
A Theory of Timed Automata....Kaboom!

Speaker: Sandeep Chintabathina

1

Papers used

• A Theory of Timed Automata (1994) Rajeev Alur and

David Dill

• Timed Automata: Semantics, Algorithms and Tools (2004)

Johan Bengtsson and Wang Yi

2

Talk outline

• Introduction

• ω-automata

• Timed automata

• Timed regular languages

• Verification using timed automata

3

Introduction

• The goal of this research is to use automata for the

specification and verification of systems.

• When reasoning about systems it is possible to

abstract away from time and retain only the sequence

of events - qualitative temporal reasoning.

• A sequence of events (trace) describes a valid behavior

of the system.

• A set of such event sequences constitutes all valid

behaviors of the system.

• Since the set of sequences is a formal language, we can

use automata theory for specification and verification

of systems.

4

Introduction

• Finite automata and a variety of competing formalisms

are capable of manipulating and analyzing system

behavior.

• In particular we will look at ω-automata because it is

capable of describing traces that are infinite.

• But these formalisms are limited to qualitative

reasoning only.

• When reasoning about systems such as airplane control

systems or toasters correct functioning depends on real

time considerations - quantitative reasoning is needed.

Objective : Specify and verify real-time systems by

modifying finite automata

Outcome : A theory of timed automata

5

Introduction

• Timing information can be added to an event trace by

pairing it with a sequence of times.

• The i ’th element of time sequence gives the time of

occurrence of i ’th event in the event sequence.

• Fundamental question: what is the nature of time?

• Discrete-time model and Dense-time model.

6

Introduction

• Discrete-time model requires the time sequence to be

monotonically increasing sequence of integers.

• It is possible to reduce a timed trace into a untimed

trace.

• Timed trace (e1:1),(e2:4),(e3:6)..... can be reduced to

the untimed trace e1,silent,silent,e2,silent,e6......

• The time of each event is same as its position.

• This behavior can be modeled using finite automata.

7

Introduction

Drawbacks of discrete model:

• Events do not always take place at integer-valued

times.

• Continuous time must be approximated limiting the

accuracy with which systems are modeled.

8

Introduction

• Dense-time model is a more natural model for physical

processes operating over continuous time.

• Times of events are real numbers which increase

monotonically without bounds.

• Cannot use finite automata because it is not obvious

how to transform dense-time traces into untimed

traces.

• For this reason a theory of timed languages and timed

automata was developed.

9

Introduction

Timed automata can capture interesting aspects of

real-time systems:

• qualitative features - liveness, fairness,

nondeterminism.

• quantitative features - periodicity, bounded response,

timing delays.

10

ω-automata

• ω-language consists of infinite words.

• ω-language over a finite alphabet Σ is a subset of Σω -

the set of all infinite words over Σ.

• ω-automata provides a finite representation for

ω-languages.

• It is a nondeterministic finite automata with

acceptance condition modified to handle infinite input

words.

• We will consider a type of ω-automata called Buchi

automata.

11

Transition table

• A transition table A is a 〈Σ, S, S0, E〉 where Σ is a set of

input symbols, S is a finite set of states, S0 ⊆ S is a set

of start states and E ⊆ S × S × Σ is a set of edges.

• If 〈s, s′, a〉 ∈ E then automaton can change state from s

to s′ reading the input symbol a.

12

Run of A

• For a word σ = σ1σ2... over alphabet Σ, we say that

r : s0

σ1−→ s1

σ2−→ s2

σ3−→ ...

is a run of A over σ provided s0 ∈ S0 and

〈si−1, si, σi〉 ∈ E for all i ≥ 1.

• For such a run the set inf(r) consists of states s ∈ S

such that s = si for infinitely many i ≥ 0.

13

Buchi automaton

• A Buchi automaton A is a transition table 〈Σ, S, S0, E〉

along with additional set F ⊆ S of accepting states.

• A run of A over a word σ is an accepting run iff

inf(r) ∩ F 6= ∅

• The language L(A) accepted by the A is

L(A) = {σ | σ ∈ Σω ∧ A has an accepting run over σ}

14

Buchi Automaton

a

a

a,b

0
S

1S

Figure &' B)uchi automaton accepting 2a3 b4 a
15

Properties of Buchi Automata

• An ω-language is called ω-regular iff it is accepted by

some Buchi automaton.

