Logic Programs with Preferences

Marcello Balduccini

October 18", 2000



1 Introduction

In this seminar, we compared two approaches to the introduction of preferences
among rules in logic programs ([1], [2]).

2 Summary of the Papers

In [1], Schaub et at. present an encoding of preferences among rules in logic
programs based on the introduction of preference atoms of the form n; < n,.
Terms n; and ny identify rules of the program. The informal meaning of the
atom is that, in case both rules can be applied when computing an answer set,
the rule denoted by na has to be applied first. The semantics of ordered logic
programs is given in terms of the semantics of regular logic programs, by means
of a syntactical transformation 7 that maps ordered logic programs into regular
ones.

The approach described in [2] introduces preferences on defaults only. Standard
A-Prolog atoms are used to encode the preference between rules and the seman-
tics of preference atoms is given in terms of a set of A-Prolog rules. The informal
semantics of a fact describing that default ds is preferred over d; is that, in case
both can be applied, only do must be applied. These axioms defining the formal
semantics of preference atoms are added to the ordered logic program when
answer sets are to be computed.

3 Comparison

From the point of view of syntax, the two approaches are very similar. Both
deal with preference atoms that can appear in the head as well as in the body
of rules. Rules whose head is a preference atoms are allowed to have a non-
empty body. The name of rules is, in both cases, a term, rather than a constant
symbol. It is easy to see that, if the approach presented in [1] is restricted to
defaults, the two ways of expressing preferences are syntactically equivalent.

From the point of view of semantics, [1] and [2] present two alternative views
of logic programs with preferences. The view in [1] is more procedural. Pref-
erences impose constraints on the order in which rules are applied during the
computation of answer sets. On the contrary, the semantics described in [2]
only affects whether defaults are applied or not. There is no relation to how
answer sets are computed, which makes the approach more declarative.

A further difference is that, in [1], preferences can be expressed with respect
to all rules, while, in [2], they can be expressed on defaults only. The former
choice gives apparently unintuitive results in some cases in which preferences
over non-default rules are involved. For example, under the first semantics, the
following program II:



p.

rn: f :— bp
ro: of 1 — p.
r9g < T1.

has no answer set, while, intuitively, preference rule 7o < 1 should let us obtain
one (unique) answer set {p, = f}. The reason is that preferring rule r; over rule
r1 only means that rule 7o must be applied before r1, in case both can be applied.
In the previous example, after applying 79, 71 can still be applied, which causes
contradiction. On the other hand, suppose to be to apply the semantics of [2]
also to non-default rules (the extension is straightforward). Then, under this
semantics, IT would have only one answer set, {p, ~f}.

From the perspective of computational efficiency, the transformation described
in [1] has major problems when applied to programs containing several prefer-
ences. This is due in particular to the structure of rule ¢ (r), generated during
transformation 7. Its body contains all preference atoms involving rule 7. In
the case of names of rules containing variables, the body of ¢1(r) clearly becomes
huge.

Finally, it has to be noted that one of the concluding remarks in [1] is not
correct. In brief, the authors say that the use of Prolog-like list notation for
preference atoms, in [2], is problematic for the use in systems like SMODELS and
DLV. This is not indeed the case. In fact, atoms of the form

default(n,p, [ra —|8], [q])

can be immediately rewritten as:

default(n).
head(n, p).
p-prec(n,r).
p-prec(n, —s).
n_prec(n, q).

which presents no problems for SMODELS and DLV.

References

[1] James P. Delgrande, Torsten Schaub, and Hans Tompits. Logic programs
with compiled preferences. In Proceedings of the Furopean Conference on
Artificial Intelligence, pages 392-398. I0S Press, 2000.

[2] Michael Gelfond and Son Cao Tran. Reasoning with prioritized defaults. In
Third International Workshop, LPKR’97, volume 1471 of Lecture Notes in
Artificial Intelligence (LNCS), pages 164-224, Oct 1997.



