
Vicious Circle Principle, Aggregates, and Formation of
Sets in ASP Based Languages

Michael Gelfond and Yuanlin Zhang
Texas Tech University, Lubbock, Texas 79414, USA

{michael.gelfond, y.zhang}@ttu.edu

Abstract

The paper introduces an extension of the original Answer Set Prolog (ASP) by
several set constructs including aggregates, defined as functions on sets. The new
language, called A log allows creating sets based on the Vicious Circle Principle
by Poincaré and Russell which eliminates a number of problems found in existing
extensions of ASP by aggregates. We argue that, despite the fact that A log is
not as expressive as other extensions of ASP by aggregates, clarity of its syntax
and semantics, addition of several new set-based constructs, and simplicity and the
ease of use make it a viable competitor to these languages. We also study a number
of important properties of the language and show how ideas used in its design can
be utilized to generalize and simplify the definition of another important extension
of ASP by aggregates.

Keywords: Aggregates; Answer Set Programming; Logic Programming;
Knowledge Representation; Language Design
2010 MSC: 68N17, 68T27, 68T30

1. Introduction

The development of answer set semantics for logic programs [1, 2] led to the
creation of a powerful knowledge representation language, Answer Set Prolog
(ASP) [3], capable of representing recursive definitions, defaults, effects of ac-
tions and other important phenomena of natural language. A program of ASP5

consists of rules understood as constraints on so called answer sets – possible
collections of beliefs of a rational agent associated with the program. The rule
head ← body requires the agent who believes the body of the rule to also be-
lieve the rule’s head. In forming its beliefs the agent is supposed to satisfy the

Preprint submitted to Artificial Intelligence March 31, 2019

rules, avoid contradictions, and adhere to Rationality Principle: believe nothing10

you are not forced to believe (by the rules of the program). This intuition is cap-
tured by the original definition of answer sets [3]. On the theoretical side, this
work helped some people to better understand formation of rational beliefs and
other forms of non-monotonic reasoning. In addition, the design of algorithms for
computing answer sets and their efficient implementations in systems called ASP15

solvers for instance, [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]) allowed the language
to become a powerful tool for building non-trivial knowledge intensive applica-
tions such as [15, 16, 17, 18] among others. There are a number of extensions
of ASP which also contributed to its success. Some, such as CR-prolog [19] and
P-log [20], which enhanced ASP by abductive and probabilistic reasoning respec-20

tively, preserved the epistemic character of the language. Others, such as [21] and
[22] abandoned the original idea in favor of expanding the syntax of the language
to include arbitrary formulae and establishing closer relationship with traditional
super-intuitionistic and classical logics. Extensions of the original language by
other new constructs, such as choice rules, weight constraints, and minimization25

statement [23, 4], weak constraints [24], etc. were motivated by the desire to
use ASP to solve optimization problems and by other practical needs of ASP. In
this paper we are especially interested in the large collection of works aimed at ex-
panding ASP with aggregates - functions defined on sets of objects of the domain.
Here is a typical example of the use of aggregates for knowledge representation.30

Example 1 (Classes That Need Teaching Assistants). Suppose that we have a
complete list of students enrolled in a class c that is represented by the following
collection of atoms:

enrolled(c,mike).

enrolled(c,john).35

...

Suppose also that we would like to define a new relation need ta(C) that holds
iff the class C needs a teaching assistant. In this particular school need ta(C)
is true iff the number of students enrolled in the class is greater than 20. The
definition can be given by the following rules in the language of logic programs40

with aggregates:

need_ta(C) :- card{X : enrolled(C,X)} > 20.

-need_ta(C) :- not need_ta(C).

where card stands for the cardinality function. Let us call the resulting program
TA. �45

2

The program is simple, has a clear intuitive meaning, and can be run on most
of the existing ASP solvers. However, the situation is more complex than that.
Unfortunately, currently there is no single recognized language of logic programs
with aggregates. Instead there is a comparatively large collection of such lan-
guages with different syntax and, even more importantly, different semantics (see50

[25, 4, 26, 27, 28, 29] among others).

To illustrate the difficulty, consider the programs in the following example.

Example 2. Program P0 consists of a rule:

p(1) :- card{X: p(X)} != 1.

Program P1 consists of rules:55

p(1) :- p(0).

p(0) :- p(1).

p(1) :- card{X: p(X)} != 1.

Program P2 consists of rules:

p(1) :- card{X: p(X)} >= 0.60

Even for these seemingly simple programs, there are different opinions about their
meaning. To the best of our knowledge, all ASP based semantics, including that of
[27, 26, 30], view P0 as a bad specification. It is inconsistent, i.e., has no answer
sets. Opinions differ, however, about the meaning of the other two programs.
[27] views P1 as a reasonable specification having one answer set {p(0), p(1)}.65

According to [26, 30], P1 is inconsistent.1 According to most semantics, P2 has
one answer set {p(1)}. However, the same semantics view seemingly equivalent
program P3

p(1) :- card{X: p(X)} = Y, Y >= 0.

as inconsistent. �70

In our judgment this and other similar “clashes of intuition” cause a serious imped-
iment to the use of aggregates in ASP (as well as in some other KR languages). It

1In the rest of the paper we often refer to languages from [27] and [26] as F log and S log
respectively.

3

is, of course, not entirely clear how this type of differences can be resolved. Some-
times, further analysis can find convincing arguments in favor of one of the pro-
posals. Sometimes, the analysis discovers that different approaches really model75

different linguistic or natural phenomena and are, hence, all useful in different
contexts. But, in general, we believe that the difficulty can be greatly alleviated if
we pay more serious attention to important principles of language design, such as

• Naturalesness: Constructs of a formal language L should be close to in-
formal constructs used in the parts of natural language that L is designed80

to formalize. The language should come with a methodology of using these
constructs for knowledge representation and programming.

• Clarity: The language should have simple syntax and clear intuitive seman-
tics based on understandable informal principles.

• Mathematical Elegance: Formal description of syntax and semantics of the85

language should be mathematically elegant. Moreover, the language should
come with mathematical theory facilitating its use for knowledge represen-
tation and programming.

• Stability: Informally equivalent transformations of a text should correspond
to formally equivalent ones.90

• Elaboration Tolerance: It should be possible to expand a language by new
relevant constructs without substantial changes in its syntax and semantics.

We learned these principles from the early work on language design, especially
that by Dijkstra, Hoare, Wirth, and McCarthy, and had multiple opportunities to
confirm their importance in our own work.95

In this paper we use these principles for the design of a new KR language A log2

which allows aggregates, an analog of choice rules, and other set related con-
structs which, in our judgment, make ASP a better tool for knowledge representa-
tion. The emphasis on sets is the result of our analysis of previous work on ASP
aggregates. We believe, that the above mentioned “clash of intuitions” is caused100

not so much by the ambiguity of intuitive meaning of aggregates as by the lack of
clear understanding of the meaning and proper ways of formation of the ASP sets.

2The first version of A log appeared in [30]. The language was further elaborated in [31].

4

(More discussion of this, and of the relationship between formation of sets in ASP
and in classical set theory can be found in Section 2.)

The paper is organized as follows. We start with expanding the original ASP105

by aggregates and proceed by gradually introducing new set related constructs and
giving examples of their use for knowledge representation.3 The choice for such
a step-wise introduction of A log is aimed to illustrate the concept of elaboration
tolerance of a language. In addition, we believe that this allows for separation
of concerns which makes it easier to grasp the paper’s ideas. In the process, we110

illustrate the influence of general principles mentioned above on the design of
the language and contrast it with decisions made in some other similar languages.
Section 2 contains analysis of the process of creation of sets in logic programming
languages and its relation with the Vicious Circle Principle (VCP) by Poincaré and
Russell. Section 3 introduces an extension of ASP by aggregates understood as115

functions on (possibly infinite) sets, gives its syntax and semantics, and compares
the new language with existing approaches, including that of F log and S log. In
section 4, we give informal semantics of rules with subset relation and discuss its
usefulness in knowledge representation. Section 5 contains syntax and semantics
of the full language. Section 6 presents a number of important properties of A log120

programs whose proofs are contained in the Appendix. In section 7, we use S log
as an example to demonstrate how our newly introduced additive reduct can be
used to define and extend other semantics of aggregates in a comparatively simple
manner while explicating essential ideas underlying the semantics. Specifically,
we extend S log to allow disjunctions in the head of rule and show that the seman-125

tics of the new language agrees with S log on the programs without disjunction.
Section 8 discusses the related work while Section 9 concludes the paper.

As was mentioned earlier basic constructs of A log presented in this paper
were first introduced in two conference publications [30] and [31]. The current
paper extends this work by130

• adding a number of discussions explaining our general phylosophy of lan-
guage design and its influence on the development A log,

• providing new examples illustrating the use of the language for knowledge
representation as well as substantial differences between A log and other
ASP based languages with aggregates,135

3The alternative would be to start with the full language and define its semantics using a single
notion of a reduct.

5

• generalizing properties of ASP with aggregates stated in the original papers
to the full version of A log,

• substantially improving the version of the Splitting Set Theorem presented
in [31] and adding new results related to the notions of aggregate stratifica-
tion and stability of programs with respect to arithmetic transformations,140

• Adding proofs of the propositions stated in the paper.

2. Sets of A log

A log expands Answer Set Prolog by a set expression

{X̄ : p(X̄)}

which denotes the set of all objects of the program’s domain believed by the ratio-
nal agent associated with the program to satisfy property p. Note, that to denote
sets we use standard mathematical syntax. However, in mathematics {X̄ : p(X̄)}145

is usually read as “the set of all X̄ for which p(X̄) is true”. Our reading is in line
with epistemic interpretation of ASP. From our standpoint it is difficult to talk
about truth of an arbitrary statement p(t) in any non-monotonic logic in which
addition of new information can change the truth-value of p(t). We share the
classical understanding of truth according to which truth is everlasting and does150

not change with time or growth of our knowledge.

As we know from the early work on set theory one should be very careful with
the use of set expressions, since they may actually denote no sets. For instance, as
shown by Russell and Zermelo, no set is denoted by an expression {X : X 6∈ X}.

Perhaps somewhat surprisingly, similar phenomena may be observed in logic155

programming. It is easy to see that no set is denoted by set expression {X : p(X)}
used in a program P consisting of the rule:

p(0) :- card{X:p(X)} = 0.

Assuming that 0 is the only object constant of the program, there are two possible
answer sets of P: { } and {p(0)}. The former does not satisfy the rule of P. The160

latter is not sanctioned by any rule and hence does not adhere to the rationality
principle. With the absence of answer sets, {X : p(X)} has no denotation.

In both, set-theoretic and logic programing examples the difficulty with the
existence of sets seem to be connected with self-reference in their definitions.

6

The problem was recognized in early stages of the development of classical set165

theory by G. Cantor according to whom

“A set is a Multiplicity (Many) that allows itself to be thought of as a Unity (One).”

Apparently, neither of the “multiplicities” from the above examples allow them-
selves to be thought of as a Unity. There are multiple and still ongoing efforts to
better understand when a “Multiplicity” gives itself such a permission. The ap-170

proach proposed in this paper is greatly influenced by the work of Poincaré and
Russell who suggested to prohibit definitions containing vicious circles. This pro-
hibition, which in one of its many formulations says: “no object or property may
be introduced by a definition that depends on that object or property itself,” is
often referred to as the “Vicious Circle Principle” (VCP). The semantics of sets175

in A log is based on the following adaptation of this principle to Logic Program-
ming.

VCP in A log: The reasoner’s belief in p(t) can not depend on existence of a set
denoted by set expression {X : p(X)},

or, equivalently,180

Set expression {X : p(X)} denotes a set S only if for every t rational belief in p(t)
can be established without a reference to S.

Clearly, an expression f{X : p(X)} where f is an aggregate can only be meaning-
ful with respect to a program P if the program is consistent (and hence {X : p(X)}
has a denotation).185

To further illustrate the intuition behind A log’s version of VCP consider the
following example.

Example 3. Let us consider programs P0 . . .P3 from Example 2. P0, consisting of

p(1) :- card{X: p(X)} != 1

clearly has no answer set since {} does not satisfy its rule and there is no justifi-190

cation for believing in p(1). P1, consisting of

p(1) :- p(0).

p(0) :- p(1).

p(1) :- card{X: p(X)} != 1.

is also inconsistent. To see that notice that the first two rules of the program limit195

our possibilities to A1 = {} and A2 = {p(0), p(1)}. In the first case {X : p(X)}
denotes {}. But this contradicts the last rule of the program. A1 cannot be an

7

answer set of P1. In A2, {X : p(X)} denotes S = {0,1}. But this violates our form
of VCP since the reasoner’s beliefs in both, p(0) and p(1), cannot be established
without reference to S. A2 is not an answer set either. Now consider program P2200

with rule

p(1) :- card{X: p(X)} >= 0.

There are two possible answer sets: A1 = {} and A2 = {p(1)}. In A1, S = {}
which contradicts the rule. In A2, S = {1} but this would contradict the A log’s
VCP. The program is inconsistent.4 Similar argument shows inconsistency of P3.205

Finally, consider program consisting of a rule

p(1) :- count{X : p(X), X != 1} = 0

Even though this rule contains recursion through aggregates it does not violate
VCP since the definition of p(1) does not refer to the denotation of {X : p(X)}.
�210

We hope that the examples are sufficient to show how the informal semantics
of A log can give a programmer some guidelines in avoiding formation of sets
problematic from the standpoint of VCP.

3. Aggregates of A log

For simplicity of presentation we limit our attention to aggregates defined as215

functions from sets of terms into the set of natural numbers. Similar approach will
work for integers, rational numbers, Turing-computable real numbers, etc.

3.1. Syntax of Aggregates
Let Σ be a (possibly sorted) signature with a finite collection of predicate and

function symbols and (possibly infinite) collection of object constants, and let A220

be a finite collection of aggregate names. Terms and literals over signature Σ

are defined as usual and referred to as regular.5 A literal formed by a predicate

4There is a common argument for the semantics in which {p(1)} would be the answer set of
P2: “Since card{X : p(X)} ≥ 0 is always true it can be dropped from the rule without changing the
rule’s meaning”. But the argument assumes the existence of the set denoted by {X : p(X)} which
is not always the case in A log.

5Recall, that a negative literal of ASP is of the form ¬p (read as “p is believed to be false”).
It is different from an expression not l, where not is a default negation and l is a regular literal,
which is read as “it is not believed that l is true”. A literal possibly preceded by default negation
is called an extended literal.

8

symbol different from arithmetic predicate and equality is called user-defined. To
incorporate aggregates into the language of ASP we expand the ASP syntax by

• Set expressions – constructs of the form225

{X̄ : cond} (1)

where cond is a finite collection of regular literals and X̄ is a list of variables
occurring in cond.

• Set atoms – statements of the form

f (S)� k (2)

where f is an aggregate name, S is a set expression, k is a natural num-
ber, and � is an arithmetic relation >,≥,<,≤,= or !=. Typical aggregate230

names in existing solvers include count, sum, min, and max which have
the intuitive meaning as suggested by their names. When applying to a set
of tuples, the value of sum is the sum of the first component of all tuples of
the set. This agreement allows to nicely avoid dealing with multisets and
we follow it in A log. Note that an aggregate f does not have to be total.235

Hence, f (S) > k holds if f (S) is defined and its value, y, is greater than k.
Similarly for other arithmetic relations. If f (S) is undefined then so is the
truth value of the set atom (2).

• Aggregate rules – statements of the form

head← body (3)

where head is a disjunction of regular literals and body is a collection of
regular literals (possibly preceded by not) and set atoms. We say that literal
l belongs to a rule if it is one of the disjuncts in its head or if l or not l is an
element of its body. For instance, literals l1, l2, and l3 belong to rule

l1← l2,count{X : p(X)},not l3

while literals of the form p(t) where t is an arbitrary term do not.240

Both the head and the body can be infinite. As usual, if the head is empty
the rule is referred to as a constraint. If the head is not empty but the body
is we omit← and refer to the rule as a fact. When describing a program in
this paper, we use :- for←.

9

Infinite rules are introduced together with aggregates because they facilitate de-245

scription of the semantics of aggregates defined on infinite sets. Regular and set
atoms are referred to as atoms. An aggregate program is a collection of aggre-
gate rules over some signature Σ. As in the original ASP a rule with variables is
viewed as an abbreviation for the collection of its ground instances. Recall that
in ASP a rule is called ground if it contains no variables and no occurrences of250

symbols for arithmetic functions. (Similarly for terms, atoms, programs, etc.) A
ground rule obtained from an ASP rule r by replacing r’s variables with (properly
typed) ground terms of the language and by evaluating the rule’s arithmetic func-
tions is called a ground instance of r. The same definitions apply to regular rules
of A log. For rules containing set atoms, however, the situation is slightly more255

complex and requires some additional definitions.

Definition 1 (Set Variables and Their Bound Occurrences). Variables from X̄
in a set expression (1) are referred to as set variables. An occurrence of a set
variable in a set expression is called bound. �

For instance, the occurrences of X in {X : p(X ,Y)} are bound while the occurrence260

of Y is not.

Definition 2 (Ground Instances). A rule r is called ground if every occurrence
of a variable in r is bound and r contains no occurrences of symbols for arithmetic
functions. A ground rule obtained from a non-ground rule r by replacing non-
bound (free) occurrences of r’s variables with (properly typed) regular ground265

terms of the language and by evaluating the rule’s arithmetic functions is called a
ground instance of r. �

This definition is illustrated by the following two examples.