• The class of ω-regular languages are closed under all

boolean operations.

• If Buchi automaton is used for modeling finite state

concurrent systems, the verification problem reduces

to that of language inclusion. But it leads to

exponential blow-up in number of states.

• However, the inclusion problem for deterministic

automaton takes only polynomial time.

• The class of languages accepted by deterministic Buchi

automaton is strictly smaller than the class of

ω-regular languages.

16

Timed languages

• A timed word is formed by coupling a real-valued time

with each symbol in a word.

• The behavior of a real-time system corresponds to a

timed word over the alphabet of events.

• A time sequence τ = τ1τ2... is an infinite sequence of

time values τi ∈ R with τi > 0, satisfying the constraints:

– Monotonocity : τ increases strictly monotonically

τi < τi+1 for all i ≥ 1.

– Progress : For every t ∈ R, there is some i ≥ 1 such

that τi > t

17

Timed languages

• A timed word over an alphabet Σ is a pair (σ, τ) where

σ = σ1σ2 . . . is an infinite word over Σ and τ is a time

sequence.

• A timed language over Σ is a set of timed words over Σ.

• Example : Let Σ = {a, b} and language L1 consists of all

timed words (σ, τ) such that there is no b after time 5.6

L1 = {(σ, τ) | ∀i.((τi > 5.6) → (σi = a))}

Given timed language L over Σ

Untime(L) = {σ | σ ∈ Σω ∧ (σ, τ) ∈ L}

Untime(L1) = (a + b)∗aω

18

Timed Transition tables

• They are extension of transition tables to read timed

words.

• In this table, a transition depends upon the input

symbol as well as the time of the input symbol relative

to the times of previously read symbols.

• For this reason, a finite set of (real valued) clocks are

associated with each table.

• The set of clocks can be viewed as set of stop-watches

that can be reset and checked independently of one

another, but all of them refer to the same clock.

• A clock constraint is associated with each transition

and only when the current clock values satisfy this

constraint will a transition be taken.

19

Example timed transition table

a, x:=0

b, (x<2)?

0
S

1
S

Figure &' Example of a timed transition table
20

Example timed transition table

The timing constraint expressed by the transition table is

that the delay between a and the following b is always less

than 2; more formally the language is

{((ab)ω, τ) | ∀i.(τ2i < τ2i−1 + 2)}

21

Timed transition table with two clocks

a b c

(x<1)?

d, (y>2)?

x:=0 y:=0
0
S

1
S 2S 3S

Figure &' Timed transition table with 4 clocks

22

Timed transition table with 2 clocks

The table uses two clocks and accepts the language

{((abcd)ω, τ) | ∀j.((τ4j+3 < τ4j+1 + 1) ∧ (τ4j+4 > τ4j+2 + 2))}

The clock constraints ensure that the time delay between c

and preceding a is less than 1 and the time delay between

d and preceding b is greater than 2.

23

Clock constraints and clock interpretations

• For a set X of clock variables, the set Φ(X) of clock

constraints δ is defined inductively by

δ := x ≤ c | c ≤ x | ¬δ | δ1 ∧ δ2

where x ∈ X and c ∈ R.

• Constraints such as true , x = c, x ∈ [2, 5) are considered

abbreviations.

• A clock interpretation v for a set X of clocks is a

mapping from X to R.

• Clock interpretation v for X satisfies a clock constraint

δ iff δ evaluates to true using the value given by v.

24

Clock interpretations

Here we introduce some notation

• For t ∈ R, v + t denotes the clock interpretation which

maps every clock x to the value v(x) + t

• For Y ⊆ X, [Y → t]v denotes the clock interpretation for

X which assigns t to each x ∈ Y , and agrees with v over

the rest of the clocks.

25

Timed Transition tables

A timed transition table A is a 〈Σ, S, S0, C, E〉, where

• Σ is a finite alphabet

• S is a finite set of states

• S0 ⊆ S is a set of start states

• C is a finite set of clocks

• E ⊆ S × S × Σ × 2C × Φ(C) gives the set of transitions.

