches open; bulbs off; ... ← STEP 1

no interpretation needed ← STEP 2

• Finds plan: $flip(sw_1)$ \Leftarrow STEP 4

Agent Behavior Revisited

 $[\ldots]$

• Executes: $flip(sw_1)$

Observes: $\neg lit(b_1)$

, -,

• **Diagnosis**: $blow_up(b_1)$ occurred

• **Tests**: is $ab(b_1)$ true?

 \leftarrow STEP 5

 \Leftarrow STEP 1

 \Leftarrow STEP 2

 \Leftarrow STEP 2

Overall Choices

- I/O, link among the reasoning modules: procedural code
- Reasoning processes: answer set programming
 - \diamond Domain model axiomatized in \mathcal{AL}
 - Reasoning reduced to finding answer sets
 - ♦ Reasoning modules written in A-Prolog/CR-Prolog

Domain Axiomatization

Language AL

ullet \mathcal{AL} is an action language

• Central concept: transition diagram

- Divided in:
 - $\diamond \mathcal{AL}_d$: describes effects of actions;
 - $\diamond \mathcal{AL}_h$: describes *recorded history* of the domain;
 - \diamond \mathcal{AL}_q : query language.

Syntax of \mathcal{AL}_d

• Dynamic Laws:

a causes p if q, $\neg r$.

• State Constraints:

$$p$$
 if q , $\neg r$.

• Executability Conditions:

a impossible_if p, $\neg q$.

 \bullet Action Description (AD): set of laws of the types above

Semantics of \mathcal{AL}_d

- Defined by transition diagram, Trans(AD).
- The core is the successor state axiom.

Given:

- \diamond states σ, σ' ;
- \diamond action a executable in σ ;
- \diamond Z: set of all state constraints from action description.

Successor State Axiom:

$$\sigma' = Cn_Z(E(a, \sigma) \cup (\sigma \cap \sigma'))$$

Language \mathcal{AL}_h

Syntax

- obs(Literal, Step): Literal observed to hold at step Step;
- hpd(Action, Step): Action observed to happen at step Step;
- Recorded History: $\langle H, cT \rangle$, where
 - \diamond H: set of \mathcal{AL}_h statements;
 - $\diamond cT$: current time step.
- ullet $\langle H, cT \rangle$ is also written H^{cT} .

Semantics

ullet Model of H^{cT} w.r.t. AD: trajectory in Trans(AD) matching H^{cT} .

Domain Descriptions of AL

- Domain Description (DD): $\langle AD, H^{cT} \rangle$
- DD is translated to A-Prolog for actual computation

 $\alpha(DD)$ is the A-Prolog translation of DD

 $\alpha(DD)$ includes the *Reality Axioms*:

```
% L observed at 0 \Rightarrow holds at 0 in every model of DD. h(L,0) \leftarrow obs(L,0).
```

% A observed at $T \Rightarrow$ occurs at T in every model of DD. $o(A,T) \leftarrow hpd(A,T)$.

% It is impossible for a state of a model of DD not to % match the observations. $\leftarrow obs(L,T),$ not h(L,T).

Action Description for the Example

```
\%\% Flipping SW causes SW to become
%% closed if it was open and vice-versa.
%%
flip(SW) causes closed(SW) if \neg closed(SW).
flip(SW) causes \neg closed(SW) if closed(SW).
lit(b_1) if closed(sw_1), \neg ab(b_1).
[\ldots]
blow\_up(B) causes ab(B).
replace(batt) causes \neg ab(batt).
[\ldots]
```

α -Translation of State Constraints

Law:

$$lit(b_1)$$
 if $closed(sw_1), \neg ab(b_1)$

α -Translation:

```
\begin{cases} \% \ s_1 \text{ is a state constraint} \\ slaw(s_1). \end{cases} % the head of s_1 is lit(b_1) head(s_1, lit(b_1)).
% the preconditions of s_1 are closed(sw_1) and ab(b_1) prec(s_1, closed(sw_1)). prec(s_1, \neg ab(b_1)).
```

α -Translation of Dynamic Laws

Law:

 $flip(sw_1)$ causes $closed(sw_1)$ if $\neg closed(sw_1)$.