Example 4 (Grounding). Consider a program P4 with variables

q(Y) :- card{X:p(X,Y)} = 1, r(Y).270

r(a). r(b). p(a,b).

(Unless otherwise stated we assume that program signature contains no other con-
stants except those appearing in the program.) All occurrences of the set variable
X in P4 are bound; all occurrences of the variable Y are free. The program’s
grounding, ground(P4), is275

q(a) :- card{X:p(X,a)} = 1, r(a).

q(b) :- card{X:p(X,b)} = 1, r(b).

r(a). r(b). p(a,b).

10

�

The next example deal with the case when some occurrences of a set variable in a280

rule are free and some are bound.

Example 5 (Grounding). Consider program P5

r :- card{X:p(X)} >= 2, q(X).

p(a). p(b). q(a).

Here the occurrence of X in p(X) is bound but its occurrence in q(X) is free.285

Hence the ground program ground(P5) is:

r :- card{X:p(X)} >= 2, q(a).

r :- card{X:p(X)} >= 2, q(b).

p(a). p(b). q(a).

�290

Discussion: Note that despite its apparent simplicity the syntax of A log differs
substantially from the syntax of many other logic programming languages allow-
ing aggregates. We illustrate the differences using the language F log [27] which
serves as the basis for the treatment of aggregates in a popular ASP reasoning
system CLINGO [12]. While syntactically programs of A log can also be viewed295

as programs of F log, the opposite is not true. Among other things, F log allows
parameters of aggregates to be substantially more complex than those of A log.
For instance, an expression f{a : p(a,a),b : p(b,a)}= 1, where f is an aggregate,
is an atom of F log but not of A log. This construct, which is different from the
usual set-theoretic notation as used in A log, can not be simply ignored since it300

is important for the F log definition of grounding. For instance, the grounding of
the first rule of P4 from Example 4

q(Y) :- card{X:p(X,Y)} = 1, r(Y)

understood as a program of F log consists of F log rules

q(a) :- card{a:p(a,a),b:p(b,a)} = 1, r(a).305

q(b) :- card{a:p(a,b),b:p(b,b)} = 1, r(b).

which is not even a program of A log. Another important difference between
the grounding methods of these languages can be illustrated by program P5 from
Example 5:

11

r :- card{X:p(X)} >= 2, q(X).310

p(a). p(b). q(a).

The F log grounding of P5, ground f (P5), is:

r :- card{a:p(a)} >= 2, q(a).

r :- card{b:p(b)} >= 2, q(b).

p(a). p(b). q(a).315

Clearly this is substantially different from the A log grounding of P5:

r :- card{X:p(X)} >= 2, q(a).

r :- card{X:p(X)} >= 2, q(b).

p(a). p(b). q(a).

The difference in grounding reflects important semantic differences between320

the two languages. It is easy to see that A log’s answer set of P5 is A1 =
{p(a), p(b),q(a),r} while according to F log the same program has different an-
swer set, A2 = {p(a), p(b),q(a)}. Because of its definition of grounding, F log
does not satisfy the stability principle of language design. One can easily check
that replacement of {X : p(X)} in P5 by an equivalent set expression {Y : p(Y)}325

changes the meaning of P5 with respect to F log’s semantics. The new program
will have the same answer set A1 in both A log and F log. From the semantics
of A log, it will immediately follow that this condition holds for an arbitrary pro-
gram of the language. In other words, A log is stable with respect to renaming
bound variables.330

3.2. Semantics of Aggregates
Since non-ground programs of A log can be viewed as abbreviations for the

collections of their ground instances, it is sufficient to define the semantics for
ground programs. As usual, the semantics is given by a program’s answer sets –
collections of possible beliefs of a rational reasoner associated with the program.335

Let us first notice that the original definition of answer sets from [3] is ap-
plicable to programs with infinite rules. Hence we already have the definition of
answer sets for aggregate programs not containing occurrences of set atoms.

Now let us extend the definition to aggregate programs. First recall that literals
p(t) and ¬p(t) are called contrary and that l̄ denotes the literal contrary to l.340

Definition 3 (Satisfiability of Aggregate Rules). Let A be a set of ground regu-
lar literals.

12

• if l is a regular literal then

– l is true in A if l ∈ A.

– l is false in A if l̄ ∈ A.345

– l is undefined in A if neither l nor l̄ is in A.

– not l is true in A if l 6∈ A. Otherwise, not l is false in A.

– a disjunction of regular literals is true in A if at least one of its members
is true in A.

• If l is of the form f{X̄ : cond}� k then we have two cases:350

– f{t̄ : cond(t̄)⊆ A} is defined and has the value y. Then

∗ if an arithmetic statement y�k is true then f{X̄ : cond}�k is true
in A.
∗ if y� k is false then f{X̄ : cond}� k is false in A.

– f{t̄ : cond(t̄)⊆ A} is undefined. Then f{X̄ : cond}�k is undefined in355

A.

• A rule is satisfied by A if its head is true in A or at least one of a set atoms
or extended literals in its body is false or undefined in A.

In what follows we treat “true in A” and “satisfied by A” as synonyms. �

For instance, atom card{X : p(X)} ≥ 0 is undefined in A if A contains an infinite360

collection of atoms formed by p.

The main technical tool used to define semantics of aggregates is that of ag-
gregate reduct. Unlike other existing ASP reducts which normally remove a pro-
gram’s rule or some extended literal from the rule’s body, the aggregate reduct
may replace a rule by a new one in which an aggregate atom f{X : cond}� k is365

replaced by a possibly infinite collection of regular atoms representing the set de-
noted by {X : cond}. We will call reducts which may add new atoms to the rules
of the program additive. (More information on additive reducts will be given in
section 7.)

Definition 4 (Reduct for Aggregate Programs). Let Π be a ground aggregate370

program. The aggregate reduct of Π with respect to a set of ground regular literals
A is obtained from Π by

13

1. removing rules containing set atoms which are false or undefined in A.
2. replacing every remaining set atom f{X̄ : cond}� k by

∪cond(t̄)⊆Acond(t̄).

�

The first clause of the definition removes rules that are useless because of the truth375

values of their aggregates in A. The next clause reflects the principle of avoiding
vicious circles. Clearly, aggregate reducts do not contain set atoms.

Definition 5 (Answer Sets). A set A of ground regular literals over the signature
of a ground aggregate program Π is an answer set of Π if A is an answer set of the
aggregate reduct of Π with respect to A. �380

We will illustrate this definition by a number of examples.

Example 6 (Example 4 Revisited). Consider the grounding of program P4 from
Example 4

q(a) :- card{X:p(X,a)} = 1, r(a).

q(b) :- card{X:p(X,b)} = 1, r(b).385

r(a). r(b). p(a,b).

It is easy to see that the aggregate reduct of the program with respect to any
set S not containing p(a,b) consists of the program facts, and hence S is not
an answer set of P4. However the program’s aggregate reduct with respect to
A = {q(b),r(a),r(b), p(a,b)} consists of the program’s facts and the rule390

q(b) :- p(a,b),r(b).

A is the answer set of the aggregate reduct, and hence A is an answer set of P4. �

Example 7 (Example 5 Revisited). Consider now the grounding

r :- card{X:p(X)} >= 2, q(a).

r :- card{X:p(X)} >= 2, q(b).395

p(a). p(b). q(a).

of program P5 from Example 5. Any answer set S of this program must contain
its facts. Hence {X : p(X) ∈ S} = {a,b}. S satisfies the body of the first rule
and must also contain r. Indeed, the aggregate reduct of P5 with respect to S =
{p(a), p(b),q(a),r} consists of the facts of P5 and the rules400

14

r :- p(a),p(b),q(a).

r :- p(a),p(b),q(b).

Hence S is the answer set of P5. �

Neither of the two examples above require the application of VCP. The next ex-
ample shows how this principle influences our definition of answer sets and hence405

our reasoning.

Example 8 (Example 2 Revisited). Consider program P0 from Example 2

p(1) :- card{X : p(X)} != 1.

It is grounded. It has two possible answer sets, S1 = { } and S2 = {p(1)}. The
aggregate reduct of the program with respect to S1 is p(1). Hence, S1 is not an410

answer set of P0. The program’s aggregate reduct with respect to S2 is empty. So,
S2 is not an answer set of P0 either. As expected, the program is inconsistent.

Now consider program P1 from Example 2 which is also grounded:

p(1) :- p(0).

p(0) :- p(1).415

p(1) :- card{X: p(X)} != 1.

Since every answer set must satisfy the first two rules of P1, we only have two
possible answer sets, S1 = { } and S2 = {p(0), p(1)}. The aggregate reduct of P1
with respect to S1 is

p(1) :- p(0).420

p(0) :- p(1).

p(1).

Its answer set, {p(0), p(1)}, is different from S1, and hence S1 is not an answer
set of P1. The aggregate reduct of P1 with respect to S2 is

p(1) :- p(0).425

p(0) :- p(1).

p(1) :- p(0),p(1).

Its answer set is empty. So S2 is not an answer set of P1 either. The program is
inconsistent. Similar arguments can show that the remaining programs, P2 and P3,
from Example 2 are also inconsistent. From our standpoint this is not surprising430

since all these programs attempt to define p(1) in terms of the totality of p and
hence violate VCP. �

15

Violation of VCP in a program rule does not necessarily render the program in-
consistent. Instead it can make the rule useless.

Example 9 (VCP and Useless Rules). Consider a program P6435

p(1) :- card{X : p(X)} = 1.

The program is grounded and has two possible answer sets, S1 = { } and S2 =
{p(1)}. The aggregate reduct of P6 with respect to S1 is empty, S1 is the answer
set of the reduct and hence is an answer set of P6. The aggregate reduct of P6 with
respect to S2 consists of a useless rule440

p(1) :- p(1)

and hence S2 is not an answer set of P6. �

All the inconsistent programs in the above examples contained rules with re-
cursion via aggregates. Of course the definition of p(t) in terms of {X : p(X)} can
involve multiple rules.445

Example 10 (Multiple Rules Aggregate Recursion). Consider a program P7

p(1) :- q(1).

q(1) :- card{X : p(X)} != 1.

It has three possible answer sets, S1 = { }, S2 = {p(1)}, and S3 = {q(1), p(1)}.
The aggregate reduct of P7 with respect to S1 is450

p(1) :- q(1).

q(1).

The reduct with respect to S2 is

p(1) :- q(1).

and the reduct with respect to S3 is455

p(1) :- q(1).

q(1) :- q(1),p(1).

None of the possible answer sets is an answer set of P7. The program is inconsis-
tent. �

16

Discussion: As mentioned before, there is a substantial disagreement on the in-460

tended meaning of aggregates in ASP based languages. The difficulty is related to
the meaning of programs which contain recursive definition through aggregates.
To understand the type of disagreements and arguments involved, let us consider
program P2

p(1) :- card{X: p(X)} >= 0465

from Example 2. To the best of our knowledge according to all semantics of
aggregates for programs which allow aggregate recursion except that of A log this
program is consistent and has the answer set {p(1)}. The argument in favor of
this goes somewhat like this: because cardinality of a set is always non-negative,
P2 must be “equivalent” to program470

p(1).

Hence, {p(1)} is an answer set of P2.
We have two objections to this argument. First, it seems to assume the exis-

tence of the set denoted by {X : p(X)}. Otherwise, the body of the rule will be
undefined and the equivalence will fail. But since p(1) is defined in terms of the475

totality of p such assumption is problematic. Of course, if we replace P2 by

p(1) :- card{X: p(X), X != 1} >= 0

which avoids such a definition, the new program will have the answer set {p(1)}
in all the relevant semantics, including that of A log.

Second, and more importantly, our objection is related to the stability principle480

of language design. Assuming the existence of a set denoted by {X : p(X)}, we
should conclude that this set is finite and hence belongs to the domain of function
card. Hence, intuitively, P2 must be equivalent to program P3 consisting of

p(1) :- card{X: p(X)} = Y, Y >= 0.

But since P3 is inconsistent in all the aggregate semantics, such equivalence does485

not hold for a semantics in which P2 is consistent. This cannot happen in A log
because Proposition 6 in Section 6 below guarantees its stability with respect to
this transformation.

Now we give a simple but practical example of a program which allows recur-
sion through aggregates but avoids vicious circles.490

Example 11 (Defining Digital Circuits). Consider part of a logic program for-
malizing propagation of binary signals through simple digital circuits. We assume

17

that the circuit does not have a feedback, i.e., the signal coming out of the gate to
its output wire cannot come back to this gate. The program may contain a simple
rule495

val(W,0) :-

gate(G, and),

output(W, G),

card{W: val(W,0), input(W, G)} > 0

(partially) describing propagation of symbols through an and gate. Here val(W,S)500

holds iff the digital signal on a wire W has value S. Despite its recursive nature
the definition of val avoids vicious circles. To define the signal on an output wire
W of an and gate G one needs to only construct a particular subset of input wires
of G. Since, due to the absence of feedback in our circuit, W can not belong to the
latter set, our definition is reasonable. To illustrate that our semantics produces505

the intended result, let us consider program Circ consisting of the above rule and
a collection of facts:

gate(g, and).

output(w0, g).

input(w1, g).510

input(w2, g).

val(w1,0).

The grounding of Circ, ground(Circ), consists of the above facts and the three
rules of the form

val(w,0) :-515

gate(g, and),

output(w, g),

card{W: val(W,0), input(W, g)} > 0

where w is w0, w1, and w2. Let

S= {gate(g,and),val(w1,0),val(w0,0),out put(w0,g), input(w1,g), input(w2,g)}.

The aggregate reduct of ground(Circ) with respect to S is the collection of facts
and the rules520

val(w,0) :-

gate(g, and),

18

output(w, g),

input(w1, g),

val(w1, 0).525

where w is w0, w1, and w2.
The answer set of the reduct is S and hence S is an answer set of Circ. As expected
it is the only answer set. (Indeed it is easy to see that other possible answer sets
do not satisfy our definition.) �

Our next example deals with the Company Control Problem frequently used530

to illustrate the power of recursive aggregates [32, 29, 33].

Example 12 (Company Control Problem). In [27] the problem is described as
follows: “We are given a set of facts for predicate company(X), denoting the com-
panies involved, and a set of facts for predicate ownsStk(C1,C2,Perc), denoting
the percentage of shares of company C2, which is owned by company C1. Then,535

company C1 controls company C2 if the sum of the shares of C2 owned either
directly by C1 or by companies, which are controlled by C1, is more than 50%.”
This problem has been encoded as the following program Pf

controlsStk(C1,C1,C2,P):- ownsStk (C1,C2,P).

controlsStk(C1,C2,C3,P):- company(C1),540

controls(C1,C2),

ownsStk(C2,C3,P).

controls(C1,C3):- company(C1), company(C3),

#sum{P,C2 : controlsStk(C1,C2,C3,P)} > 50.

Intuitively, controlsStk(C1,C2,C3,P) denotes that company C1 controls P per-545

cent of C3 shares through company C2 (as C1 controls C2, and C2 owns P percent
of C3 shares). Predicate controls(C1,C2) encodes that company C1 controls com-
pany C2.” Under the semantics of F log and other similar languages the program,
used together with the following input:

ownsStk (a,b,51).550

ownsStk(a,c,51).

ownsStk(b,c,21).

ownsStk(c,b,21).

has the answer set containing controls(a,b) and controls(a,c), which should be
the case according to the informal specification. However, if555

19

#sum{P,C2 : controlsStk(C1,C2,C3,P)} > 50

is replaced by seemingly equivalent

#sum{P,C2 : controlsStk(C1,C2,C3,P)}=Y, Y > 50

the program will become inconsistent, exhibiting instability similar to that of pro-
gram P2 from Example 2. From the standpoint of A-log both programs are incon-560

sistent. Indeed, controlsStk(a,b,21,c) is defined in terms of the set “depending”
on the truth of controlsStk(a,c,21,b) and vice versa. This is a clear violation of
VCP. Such a set does not exists.

It is natural to ask if the difficulty is caused by the problem itself or by its
encoding? To (at least partially) answer the question we present another solution565

of Company Control problem which is both, stable and consistent in A log as well
as in F log.

