

Speaker: Sandeep Chintabathina

## Papers used

- A Theory of Timed Automata (1994) Rajeev Alur and David Dill
- Timed Automata: Semantics, Algorithms and Tools (2004)

  Johan Bengtsson and Wang Yi

### Talk outline

- Introduction
- $\omega$ -automata
- Timed automata
- Timed regular languages
- Verification using timed automata

- The goal of this research is to use automata for the specification and verification of systems.
- When reasoning about systems it is possible to abstract away from time and retain only the sequence of events qualitative temporal reasoning.
- A sequence of events (trace) describes a valid behavior of the system.
- A set of such event sequences constitutes all valid behaviors of the system.
- Since the set of sequences is a formal language, we can use automata theory for specification and verification of systems.

- Finite automata and a variety of competing formalisms are capable of manipulating and analyzing system behavior.
- In particular we will look at  $\omega$ -automata because it is capable of describing traces that are infinite.
- But these formalisms are limited to qualitative reasoning only.
- When reasoning about systems such as airplane control systems or toasters correct functioning depends on real time considerations quantitative reasoning is needed.

Objective: Specify and verify real-time systems by modifying finite automata

Outcome: A theory of timed automata

- Timing information can be added to an event trace by pairing it with a sequence of times.
- The i'th element of time sequence gives the time of occurrence of i'th event in the event sequence.
- Fundamental question: what is the nature of time?
- Discrete-time model and Dense-time model.

- Discrete-time model requires the time sequence to be monotonically increasing sequence of integers.
- It is possible to reduce a timed trace into a untimed trace.
- Timed trace (e1:1),(e2:4),(e3:6)..... can be reduced to the untimed trace e1,silent,silent,e2,silent,e6.....
- The time of each event is same as its position.
- This behavior can be modeled using finite automata.

Drawbacks of discrete model:

- Events do not always take place at integer-valued times.
- Continuous time must be approximated limiting the accuracy with which systems are modeled.

- Dense-time model is a more natural model for physical processes operating over continuous time.
- Times of events are real numbers which increase monotonically without bounds.
- Cannot use finite automata because it is not obvious how to transform dense-time traces into untimed traces.
- For this reason a theory of timed languages and timed automata was developed.

Timed automata can capture interesting aspects of real-time systems:

- qualitative features liveness, fairness, nondeterminism.
- quantitative features periodicity, bounded response, timing delays.

#### $\omega$ -automata

- $\omega$ -language consists of infinite words.
- $\omega$ -language over a finite alphabet  $\Sigma$  is a subset of  $\Sigma^{\omega}$  the set of all infinite words over  $\Sigma$ .
- $\omega$ -automata provides a finite representation for  $\omega$ -languages.
- It is a nondeterministic finite automata with acceptance condition modified to handle infinite input words.
- We will consider a type of  $\omega$ -automata called Buchi automata.

Transition table

- A transition table A is a  $\langle \Sigma, S, S_0, E \rangle$  where  $\Sigma$  is a set of input symbols, S is a finite set of states,  $S_0 \subseteq S$  is a set of start states and  $E \subseteq S \times S \times \Sigma$  is a set of edges.
- If  $\langle s, s', a \rangle \in E$  then automaton can change state from s to s' reading the input symbol a.

Run of A

• For a word  $\sigma = \sigma_1 \sigma_2$ ... over alphabet  $\Sigma$ , we say that

$$r: s_0 \xrightarrow{\sigma_1} s_1 \xrightarrow{\sigma_2} s_2 \xrightarrow{\sigma_3} \dots$$

is a run of A over  $\sigma$  provided  $s_0 \in S_0$  and  $\langle s_{i-1}, s_i, \sigma_i \rangle \in E$  for all  $i \geq 1$ .

• For such a run the set inf(r) consists of states  $s \in S$  such that  $s = s_i$  for infinitely many  $i \ge 0$ .