α -Translation:

 $\begin{cases} \% \ d_1 \text{ is a dynamic law with head } closed(sw_1) \\ dlaw(d_1). \\ head(d_1, closed(sw_1)). \end{cases}$ $% \text{ the } trigger \text{ of } d_1 \text{ is } flip(sw_1) \\ trigger(d_1, flip(sw_1)). \end{cases}$ $% \text{ the } precondition \text{ of } d_1 \text{ is } closed(sw_1) \\ prec(d_1, closed(sw_1)).$

Planning

A-Prolog Planning Module

Finds plans of length up to k, given:

- goal $\{g_1, \ldots, g_m\}$ (set of literals)
- \bullet H^{cT}

 $PGEN(k): \begin{cases} \text{\%\% select at least one action per step} \\ 1\{o(A,T): ag_action(A)\} \leftarrow cT \leq T < cT + k. \end{cases}$ \times \text{\gamma} w \text{ goal achieved if required literals eventually hold} $goal_achieved \leftarrow h(g_1,cT+k), \\ \dots, \\ h(g_m,cT+k). \end{cases}$ \times \text{\gamma} m \text{goal} \text{\lead} plans achieve the goal} \text{\lead} \text{not } goal_achieved.

$$h(g_m, cT+k)$$

Shortest Plan Algorithm

Input:

- domain description, $DD = \langle AD, H^{cT} \rangle$;
- goal $g = \{l_1, ..., l_m\}$.

Output:

 \bullet a shortest plan for g.

Steps:

- 1. k := 0
- 2. if $\alpha(DD) \cup PGEN(k)$ is consistent, then
- 3. extract the plan from one answer set and return it
- 4. k := k + 1
- 5. **goto** 2

Example: Planning in the Circuit

- H^{cT} : $\begin{cases} obs(\neg closed(sw_1), 0), & obs(\neg closed(sw_2), 0), \\ obs(\neg lit(b_1), 0), & obs(\neg lit(b_2), 0), \\ obs(\neg ab(b_1), 0), & obs(\neg ab(b_2), 0), \\ obs(\neg ab(batt), 0) \end{cases}$ Goal: $\{lit(b_1)\}$ With k=0:
 - empty sequence of actions; $h(lit(b_1), 0)$ does not hold \downarrow $\alpha(DD) \cup PGEN(0)$ is inconsistent.
- With k=1: $o(flip(sw_1),0) \text{ can be selected; if so, } h(lit(sw_1),1) \text{ holds}$ $\downarrow \\ \alpha(DD) \cup PGEN(1) \text{ is } consistent.$

Diagnosis

Unexpected Observations: Symptoms

- ullet Symptom: history H^{cT} with unexpected observations
- Checking if H^{cT} is symptom \rightarrow testing consistency of:

$$\alpha(DD) \cup R$$

where

$$R: \left\{ \begin{array}{l} \text{\%\% Awareness axioms: every fluent } F \text{ is} \\ \text{\%\% initially either true or false} \\ \text{\%} \\ h(F,0) \leftarrow \text{not } h(\neg F,0). \\ h(\neg F,0) \leftarrow \text{not } h(F,0). \end{array} \right.$$

Candidate Diagnoses

- Explanation E: set of statements $hpd(a_e,s)$ such that $\alpha(DD) \cup E \cup R$ is consistent.
- Candidate Diagnosis: $cD = \langle E, \Delta_E \rangle$, where:
 - \diamond E: explanation
 - \diamond Δ_E : components that may be damaged by actions of E.
- Finding $cD \rightarrow$ answer sets of:

$$D_0(DD) = \alpha(DD) \cup R \cup$$

$$\{o(A,T): ex_action(A)\} \leftarrow 0 \leq T < cT - 1.$$

Finding Diagnoses

ullet Agent needs to verify if components in Δ_E are faulty.

```
function Find\_Diag( var H^{cT}: symptom ): diagnosis of H^{cT}
     repeat
         \langle E, \Delta_E \rangle := Candidate\_Diag(H^{cT});
        if E = \emptyset return \langle E, \Delta_E \rangle; { no diagnosis could be found }
        diag := true; \Delta_0 = \Delta_E
        while \Delta_0 \neq \emptyset and diag do
           selet c \in \Delta_0; \Delta_0 := \Delta_0 \setminus \{c\};
           if observe(cT, ab(c)) = true
              then H^{cT} := H^{cT} \cup obs(ab(c), cT);
              else H^{cT} := H^{cT} \cup obs(\neg ab(c), cT); diag := false;
           end {if}
        end {while}
     until diag;
     return \langle E, \Delta_E \rangle
  end
```