To determine companies controlled by a company A we consider a directed
tree T with the root A and the links corresponding to ownsStk atoms from the pro-
grams “input”. Procedurally, company controlled by A can be found by traversing570

this tree level by level, at each step marking companies which are controlled by
A. To express this idea by a logic program we introduce two relations.

controls(A,C,N) which holds iff C is marked as controlled by A after N levels of
the tree had been examined. Here N ranges from 0 to the number of companies.

may contribute(A,B,C,N) which holds iff B may contribute to marking C as con-575

trolled by A during the Nth step of the propagation.

may_contribute(A,A,C,N) :- N > 0, not controls(A,C,N-1),

ownsStk(A,C,_).

may_contribute(A,B,C,N) :- N > 0, not controls(A,C,N-1),

controls(A,B,N-1),580

ownsStk(B,C,_).

controls(A,C,N) :- N > 0, controls(A,C,N-1).

controls(A,C,N) :-

#sum{S,B : may_contribute(A,B,C,N), ownsStk(B,C,S)} > 50.

controls(A,B) :- controls(A,B,N).585

The program, Pa, is of course, still recursive, but it does not violate VCP. It can
be used with any collection I of atoms formed by ownsStk. Later we will show
that Pa ∪ I is stratified with respect to both, aggregates and default negation and

20

hence has an answer set. (For the definition of these terms and the corresponding
theorem see Section 6.) For the input described above Pf and Pa produce the same590

answer sets. Since our paper is already rather long we decided to leave formal
proof of equivalence of these programs (and possible generalization of this result)
for the future work. However, thanks to Evgenii Balai, we have some experimental
evidence of equivalence. Evgenii wrote a program which automatically generates
an input I and compares answer sets of Pa∪I and Pf ∪I. After running the program595

for several days he was not able to find a discrepancy.
Even though we showed that the Company Control problem can be solved

without violating VCP principle, it is natural to try to compare the respective
solutions. We believe that the latter is clearly preferable from the standpoint of
teaching. The main reason, of course, is the Pf ’s lack of stability. It is difficult to600

explain to a student why his program does not work, while seemingly equivalent
program of his friend does. In addition, the use of parameters N and N − 1 in
Pa reflects the view of recursion as the method of reducing solution of a problem
to solving the same problems for simpler inputs. Among other things, this may
increase our confidence in correctness of our solution. One can, however, feel that605

the first solution is preferable since it is, in a way, closer to the original informal
specification. �

So far, all our examples deal with aggregates defined on finite sets. The next
two examples illustrate our definitions for aggregates whose domains contain in-
finite sets.610

Example 13 (Aggregates on Infinite Sets). Consider a program E1 consisting of
the following rules:

even(0).

even(I+2) :- even(I).

q :- min{X : even(X)} = 0.615

The program has one answer set, SE1 = {q,even(0),even(2), . . .}. Indeed, the
aggregate reduct of E1 with respect to SE1 is the infinite collection of rules

even(0).

even(2) :- even(0).

...620

q :- even(0),even(2),even(4)...

21

The last rule has the infinite body constructed in the last step of definition 4.
Clearly, SE1 is a subset minimal collection of ground literals satisfying the rules
of the reduct (i.e., its answer set). Hence SE1 is an answer set of E1. �

Example 14 (Programs with Undefined Aggregates). Now consider a program625

E2 consisting of the rules:

even(0).

even(I+2) :- even(I).

q :- card{X : even(X)} > 0.

This program has one answer set, SE2 = {even(0),even(2), . . .}. Since the aggre-630

gate card, ranging over natural numbers, is not defined on the set {t : even(t) ∈
SE2}. This means that the body of the last rule is undefined. According to clause
one of definition 4 this rule is removed. The aggregate reduct of E2 with respect
to SE2 is

even(0).635

even(2) :- even(0).

even(4) :- even(2).

......

Hence SE2 is the answer set of E2.6 It is easy to check that, since every set A
satisfying the rules of E2 must contain all even numbers, SE1 is the only answer640

set. �

4. Expanding A log by a Subset Relation

In this section, we give an informal introduction to the full version of A log.
We have already described how A log deals with a number of numerical functions
on sets. Other numerical functions can be easily defined in a similar manner. It645

could also be tempting to introduce a special notation for set-theoretic operations
such as union, intersection, and complement. We, however, currently believe that
this is unnecessary; p = p1∪ p2 can be easily defined by the rules:

6Of course this is true only because of our (somewhat arbitrary) decision to limit aggregates of
A log to those ranging over natural numbers. We could, of course, allow aggregates mapping sets
into ordinals. In this case the body of the last rule of E2 will be defined and the only answer set of
E2 will be SE1 .

22

p(X) :- p1(X)

p(X) :- p2(X)650

and p = p1∩ p2 can be defined by

p(X) :- p1(X), p2(X).

Complement p̄ of p with respect to some sort s is expressed as

p̄(X) :- s(X), not p(X).

There are, however, two important relations which still need to be added to the655

language – subset and equality relations between sets. We would like A log to
be able to naturally express constructs such as “if set A is a subset of B then ...”
and “Let A be an arbitrary subset of B.” Such constructs frequently appear in
the language of mathematics and can also be very useful in other domains. The
following is a simple non-mathematical example of the use of the first construct.660

The discussion below is purely intuitive. Precise syntax and semantics of the
language will be defined in the next section.

Example 15 (Subset Relation in the Rule’s Body). Consider a knowledge base
containing two complete lists of atoms:

taken(mike,cs1). taken(mike,cs2). taken(john,cs2).665

required(cs1). required(cs2).

The first parameter of taken requires the sort “student”. The other parameter
ranges over the sort “classes”. Subset relation allows for a natural definition of
the new relation, ready to graduate(S), which holds if student S has taken all the
required classes from the second list:670

ready to graduate(S) :- {C: required(C)} ⊆ {C: taken(S,C)}.

The intuitive meaning of the rule is reasonably clear and corresponds to the in-
formal specification given above. The universally quantified implication in this
specification is simply replaced by the corresponding subset relation. This avoids
a more complex problem of introducing universal quantifiers and some kind of675

implication in the rules of the language. Let C1 be the program consisting of the
knowledge base and the rule above.

Using our standard understanding of set-theoretic notations and the meaning
of rules it is not difficult to see that the program C2 consisting of C1 and the closed
world assumption:680

23

-ready_to_graduate(S) :- not ready_to_graduate(S)

implies that Mike is ready to graduate while John is not. This, of course, also will
be the conclusion obtained by the formally defined entailment relation.
It is worth noting that, if the list of classes taken by a student is incomplete, the
closed world assumption should be removed, but the first rule still can be useful685

to determine people who are definitely ready to graduate. �

Discussion: Even though this particular story can be represented in ASP with-
out subset relation, such representations are substantially less intuitive and less
elaboration tolerant. Here is a simplified example of alternative representation
suggested to the authors by one of the reviewers of a conference version of the690

paper.

ready to graduate(S) :- not -ready to graduate(S).

-ready to graduate(S) :- required(C), not taken(S,C).

(As before, S ranges over students and C over classes). It is easy to check that, as
expected, the answer set of this new program contains ready to graduate(mike)695

and ¬ready to graduate(john). Even though in this case the answers produced
by this program are also correct, the unprincipled use of default negation leads to
some potential difficulties. Suppose, for instance, that a student may graduate if
given a special permission, and that John succeeds in receiving such a permission
from the university administration. The most natural way to express this informa-700

tion is by rules

ready to graduate(S) :- permitted(S).

permitted(john).

Unfortunately, instead of allowing John to graduate, the program becomes incon-
sistent. This, of course, is unintended and contradicts our intuition. No such705

problem exists if these two rules are added to the original representation.

The semantics of our “ready to graduate” program is fairly non-controversial
since it does not contain recursion through sets and hence does not require the
VCP. The next example explains an intuitive meaning of the program containing
such recursion.710

Example 16 (Set atoms in The Rule Body (Use of VCP)). Consider P8

p(a) :- p ⊆ {X : q(X)}.
q(a).

24

where p⊆ {X : q(X)} stands for {X : p(X)} ⊆ {X : q(X)}.
The definition of p(a) in P8 depends on the existence of the set denoted by {X :715

p(X)}. In accordance with the Vicious Circle Principle, no answer set of this
program can contain p(a). There are only two possible answer sets of P8: S1 =
{q(a)} and S2 = {q(a), p(a)}. S1 is not an answer set since it does not satisfy
the first rule. The second is ruled out by the VCP. As expected, the program is
inconsistent. �720

The next example illustrates a typical use of the construct “let A be a subset of
B”.

Example 17 (Set introduction rule). Consider a simple combinatorial problem
in which there is a set of children and an unlimited supply of several types of
gifts. The task is to provide each child with two gifts of different types. Let us725

encode the problem’s input using relations child and gi f t. A solution, assigning
gifts to children, will be represented by relation assigned(child,gi f t). The A log
solution consists of rules:

assigned ⊆ {C,G : child(C), gift(G)}.
:- card{G : assigned(C,G)} != 2.730

:- assigned(C1,G), assigned(C2,G), C1 != C2.

The first rule is of the form p ⊆ {X̄ : q(X)}. It is read as “let p be an arbitrary
subset of q.” This is an example of a so called set introduction rule. It defines
assigned as an arbitrary set of pairs matching children with gifts. The second rule
is a constraint which guarantees that every child is assigned exactly two different735

gifts. �

Discussion: This type of generate and test programs are very typical for ASP. The
generate part is normally encoded by a disjunction

assigned(C,G) or -assigned(C,G)

or by a choice rule (e.g., in SMODELS [4])740

{assigned(C,G): child(C), gift(G)}.
We believe that although the disjunctive rule is perfectly understandable after
some explanation, it has a disadvantage of not having a clear analogue in mathe-
matics or natural language. Moreover, it requires introduction of ¬assigned(C,G)
which does not seem to be warranted by the problem.745

25

On another hand, the choice rule {p(X̄) : q(X̄)} ← body of [4] implemented in
CLINGO and other similar systems may look very similar to set introduction rule.
The rule is usually understood as a non-deterministic choice which allows the
reasoner to include in an answer set S of the program an arbitrary collection of
atoms of the form p(t) such that q(t) ∈ S. The two constructs, however, have750

different meanings.

Example 18 (Set Introduction versus Choice Rule). Consider, for instance, a
program P10

q1(0). q1(1).

q2(0). q2(2).755

p ⊆ {X: q1(X)}.
p ⊆ {X: q2(X)}.

According to our intuitive reading of the rules, the program defines p as an ar-
bitrary subset of the intersection of q1 and q2. As a result P10 has two answer760

sets: S1 = {q1(0),q1(1),q2(0),q2(2)} and S2 = S1∪{ p(0)}. The corresponding
program of CLINGO

q1(0). q1(1).

q2(0). q2(2).

{p(X): q1(X)}.765

{p(X): q2(X)}.

treats p as an arbitrary subset of the union of q1 and q2 and consequently has other
answer sets including, say, S1∪{p(1)},S1∪{p(1), p(2)}, etc. This may suggest
that program P10 of A log can be modeled in CLINGO by replacing p in the rules
above by p1 and p2 and defining p by the rule p(X) :- p1(X), p2(X). Even770

though the transformation works in this case it is not sound in general. �

The following example shows the difficulty of generalizing this transformation
which is, of course, related to the VCP.

Example 19 (Set Introduction versus Choice Rule (continued)). Consider a
program P11775

q(1).

p ⊆ {X : q(X)}.
q(2) :- p(1).

26

The program defines p in terms of the totality of q which, in turn, is defined in
terms of p. This clearly violates VCP. The second rule is useless and the only780

answer set of the program is {q(1)}. Replacing the set introduction rule of P11 by
the choice rule leads to the CLINGO program

q(1).

{p(X) : q(X)}.
q(2) :- p(1).785

which has three answer sets: S1 = {q(1)}, S2 = {q(1),q(2), p(1)}, and S3 =
{q(1),q(2), p(1), p(2)}.

Even though after the result is obtained this does not look unreasonable, we did
not have sufficiently developed intuition to predict the program’s behavior. �

Overall, we prefer the set introduction rule to both “generating” constructs790

discussed above. We believe that it has more intuitive reading (after all everyone
is familiar with the statement “let p be an arbitrary subset of q”), while explanation
of a choice rule in terms of “generation” has more procedural flavor. Moreover, in
the next section we hope to demonstrate the relative simplicity of the definition of
its formal semantics as compared with that of the choice rule.795

5. Syntax and Semantic of A log

5.1. Syntax
As before, we assume a fixed signature Σ with a finite collection of predi-

cate and function symbols and (possibly infinite) collection of object constants
together with a finite collection A of aggregate names. Terms and literals over800

signature Σ are referred to as regular. To define syntax of the full language, we
first expand the notion of a set atom defined for the aggregate programs in 3.1.

Definition 6 (Set Atoms of A log). Let f be an aggregate name, S, S1, S2 be set
expressions, k be a natural number, � be an arithmetic relation >,≥,<,≤,= or
!=, ⊗ be ⊂,⊆, or = of sets, and p be a predicate symbol.805

A set atom of A log is an expression in one of the following forms

f (S)� k (4)

S1⊗S2 (5)

27

p⊗S (6)

S⊗ p (7)

The atoms of the form (4) will be referred to as aggregate atoms. �810

f1(S1)� f2(S2) may be used as an abbreviation for f1(S1) = Y1, f2(S2) = Y2,Y1�
Y2. Set atoms and regular atoms (literals) over signature Σ are referred to as Σ-
atoms (Σ-literals). Regular and set atoms are referred to as atoms.

Definition 7 (Rules and Programs of A log). A rule of A log is an expression
of the form815

head← body (8)

where head is, a (possibly infinite) disjunction of regular literals, or a set atom of
the form p ⊆ S, S ⊆ p, or p = S, and body is a (possibly infinite) collection of
regular literals (which may be preceded by not) and set atoms. We call head the
head of the rule, and body the body of the rule.

A rule is called a set introduction rule for p if its head is a set atom. It is called820

a constraint if its head is empty. A rule is called a proper disjunctive rule if it is
neither a set introduction rule nor a constraint.

A program of A log is a collection of A log’s rules. �

Finally, let us notice that the definition of bound and free variables and that of
grounding for arbitrary A log programs are the same as for aggregate programs.825

5.2. Semantics
The semantics of a ground program Π of A log will be given in two steps.

First, we define the semantics for programs without set introduction rules. In the
second step set introduction reduct will be used to define the semantics for arbi-
trary programs. Satisfiability of aggregate atoms is given in Definition 3. Satisfia-830

bility of non-aggregate set atoms by a set A of ground regular literals is defined as
expected, e.g., p⊗{X : q(X)} is satisfied by A if {t : p(t) ∈ A}⊗{t : q(t) ∈ A}.
Similarly for the remaining set atoms.

28

5.2.1. Programs without Set Introduction Rules
The definition of an answer set for a ground program Π not containing set835

introduction rules requires a very small change in the definition of an aggregate
reduct from section 3. We just need to add the additional clause explaining the
meaning of occurrences of atoms p⊗S and S⊗ p in the bodies of program rules.
Since the change is small and relations ⊗ can be viewed as aggregates defined on
pairs of sets we will retain the original name of the reduct.840

Definition 8 (Aggregate Reduct for Programs without Set Introduction Rules).
The aggregate reduct of Π with respect to a set A of ground regular literals is
obtained from Π as follows:

1. replace all occurrences of atoms of the form p⊗S and S⊗ p in Π by
{X̄ : p(X̄)}⊗S and S⊗{X̄ : p(X̄)} respectively,845

2. remove rules containing set atoms which are false or undefined in A,
3. for every occurrence of a set expression {X : cond(X)} in a rule add to the

body of the rule all atoms of the form cond(t) such that cond(t) is true in A,
and

4. remove from the rules all their set atoms.850

�

The definition of an answer set of Π remains unchanged.

Let us illustrate the definition by showing that program P8 from Example 16
is indeed inconsistent.

Example 20 (Example 16 Revisited). We repeat P8 here:855

p(a) :- p ⊆ {X : q(X)}.
q(a).

In Example 16, we gave an informal argument showing that the program violates
VCP and is inconsistent. Here is a formal argument establishing its inconsistency.
To shorten the discussion we use the supportedness property of A log proven in860

Section 6. By this property, there are only two possible answer sets of P8: S1 =
{q(a)} and S2 = {q(a), p(a)}. To produce the aggregate reduct of P8 with respect
to S1 we replace the first rule by

p(a) :- {X:p(X)} ⊆ {X : q(X)}.
and replace the set atom by q(a). The aggregate reduct is865

29

p(a) :- q(a). q(a).

The aggregate reduct of P8 with respect to S2 is

p(a) :- p(a),q(a). q(a).

Clearly, S1 does not satisfy the rules of its reduct and hence is not an answer set of
P8; S2 does satisfy the rules of the second reduct but so is its proper subset {q(a)}.870

So, S2 is not an answer set of P8 either. �

It is not difficult to also check that our formal definition justifies informal
arguments from Example 15.

5.2.2. Programs with Set Introduction Rules
A set introduction rule with head p⊆ S (where p is a predicate symbol and S875

is a set expression) defines set p as an arbitrary subset of S; a rule with head p = S
simply gives S a different name; S⊆ p defines p as an arbitrary superset of S.

The formal definition of answer sets of programs with set introduction rules is
given via a notion of set introduction reduct.

Definition 9 (Set Introduction Reduct). The set introduction reduct of a ground880

A log program Π with respect to a set A of ground regular literals is obtained from
Π by

• replacing every set introduction rule of Π whose head is not true in A by

← body.

• replacing every set introduction rule of Π whose head p ⊆ {X̄ : q(X̄)} (or
p = {X̄ : q(X̄)} or {X̄ : q(X̄)} ⊆ p) is true in A by

p(t̄)← body,Aq

where Aq = {q(t̄) : q(t̄) ∈ A} for each p(t̄) ∈ A.

(The definition is similar to that presented in [28] and [34]. The new element is
the formalization of VCP by the introduction of Aq in the second rule).885

Set A is an answer set of Π if it is an answer set of the set introduction reduct
of Π with respect to A. �

Let us illustrate this definition by the following example.

30

Example 21 (Set Introduction Rule). Consider program P12

q(a).890

p ⊆ {X:q(X)}.