### **Buchi** automaton

- A Buchi automaton A is a transition table  $\langle \Sigma, S, S_0, E \rangle$  along with additional set  $F \subseteq S$  of accepting states.
- A run of A over a word  $\sigma$  is an accepting run iff  $inf(r) \cap F \neq \emptyset$
- The language L(A) accepted by the A is

 $L(A) = \{ \sigma \mid \sigma \in \Sigma^{\omega} \land \mathbf{A} \text{ has an accepting run over } \sigma \}$ 

## **Buchi Automaton**



Figure 1: Büchi automaton accepting  $(a+b)^*a^{\omega}$ 

## Properties of Buchi Automata

- An  $\omega$ -language is called  $\omega$ -regular iff it is accepted by some Buchi automaton.
- The class of  $\omega$ -regular languages are closed under all boolean operations.
- If Buchi automaton is used for modeling finite state concurrent systems, the verification problem reduces to that of language inclusion. But it leads to exponential blow-up in number of states.
- However, the inclusion problem for deterministic automaton takes only polynomial time.
- The class of languages accepted by deterministic Buchi automaton is strictly smaller than the class of  $\omega$ -regular languages.

### Timed languages

- A timed word is formed by coupling a real-valued time with each symbol in a word.
- The behavior of a real-time system corresponds to a timed word over the alphabet of events.
- A time sequence  $\tau = \tau_1 \tau_2...$  is an infinite sequence of time values  $\tau_i \in R$  with  $\tau_i > 0$ , satisfying the constraints:
  - Monotonocity:  $\tau$  increases strictly monotonically  $\tau_i < \tau_{i+1}$  for all  $i \geq 1$ .
  - Progress: For every  $t \in R$ , there is some  $i \ge 1$  such that  $\tau_i > t$

### Timed languages

- A timed word over an alphabet  $\Sigma$  is a pair  $(\sigma, \tau)$  where  $\sigma = \sigma_1 \sigma_2 \dots$  is an infinite word over  $\Sigma$  and  $\tau$  is a time sequence.
- A timed language over  $\Sigma$  is a set of timed words over  $\Sigma$ .
- Example: Let  $\Sigma = \{a, b\}$  and language  $L_1$  consists of all timed words  $(\sigma, \tau)$  such that there is no b after time 5.6

$$L_1 = \{ (\sigma, \tau) \mid \forall i. ((\tau_i > 5.6) \rightarrow (\sigma_i = a)) \}$$

Given timed language L over  $\Sigma$ 

$$Untime(L) = \{ \sigma \mid \sigma \in \Sigma^{\omega} \land (\sigma, \tau) \in L \}$$

$$Untime(L_1) = (a+b)^*a^{\omega}$$

#### Timed Transition tables

- They are extension of transition tables to read timed words.
- In this table, a transition depends upon the input symbol as well as the time of the input symbol relative to the times of previously read symbols.
- For this reason, a finite set of (real valued) clocks are associated with each table.
- The set of clocks can be viewed as set of stop-watches that can be reset and checked independently of one another, but all of them refer to the same clock.
- A clock constraint is associated with each transition and only when the current clock values satisfy this constraint will a transition be taken.

Example timed transition table



Figure 3: Example of a timed transition table

Example timed transition table

The timing constraint expressed by the transition table is that the delay between a and the following b is always less than 2; more formally the language is

$$\{((ab)^{\omega}, \tau) \mid \forall i.(\tau_{2i} < \tau_{2i-1} + 2)\}$$

Timed transition table with two clocks



Figure 4: Timed transition table with 2 clocks

Timed transition table with 2 clocks

The table uses two clocks and accepts the language

$$\{((abcd)^{\omega}, \tau) \mid \forall j. ((\tau_{4j+3} < \tau_{4j+1} + 1) \land (\tau_{4j+4} > \tau_{4j+2} + 2))\}$$

The clock constraints ensure that the time delay between c and preceding a is less than 1 and the time delay between d and preceding b is greater than 2.

### Clock constraints and clock interpretations

• For a set X of clock variables, the set  $\Phi(X)$  of clock constraints  $\delta$  is defined inductively by

$$\delta := x \le c \mid c \le x \mid \neg \delta \mid \delta_1 \wedge \delta_2$$

where  $x \in X$  and  $c \in R$ .

- Constraints such as true, x = c,  $x \in [2, 5)$  are considered abbreviations.
- A clock interpretation v for a set X of clocks is a mapping from X to R.
- Clock interpretation v for X satisfies a clock constraint  $\delta$  iff  $\delta$  evaluates to true using the value given by v.

**Clock interpretations** 

Here we introduce some notation

- For  $t \in R$ , v + t denotes the clock interpretation which maps every clock x to the value v(x) + t
- For  $Y \subseteq X$ ,  $[Y \to t]v$  denotes the clock interpretation for X which assigns t to each  $x \in Y$ , and agrees with v over the rest of the clocks.

