Nested Expressions in Logic Programs
Vladimir Lifschitz and Lappoon R. Tang

Department of Computer Science
University of Texas at Austin
Austin, TX 78712, USA

Hudson Turner
Department of Computer Science

University of Minnesota at Duluth
Duluth, MN 55812, USA

November 9, 2001



Goal

The goal of this presentation is to present
the new syntax and semantics introduced
in the paper, and to show how the new

semantics fit in with our conception of

answer sets.



Introduction

The authors extend the answer set se-
mantics to include programs with nested
expressions permitted in the heads and
the bodies of rules.



Structure

The talk is structured as follows:

e review of the current syntax and se-
mantics of logic programs

e introduce the expansion of the syn-
tax and semantics to include nested
exXPressions

e show how the new semantics relates
to our current concept of answer sets

e discuss the relationship between the
new semantics and the Lloyd-Topor
semantics



Current Syntax

As of now, we define a logic program as
a set of rules of the form:

Lo+ Ly,...,Lyp,not Ly, 11, ...,n0t Ly

where the L’s are literals. Rules of this
form are read as follows: “Lg is true it

we know L1, ..., Ly to be true and we
have no reason to believein Ly, 11, ..., Ly”.
Programs whose rules do not contain
negation as failure are known as basic
programs.



Current Semantics

The semantics of a logic program is de-
fined in terms of answer sets as follows:

1. The answer set of a basic program 11,
is a minimal set S of ground literals
which satisfies the following two con-
ditions:

e S is closed under the rules of 11

e If S contains contrary literals, then
the answer set of I1 is equal to the
set of all ground literals.



2. Otherwise, given a set of literals S,
we obtain the basic program I1° from

I1 by:

e removing all rules in I containing
notf, where f € S

e removing all other premises con-
taining not

S is an answer set of II, if and only if S
is an answer set of I1°



Syntax of Formulas

The authors define elementary formu-

las as literals, and the connectives T
(“true”), and L (“false”).

Elementary formulas, are formulas. The
negation as failure (not), of a formula is
a formula, and conjunctions ‘,’, and dis-
junctions ‘;" of formulas are themselves
formulas.



Syntax of Conditional Expressions

For any formulas F', G, and H, we write
the formula (F,G); (not F, H) as fol-

lows:
F—G H

Formulas of this form are read as fol-
lows: “if F' then G, else H”.



Examples

The following are all valid formulas un-
der the new syntax:

o (F.G)

* (FG)

o not(F, &)

e not(not(F,G);(H — I;J))
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Syntax of Programs

A program is redefined as a set of rules
of the form:

Head < Body

where Head and Body are formulas.

Rules of the form F' <~ T are known as
facts and are written as F' <.

Rules of the form | <« G are known as
constraints and are written as <« G.

Formulas, rules and program that do

not contain negation as failure are known
as basic.
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New Semantics

The authors define when a consistent
set X of literals satisfies a basic formula

F', denoted as X | F', recursively as
follows:

e for elementary formula F', X = F'if
FeXolF=T

e X E(FG)ift XEFand X G
o X E(FG) it XEFouoXEG
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Now let II be a basic program. A consis-
tent set X of literals is closed under II
if, for every rule (F' < G) € I, X = F
whenever X = G.

X is an answer set for II, if X is mini-
mal among the consistent sets of literals
closed under II.

13



Examples

1. Consider the basic program q < (p; —p)

As there are no rules with p or —p in
their heads, it is clear that the only
answer set of this program is ().

2. Let us add the rule p < to the above
program.

q < (p; —p)
D <—

It is clear that the answer set of the
program is {p, q}.
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The reduct of a formula, rule or pro-
gram with respect to a consistent set of
literals X is defined recursively, as fol-
lows:

e for an elementary F', F X = F
o (F.G)* = (F*,G)
o (F;G)* = (F*;G7)

x |LifXEFX

* (not F)™ = T otherwise

o (F+ G)X=FX X

o[IX ={(F+— G F«Gell}

X is an answer set of II, if and only if
X is an answer set of TI**.
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Examples
Let us consider the program II:
p < (@ = r;not s).
equivalently written as:
p < (q,7); (not q,not s).