Intuitively, the program has answer sets A1 = {q(a)} where the set p is empty and
A2 = {q(a), p(a)} where p = {a}. Formally, the set introduction reduct of P12
with respect to A1 is

q(a)895

and hence A1 is an answer set of P12. The reduct of P12 with respect to A2 is

q(a).

p(a) :- q(a).

and hence A2 is also an answer set of P12. It is easy to check that there are no other
answer sets.900

Next, recall program P10

q1(0). q1(1).

q2(0). q2(2).

p ⊆ {X : q1(X)}.
p ⊆ {X : q2(X)}.905

from Example 18 and let Facts be the set of facts of the program. It is easy to see
that the set introduction reduct of P10 with respect to, say, S2 = Facts∪{p(0)} is

Facts
p(0) :- q1(0), q1(1).

p(0) :- q2(0), q2(2).910

and hence S2 is an answer set of P10. Similarly for S1 = Facts. Consider now
S = Facts∪{p(1)}. The reduct of P10 with respect to S consists of Facts, rule,

p(1) :- q1(0), q1(1).

and constraint

:-915

with the empty head and the empty body. Clearly, it cannot be satisfied, and hence
S is not an answer set of P10.

Finally, recall program P11

31

q(1).

p ⊆ {X : q(X)}.920

q(2) :- p(1).

from Example 19, which contains recursion through aggregates. The reduct of the
program with respect to S1 = {q(1)} is

q(1).

q(2) :- p(1).925

and hence S1 is an answer set of P11. The reduct of P11 with respect to S2 =
{q(1),q(2), p(1), p(2)} is

q(1).

p(1) :- q(1), q(2).

p(2) :- q(1), q(2).930

q(2) :- p(1).

The set introduction rule of P11 is useless and S2 is not an answer set of P11. The
example formally shows that transformation from A log to CLINGO described in
Example 19 is not sound. �

We conclude the section with an additional example of the use of subset in-935

troduction rule for knowledge representation. This time the rule will be used to
define synonyms.

Example 22 (Synonyms). Suppose we have a set of cars identified (for simplic-
ity) by their owners. The set can be represented by the program D1 consisting of
atoms, say,940

car(bob).

car(mary).

To check if his car is in the list, an English speaking user Bob will simply pose
a query ?car(bob). Suppose now we would like to make the database available
to Spanish speaking people by allowing them to ask a query ?carro(name). One945

natural way to allow this would be to consider program D2 obtained by expanding
D1 by a rule:

carro(X) :- car(X).

This is a reasonable solution but it does not protect us from difficulties related to
accidental addition of, say, carro(jose) to D1. Our intent was to define carro as a950

32

synonym for car, so that English and Spanish speaking people will be guaranteed
to get the same answers. Hence, such an accidental addition shall not be allowed.
Our solution does not guarantee this. If, however, we add another constraint

:- carro(X), not car(X)

the program with carro(jose) will, as expected, become inconsistent.955

Here is an alternative solution which uses subset introduction rule with equal-
ity: let D3 be obtained from D1 by adding to it rule

carro = {X:car(X)}.

Clearly, car and carro are synonyms. It is easy to check that D3 has one
answer set, {car(bob),car(mary),carro(bob),carro(mary)} and hence queries960

carro(bob), car(bob), etc., will be answered correctly. However, the expansion
of D3 by carro(jose) will cause inconsistency. �

6. Properties of A log Programs

In our principles of language design we suggested that a new language should
come with mathematical theory facilitating its use for knowledge representation965

and programming. In this section we give some important properties of A log
programs, contributing to the development of such theory. Propositions 1 and 2
ensure that, as in regular ASP, answer sets of A log programs are formed using the
program rules together with the rationality principle. Proposition 3 is the A log
version of the Splitting Set Theorem – basic technical tool used for computing970

answer sets and for theoretical investigations of ASP and its extensions [35, 36,
37]. Proposition 4 states that the stratified programs are consistent. Proposition
6 shows an example of the stability of A log under some equivalent arithmetic
transformation, and Proposition 7 and 8 give results on the complexity of A log
programs.975

6.1. Basic Properties
Proposition 1 (Rule Satisfaction and Supportedness). Let A be an answer set
of a ground program Π of A log. Then

• A satisfies every rule r of Π.

• If p(t̄) ∈ A then there is a rule r from Π such that the body of r is satisfied980

by A and

33

– r is a proper disjunctive rule and p(t̄) is the only atom in the head of r
which is true in A or

– r is a set introduction rule defining p.

(In both cases it is often said that r supports p(t̄)).985

Proposition 1 extends similar result for disjunctive logic programs from [38].

By the intuitive and formal meaning of set introduction rules, the anti-chain
property no longer holds for arbitrary programs of A log. But it remains to be true
for programs without set introduction rules.

Proposition 2 (Anti-chain Property). If Π is a program without set introduction990

rules then there are no A log answer sets A1, A2 of Π such that A1 ⊂ A2.

6.2. Splitting an A log Program
In this section we present an A log analogue of splitting set theorem [39, 36,

37]. Since ground A log program contains variables, the definition of splitting set
is slightly more involved than usual. We will need auxiliary notions of “potential995

support” and “set expression determined by a signature.”

Definition 10 (Potential Support). A rule r of a ground program Π is a potential
support for a regular literal l if the head of r is a disjunction containing l or r is a
set introduction rule defining p and l = p(t̄). �

For example, in a program1000

q(0) :- not s(0).

p ⊆ {X : q(X)}.
the first and second rules are potential supports for q(0) and p(0) respectively;
s(0) has no potential support in the program.

Definition 11 (Set Expressions Determined by Sets of Literals). Let Π be a1005

ground program with signature Σ. We say that the value of a set expression
{X̄ : cond} of Σ is determined by a set S of user-defined literals if for any consis-
tent7 ground instance cond(t̄) in Σ, either some user-defined literal in cond(t̄) has
no potential support in Π or every user-defined literal of cond(t̄) is in S. �

7Recall that a collection of ground literals is consistent if it has a model.

34

Let Π be a program with signature Σ consisting of predicate symbols p and q,1010

object constants 0, 1, 2 and rules

q(0) :- card{X : p(X), X 6= 1} > 0.

p(0).

It is easy to check that the value of {X : p(X),X 6= 1} is determined by the set of
literals S = {p(0)}. Indeed, there are two consistent ground instances of the set1015

condition: {p(0),0 6= 1} and {p(2),2 6= 1}. The only user-defined literal in the
first condition is from S; although p(2) in the second condition is not from S, it
has no potential support in the program.

Now we are ready for the main definition.

Definition 12 (Splitting Set). Let Π be a ground A log program with signature1020

Σ.

A set S of ground user-defined literals is called a splitting set of Π if

• If r is a potential support of l ∈ S then every user-defined literal belonging
to r is in S and the value of every set expression occurring in r is determined
by S.1025

• If r is a set introduction rule for p and p(t̄0) ∈ S for some t̄0 then p(t̄) ∈ S
for every (properly typed) t̄ of Σ.

A splitting set S of Π splits the program into two parts: the bottom of Π relative
to S consisting of all potential supports of literals from S, and the remaining part
of Π called the top of Π relative to S. �1030

Example 23 (Splitting Set).
(a) The Circuit: Consider a sorted signature Σ with object constants
w0,w1,w2,w3 for wires, g1 and g2 for gates and 0 and 1 for signals, and predi-
cates val(wire,signal) and input(wire,gate). Let program E1 consist of rules:

val(w0,0) :- card{W: val(W,0), input(W, g1)} > 0.1035

val(w3,0) :- card{W: val(W,0), input(W, g2)} > 0.

and Σ0 be a signature obtained from Σ by dropping constants w3 and g2. Let us
check that the set S of all atoms of Σ0 is a splitting set of E1. To do that it is
sufficient to check that value of {W : val(W,0), input(W,g1)} is determined by S.
This is true, since the only ground instance of the corresponding condition which1040

35

is not formed by atoms of S is {val(w3,0), input(w3,g1)} and input(w3,g1) has
no potential support in E1. The set splits the program into the bottom consisting
of the first rule, and the top consisting of the second one.

(b) Role of Consistency Condition: The next program E2, consisting of rules:

p(a) :- q(b).1045

q(b) :- card{X: p(X),X != a} = 0.

illustrates the use of consistency condition in Definition 11. Let us show that
S = {q(b), p(b)} is a splitting set of E2. To do that we need to show that the value
of expression {X : p(X),X 6= a} is determined by S. The only consistent ground
instance of condition {p(X),X 6= a} is {p(b),b 6= a} and its only user-defined1050

literal p(b) is in S. Hence, Definition 11 is satisfied. Note, that if we were to
remove consistency condition from Definition 11 S would not be a splitting set of
E2.

(c) Program with Set Introduction Rule: Consider a program E3 with rules:

s :- not p(1).1055

p ⊆ {X: q(X)}.
q(1). q(2).

and signature Σ implicitly defined by these rules. Let Σ0 be obtained from Σ by
dropping s and show that S consisting of atoms of Σ0 is a splitting set of E3. This
is the case, since both ground instances of p are in S and both ground instances of1060

q are in S. Note that S1 = S \ {p(1)} is not a splitting set of E3, since it violates
the second condition of Definition 12. �

Now we are ready to formulate Splitting Set Theorem for A log.

Proposition 3 (Splitting Set Theorem). Let Π be a ground A log program, S be
a splitting set of Π, and Π1 and Π2 be the bottom and the top of Π relative to S1065

respectively. Then a set A is an answer set of Π iff A∩ S is an answer set of Π1
and A is an answer set of (A∩S)∪Π2.

Instead of the formulation of Splitting Set Theorem given above it is some-
times convenient to use the following Corollary. First, some definitions.

Let Π, S, Π1 and Π2 be as in the theorem above, and let B be an answer set of1070

Π1. By Red(Π2,B) we denote the program obtained from Π2 by

36

• removing from Π2 every rule whose body contains l ∈ S such that l 6∈ B or
contains not l such that l ∈ B, and

• removing all remaining extended literals formed from elements of S from
the rules of Π2.1075

Corollary 1. A is an answer set of Π iff A∩S is an answer set of Π1 and A is an
answer set of (A∩S)∪Red(Π2,A∩S).

The Corollary follows immediately from the Splitting Set Theorem and the defi-
nition of answer sets.

6.3. Stratification of A -log Programs1080

In this section, we define a notion of stratified A log program and show that
every such program is consistent, i.e., has an answer set. To achieve consistency
we prohibit programs with classical negation and constraints, require a program to
be stratified with respect to default negation (see [40]), and impose an additional
condition of stratification with respect to sets. The latter divides the program into1085

levels and ensures that a set p or its instance can be defined in terms of a set q only
if the membership in q has already been fully determined on the previous levels.
Similar idea in the context of F log was suggested in [27], but there authors were
mainly interested in complexity of stratified programs and not in their consistency.
There are substantial technical differences between the two approaches which will1090

be discussed at the end of the section.

6.3.1. Definition of Stratification and a Consistency Result
By leveling ‖ ‖λ for Π we mean a mapping from ground regular literals of Π

onto the collection of ordinals from 0 to some (recursive) ordinal λ .

Definition 13 (Stratification of A log Programs).1095

Let Π be a ground program of A log.

1. A leveling ‖ ‖ stratifies Π with respect to sets if for every rule r of Π and
every regular literal l potentially supported by r:

(a) for every li potentially supported by r, ‖ l ‖=‖ li ‖, and
(b) every set expression occurring in r is determined by set1100

Sl = {li : ‖ l ‖>‖ li ‖}.
2. ‖ ‖ stratifies Π with respect to default negation if for every rule r of Π and

every regular literal l potentially supported by r,

37

(a) ‖ l ‖>‖ lk ‖ if not lk is an element of the body of r,
(b) ‖ l ‖≥‖ lk ‖ if lk is an element of the body of r.1105

An A log program Π is called stratified if

1. All rules of Π are finite.
2. Π contains no constraints and no classical negation ¬.
3. Π has at most one set introduction rule for every p.
4. If Π contains a set introduction rule for p then no atom of the form p(t̄)1110

occurs in the heads of proper disjunctive rules of Π.
5. Some leveling ‖ ‖ stratifies Π with respect to both, sets and default negation.

Proposition 4 (Consistency of Stratified Programs). A stratified program Π of
A log is consistent.

For example, it is easy to check that the program1115

p(0) :- card{X : q(X)} ≥ 0

and the program

p ⊆ {X : q(X)}

are stratified by a leveling ‖ q(0) ‖= 0 and ‖ p(0) ‖= 1.

The program C1 from Example 15 is stratified by the leveling assigning 0 to atoms1120

formed by taken and required and 1 to those formed by ready to graduate.

In all these cases this could have been proven by using a weaker form of condition
1b of the definition of stratification. We could simply require the set expressions
occurring in rules of level α have predicate symbols fully defined on the previous
levels. This is not the case in the following example.1125

Figure 1: A circuit

Example 24 (Stratification). Consider an electrical circuit from Fig 1 and a pro-
gram E4 consisting of the circuit’s description

38

input(w1, g1). input(w2, g1). input(w0, g2).

output(w0, g1). output(w3, g2).

gate(g1, and). gate(g2, and).

input signals

val(w1,0). val(w2,1).1130

and rules

val(w0,0) :- card{W: val(W,0), input(W, g1)} > 0.

val(w3,0) :- card{W: val(W,0), input(W, g2)} > 0.

It is not difficult to check that the program is stratified by a leveling ‖ ‖ such that
for every signal s, wire w and gate g:1135

‖ gate(g,and) ‖ = 0
‖ input(w,g) ‖ = ‖ out put(w,g) ‖ = 0
‖ val(w,s) ‖ = 0 if w is w1 or w2.
‖ val(w0,s) ‖ = 1
‖ val(w3,s) ‖ = 21140

For that, it is sufficient to check that ‖ ‖ stratifies E4 with respect to sets, i.e., the
two rules of E4 satisfy condition (1b) from the definition of stratification. To show
this for the first rule let l = val(w0,0) and A = {W : val(W,0), input(W,g1)}.
Then Sl consists of all atoms of level 0. Let I = {val(w,0), input(w,g1)} be an
instance of A. If w is different from w1 and from w2 then input(w,g1) has no1145

potential support in E4. Otherwise, I ⊂ Sl . Thus A is determined by Sl . Similarly,
for the second rule, and therefore E4 is stratified.

One can also easily establish that programs E2 and E3 from Example 23 are strat-
ified, while programs which violate the VCP, such as P0–P3 from Example 2, are
not. It is also not difficult to show that program Pa∪ I from the company control1150

Example 12 is stratified by the leveling:
‖ ownsStk(, ,) ‖= 0.
‖ controls(, ,0) ‖= 0.
‖ may contribute(, , ,0) ‖= 0.
For every 0 < k ≤ n, where n is the number of companies,1155

‖ may contribute(, , ,k) ‖= 2k, and
‖ controls(,, k) ‖= 2k+1.
Finally, ‖ controls(,) ‖ = ‖ controls(, ,n) ‖ .
and is therefore consistent by Proposition 4.

�1160

39

Next we give an example of a useful non-stratified program and show how the
Splitting Set Theorem can be used to reduce it to an equivalent stratified one.

Example 25 (Full Digital Circuits). Let E5 be a program consisting of the facts
from E4 (describing the circuit in Fig 1) and a rule:

val(W,0) :-1165

output(W,G),

gate(G,and),

card{W: val(W,0), input(W, G)} > 0.

Let us show that E5 is not stratified.
Suppose there is a leveling ‖ ‖ which stratifies E5 with respect to sets. Consider1170

three cases:

(1) ‖ val(w1,0) ‖ = ‖ val(w2,0) ‖.
Notice that the grounding of E5, ground(E5), contains rules

(a) val(w1,0) :-

output(w1,g1),1175

gate(g1,and),

card{W: val(W,0), input(W, g1)} > 0.

(b) val(w2,0) :-

output(w2,g1),

gate(g1,and),1180

card{W: val(W,0), input(W, g1)} > 0.

Atom val(w1,0) is potentially supported by rule (a), and hence, by the definition
of stratification, the value of set A = {W : val(W,0), input(W,g1)} occurring in
the rule should be determined by Sval(w1,0) consisting of atoms with levels lower
than that of val(w1,0). Let {val(w2,0), input(w2,g1)} be an instance of A. By1185

(1), val(w2,0) 6∈ Sval(w1,0), but it is potentially supported by rule (b). Hence, A is
not determined by Sval(w1,0), and (1) is impossible. Suppose

(2) ‖ val(w1,0) ‖ > ‖ val(w2,0) ‖.
But this is impossible too since val(w2,0) is potentially supported by rule (b) but
the set expression occurring in the rule is not determined by Sval(w2,0) which does1190

not contain val(w1,0).

A symmetry between rules (a) and (b) imply impossibility of

40

(3) ‖ val(w1,0) ‖ < ‖ val(w2,0) ‖.
Hence, E5 is not stratified.

Even though we can not prove consistency of E5 directly by Proposition 4, this1195

can be easily done by combining this proposition with the splitting set theorem.
This will allow us to eliminate rules (a) and (b), which contain unsupported

atoms out put(w1,g1) and out put(w2,g1) from the program. To do that first notice
that the set S of ground atoms formed by input, out put and gate is a splitting set
of ground(E5). Let B be the bottom of the program and T be its top. By definition,1200

Red(T,B) removes from T (a) all the rules containing atoms from S which are not
in B and (b) all remaining occurrences of atoms from S. It is not difficult to see
that B∪Red(T,B) is exactly the program E4 from the previous example, where it
was shown to be stratified and thus consistent. Hence, by Corollary 1, so is E5.