An edge 〈s, s′, a, λ, δ〉 represents transition from state s to s′

on input symbol a. λ is the set of clocks that will be reset

and δ is a clock constraint.

26

Run of a timed transition table

We will define the transitions of a timed table by defining

runs.

A run r, denoted by 〈s̄, v̄〉, of a timed transition table

〈Σ, S, S0, C, E〉 over a timed word (σ, τ) is an infinite

sequence of the form

r : 〈s0, v0〉
σ1−→
τ1

〈s1, v1〉
σ2−→
τ2

〈s2, v2〉
σ3−→
τ3

. . .

with si ∈ S and vi ∈ [C → R], for all i ≥ 0, satisfying the

requirements

• Initiation: s0 ∈ S0, and v0(x) = 0 for all x ∈ C.

• Consecution: for all i ≥ 1, there is an edge in E of the

form 〈si−1, si, σi, λi, δi〉 such that vi−1 + τi − τi−1 satisfies

δi and vi equals [λi → 0](vi−1 + τi − τi−1).

27

Timed transition table with two clocks

a b c

(x<1)?

d, (y>2)?

x:=0 y:=0
0
S

1
S 2S 3S

Figure &' Timed transition table with 4 clocks

28

Example run

Consider a timed word corresponding to example shown

above.

(a, 2), (b, 2.7), (c, 2.8), (d, 5), . . .

An initial segment of the run is as follows. The clock

interpretation is represented by listing values [x, y].

〈s0, [0, 0]〉
a

−→
2

〈s1, [0, 2]〉
b

−→
2.7

〈s2, [0.7, 0]〉
c

−→
2.8

〈s3, [0.8, 0.1]〉
d

−→
5

〈s0, [3, 2.3]〉

The set inf(r) is the set of all s ∈ S such that s = si for

infinitely many i ≥ 0.

29

Timed regular languages

• A timed Buchi automaton (TBA) is a tuple

〈Σ, S, S0, C, E, F 〉, where 〈Σ, S, S0, C, E〉 is a timed

transition table and F ⊆ S is set of accepting states.

• A run r = (s̄, v̄) of a TBA over timed word (σ, τ) is

called an accepting run iff inf(r) ∩ F 6= ∅.

• The language L(A) of timed words accepted by A is the

set

{(σ, τ) | A has an accepting run over (σ, τ)}

The class of timed languages accepted by TBA are called

timed regular languages.

30

Example of a Timed automaton

a,b,(x<3)?

a,(x=3)?,x:=0

S
0

Figure &' Timed automaton specifying periodic behavior

31

Example of a Timed automaton

The automaton shown above accepts the following

language over the alphabet {a, b}.

{(σ, τ) | ∀i.∃j(τj = 3i ∧ σj = a)}

The automaton requires that whenever clock equals 3

there is an a symbol. Therefore a happens at all time

values that are multiples of 3.

32

Verification example

in

out

approach

exit

(x>2)?

id T

x:=0
0

S
1
S

2
S

3
S

(x<5)?
Figure &'(TRAIN

33

Verification example

id
G

id
G

lower

raise

downup

(y<1)?(y>1) >(y<2)?

y:=0

y:=0

3
S

0
S

1
S

2
S

Figure &'(GATE

34

Verification example

id
C

approach

lower

exit

raise

(z=1)?(z<1)?

z:=0

z:=0

0
S

1
S

2
S

3
S

Figure &'(CONTROLLER

35

Correctness requirements

Implementation of the system is [TRAIN || GATE ||

CONTROLLER]

Specification of the system:

• Safety: Whenever the train in inside the gate, the gate

should be closed.

• Liveness : The gate is never closed at a stretch for

more than 10 minutes.

36

Correctness requirements

out,~up

in,~updown,~in

~in,~down

up,~in

~in,~up

0
S

1
S

2
S

Figure &'(Safety property

37

Correctness requirements

~down

up,(x<10)?

(x<10)?

1S0S

down, x:=0

Figure &'(Real,time liveness property

38