Take X = {p}. We compute II* as
follows:

T = p* « ((g,7); (not g, not s))*
= p < (q,7)"; (not q,not s)*
= p (g, 7); ((not @)™, (not s)™)

= P < (Q7 T)? (Ta T)

It is clear that the only answer set of
M is X , and hence X is an answer set

of 1.
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Curiously, under the expanded seman-
tics two consecutive negation as failure
operators do not cancel each other out.
Let us consider the program II:

P < not not p.
Take X = (). We compute [I**1 as fol-

lows:
% = p*! « (not not p)*!
= p<+ (not T)
=p<+ L
It is clear that the only answer set of

[1*1 is (), and hence X is an answer
set of II.
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Now take X9 = {p}. We compute [1X2
as follows:
% = p*2 « (not not p)*?
= p < (not 1)
=p< 1
It is clear that the only answer set of

%2 is {p}, and hence X9 is an answer
set of II.
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Relation to Current Semantics

Proposition 1 For a program whose
rules have the form:

Ly;...;Lg;not Lgq;...;n0t Lj <
Liviy...yLm,not Lyyiq,...,n0t Ly

where 0 < k <[ <m <n, and all of
the L’s are literals, the answer sets
given under the expanded definition
of the semantics are exactly the con-
sistent answer sets according to the
current definition.
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Let II be a set of constraints. A consis-
tent set of literals X wviolates II, if for
an constraint < G € I, X = G*.

Proposition 2 Let 111 and 11y be pro-
grams, such that Ilo is a set of con-
straints. A consistent set of literals
1s an answer set for 111 U Ily iof and
only if it 1s an answer set of 111, and
does not violate 119
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Equivalent Transformations

The authors define a series of transfor-
mations from arbitrary rules with nested
expression to rules of the disjunctive form
previously discussed. These transtor-
mations take one of the following forms:

1. replacing a formula in the rule by an-
other formula

2. moving a formula from the body of
a rule to its head

3. moving a formula from the head of a
rule to its body

This begs the question: “What does it
mean when we say that two formulas
are equivalent?”
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A formula F'is equivalent to a formula

(, if for any consistent sets of liter-
als X and Y, X | FY if and only if
X E=GY.

Proposition 3 Let 11 be a program,
and let F' and G be a pair of equiva-
lent formulas. Any program obtained
from 11 by replacing occurences of F
by GG, 1s equivalent to 11.
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Proposition 4 For any formulas F,
G, and H:

1. FG=G,F and F;G =G, F

2.(F,G),H =F,(G,H) and
(F;G);H = F;(G;H)

3. F, (G, H)=(F,G);(F,H) and
F (G, H) = (F;G),(F; H)

4.not(F,G) = not F;not G and
not(F; G) = not F,not G

5. not not not F' = not F
6. F, T =Fand F;: T =T
7F,1 =1 and F'; L =F

8. 1f P is an atom the p,—p = L, and
not p;not -p= 1

9not T =1 andnot L. =T
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A simple conjunction is a formula of
the form:

Ll,...,Lk,nOt Lk+1,...,n0t Lm,
not not Ly,11,...,not not Ly,

A simple disjunction is a formula of the
form:

Ly;...;Lg;not Lg.q;...;n0t Lpy;
not not Ly, 11;...,not not Ly,
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Proposition 5 Any formula is equiv-
alent to:

1. a formula of the form Fy;...:;Fj
where n > 1, and each F; is a sim-
ple conjunction, and

2. a forumla of the form Fy,..., Fy
where n > 1, and each Fj is a sim-

ple disjunction
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Proposition 6

1. (F,G) < H 1is equivalent to:

F+— H,
G+ H.

2. F < (G; H) is equivalent to:

F + @G,
F+ H.