This method of using the splitting set theorem to remove useless atoms and rules1205

which prevent a program from being stratified provide a powerful tool for proving
consistency of A log programs. �

6.3.2. Discussion of the Definition of Stratification
While some restrictions in Definition 13 are inherited from the notion of strat-

ified programs of Answer Set Prolog, others are pertinent to the new features of1210

A log. In what follows we briefly explain these restrictions.

1. Prohibition of infinite rules. The following example shows that if infinite
rules are allowed even a positive disjunctive program8 may not have an answer
set. Since stratification is a consistency condition, the prohibition is justified.

Example 26. Let p be a predicate defined on the set of natural numbers and let Π1215

consist of rules:

p(0) or p(1) or p(2)

p(1) or p(2) or p(3)

p(2) or p(3) or p(4)

. . .1220

Let us show that the program has no answer set. Suppose A is an answer set of Π.
Since A must satisfy all the rules of Π it cannot be empty. Hence, there is k such
that p(k) ∈ A. Note, that by construction, rule k+1 of Π is of the form

8Recall that a program is called positive if for every rule of this program, its head is a non-
empty disjunction of regular atoms and its body is a collection of regular atoms.

41

p(k+1) or p(k+2)

Since this rule is also satisfied by A there must be m > k such that p(m) ∈ A.1225

This means that A \ {p(k)} also satisfies the rules of Π which contradicts our
assumption. Hence, Π is inconsistent. �

2. Restrictions on the set introduction rules. The next example shows that
simply removing these restrictions leads to inconsistency.

Example 27. Consider program Π11230

q2(1).

p ⊆ {X:q1(X)}
{X:q2(X)} ⊆ p

According to the second rule p must be empty, but, by the first and third rules it
must contain 1, i.e., Π1 is inconsistent.1235

Similarly, Π2:

p ⊆ {X:q(X)}
p(1). �

It is worth noticing that the prohibition of multiple set introduction rules for the
same set p is not as severe as it may seem at the first glance. In many cases1240

such multiple rules can be replaced by a single one. For instance, a program
Π3 containing set introduction rules defining p in terms of {X : q1(X)} and {X :
q2(X)} can be replaced by the program Π4 obtained from Π3 by removing all
such rules and adding rules

q(X) :- q1(X), q2(X).1245

p ⊆ {X:q(X)}.

where q is a new predicate symbol. Similarly, if p were defined as a superset of
both, {X : q1(X)} and {X : q2(X)} the corresponding set introduction rules could
have been replaced by

q(X) :- q1(X).1250

q(X) :- q2(X).

{X:q(X)} ⊆ p.

So the restriction on the number of set introduction rules can be relaxed but, for
simplicity, we will not do it here.

42

6.3.3. Stratifications in A log and F log – a Comparison1255

To the best of our knowledge, the notion of stratification for programs with
aggregates was first introduced in [27] for programs of F log in the context of
studying complexity of logic programs. Comparison between the two definitions
is not entirely trivial since syntactically the programs of F log are not necessarily
programs of A log. However, for an aggregate program Π without infinite rules,1260

this is not the case. Syntactically, Π can be viewed as a program of A log as
well as F log. Let us denote Π under A log semantics by ΠA and under F log
semantics by ΠF . This takes care of the syntactic difficulty. Since the notion of
stratification introduced in our paper is different from that in [27], we separate
between them by using terms A-stratification and F-stratification. Let us briefly1265

describe the relationship between these two notions.

By examining the definitions of A-stratification and F-stratification it is easy to
check that

(a) If ΠF is F-stratified then ΠA is A-stratified.

(b) The opposite is not true. For instance program E4 in Example 24 is A-stratified1270

but not F-stratified.

It is known that every A log answer set of ΠA is also an F log answer set of ΠF

and that, in general, the opposite is not true [41, 42]. However, it is not difficult
to prove that for a broad class of programs ΠA and ΠF have the same answer sets.
To make it precise, we need the following definition.1275

Definition 14 (Compatible Programs). A ground aggregate program Π is called
A F -compatible if it contains no infinite rules. �

Proposition 5 (A log vs F log Semantics under F-stratification). If an A F -
compatible program Π is F-stratified, then A is an A log answer set of Π iff it is
an F log answer set of Π.1280

The proof of a variant of this proposition, together with additional results, was
first introduced in [43]).

There are other questions about stratification left unanswered in this paper, but
they will be a subject of further investigation.

43

6.4. Stability Condition1285

The next theorem shows that the stability condition discussed earlier with re-
spect to program P2 in section 3.2 holds for an arbitrary A log program. (Recall
that it is not the case for other semantics of recursive aggregates).

Proposition 6 (Stability of Arithmetics). Let f be an aggregate name, S a set
expression, y an integer and � an arithmetic relation.For any program P1, the
program P2 obtained from P1 by replacing a rule

head← body, f (S)� y

by
head← body, f (S) = Z,Z� y.

is strongly equivalent to P1.

Two programs Π1 and Π2 are strongly equivalent if for any program Π, Π1 ∪Π1290

and Π2∪Π have the same answer sets [44].

6.5. Complexity
A comprehensive analysis of the complexity of aggregate programs, i.e., programs
of A log without non-aggregate set atoms, is given in [45]. Here we examine if
the addition of non-aggregate set atoms will increase the complexity. Given the1295

inherent complexity caused by disjunctions, we will consider full A log programs
and programs without disjunctions. In both cases, the addition of non-aggregate
set atoms does not increase the complexity of the program.

Proposition 7 (Complexity of A log Programs). The problem of checking if a
ground atom a belongs to all answer sets of an A log program is ΠP

2 complete.1300

Proposition 8 (Complexity of A log Programs without Disjunctions). The
problem of checking if a ground atom a belongs to all answer sets of an A log
program without disjunctions is coNP complete.

We only consider the cautious reasoning here. Similar techniques combined
with the results from [45] can probably be used to prove complexity results for1305

consistency checking, but we do not do it in this paper.

44

7. An Application of Additive Reduct

The previous sections are devoted to the main subject of this paper – the design
and investigation of A log. Here we concentrate on one particular step in this de-
velopment – the introduction of additive reducts. We believe that such a diversion1310

is justified since additive reducts find use beyond the definition of semantics of
A log and thus may deserve a special attention. This section contains an example
of one such use. We introduce additive reducts, similar to one of A log, to

• Give a new definition of another important extension of ASP by aggregates
called S log [26].91315

• Give an S log like semantics to an extension of the original S log by allow-
ing disjunctions in the heads of rules and non-aggregate set atoms in their
bodies.

We note that [46] extends S log to non-disjunctive logic programs with ab-
stract constraint atoms which generalize aggregate atoms [47, 48]. The work in1320

[46] is later extended for disjunctive programs in [49]. An alternative definition
of semantics for disjunctive programs was mentioned in [50].10

The additive reduct based definition for the core S log is comparatively sim-
ple and makes the essential idea underlying S log stand out. It also allows natural
extension of the semantics of more general languages. Further investigation is1325

needed to see the relation of our work here and that in [49, 50]. It is straightfor-
ward to extend our definition of semantics for core S log to that for disjunctive
programs with constraint atoms. We conjecture that the extension coincides with
the semantics in [49, 50].

7.1. Syntax and Semantic of S log1330

Syntactically, a core S log program can be viewed as an A log program with-
out disjunctions, classical negations, rules with infinite head or body, partial ag-
gregates and subset relations.

9For simplicity, we focus on the core part of S log syntax, i.e., the S log without multisets. The
whole language can also be covered but since we are not yet sure about importance of including
multisets in the language we do not consider them in this paper.

10This definition is also reduct based, but it reduces a constraint atom to another constraint atom.
Instead, we reduce a constraint atom to regular atoms and thus can “reuse” the definition of ASP
with regular atoms.

45

We next review the notions in S log semantics. Consider a set S of ground regular
atoms and an aggregate atom agg. By a ground aggregate atom, we mean an1335

aggregate atom containing no free occurrences of any variables. A ground atom
occurs in agg if it is the instance of some regular atom occurring in agg. Base(agg)
denotes the set of the ground atoms occurring in agg. We define ta(agg,S) = {l :
l ∈ S, l occurs in agg}, i.e., S∩Base(agg), and f a(agg,S) = Base(agg)\S.

An aggregate solution of a ground aggregate atom agg is a pair 〈S1,S2〉 of disjoint1340

subsets of Base(agg) such that for every set S of regular ground atoms, if S1 ⊆ S
and S∩S2 = {} then S |= agg (i.e., agg is true in S).

Given a core S log program P and a set S of ground regular atoms, the S log
reduct of P with respect to S, denoted by SP, is defined as

SP = { head(r)← pos(r),aggs(r) : r ∈ ground(P), S∩{l : not l ∈ neg(r)}=
{}}.

1345

where head(r) is the head of rule r, pos(r) the set of regular atoms in the body of r
that are not preceded by not or inside an aggregate atom, aggs(r) the set of aggre-
gate atoms in the body of r, and neg(r) = {not l : not l occurs in the body of r}.

The conditional satisfaction of an atom a with respect to two sets, I and S, of
regular atoms, denoted by (I,S) |= a, is defined as1350

1. If a is a regular atom, (I,S) |= a if I |= a, and
2. If a is an aggregate atom, (I,S) |= a if 〈I ∩ S∩Base(a),Base(a) \ S〉 is an

aggregate solution of a.

Given a set A of ground atoms (regular or aggregate), (I,S) |= A denotes that for
every atom a ∈ A, (I,S) |= a.1355

Given a core S log program P and a set S of ground regular atoms, for any collec-
tion I of ground regular atoms of P, the consequence operator on P and S, denoted
by KP

S , is defined as KP
S (I) = {head(r) : r ∈ SP and (I,S) |= body(r)}.

A set S of ground regular atoms is an S log answer set of a core S log program
P if S = l f p(KP

S).1360

7.2. Additive Reduct Based Definition of Core S log and Its Extension
To illustrate the idea behind the new additive reduct, we consider program P2

in Example 2

p(1) :- card{X: p(X)} >= 0.

and a set S = {p(1)}.1365

46

To adopt the notion of A log reduct to S log we do the following. Instead of
replacing card{X : p(X)} >= 0, which is true in S, by {p(1)}, as in A log, we
replace this aggregate atom by its “minimal guarantee support” – a subset M of
S, which “guarantees” that the set atom is true in any possible expansion of M
with atoms of S. In our case, {} is such a minimal guarantee support of card{X :1370

p(X)}>= 0. As a result, the new reduct is

p(1).

Clearly, S is its answer set and thus is an S log answer set of P2.

The concept of minimal guarantee support is defined as follows.

Definition 15 (Minimal Guarantee Support). Let S be a set of ground regular1375

atoms of Π, and agg be an aggregate atom. M is a minimal guarantee support for
agg in S if

• M ⊆ S,

• every S1, such that M ⊆ S1 ⊆ S, satisfies agg, and

• no M1, such that M1 ⊂M, satisfies the first two conditions. �1380

Now we introduce the reduct based on minimal guarantee support, called S-reduct.

Definition 16 (S-reduct, S-answer Sets). An S-reduct of an aggregate program
Π with respect to a set A of ground regular literals is obtained from Π by

1. removing rules containing set atoms which are false or undefined in A, and1385

2. replacing every remaining set atom C in the body of the rule by a minimal
guarantee support for C in A.

A is an S-answer set of Π if A is an answer set of an S-reduct of Π with respect to
A. �

Example 28. Consider now a program P131390

p(1).

p(3) :- card{X : p(X)} >= 2.

p(2) :- card{X : p(X)} >= 2.

It has two possible answer sets: A1 = {p(1)} and A2 = {p(1), p(2), p(3)}. In
A1, no set atoms occurring in the program are true, and thus, the S-reduct of the1395

47

program with respect to A1 is p(1). Consequently, A1 is an S-answer set of P13.
In A2, there are three minimal guarantee supports for the set atom occurring in
P13: M1 = {p(1), p(2)}, M2 = {p(1), p(3)}, and M3 = {p(2), p(3)}. Hence, the
program has nine S-reducts of P13 with respect to A2. Each reduct is of the form

p(1). p(3) :- Mi . p(2) :- M j .1400

where i, j ∈ 1..3. Clearly, the last two rules are useless and hence A2 is not an
answer set of this reduct. Consequently A2 is not an S-answer set of P13. �

The following result shows the equivalence between the S-answer sets and S log
semantics on core S log programs.

Proposition 9. Let Π be a core S log program. A set is an S log answer set of1405

Π iff it is an S-answer set of Π.

The reduct based approach to defining S log like semantics seems to be simple:
the S-reduct and S-answer set definitions are very close to the classical definitions
of reducts and answer sets, and the essential idea underlying S log is captured by
the intuitive and simple concept of minimal guaranteed support.1410

The extension of the core S log semantics to programs with disjunction does not
require any changes in the definitions above. However, it is not immediately clear
to us how the original definitions of S log semantics can be extended in a straight-
forward manner to cover disjunction. To extend the semantics to programs with
other set atoms in the bodies we only need to replace the aggregate atom in the1415

definition of minimal guaranteed support by arbitrary set atom.

It is worth to note that our main purpose of this section is to demonstrate the capac-
ity of our new reduct technique in defining other semantics. As for the semantics
of programs with set atoms, we prefer A log one.

8. Related Work1420

There are multiple approaches to introducing aggregates in logic programming
languages under the answer sets semantics [28, 4, 48, 51, 27, 52, 53, 54, 25, 55, 34,
26, 56, 57, 49, 58, 50, 59, 60, 61]. Two of these semantics [54, 27], which agree
for programs without negated aggregates [62], are implemented in popular ASP
solvers [12] and [9]. In [61], it was shown that both semantics were equivalent1425

for a large class of programs which includes non-recursive aggregates, even for

48

programs with negative aggregates. To ensure compatibility of various solvers the
ASP-Core document [63], produced in 2012 – 2015 by the ASP Standardization
Working Group and intended as a specification for the behavior of answer set
programming systems, only allows non-recursive use of aggregates.1430

All these important works helped to discover subtle and fundamental difficul-
ties related to the notion of aggregates and, of course, had an important impact
on the design of our language. In addition, our paper was significantly influenced
by the original work by Poincaré, Russell, Feferman [64], and others on VCP in
set theory. Substantial role was also played by the principles of language design1435

advocated by Dijkstra, Hoare, Wirth, McCarthy and others (see for instance, [65]).

Switching from the standard ASP rules to infinitary ones was adopted from
[66], where the authors explained the semantics of some constructs of Gringo
(the input language of many ASP systems including CLINGO [67]) in terms of
infinitary formulas of Truszczynski [68].1440

The crucial notion of aggregate reduct of A log was influenced by the first additive
reduct introduced for defining the semantics of Epistemic Specification in [69].

Since the first introduction of the original A log in [30],11 there has been a
substantive amount of work investigating the language. We briefly describe some
of this work.1445

In [45, 70], the authors study the complexity of both coherence testing and cau-
tious reasoning in original A log. They also propose methods to compile such
programs into F log programs and develop a prototype implementation of the
original A log based on their compilation methods. [41] helps us to realize the
close relationship between A log and S log and argumentation theory [71] which1450

provides us with additional knowledge about aggregate programs. Together with
completion of a logic program, loop formulas for the program provide not only an
alternative characterization of the answer sets of the program but also an approach
of computing answer sets using efficient satisfiability solvers. Loop formulas are
defined for A log programs in [72]. A characterization of various answer set based1455

semantics for logic programs with aggregates is proposed in [73]. Under this char-
acterization, the connection among A log, F log and S log becomes straightfor-
ward. Answer set semantics has been extended to programs with syntax similar
to propositional formulas [74]. In [54], propositional formulas are extended with
aggregates and its answer set based semantics is connected to the logic of here-1460

11Recall that this paper contained no set constructs except that of aggregates.

49

and-there, which facilitates the study of properties of logic programs. [42] ex-
pands our treatment of aggregates to propositional formulas with aggregates and
compares the resulting semantics with existing work [54]. A new extension of
functional ASP is proposed to allow evaluable functions, arbitrary formulas, and
the use of set expressions as arguments for any predicate or function [75]. It shows1465

that when restricted to A log syntax, its semantics coincides with A log.

9. Conclusion

In this paper we

1. Describe an extension A log of the original Answer Set Prolog [3] by:

• Means of forming (possibly infinite) sets based on a particularly sim-1470

ple and restrictive formalization of the Vicious Circle Principle.

• Aggregates, understood as functions on sets.

• Subset relation which, when used in the bodies of rules, concisely
express a specific form of universal quantification. When used in
the heads the construct formalizes standard mathematical expressions1475

such as “let p be an arbitrary subset of set q”.

• Rules with infinite heads and bodies.

2. Give examples of the use of A log for knowledge representation and prove
a number of important properties of its programs.