#### Timed Transition tables

A timed transition table A is a  $\langle \Sigma, S, S_0, C, E \rangle$ , where

- $\bullet$   $\Sigma$  is a finite alphabet
- S is a finite set of states
- $S_0 \subseteq S$  is a set of start states
- C is a finite set of clocks
- $E \subseteq S \times S \times \Sigma \times 2^C \times \Phi(C)$  gives the set of transitions.

An edge  $\langle s, s', a, \lambda, \delta \rangle$  represents transition from state s to s' on input symbol a.  $\lambda$  is the set of clocks that will be reset and  $\delta$  is a clock constraint.

#### Run of a timed transition table

We will define the transitions of a timed table by defining runs.

A run r, denoted by  $\langle \bar{s}, \bar{v} \rangle$ , of a timed transition table  $\langle \Sigma, S, S_0, C, E \rangle$  over a timed word  $(\sigma, \tau)$  is an infinite sequence of the form

$$r: \langle s_0, v_0 \rangle \xrightarrow{\sigma_1} \langle s_1, v_1 \rangle \xrightarrow{\sigma_2} \langle s_2, v_2 \rangle \xrightarrow{\sigma_3} \dots$$

with  $s_i \in S$  and  $v_i \in [C \to R]$ , for all  $i \ge 0$ , satisfying the requirements

- Initiation:  $s_0 \in S_0$ , and  $v_0(x) = 0$  for all  $x \in C$ .
- Consecution: for all  $i \geq 1$ , there is an edge in E of the form  $\langle s_{i-1}, s_i, \sigma_i, \lambda_i, \delta_i \rangle$  such that  $v_{i-1} + \tau_i \tau_{i-1}$  satisfies  $\delta_i$  and  $v_i$  equals  $[\lambda_i \to 0](v_{i-1} + \tau_i \tau_{i-1})$ .

Timed transition table with two clocks



Figure 4: Timed transition table with 2 clocks

### Example run

Consider a timed word corresponding to example shown above.

$$(a, 2), (b, 2.7), (c, 2.8), (d, 5), \dots$$

An initial segment of the run is as follows. The clock interpretation is represented by listing values [x, y].

$$\langle s_0, [0,0] \rangle \xrightarrow{a} \langle s_1, [0,2] \rangle \xrightarrow{b} \langle s_2, [0.7,0] \rangle \xrightarrow{c} \langle s_3, [0.8,0.1] \rangle \xrightarrow{d} \langle s_0, [3,2.3] \rangle$$

The set inf(r) is the set of all  $s \in S$  such that  $s = s_i$  for infinitely many  $i \ge 0$ .

## Timed regular languages

- A timed Buchi automaton (TBA) is a tuple  $\langle \Sigma, S, S_0, C, E, F \rangle$ , where  $\langle \Sigma, S, S_0, C, E \rangle$  is a timed transition table and  $F \subseteq S$  is set of accepting states.
- A run  $r = (\bar{s}, \bar{v})$  of a TBA over timed word  $(\sigma, \tau)$  is called an accepting run iff  $inf(r) \cap F \neq \emptyset$ .
- The language L(A) of timed words accepted by A is the set

 $\{(\sigma,\tau) \mid \mathbf{A} \text{ has an accepting run over } (\sigma,\tau)\}$ 

The class of timed languages accepted by TBA are called timed regular languages.

## Example of a Timed automaton

Figure 6: Timed automaton specifying periodic behavior

Example of a Timed automaton

The automaton shown above accepts the following language over the alphabet  $\{a,b\}$ .

$$\{(\sigma, \tau) \mid \forall i. \exists j (\tau_j = 3i \land \sigma_j = a)\}$$

The automaton requires that whenever clock equals 3 there is an a symbol. Therefore a happens at all time values that are multiples of 3.

# Verification example



Figure 16: TRAIN

# Verification example



Figure 17: GATE

# Verification example



Figure 18: CONTROLLER

Correctness requirements

Implementation of the system is [TRAIN || GATE || CONTROLLER]

Specification of the system:

- Safety: Whenever the train in inside the gate, the gate should be closed.
- Liveness: The gate is never closed at a stretch for more than 10 minutes.

# Correctness requirements



Figure 19: Safety property

## Correctness requirements



Figure 20: Real-time liveness property