3. F < (G,not not H) is equivalent
to:

(F;not H) < G.

4. (F;not not G) < H is equivalent
to:

F < not G, H.
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Proposition 7 Any program is equiv-
alent to a set of rules of the form:

Ly;...;Lg;not Lgyq;...;not Lj <
Ljiq,..., Lm,not Lyiq,...,n0t Ly

We will later see that rules of the above
form which are generated from a pro-
gram II, do not contain negation as fail-
ure in the heads, (k = [), if negation as
failure in II:

1. does not occur in the heads of rules,
and

2. 1s not nested, that is, not applied to
formulas containing negation as fail-
ure
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Proot of Proposition 1

Lemma 1 Let II be a program whose
rules have the form:

Ll;...;Lk%Lk+1,...,Lm

where 0 < k < m, and all of the L’s
are literals, and let X be a consistent
set of literals. X 1is closed under 11

in the sense of this paper if, for every
rule Head < Body in 11, Head € X

whenever Body C X.
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Lemma 2 Let II be a program whose
rules have the form:

Ly;...;Lg;not Lgq;...;n0t L) <
Liiq,..., Lm,not Ly4q,...,n0t Ly

and let X, and Y be consistent sets
of literals. Y is closed under I if
and only Y 1is closed under the reduct

of II relative to X in the sense “our
definition”.
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Proof of Lemma 1: 1t is easy to verify
that X is closed under II in the sense of
this paper if and only if for every rule
of the form:

Ll?---;Lk%Lk—Ha---aLm

in II, X includes at least one of the
literals L1, ..., Lz provided that X in-
cludes all of the literals Ly q,..., Lm.

This is exactly what it is for X to be
closed under II.
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Proof of Lemma 2: For a program II
whose rules have the form:

Ly;...;Lp;not L, q;...;n0t Ly <
Liiq,..., Lm,not Ly4q,...,n0t Ly
and for a consistent set of literals X,

1 can be characterized as the result

of replacing each subformula of the form
not LinlIl by Lif L € X, and by T
otherwise.
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On the other hand, the reduct of II rel-
ative to X is defined as the program
obtained from II by:

e deleting every rule such that at least

one of Lg,q,...,Lm is not in X or
at least oneof Ly, 1 1,..., Ly isin X,
and

e replacing each remaining rule by:

Ly;...;Lp < Ljyq,... L
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This program can be obtained from m*
by:
e deleting every rule sucht that its head

contains T or its body contains _L,
and

e removing every L in the head, and
every [ in the body of each remain-

ing rule.

It is clear that these steps have no effect
on whether a consistent set Y of literals
is closed under that program.
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Proot of Proposition 2

Lemma 3 LetII be a set of basic con-
straints, and let X be a consistent set
of literals. If X 1is closed under II,
then every subset of X 1is closed un-
der I1.

Proof of Lemma 3: It is easy to see
that for any consistent sets X, and Y
of literals, and any basic formula G, if

YCXandY E G then X EG.
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Proof of Proposition 2: Let X be a
consistent set of literals. We need to
show that X is an answer set for II{* U
[14* if and only if it is an answer set for
Hf( and does not violate Ils.

Left-to-Right: Assume that X is an an-
swer set for II{ UTTS . Then X is closed
under both II{* and TI&. The second
condition means that X does not vi-
olate IIs. Now we need to check the
minimality of X. Let Y be a subset of
X closed under Hf( . Since X 1is closed
under IT4", from Lemma 3 we know that
Y is closed under IT§ as well. Since X

1s minimal under the sets closed under
[I{* UTIS, it follows that Y = X.
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Right-to-Left: Assume that X is an an-
swer set for Hf( and does not violate
II5. The second condition means that
X 1is closed under Hg( . Consequently,
X is closed under both Hf( and H§( .
Now we need to check the minimality
of X. Let Y be a subset of X closed
under TT{* U TI5*. Then in particular Y
is closed under Hf( . Since X is minimal
among such sets, it follows that Y = X.
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