A Theory of Timed Automata....Kaboom!

Speaker: Sandeep Chintabathina

Papers used

e A Theory of Timed Automata (1994) Rajeev Alur and
David Dill

e Timed Automata: Semantics, Algorithms and Tools (2004)
Johan Bengtsson and Wang Yi

Talk outline

e Introduction
w-automata
Timed automata

Timed regular languages

Verification using timed automata

Introduction

The goal of this research is to use automata for the

specification and verification of systems.

When reasoning about systems it is possible to
abstract away from time and retain only the sequence

of events - qualitative temporal reasoning.

A sequence of events (trace) describes a valid behavior

of the system.

A set of such event sequences constitutes all valid

behaviors of the system.

Since the set of sequences is a formal language, we can
use automata theory for specification and verification

of systems.

Introduction

e Finite automata and a variety of competing formalisms
are capable of manipulating and analyzing system
behavior.

In particular we will look at w-automata because it is
capable of describing traces that are infinite.

But these formalisms are limited to qualitative

reasoning only.

When reasoning about systems such as airplane control
systems or toasters correct functioning depends on real
time considerations - quantitative reasoning is needed.

Objective : Specify and verify real-time systems by
modifying finite automata

Outcome : A theory of timed automata

Introduction

Timing information can be added to an event trace by
pairing it with a sequence of times.

The 2’th element of time sequence gives the time of

occurrence of 7’th event in the event sequence.
Fundamental question: what is the nature of time?

Discrete-time model and Dense-time model.

Introduction

Discrete-time model requires the time sequence to be

monotonically increasing sequence of integers.

It is possible to reduce a timed trace into a untimed

trace.

Timed trace (el:1),(e2:4),(e3:6) can be reduced to
the untimed trace el,silent,silent,e2,silent,e6

The time of each event is same as its position.

This behavior can be modeled using finite automata.

Introduction

Drawbacks of discrete model:

e Events do not always take place at integer-valued

times.

e Continuous time must be approximated limiting the

accuracy with which systems are modeled.

Introduction

e Dense-time model is a more natural model for physical

processes operating over continuous time.

e Times of events are real numbers which increase

monotonically without bounds.

e Cannot use finite automata because it is not obvious
how to transform dense-time traces into untimed

traces.

e For this reason a theory of timed languages and timed

automata was developed.

Introduction

Timed automata can capture interesting aspects of

real-time systems:

e qualitative features - liveness, fairness,

nondeterminism.

e quantitative features - periodicity, bounded response,

timing delays.

w-automata

w-language consists of infinite words.

w-language over a finite alphabet X is a subset of >“ -
the set of all infinite words over ..

w-automata provides a finite representation for

w-languages.

It 1s a nondeterministic finite automata with

acceptance condition modified to handle infinite input

words.

We will consider a type of w-automata called Buch:

automata.

11

Transition table

e A transition table A is a (3,5,S5), F) where X is a set of
input symbols, S is a finite set of states, Sy C S is a set
of start states and £ C § x § x X is a set of edges.

o If (s,5',a) € F then automaton can change state from s

to s’ reading the input symbol a.

Run of A

e For a word o = 0,05... over alphabet >, we say that

g1 g2 g3
rT:So — S1 > S9 >

is a run of A over o provided sy € Sy and
(si_1,84,0;) € E for all 1 > 1.

e For such a run the set inf(r) consists of states s € S

such that s = s; for infinitely many i > 0.

Buchi automaton

e A Buchi automaton A is a transition table (3,5, Sy,)
along with additional set ' C S of accepting states.

e A run of A over a word o is an accepting run iff

inf(r)NF #£1()
e The language L(A) accepted by the A is

L(A)={o |0 € ¥X¥ A A has an accepting run over o}

Buchi Automaton

Figure 1: Biichi automaton accepting (a 4+ 6)*a®

Properties of Buchi Automata

An w-language is called w-regular iff it is accepted by

some Buchi automaton.

The class of w-regular languages are closed under all

boolean operations.

If Buchi automaton is used for modeling finite state
concurrent systems, the verification problem reduces
to that of language inclusion. But it leads to

exponential blow-up in number of states.

However, the inclusion problem for deterministic

automaton takes only polynomial time.

The class of languages accepted by deterministic Buchi
automaton is strictly smaller than the class of

w-regular languages.

Timed languages

e A timed word is formed by coupling a real-valued time

with each symbol in a word.

e The behavior of a real-time system corresponds to a

timed word over the alphabet of events.
e A time sequence T = Ty 7y... is an infinite sequence of
time values 7; € R with 7; > 0, satisfying the constraints:

— Monotonocity : T increases strictly monotonically

7, < T;x1 for all ¢ > 1.

— Progress : For every t € R, there is some ¢ > 1 such
that 7, > ¢

Timed languages

e A timed word over an alphabet X is a pair (0,7) where
o = 0109 ... 1S an infinite word over Y and 7 is a time

sequence.
e A timed language over X is a set of timed words over ..

e Example : Let X = {a,b} and language L; consists of all

timed words (o, 7) such that there is no b after time 5.6

Ly ={(o,7) | Vi.((1; > 5.6) — (0, =a))}
Given timed language L over X
Untime(L) ={o |oc € X A(o,7) € L}

Untime(L1) = (a + b)*a®

Timed Transition tables

They are extension of transition tables to read timed

words.