3. List some general principles of language design and illustrate the important1480

roles these principles played in the design of A log.
4. Introduce a notion of additive reduct (which generalizes the A log reduct

– the main technical tool used to define the semantics of A log) and show
how an additive reduct can be used to define other semantics for aggregates
such as S log in an intuitive, simple and elegant manner.1485

Even though we want A log to be a language suitable for serious applications,
our main emphasis is on theoretical investigation of use and formation of sets
in logic programing, on the principles of language design and their applications,
and on the creation of a good language for teaching declarative programming and
relevant aspects of knowledge representation. This puts substantial premium on1490

clarity and simplicity of the language constructs. Consequently, we attempt to
explain why existing extensions of ASP with features similar to that of A log

50

do not always satisfy this criteria. In particular, we point out that the lack of
stability of S log and F log, or insufficiently declarative reading of choice rules
of [67] prevents us from advocating these languages for use in teaching. There, of1495

course, remains an important unanswered question: is expressive power of A log
sufficient or new extensions of A log by set constructs will be needed to make it a
standard ASP extension by sets. We did not discuss, for instance, inclusion in the
language of set operations and rules with variables ranging over sets (in the style
of [76]), etc. Partly it is due to natural space limitations. But partly it is because we1500

do not want to introduce any new constructs without convincing examples of their
use. So far, we are on the fence on this one. We hope that with more experience we
will know if such extensions are justified. Of course, to make A log a language of
choice for practical applications there should be a very efficient A log solver. One
possible way to do that is to consider the algorithms for computing answer sets1505

of ASP programs with A log aggregates which have already been introduced in
[30] and [70] and investigate if they can be extended and efficienty implemented
for the richer version of A log presented in this paper. Development of these and
other possible approaches to the design and implementation of A log solvers is an
important subject for future work.1510

10. Acknowledgment

We would like to thank Evgenii Balai, Amelia Harrison, Patrick Kahl,
Vladimir Lifschitz, Tran Cao Son, Mirek Truszczynski and the anonymous re-
viewers for useful comments which helped to improve the quality of the paper.
The authors’ work was partially supported by NSF grant IIS-1018031 and CNS-1515

1359359.

References

[1] M. Gelfond, On stratified autoepistemic theories, in: Proceedings of Sixth
National Conference on Artificial Intelligence, 1987, pp. 207–212.

[2] M. Gelfond, V. Lifschitz, The stable model semantics for logic program-1520

ming, in: Proceedings of ICLP-88, 1988, pp. 1070–1080.

[3] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunc-
tive databases, New Generation Computing 9 (3/4) (1991) 365–386.

[4] I. Niemela, P. Simons, T. Soininen, Extending and implementing the stable
model semantics, Artificial Intelligence 138 (1–2) (2002) 181–234.1525

51

[5] F. Lin, Y. Zhao, ASSAT: Computing answer sets of a logic program by SAT
solvers, Artificial Intelligence 157(1-2) (2004) 115–137.

[6] Y. Lierler, cmodels - sat-based disjunctive answer set solver, in: LPNMR,
2005, pp. 447–451.

[7] Z. Lin, Y. Zhang, H. Hernandez, Fast SAT-based answer set solver., in: Pro-1530

ceedings of AAAI, 2006, pp. 92–97.

[8] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello,
The DLV system for knowledge representation and reasoning, ACM Trans-
actions on Computational Logic 7 (2006) 499–562.

[9] W. Faber, G. Pfeifer, N. Leone, T. Dell’Armi, G. Ielpa, Design and imple-1535

mentation of aggregate functions in the dlv system, Theory and Practice of
Logic Programming 8 (5-6) (2008) 545–580.

[10] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Conflict-driven answer
set enumeration, in: International Conference on Logic Programming and
Nonmonotonic Reasoning, Springer, 2007, pp. 136–148.1540

[11] T. Janhunen, I. Niemelä, Compact translations of non-disjunctive answer
set programs to propositional clauses, in: Logic programming, knowledge
representation, and nonmonotonic reasoning, Springer, 2011, pp. 111–130.

[12] M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving:
From theory to practice, Artificial Intelligence 187 (2012) 52–89.1545

[13] M. Alviano, C. Dodaro, W. Faber, N. Leone, F. Ricca, Wasp: A native asp
solver based on constraint learning, in: International Conference on Logic
Programming and Nonmonotonic Reasoning, Springer, 2013, pp. 54–66.

[14] M. Maratea, L. Pulina, F. Ricca, Multi-level algorithm selection for asp, in:
International Conference on Logic Programming and Nonmonotonic Rea-1550

soning, Springer, 2015, pp. 439–445.

[15] M. Balduccini, C. Baral, Y. Lierler, Knowledge representation and question
answering, chapter 21. handbook of knowledge representation (2006).

[16] G. Brewka, T. Eiter, M. Truszczynski, Answer Set Programming at a glance,
Commun. ACM 54 (12) (2011) 92–103.1555

52

[17] E. Erdem, M. Gelfond, N. Leone, Applications of Answer Set Programming,
AI Magazine 37 (3) (2016) 53–68.

[18] A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, E. C. Teppan, Industrial
applications of answer set programming, KI-Künstliche Intelligenz 32 (2-3)
(2018) 165–176.1560

[19] M. Balduccini, M. Gelfond, Logic programs with consistency-restoring
rules, in: International Symposium on Logical Formalization of Common-
sense Reasoning, AAAI 2003 Spring Symposium Series, Vol. 102, The
AAAI Press, 2003.

[20] C. Baral, M. Gelfond, J. N. Rushton, Probabilistic reasoning with answer1565

sets, Theory and Practice of Logic Programming 9 (1) (2009) 57–144.

[21] D. Pearce, A new logical characterization of stable models and answer sets,
in: Non-monotonic Extension of Logic Programming, Vol. 1216 of LNCS,
Springer Verlag, 1997, pp. 57–70.

[22] P. Ferraris, J. Lee, V. Lifschitz, A new perspective on stable models, in: Pro-1570

ceedings of International Joint Conference on Artificial Intelligence (IJCAI),
2007, pp. 372–379.

[23] I. Niemelä, P. Simons, Extending the smodels system with cardinality and
weight constraints, in: Logic-based artificial intelligence, Springer, 2000,
pp. 491–521.1575

[24] F. Buccafurri, N. Leone, P. Rullo, Strong and weak constraints in disjunctive
datalog, in: International Conference on Logic Programming and Nonmono-
tonic Reasoning, Springer, 1997, pp. 2–17.

[25] N. Pelov, M. Denecker, M. Bruynooghe, Well-fouded and stable semantics
of logic programs with aggregates, Theory and Practice of Logic Program-1580

ming 7 (2007) 355–375.

[26] T. C. Son, E. Pontelli, A constructive semantic characterization of aggre-
gates in answer set programming, Theory and Practice of Logic Program-
ming 7 (3) (2007) 355–375.

[27] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive ag-1585

gregates in answer set programming, Artificial Intelligence 175 (1) (2011)
278–298.

53

[28] M. Gelfond, Representing Knowledge in A-Prolog, in: A. C. Kakas, F. Sadri
(Eds.), Computational Logic: Logic Programming and Beyond, Essays in
Honour of Robert A. Kowalski, Part II, Vol. 2408, Springer Verlag, Berlin,1590

2002, pp. 413–451.

[29] D. B. Kemp, P. J. Stuckey, Semantics of logic programs with aggregates, in:
ISLP, Vol. 91, Citeseer, 1991, pp. 387–401.

[30] M. Gelfond, Y. Zhang, Vicious circle principle and logic programs with ag-
gregates, Theory and Practice of Logic Programming 14 (4-5) (2014) 587–1595

601.

[31] M. Gelfond, Y. Zhang, Vicious circle principle and formation of sets in asp
based languages, in: International Conference on Logic Programming and
Nonmonotonic Reasoning, Springer, 2017, pp. 146–159.

[32] I. S. Mumick, H. Pirahesh, R. Ramakrishnan, The magic of duplicates and1600

aggregates, in: Proceedings of the 16th International Conference on Very
Large Data Bases, Morgan Kaufmann Publishers Inc., 1990, pp. 264–277.

[33] K. A. Ross, Y. Sagiv, Monotonic aggregation in deductive database, J. Com-
put. Syst. Sci. 54 (1) (1997) 79–97.

[34] T. C. Son, E. Pontelli, I. Elkabani, An unfolding-based semantics for logic1605

programming with aggregates, CoRR abs/cs/0605038. arXiv:cs/0605038.
URL http://arxiv.org/abs/cs/0605038

[35] M. Gelfond, H. Przymusinska, On consistency and completeness of au-
toepistemic theories, Fundamenta Informaticae 16 (1) (1992) 59–92.

[36] V. Lifschitz, H. Turner, Splitting a logic program, in: Proceedings of the1610

11th International Conference on Logic Programming (ICLP94), 1994, pp.
23–38.

[37] H. Turner, Splitting a Default Theory, in: Proceedings of AAAI-96, 1996,
pp. 645–651.

[38] C. Baral, M. Gelfond, Logic Programming and Knowledge Representation,1615

Journal of Logic Programming 19 (20) (1994) 73–148.

[39] M. Gelfond, H. Przymusinska, On consistency and completeness of au-
toepistemic theories, Fundam. Inf. 16 (1).

54

http://arxiv.org/abs/cs/0605038
http://arxiv.org/abs/cs/0605038
http://arxiv.org/abs/cs/0605038
http://arxiv.org/abs/cs/0605038
http://arxiv.org/abs/cs/0605038

[40] K. R. Apt, H. A. Blair, A. Walker, Towards a theory of declarative knowl-
edge, in: Foundations of Deductive Databases and Logic Programming,1620

Morgan Kaufmann, 1988, pp. 89–148.

[41] M. Alviano, W. Faber, Stable model semantics of abstract dialectical frame-
works revisited: A logic programming perspective, in: Proceedings of the
21st International Joint Conference on Artificial Intelligence. IJCAI Organi-
zation, Buenos Aires, Argentina, 2015, pp. 2684–2690.1625

[42] P. Cabalar, J. Fandinno, T. Schaub, S. Schellhorn, Gelfond-Zhang aggregates
as propositional formulas, in: International Conference on Logic Program-
ming and Nonmonotonic Reasoning, Springer, 2017, pp. 117–131.

[43] M. Gelfond, Y. Zhang, Vicious circle principle and logic programs with ag-
gregates, arXiv preprint arXiv: 1808.07050.1630

[44] V. Lifschitz, D. Pearce, A. Valverde, Strongly equivalent logic programs,
ACM Transactions on Computational Logic (TOCL) 2 (4) (2001) 526–541.

[45] M. Alviano, N. Leone, Complexity and compilation of gz-aggregates in an-
swer set programming, Theory and Practice of Logic Programming 15 (4-5)
(2015) 574–587.1635

[46] T. C. Son, E. Pontelli, P. H. Tu, Answer sets for logic programs with arbitrary
abstract constraint atoms, J. Artif. Intell. Res. (JAIR) 29 (2007) 353–389.

[47] V. W. Marek, M. Truszczynski, Logic programs with abstract constraint
atoms, in: Proceedings of AAAI04, 2004, pp. 86–91.

[48] V. W. Marek, J. B. Remmel, Set constraints in logic programming, in: Logic1640

Programming and Nonmonotonic Reasoning, Springer, 2004, pp. 167–179.

[49] Y. Shen, J. You, L. Yuan, Characterizations of stable model semantics for
logic programs with arbitrary constraint atoms, Theory and Practice of Logic
Programming 9 (4) (2009) 529–564.

[50] G. Liu, R. Goebel, T. Janhunen, I. Niemelä, J.-H. You, Strong equivalence of1645

logic programs with abstract constraint atoms, in: Logic Programming and
Nonmonotonic Reasoning, Springer, 2011, pp. 161–173.

55

[51] W. Faber, N. Leone, G. Pfeifer, Recursive aggregates in disjunctive logic
programs: Semantics and complexity, in: Proceedings of the 8th European
Conference on Artificial Intelligence (JELIA 2004), 2004, pp. 200–212.1650

[52] P. Ferraris, V. Lifschitz, Weight constraints as nested expressions, Theory
and Practice of Logic Programming 5 (1-2) (2005) 45–74.

[53] P. Ferraris, Answer sets for propositional theories, in: International Confer-
ence on Logic Programming and Nonmonotonic Reasoning, Springer, 2005,
pp. 119–131.1655

[54] P. Ferraris, Logic programs with propositional connectives and aggregates,
ACM Transactions on Computational Logic (TOCL) 12 (4) (2011) 25.

[55] B. Bogaerts, J. Vennekens, M. Denecker, Grounded fixpoints and their
applications in knowledge representation, Artif. Intell. 224 (2015) 51–71.
doi:10.1016/j.artint.2015.03.006.1660

URL https://doi.org/10.1016/j.artint.2015.03.006

[56] J. Lee, V. Lifschitz, R. Palla, A reductive semantics for counting and choice
in answer set programming, in: Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA,
July 13-17, 2008, 2008, pp. 472–479.1665

[57] J. Lee, Y. Meng, On reductive semantics of aggregates in answer set pro-
gramming, in: Logic Programming and Nonmonotonic Reasoning, Springer,
2009, pp. 182–195.

[58] L. Liu, E. Pontelli, T. C. Son, M. Truszczynski, Logic programs with abstract
constraint atoms: The role of computations, Artif. Intell. 174 (3-4) (2010)1670

295–315.

[59] Y.-D. Shen, K. Wang, T. Eiter, M. Fink, C. Redl, T. Krennwallner, J. Deng,
Flp answer set semantics without circular justifications for general logic pro-
grams, Artificial Intelligence 213 (2014) 1–41.

[60] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, T. Schaub, Abstract1675

gringo, Theory and Practice of Logic Programming 15 (4-5) (2015) 449–
463.

56

https://doi.org/10.1016/j.artint.2015.03.006
https://doi.org/10.1016/j.artint.2015.03.006
https://doi.org/10.1016/j.artint.2015.03.006
http://dx.doi.org/10.1016/j.artint.2015.03.006
https://doi.org/10.1016/j.artint.2015.03.006

[61] A. Harrison, V. Lifschitz, Relating two dialects of answer set programming,
in: Working Notes of the 17th International Workshop on Non-Monotonic
Reasoning, 2018.1680

URL http://www.cs.utexas.edu/users/ai-lab/pub-view.php?

PubID=127711

[62] M. Alviano, W. Faber, M. Gebser, Rewriting recursive aggregates in answer
set programming: back to monotonicity, Theory and Practice of Logic Pro-
gramming 15 (4-5) (2015) 559–573.1685

[63] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner,
N. Leone, F. Ricca, T. Schaub, Asp-core-2: Input language format (2015).

[64] S. Feferman, Predicativity, http://math.stanford.edu/~feferman/

papers/ (2002).

[65] N. Wirth, On the design of programming languages., in: IFIP Congress,1690

Vol. 74, 1974, pp. 386–393.

[66] A. J. Harrison, V. Lifschitz, F. Yang, The semantics of gringo and infinitary
propositional formulas, in: KR, 2014.

[67] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, S. Thiele, P. Wanko, Potassco user guide, Institute1695

for Informatics, University of Potsdam, Version 2.2.0 (2019).

[68] M. Truszczynski, Connecting first-order asp and the logic fo (id) through
reducts, in: Correct Reasoning, Springer, 2012, pp. 543–559.

[69] M. Gelfond, New semantics for epistemic specifications, in: Logic Program-
ming and Nonmonotonic Reasoning, Springer, 2011, pp. 260–265.1700

[70] M. Alviano, N. Leone, On the properties of gz-aggregates in answer set pro-
gramming., in: IJCAI, 2016, pp. 4105–4109.

[71] H. Strass, Approximating operators and semantics for abstract dialectical
frameworks, Artificial Intelligence 205 (2013) 39–70.

[72] C. Li, Y. Wang, R. Feng, Q. Li, Loop formulas for alog answer set programs,1705

in: Proceedings of the 2017 International Conference on Computer Science
and Artificial Intelligence, ACM, 2017, pp. 38–42.

57

http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127711
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127711
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127711
http://www.cs.utexas.edu/users/ai-lab/pub-view.php?PubID=127711
http://math.stanford.edu/~feferman/papers/
http://math.stanford.edu/~feferman/papers/
http://math.stanford.edu/~feferman/papers/

[73] Y. Zhang, M. Rayatidamavandi, A characterization of the semantics of logic
programs with aggregates., in: IJCAI, 2016, pp. 1338–1344.

[74] V. Lifschitz, L. R. Tang, H. Turner, Nested expressions in logic programs,1710

Annals of Mathematics and Artificial Intelligence 25 (3-4) (1999) 369–389.

[75] P. Cabalar, J. Fandinno, L. F. del Cerro, D. Pearce, Functional ASP with in-
tensional sets: Application to Gelfond-Zhang aggregates, Theory and Prac-
tice of Logic Programming 18 (3-4) (2018) 390–405.

[76] A. Dovier, E. Pontelli, G. Rossi, Intensional sets in CLP, in: Logic Program-1715

ming, 19th International Conference, ICLP 2003, Mumbai, India, December
9-13, 2003, Proceedings, 2003, pp. 284–299.

[77] S. T. Erdogan, V. Lifschitz, Definitions in answer set programming, in:
V. Lifschitz, I. Niemel”a (Eds.), Proceedings of International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR), 2004, pp.1720

114–126.

[78] E. Dantsin, T. Eiter, G. Gottlob, A. Voronkov, Complexity and expressive
power of logic programming, ACM Comput. Surv. 33 (3) (2001) 374–425.

[79] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic program-
ming: Propositional case, Annals of Mathematics and Artificial Intelligence1725

15 (3-4) (1995) 289–323.