Example: Diagnosing the Circuit

$$\bullet \ H^{cT} : \begin{cases} obs(\neg closed(sw_1), 0), \ obs(\neg closed(sw_2), 0), \\ obs(\neg lit(b_1), 0), \ obs(\neg lit(b_2), 0), \\ obs(\neg ab(b_1), 0), \ obs(\neg ab(b_2), 0), \ obs(\neg ab(batt), 0) \end{cases}$$

$$\bullet \ H^{cT} : \begin{cases} hpd(flip(sw_1), 0) \\ obs(\neg lit(b_1), 1) \end{cases}$$

$$\bullet \ h^{cT} : \begin{cases} a(DD) \cup R \text{ inconsistent } \Rightarrow H^{cT} \text{ is } symptom \end{cases}$$

2. Finding a candidate diagnosis:

$$o(blow_up(b_1), 0)$$
 can be selected
$$\downarrow \\ cD = \langle \{o(blow_up(b_1), 0)\}, \{b_1\} \rangle$$

3. Testing: $observe(ab(b_1), cT)$ holds $\Rightarrow cD$ is diagnosis.

Learning

Candidate Corrections

- Modification of AD for symptom H^{cT} : AD' such that $\alpha(\langle AD', H^{cT} \rangle) \cup R \text{ is consistent.}$
- Candidate Correction: $cC = \langle AD', \Delta_{AD'} \rangle$, where:
 - \diamond AD': modification of AD for H^{cT}
 - \diamond $\Delta_{AD'}$: components that may be damaged by actions of H^{cT} according to AD'.
- Modifications considered:
 - addition of laws;
 - addition of possibly non-ground preconditions to the laws.

Conservative Modifications

- Modifications consisting of:
 - addition of laws;
 - addition of preconditions to the laws.

Conservative modifications for the Example:

• Add state constraint s:

$$ab(batt)$$
 if $\{\}$. (empty body)

• Add preconditions $closed(sw_1), closed(sw_2)$ to the body of s:

$$ab(batt)$$
 if $closed(sw_1), closed(sw_2)$.

Only Conservative Modifications are considered here.

Computing Candidate Corrections

• Candidate Corrections of AD for $H^{cT} \rightarrow$ answer sets of:

$$L_0(H^{cT}) = \alpha(\langle AD, H^{cT} \rangle) \cup R \cup :$$

% Any Lit can be a precondition of a law $\{ prec(W, Lit) \} \leftarrow law(W)$.

% Available law names can be used for new laws $\{ new_law(W) : avail_law_name(W) \}.$

 $CGEN: \left\{ \begin{array}{l} \text{\% New laws are either state constr's or dynamic laws} \\ dlaw(W) \text{ or } slaw(W) \leftarrow new_law(W). \end{array} \right.$

% Any Lit can be the head of a new law 1{ head(W, Lit) }1 $\leftarrow new_law(W)$.

% Any action Act can be the trigger of a new dynamic law 1{ trigger(W, Act) }1 $\leftarrow new_law(W), dlaw(W)$.

Computing Corrections

```
function Find\_Correction(AD, var H^{cT}: symptom): a correction for H^{cT}
     repeat
        \langle AD', \Delta \rangle := Candidate\_Correction(AD, H^{cT});
        if AD' = \emptyset return \langle cAD, \Delta \rangle { no correction found }
        corr_found := true; \Delta_0 := \Delta;
        while \Delta_0 \neq \emptyset and corr_found do
           select c \in \Delta_0; \Delta_0 := \Delta_0 \setminus \{c\};
           if observe(cT, ab(c)) = true
             then O := O \cup obs(ab(c), cT);
              else O := O \cup obs(\neg ab(c), cT); corr_found := false;
           end {if}
        end {while}
     until corr_found;
     return \langle AD', \Delta \rangle
  end
```

Example: Learning about the Circuit

- 1. $\alpha(DD) \cup R$ inconsistent $\Rightarrow H^{cT}$ is symptom
- 2. Finding a candidate correction:
 - \diamond Selection: $new_law(w_0)$, $slaw(w_0)$, $head(w_0, ab(batt))$ $prec(w_0, closed(sw_1))$, $prec(w_0, closed(sw_2))$
 - $\diamond \alpha(\langle AD', H^{cT} \rangle) \cup R \cup CGEN$ is consistent
- 3. Testing: observe(ab(batt), cT) holds \Rightarrow correction found.

More Complex Corrections

Non-ground state constraints.

$$ab(batt)$$
 if $closed(SW_1)$,
 $closed(SW_2)$,
 $SW_1 \neq SW_2$.

Non-ground dynamic laws.

$$touch(P, C_2)$$
 causes $ab(C_1)$ if $statically_charged(P)$, $connected(C_1, C_2)$.