In this table, a transition depends upon the input
symbol as well as the time of the input symbol relative

to the times of previously read symbols.

For this reason, a finite set of (real valued) clocks are

associated with each table.

The set of clocks can be viewed as set of stop-watches
that can be reset and checked independently of one

another, but all of them refer to the same clock.

A clock constraint is associated with each transition
and only when the current clock values satisfy this

constraint will a transition be taken.

Example timed transition table

OO

b, (x<2)?

Figure 3: Example of a timed transition table

Example timed transition table

The timing constraint expressed by the transition table is
that the delay between a and the following b is always less
than 2; more formally the language is

{((ab)“’,T) | V’L(TQZ < Toi—1 + 2)}

Timed transition table with two clocks

d, (y>2)7?

RN
—
x:=0 y:=0 (x<1)?

Figure 4: Timed transition table with 2 clocks

Timed transition table with 2 clocks

The table uses two clocks and accepts the language

{((abed)®,7) | Vi.((Taj43 < Taja1 + 1) A (Tajra > Tajpe +2))}

The clock constraints ensure that the time delay between c
and preceding a is less than 1 and the time delay between

d and preceding b is greater than 2.

Clock constraints and clock interpretations

For a set X of clock variables, the set ®(X) of clock
constraints 0 is defined inductively by

d=x<clc<x|—d|d N
where £ € X and c € R.

Constraints such as true , © = ¢, r € [2,5) are considered

abbreviations.

A clock interpretation v for a set X of clocks is a
mapping from X to R.

Clock interpretation v for X satisfies a clock constraint

0 iff 0 evaluates to true using the value given by v.

Clock interpretations

Here we introduce some notation

e For t € R, v+t denotes the clock interpretation which

maps every clock = to the value v(x) + ¢

e For Y C X, [Y — t]v denotes the clock interpretation for
X which assigns ¢ to each x € Y, and agrees with v over
the rest of the clocks.

Timed Transition tables

A timed transition table A is a (X, S, Sy, C, E), where
e X is a finite alphabet
e S is a finite set of states
e Sy; C S is a set of start states

e C is a finite set of clocks

e FEC S xS xXx2%x®(C) gives the set of transitions.

An edge (s,s',a,\, 0) represents transition from state s to s’
on input symbol a. A is the set of clocks that will be reset

and J is a clock constraint.

Run of a timed transition table

We will define the transitions of a timed table by defining

rumns.

A run r, denoted by (5,7), of a timed transition table
(33,5,50,C, F) over a timed word (o, 7) is an infinite
sequence of the form

r (50, 00) —=(51,01) —2+(59, V) — ...
T1 T2 73

with s; € S and v; € [C — R], for all i > 0, satisfying the

requirements

e Initiation: sy € Sy, and vy(x) =0 for all z € C.

e Consecution: for all : > 1, there is an edge in E of the
form <S7;_1, S, 04,)\Z‘, (5,,,> such that Vi1 +T; — Ti—1 satisfies
(57; and U; equals [)\Z — O](’Uz'_l + T; — Ti—l)-

Timed transition table with two clocks

d, (y>2)7?

RN
—
x:=0 y:=0 (x<1)?

Figure 4: Timed transition table with 2 clocks

Example run

Consider a timed word corresponding to example shown
above.

(a,2),(b,2.7),(c,2.8),(d,5), ...

An initial segment of the run is as follows. The clock
interpretation is represented by listing values [z, y].

(50, [0, 0]) —=(s1,[0,2]) = 7<32,[07 0]) —(s3,[0.8,0.1]) — “ (50, [3,2.3]

The set inf(r) is the set of all s € S such that s = s; for
infinitely many ¢ > 0.

Timed regular languages

e A timed Buchi automaton (TBA) is a tuple
(33,5,80,C, E, F), where (3,5,5,,C, FE) is a timed
transition table and F' C S is set of accepting states.

® A run r = (57v) of a TBA over timed word (o, 7) is
called an accepting run iff inf(r) N F # .

e The language L(A) of timed words accepted by A is the
set

{(,7) | A has an accepting run over (o, 7)}

The class of timed languages accepted by TBA are called

timed regular languages.

Example of a Timed automaton

a,b, (x<3)7?

a, (x=3)2?,x:=0

Figure 6: Timed automaton specifying periodic behavior

Example of a Timed automaton

The automaton shown above accepts the following

language over the alphabet {a,b}.

{(o,7) | Vi.3j(1; =3iNo; =a)}

The automaton requires that whenever clock equals 3
there is an a symbol. Therefore a happens at all time

values that are multiples of 3.

Verification example

approach
~) —)
=0

X3

exit

(x<5)?

@<
out

IMigure 16: TRAIN

Verification example

— (&) (=)

up
(y>1) N(y<2)?

Figure 17: GATE

Verification example

approach »O

raise lower

(z<1)? (z=1)7?

z:=0
S5 , S,
exit

Figure 18: CONTROLLER

Correctness requirements

Implementation of the system is [TRAIN || GATE ||
CONTROLLER|]

Specification of the system:

e Safety: Whenever the train in inside the gate, the gate
should be closed.

e Liveness : The gate is never closed at a stretch for

more than 10 minutes.

Correctness requirements

Figure 19: Safety property

Correctness requirements

up, (x<10)?

Figure 20: Real-time liveness property