Appendix

In this appendix, given an A log program Π, a set A of literals and a rule r ∈Π,
we use RX (r,A), where X is either A or S , to denote the set of rule(s) obtained
from r in the X -reduct (i.e., aggregate reduct or set introduction reduct) of Π1730

with respect to A. RX (r,A) is empty if r is discarded in the X -reduct. RX (r,A)
may consist of one rule (in A -reduct) or more than one rule (in S -reduct). We
use RX (Π,A) to denote the X -reduct of Π, i.e., ∪r∈ΠRX (r,A).

To prove Proposition 1 we will need two auxiliary lemmas.

Lemma 1. Let Π be a ground A log program which contains no occurrences of1735

set atoms, A be an answer set of Π and R be the set of all rules of Π whose bodies
are satisfied by A. Then A is a minimal (with respect to set-inclusion) set of literals
which satisfies R.

58

Proof.

The fact that A satisfies R follows immediately from the definition of answer set.1740

To prove minimality assume that

(1) B⊆ A

(2) B satisfies R

and show that

(3) B satisfies the reduct ΠA.1745

Consider a rule head← bodyA from ΠA such that

(4) B satisfies bodyA.

Since bodyA contains no default negation, (1) and (4) imply that

(5) A satisfies bodyA.

By definition of a reduct,1750

(6) A satisfies body

and hence the rule

(7) head← body is in R.

By (2) and (7), head is satisfied by B.

Therefore, B satisfies head← bodyA and, hence, (3) holds.1755

Since A is an answer set of ΠA, (3) implies that

(8) B = A

which concludes the proof. �

Definition 17 (Supportedness). Let A be an answer set of a ground program Π

of A log. We say that a literal p(t) ∈ A is supported by a rule r from Π if the body1760

of r is satisfied by A and

• p(t) is the only atom in the head of r which is true in A, or

• r is a set introduction rule defining p, and its head is true in A.

To show supportedness for A log with set atoms we need to first prove this prop-
erty for A log programs not containing set atoms (similar result for disjunctive1765

programs with finite rules can be found in [38]).

59

Lemma 2 (Supportedness for Programs without Set Atoms). Let A be an an-
swer set of a ground program Π of A log which contains no occurrences of set
atoms. Then

1. A satisfies every rule r of Π.1770

2. If p(t) ∈ A then there is a rule r from Π which supports p.

Proof:

1. The first clause follows immediately from the definition of an answer set of
a program without set atoms.

2. Let p(t) ∈ A.1775

To prove the existence of a rule of Π supporting p(t) we consider the set R
of all rules of Π whose bodies are satisfied by A.

Suppose p(t) does not belong to the head of any rule from R. Then A \
{p(t)} also satisfies rules of R. (Indeed, suppose that A\{p(t)} satisfies the
body of a rule from R. Then, by definition of R, the rule’s head is satisfied1780

by A. Since the head does not contain p(t), it is also satisfied by A−{p(t)}.)
This contradicts the minimality condition from Lemma 1.)

Suppose now that for every rule r ∈ R which contains an occurrence of p(t)
in the head head(r)∩A 6= {p(t)}. But then A−{p(t)}would again satisfy R
which would contradict Lemma 1. This concludes the proof of the Lemma1785

2. �

Now we are ready to prove Proposition 1

Proposition 1 (Rule Satisfaction and Supportedness). Let A be an answer set
of a ground A log program Π. Then

1. A satisfies every rule r of Π.1790

2. If p ∈ A then there is a rule r supporting p.

Proof: Let

(1) A be an answer set of Π, and

Π′ be the result of the aggregate reduct of the set introduction reduct of Π with
respect to A, i.e., Π′ = RA (RS (Π,A),A).1795

We first prove that A satisfies every rule r of Π. Let r be a rule of Π such that

60

(2) A satisfies the body of r.

Statement (2) implies that every set atom, if there is any, of the body of r is sat-
isfied by A. By the definition of the aggregate reduct and set introduction reduct,
there must be a non-empty rule r′ ∈Π′ such that1800

(3) r′ ∈ RA (RS (r,A),A).

By the definition of aggregate reduct, A satisfies the body of r iff it satisfies that
of r′. Therefore, (2) and (3) imply that

(4) A satisfies the body of r′.

By the definition of answer set of A log, (1) implies that1805

(5) A is an answer set of RA (RS (Π,A),A).

Since RA (RS (Π,A),A) is an ASP program, (3) and (5) imply that

(6) A satisfies r′.

Consider two cases on whether r is a set introduction rule.

Case 1: r is not a set introduction rule. Then, r and and r′ have the same head.1810

Statements (4) and (6) imply A satisfies the head of r′ and thus the head of r.

Case 2: r is a set introduction rule. Statement (4) and (6) imply that the head of
r′ is not empty. Hence, by definition of set introduction reduct, the head of r is
satisfied by A.

Therefore r is satisfied by A, which concludes our proof of the first part of the1815

proposition.

We next prove the second part of the proposition. Consider p(t) ∈ A. (1) implies
that A is an answer set of RA (RS (Π,A),A), i.e., Π′. By Lemma 2 there is a rule
r′ ∈Π′ such that

(7) r′ supports p(t).1820

Let r ∈Π be a rule such that r′ ∈ RA (RS (r,A),A). By the definition of aggregate
reduct and set introduction reduct,

(8) A satisfies the body of r iff A satisfies that of r′.

Consider two cases on whether r is a set introduction rule.

Case 1: r is not a set introduction rule. Then r and r′ have the same head. So, (7)1825

and (8) imply that rule r of Π supports p(t) in A.

61

Case 2: r is a set introduction rule. Since r′ is the result of set introduction reduct
(and then aggregate reduct) of r, the head of r is of the form p�{X̄ : q(X̄)} and
is true in A. Hence, (8) implies that r supports p(t) in A.

Therefore, the second part of the proposition holds. �1830

Proposition 2 (Anti-chain Property). If Π is a program without set introduction
rules then there are no A log answer sets A1, A2 of Π such that A1 ⊂ A2.

Proof: Let us assume that there are A1 and A2 such that

(1) A1 ⊆ A2. and

(2) A1 and A2 are answer sets of Π.1835

We will show that A1 = A2.

Let R1 and R2 be the aggregate reducts of Π with respect to A1 and A2 respectively.
Let us first show that A1 satisfies the rules of R2. Consider

(3) r2 ∈ R2.

By the definition of aggregate reduct there is r ∈Π such that1840

(4) r2 = RA (r,A2).

Consider

(5) r1 = RA (r,A1).

If r contains no aggregate atoms then

(6) r1 = r2.1845

By (5) and (6), r2 ∈ R1 and hence, by (2) A1 satisfies r2.

Assume now that r contains one set atom SA and is of the form

(7) h← B,SA

Then r2 has the form

(8) h← B,P21850

where

(9) P2 = {cond(t) : cond(t) occurs in SA,cond(t) ∈ A2}.
Let

(10) P1 = {cond(t) : cond(t) occurs in SA,cond(t) ∈ A1}.

62

Consider two cases (11a) and (11b) below:1855

(11a) RA (r,A1) = {}.

In this case SA is not true in A. Hence, P1 6= P2. Since A1 ⊆ A2, we have that
P1 ⊂ P2. Hence, the body of rule (8) is not satisfied by A1. As a result, rule (8) is
satisfied by A1.

(11b) RA (r,A1) 6= {}.1860

Then SA is true in A1, and r1 has the form

(12) h← B,P1.

Assume that A1 satisfies the body, i.e., B and P2, of rule (8). Then

(14) P2 ⊆ A1

This, together with (9) and (10) implies1865

(15) P2 ⊆ P1.

From (1), (9), and (10) we have P1 ⊆ P2. Hence

(16) P1 = P2.

This means that A1 satisfies the body of r1 and hence it satisfies h and, therefore,
r2.1870

Similar argument works for rules containing multiple set atoms and, therefore, A1
satisfies R2.

Since A2 is a minimal set satisfying R2 and A1 satisfies R2 and A1 ⊆ A2 we have
that A1 = A2.

This completes our proof. �1875

We need the following lemma to prove the splitting set theorem.

Lemma 3 (Constraints without Set Atoms). Let Π1 be a ground program and
Π2 be a set of constraints of A log. They contain no occurrences of set atoms. A
is an answer set of Π1∪Π2 iff A is an answer set of Π1 and A satisfies Π2.

Lemma 4 (Constraints). Let Π1 be a ground program of and Π2 be a set of con-1880

straints of A log. Π1 contains no set introduction rules. A is an answer set of
Π1∪Π2 iff A is an answer set of Π1 and A satisfies Π2.

63

Proof.

(1) A is an answer set of Π1∪Π2 iff

(2) A is answer set of RA (Π1∪Π2,A).1885

By aggregate reduct, we have

(3) RA (Π∪Π2,A) = RA (Π1)∪RA (Π2).

By (2) and (3), we have

Statement (2) holds iff

(4) A is answer set of RA (Π1,A)∪RA (Π2,A).1890

By Lemma 3, (4) and that RA (Π2,A) is a set of constraints, we have

Statement (4) holds iff

(5) A is an answer set of RA (Π1,A) and A satisfies RA (Π2,A).

By definition of answer sets,

Statement (5) holds iff1895

(6) A is an answer of Π1 and A satisfies RA (Π2,A).

By aggregate reduct definition and that Π2 are constraints, A satisfies Π2 iff A
satisfies RA (Π2,A). Hence,

Statement (6) holds iff

(7) A is an answer of Π1 and A satisfies Π2.1900

Hence, we complete the proof. �

Proposition 3 (Splitting Set Theorem). Let Π be a ground program, S be a split-
ting set of Π, and Π1 and Π2 be the bottom and the top of Π relative to S respec-
tively. Then a set A is an answer set of Π iff A∩S is an answer set of Π1 and A is
an answer set of (A∩S)∪Π2.1905

Proof.

First consider the case when Π1 and Π2 contain no set atoms. It is easy to check
that, in this case, we can use the proof from [77], since the infinite number of
literals in the rules does not affect the arguments used in this proof.

We now consider programs without set introduction rules. By the definition of1910

answer sets and the aggregate reduct

64

(1) A is an answer set of Π1∪Π2 iff

(2) A is an answer set of RA (Π1,A)∪RA (Π2,A).

Without loss of generality, we assume the program does not contains set atoms
of the form p⊗ S or S⊗ p because they will be replaced by {X̄ : p(X̄)}⊗ S and1915

S⊗{X̄ : p(X̄)} respectively in the aggregate reduct.
Consider any rule r of RA (Π1,A). By definition of aggregate reduct, r is the

result of replacing every set atom SA of a rule r′ of Π by the union of cond(t̄) such
that cond(X̄) for some X̄ occurs in SA and cond(t̄)⊆ A.

Since S is a splitting set, by definition, the value of every set expression occur-1920

ring in r′ is determined by S. Hence, either some user-defined literal in cond(t̄)
has no potential support in Π or every literal of cond(t̄) is from S. In the former
case, rule r is useless because no answer set of Π will satisfy cond(t̄) and thus the
body of r, i.e., RA (Π1,A) is strongly equivalent to RA (Π1,A)\{r}.

Let P′ be the result of removing all rules that are useless. RA (Π1,A) ∪1925

RA (Π2,A) is strongly equivalent to P′ ∪ RA (Π2,A). We know all rules of P′

are formed using literals of S and no rules of Π2 is a potential support of any lit-
eral of S. Hence S is a splitting set for P′∪RA (Π2,A). Since P′ and RA (Π2,A)
contain no set atoms, the Splitting Set Theorem on programs without set atoms,
implies that (2) holds iff1930

(3a) A∩S is an answer set of P′ and thus RA (Π1,A)

and

(3b) A is an answer set of (A∩S)∪RA (Π2,A).

We now assume A is an answer set of Π, (3a) and (3b). We will show that A∩S is
an answer set of Π1 and A is an answer set of (A∩S)∪Π2.1935

To show the former, we will show A∩S is an answer set of RA (Π1,A∩S).
For any set expression {X : cond(X̄)} occurring in any rule of Π, let E1 = {t :

cond(t)⊆ A} and E2 = {t : cond(t)⊆ A∩S}. We show,
(4) E1 = E2

by contradiction. Assume E1 6= E2. The only case is that there is t1 such that1940

cond(t1) ⊆ A but cond(t1) 6⊆ A∩ S. Since the set expression is determined by S,
there must be some literal l of cond(t1) that has no potential support in Π. By
Proposition 1, l 6∈ A, contradicting l ∈ A. As a result of (4), SA is true in A iff SA
is true in A∩S.

Similar to the proof for (4), we can show1945

(5) For any cond(X̄) occurring in Π, {cond(t) : cond(t) ⊆ A} = {cond(t) :
cond(t)⊆ A∩S}.

65

By (4) and (5), we have RA (Π1,A) = RA (Π1,A∩ S). By (3a) and the definition
of answer sets,

(6) A∩S is an answer set of Π1.1950

By aggregate reduct definition, RA ((A ∩ S) ∪ Π2,A) = (A ∩ S) ∪ RA (Π2,A).
Hence, by (3b) and answer set definition,

(7) A is an answer set of (A∩S)∪Π2.

By (6) and (7), we proved the necessary condition of the theorem for programs
without set introduction rules.1955

We next assume (6) and (7) for any A, we will show (3a) and (3b).
For any set expression {X : cond(X̄)} occurring in any rule of Π, let E1 = {t :

cond(t)⊆ A} and E2 = {t : cond(t)⊆ A∩S}. We show,
(8) E1 = E2

by contradiction. Assume E1 6= E2. The only case is that there is t1 such that1960

cond(t1) ⊆ A but cond(t1) 6⊆ A∩ S. Since the set expression is determined by S,
there must be some literal l of cond(t1) that has no potential support in Π. Hence,
l 6∈ A∩S (because of (6)) and thus l 6∈ A (because of (7)), contradicting l ∈ A. As
a result of (8), SA is true in A iff SA is true in A∩S.

Similar to the proof for (8), we can show1965

(9) For any cond(X̄) occurring in Π, {cond(t) : cond(t) ⊆ A} = {cond(t) :
cond(t)⊆ A∩S}.

By (8) and (9), we have RA (Π1,A) = RA (Π1,A∩S). Hence, (6) implies
(10a) A∩S is an answer set of RA (Π1,A).

By aggregate reduct definition, RA ((A ∩ S) ∪ Π2,A) = (A ∩ S) ∪ RA (Π2,A).1970

Hence, by (7) and answer set definition,
(10b) A is an answer set of (A∩S)∪RA (Π2,A).

By (10a) and (10b) (and (1) iff 5(a) and 5(b)), the sufficient condition of the theo-
rem is proved for the programs without set introduction rules.

Now assume Π is an arbitrary program. By definition of answer sets, we have1975

(11) A is an answer set of Π iff

(12) A is an answer set of RS (Π1∪Π2,A).

By definition of set introduction reduct,

(13) RS (Π1∪Π2,A) = RS (Π1,A)∪RS (Π2,A) = Π′1∪Π′′1 ∪RS (Π2,A).
where Π′′1 are the constraints of RS (Π1,A), and Π′1 = RS (Π1,A)\Π′′1 .1980

66

We show there is no rule of RS (Π2,A) whose head contains a literal of S. Assume
there is such a rule r containing p(t) ∈ S. Let r2 ∈Π2 be the rule from which r is
obtained. r2 is a potential support of p(t) and thus should belong to Π1 and not Π2,
contradicting r2 ∈Π2. One can show that S is a splitting set for RS (Π1∪Π2,A).
The bottom of RS (Π1∪Π2,A) relative to S is Π′1, and the top is Π′′1 ∪RS (Π2,A).1985

Hence, (12) holds iff
(14) A∩S is an answer set of Π′, and
(15) A is an answer set of (A∩S)∪Π′′1 ∪RS (Π2,A).

We show RS (Π1,A) = RS (Π1,A∩S) when
(16) A is an answer set of Π or A∩S is an answer set of Π1 and A is an answer1990

set of (A∩S)∪Π2.

For any non-set introduction rule r ∈ Π1, r ∈ RS (Π1,A) iff r ∈ RS (Π1,A∩ S).
For any set introduction rule r ∈ Π1, it is a potential support of some literal of S.
Let r define p. All literals of p are in S. Let p⊗{X : q(X)} be the head of r.

(17) When A is an answer set of Π, the head of r is true in A iff it is true in1995

A∩S,
because of the following. Since S is splitting set, for every ground term t, p(t)∈ S,
and thus

(18) {p(t) : p(t) ∈ A}= {p(t) : p(t) ∈ A∩S}}.
Since S is a splitting set, the value of {X : q(X)} is determined by S and thus, for2000

any ground term t, q(t) ∈ S or q(t) has no potential support in Π. Hence, when
q(t) 6∈ S, it has no potential support in Π and thus is not in any answer set of Π.
Hence,

(19) {q(t) : q(t) ∈ A}= {q(t) : q(t) ∈ A∩S}.
By (18) and (19), we have (17). Similarly, we have2005

(20) when A∩S is an answer set of Π1 and A is an answer set of (A∩S)∪Π2,
the head of r is true in A iff it is true in A∩S.

By (17) and (20), we have (assuming condition (16))
(21) RS (Π1,A) = RS (Π1,A∩S).
Since S is a splitting set of Π, every regular literal belonging to rules of Π′′ is2010

in S and all set expressions of Π′′ are determined. Therefore, assuming condition
(16), A satisfies Π′′ iff A∩ S satisfies Π′′. By (14), (15) and Lemma4, we have
A∩S is an answer set of Π′∪Π′′, i.e., RS (Π1,A), and thus by (21),

(22) A∩S is an answer set of RS (Π1,A∩S), i.e., A∩S is an answer set of Π1.

By Lemma4, (15) implies A is an answer set of (A∩S)∪RS (Π2,A), and thus2015

(23) A is an answer set of RS ((A∩ S)∪Π2,A), i.e., A is an answer set of
(A∩S)∪Π2.

67

In a similar manner, we can prove (14) and (15) from (22) and (23). In summary,
(11) iff (22) and (23). Hence, we complete the proof. �

Corollary 1. A is an answer set of Π iff A∩S is an answer set of Π1 and A is an2020

answer set of (A∩S)∪Red(Π2,A∩S).

Proof. Let us fix A and denote (A∩S)∪Π2 by T1 and (A∩S)∪Red(Π2,A∩S) by
T2. By the splitting set theorem

1. A is an answer set of Π iff

2a. A∩S is an answer set of Π1 and2025

2b. A is an answer set of T1(A).

By the definition of answer set,

3. (2b) holds iff A is an answer set of T R
1 (A).

Similarly,

4. A is an answer set of T2 iff A is an answer set of T R
2 (A).2030

Examination of the definitions of A log reduct and the splitting set reduct Red
shows the following relationship between T R

1 and T R
2 :

5. If head← body is in T R
1 then head← (body\S) is in T R

2 .

6. If head ← body is in T R
2 then there is a rule head ← body0 in T R

1 such that
body = body0 \S.2035

So A satisfies rules of T R
1 iff it satisfies rules of T R

1 . Moreover, this is true for every
set containing A∩S which implies that

7. A is an answer set of T R
1 (A) iff A is an answer set of T R

2 (A).

This, together with (3) and (4) implies the conclusion of the corollary. �
In what follows we will prove the stratification result, which needs Lemma 52040

to 9. It will be useful to extend leveling from atoms to rules and programs. Let Π

be a program with a stratifying leveling ‖ ‖. By the definition of stratification, if l1
and l2 are potentially supported by a rule r ∈Π then ‖ l1 ‖=‖ l2 ‖. Moreover, since
Π has no constraints, every rule r of Π has at least one l potentially supported by
it. Therefore we can expand leveling ‖ ‖ to rules of Π by making ‖ r ‖=‖ l ‖. The2045

leveling can be further expanded to programs: ‖Π ‖ is the smallest ordinal which
is greater than or equal to levels of all rules of Π. For instance, consider a program
Π consisting of rules

68

p(0).

p(N+1) :- not p(N).2050

where N ranges over natural numbers, and its leveling ‖ p(i) ‖= i. Clearly, ‖Π ‖=
ω .

We will need the following notation:

Definition 18. Let ‖ ‖ be a stratification of Π with maximal ordinal λ . For every
ordinal α ≤ λ

Πα =de f {r ∈Π :‖ r ‖≤ α}

and
Φα =de f {r ∈Π :‖ r ‖= α}.

Lemma 5 (A log Reduct). Let ‖ ‖ be a stratification of Π with maximal ordinal
λ . For any α ≤ λ , if

Πα =
⋃

β<α

Πβ

then
Π

R
α(A) =

⋃
β<α

Π
R
β
(A)

Proof.

Prove ⊆.2055

For any r ∈ ΠR
α(A), there exists r′ ∈ Πα from which r is obtained. In this case,

we say that r is the reduct of r′ wrt A. Since Πα =
⋃

β<α Πβ , there exists β1 < α ,
r′ ∈Πβ1 . Since r is the reduct of r′, r ∈ΠR

β1
(A). Hence r ∈

⋃
β<α ΠR

β
(A).

Prove ⊇.

For any r ∈
⋃

β<α ΠR
β
(A), there exists β1 < α such that r ∈ ΠR

β1
(A). Hence there2060

exists r′ ∈ Πβ1 such that r is a reduct of r′ wrt A. Since β1 < α , r′ ∈ Πα because
Πα =

⋃
β<α Πβ . Since r is the reduct of r′, t r ∈ΠR

α(A). �

Definition 19 (Auxiliary Reduct). Auxiliary reduct AR(Π,B) of Π with respect
to set B is obtained as follows:

(a) Remove all rules with set atoms in their bodies which are false or undefined in2065

B.

69

(b) For every remaining set expression, say, {X : q(X)} in a rule r add the set
{q(t) : q(t) ∈ B} to the body of r.

(c) Remove all set atoms from the bodies of the rules.

(d) Replace a set atom, say, p ⊆ {X : q(X)} in the head of a set introduction rule
r by

or{t:q(t)∈B}p(t).

Let us refer to such a rule as p-disjunct. If the head of a p-disjunct is empty,2070

remove the rule.

(e) Remove all rules containing a default literal not l where l ∈ B, and all remain-
ing occurrences of default literals. �

Consider a program Π consisting of facts (f acts(Π)):
q(1). q(2). q(3).

r(1,1). r(2,2).
2075

and a rule

p ⊆ {X:q(X),r(X,X)}.

Let A1 = f acts(Π). Then AR(Π,A1) consists of facts of Π and the rule

p(1) or p(2) :- q(1), r(1,1), q(2), r(2,2).

We introduce notion ΠR(A), called A log reduct wrt A, to denote2080

RA (RS (Π,A),A)A, i.e., the result of applying set introduction reduct, aggregate
reduct and the classical reduct to Π wrt A in sequence. For a rule r, we also use
rR(A) to denote {r}R(A). Similarly, we use AR(r,B) to denote AR({r},B).

Lemma 6 (Auxiliary Reduct and Positive Program). Let Π be stratified by a
leveling with maximal ordinal λ . Then for every α ≤ λ and every set B of ground2085

regular atoms of levels less then α the auxiliary reduct AR(Φα ,B) is a positive
program whose heads contain only atoms of level α .

Proof.

1. The steps (a), (c) and (d) of definition of auxiliary reduct of Φα wrt B remove
all the set atoms. The step (e) removes all default negations. All new atoms2090

introduced by the reduct are regular. Hence, the program AR(Φα ,B) is positive.

2. Consider any rule r ∈ AR(Φα ,B). Let r′ be a rule of Φα such that r = AR(r′,B).

70

Since Π is stratified, r′ is not a constraint. Consider two cases.

Case 1: r′ is a proper disjunctive rule. By definition of Φα , atoms in the head of
r′ have level α . Since the head of r′ is the same as that of r, the head of r contains2095

only atoms of level α .

Case 2: r′ is a set introduction rule defining p. Since r′ ∈ Φα , all ground atoms
formed by p have level α . Hence, the head of r contains only atoms of level α . �

Lemma 7 (Consistency of some positive programs). A positive program with-
out rules with infinite heads is consistent.2100

Proof.12

This result follows from the Kuratowski-Zorn Lemma: if every chain in a non-
empty poset has a lower bound then the poset contain a minimal element.

Let Π be a positive disjunctive program without rules with infinite head. Let P be
the poset of all sets of atoms that satisfy the rules of Π. P is not empty because2105

the se of all atoms of Π satisfies its rules.

Let C be a chain in P and let A be the intersection of all elements in C. If we show
that A satisfies the rules of Π, then we will have shown that C has a lower bound
and the proposition will follow by the Kuratowski-Zorn Lemma.

If C is finite, A ∈C and so A satisfies the rules of Π. Thus, we are done. So, we2110

will now consider the case when C is infinite.

To show that A satisfies rules of Π we show that it satisfies every rule in Π. Con-
sider rule r

a1 or a2 or . . . or ak← b1, . . . ,bm, . . .

and let us assume that body(r) is satisfied by A. We need to show that A contains2115

at least one atom ai.

Since body(r) is satisfied by A and A ⊆ B, for every element B in the chain C,
body(r) ⊆ B. Since B satisfies rules of Π, B contains at least one ai. Thus, every
B in the chain C contains at least one element ai.

An element ai is terminal if there is a B j in the chain C such that ai /∈ B j. If all2120

elements ai in the head of r are terminal, there exist B1, . . . ,Bk such that ai 6∈ Bi for

12This proof is from Mirek Truszczynski. Minimal edit was made to make it fit the context of
this paper.

71

i ∈ 1..k. No atom in the head of r belongs to B = B1∩B2...∩Bk (if ai belongs to B
then ai belongs to Bi, a contradiction). But B is an element of the chain C (B = B j,
where B j is the least element of B1, . . . ,Bk – a well defined set as B1, . . . ,Bk is a
finite chain). This is a contradiction.2125

Thus, some head atom ai of r is not terminal. This ai belongs to all elements in
the chain C and so to A. �

Lemma 8 (Consistency of Auxiliary Reducts). Let Π be stratified by a leveling
with maximal ordinal λ . Then for every α ≤ λ and every set B of ground regular
atoms of levels less then α the auxiliary reduct AR(Φα ,B) is consistent, i.e., has2130

an answer set.

Proof.

Let us denote the auxiliary reduct from the lemma by T . By Lemma 6, T is a
positive program. Since Π is stratified, Π has no rules with infinite heads. Such
rules can occur in T only by the clause (d) of the definition of the auxiliary reduct.2135

Let Q be a program obtained from T by replacing every rule of T of the form

(*) p(t̄0) or p(t̄1) or · · · ← body

by

(**) p(t̄i)← body

for some i≥ 0. Rules of Q contain no infinite heads and hence, by Lemma 7, Q is2140

consistent. Suppose

(1) A is an answer set of Q.

We show that

(2) A is an answer set of T .

Clearly,2145

(3) A satisfies rules of T .

Consider X such that

(4a) X ⊆ A

(4b) X satisfies rules of T .

We show that2150

(5) X satisfies rules of Q

72

(and hence, by (1) and (4a), A = X .) Consider

(6) r ∈ Q such that body(r) is satisfied by X .

There are two cases:

(6a) r is of the form (**).2155

By (4a) and (6) we have that

(7) body(r) is satisfied by A.

This, together with (1) implies

(8) p(t̄i) ∈ A.

The stratification guarantees that no other rule of Q except (**) contains atoms2160

formed by p in the head and hence,

(9) p(t̄i) is the only atom formed by p which belongs to A.

By (4a) and (4b) p(t̄i) must be in X , hence X satisfies r.

Now let us look at the second case.

(6b) r is a rule of T with a finite head.2165

Then, by construction of Q

(7) r ∈ T iff r ∈ Q.

This, together with (4b) implies that X satisfies r. Thus, (5) holds, and A = X ,
i.e., no proper subset of A satisfies T . Together with (3) this implies (2), which
completes the proof of the lemma. �2170

Lemma 9 (Auxiliary Reduct and Answer Set). Let Π be stratified by a leveling
‖‖ with maximal ordinal λ . Then, for every α ≤ λ and every set B of atoms such
that for every a ∈ B, ‖ a ‖< α we have that an answer set A of B∪AR(Φα ,B) is
also an answer set of B∪Φα .

Proof.2175

Let

(1) A be an answer set of B∪AR(Φα ,B) and S = {l :‖ l ‖< α}.

Since no atoms from S belong to the heads of rules of AR(Φα ,B) supportedness
Property1 implies that

73

(2) A∩S = B.2180

Let r be an arbitrary rule of Φα and SE = {X : cond(X)} be an arbitrary occur-
rence of a set expression in r. For simplicity of presentation we assume that our
condition consists of one atom, i.e.,

(3) SE = {X : q(X)}.
We will show that for every t2185

(4) q(t) ∈ B iff q(t) ∈ A.

⇒ follows immediately from (2).

To show⇐, let

(5) q(t) ∈ A.

From the definition of q in (3) and the fact that ‖‖ stratifies Π we have that SE is2190

determined by S. Therefore, we have two cases:
(a) q(t) is in S. Then, by (2) and (5), it is also in B.
(b) q(t) has no potential support in Π. Thus it has no potential support in B∪
AR(Φα ,B) either. In this case, by supportedness, q(t) would not be in A which
contradicts (5). Thus, (4) holds.2195

The definition of satisfiability and (4) implies that for ever set atom SA occurring
in the body of a rule from Φα

(6) B satisfies SA iff A satisfies SA. The same is true for SA be undefined.

To prove the conclusion of the proposition we will show that

(7) A satisfies the rules of B∪ΦR
α(A).2200

By (2) it is sufficient to show that A satisfies ΦR
α(A).

Let ralogR be a rule of ΦR
α(A) such that

(8) body(ralogR)⊆ A.

We will show that

(9) A satisfies head(ralogR).2205

Let

(10) rphi ∈Φα be a rule such that ralogR ∈ rR
phi(A)

Since ralogR ∈ΦR
α(A) every set atom and every extended literal in the body of rphi

is true in A (otherwise, ralogR will be removed by the A log reduct). Thus, by (6)
and (2) we have that2210

74

(11) the set atoms and extended literals in body(rphi) are true in B.

Since Π is stratified, rphi is not a constraint. Thus, rphi is a proper disjunctive rule
or a set introduction rule.

Case 1: rphi is a proper disjunctive rule. By (11) and definition of auxiliary
reduct, AR(rphi,B) is not empty and contains exactly one rule. Furthermore, let2215

AR(rphi,B) be denoted by rar, and we have head(rar) = head(ralogR). By (6) and
(11), body(rar) = body(ralogR). Since A is an answer set of B∪AR(Φα ,B) and
rar ∈ AR(Φα ,B), A satisfies rar and thus head(rar) because of (4). Hence, A sat-
isfies head(ralogR).

Case 2: rphi is a set introduction rule with the head p⊆ {X : q(X)}. (Other possi-2220

ble heads are treated in a similar manner).

We first prove that

(12) p⊆ {X : q(X)} is true in A.

Assume that it is not the case, i.e., there are p(t) and q(t) such that

(13) p(t) ∈ A, and2225

(14) q(t) 6∈ A.

Consider two cases:

Case 2.1: AR(rphi,B) is empty. Since rphi is the only potential support of p(t)
in Π by the definition of auxiliary reduct we have that p(t) does not occur in the
heads of rules of B∪AR(Φα ,B). It contradicts (1) and (13). The only remaining2230

possibility is

Case 2.2: AR(rphi,B) is not empty. Let us denote it by rar. By clause (3) in the
definition of stratification, rphi is the only potential support of p(t) in Π. This and
the definition of auxiliary reduct imply that rar is the only potential support of p(t)
in AR(Φα ,B). Since A is an answer set of B∪AR(Φα ,B), (13) and Proposition 12235

imply that

(15) p(t) is the only atom of head(rar) that is true in A.

By definition of auxiliary reduct, head(rar) is the non-empty disjunction of atoms
of the form p(ti) such that q(ti) ∈ B. Hence by (15), p(t) is equal to p(ti) for one
of these is. Therefore, q(t) ∈ B, and thus q(t) ∈ A (because of (2)), contradicting2240

q(t) 6∈ A (14). There are no other cases and thus (12) is true.

75

By the definition of A log reduct, head(ralogR) contains at most one atom. In
our case, thanks to (10) and (12), head(ralogR) is not empty. By definition of set
introduction reduct, head(ralogR) ∈ A.

This concludes our proof of (9) and thus (7).2245

We next show that

(16) A is a minimal set satisfying B∪ΦR
α(A).

Assume it is not the case, i.e.,

(17) there exists C ⊂ A such that C satisfies B∪ΦR
α(A).

We will show that C satisfies B∪AR(Φα ,B). By (17), it is sufficient to show that2250

(18) C satisfies AR(Φα ,B).

Let rar be a rule of AR(Φα ,B) such that

(19) body(rar)⊆C.

We will show

(20) C satisfies head(rar).2255

Let rphi be a rule of Φα such that rar = AR(rphi,B). Since Π is stratified, rphi is
not a constraint, and thus it is either a set introduction rule or a proper disjunctive
rule. We prove that C satisfies head(r) by considering those two cases.

Case 1: rphi is a proper disjunctive rule. We first prove some properties on rphi
and A. Since rar ∈ AR(Φα ,B), all set atoms and extended literals of form not l of2260

body(rphi) are true in B by definition of auxiliary reduct. Hence, by (6),

(21) all set atoms of body(rphi) are true in A.

For every not l ∈ body(rphi), ‖ l ‖< α because rphi ∈ Φα and Π is stratified.
Hence, l ∈ S because of (1). Since not l is true in B, l 6∈ B. Therefore, by (2),
l 6∈ A, i.e.,2265

(22) not l is true in A.

Since rphi is a proper disjunctive rule, (21) and (22) imply rR
phi(A) is not empty

and contains exactly one rule, denoted by ralogR. By definition of A log reduct
and auxiliary reduct, head(ralogR) = head(rar). By (4) and (22), body(ralogR) =
body(rar), which, together with (19), implies that C satisfies head(ralogR) and thus2270

head(rar).

76

Case 2: rphi is a set introduction rule. Let head(rphi) be p ⊆ {X : q(X)}. Let rar
be of the form:

(23) or{t:q(t)∈B}p(t)← body(rar).

We first show that2275

(24) head(rphi) is true in A.

Assume it is not the case, i.e.,

(25) head(rphi) is not true in A.

We now show

(26) rR
phi(A) is not empty.2280

Assume (26) is false. By (21), (22) and the definition of A log reduct, that rR
phi(A)

is empty implies head(rphi) is true in A. This contradicts (25). Therefore, we have
(26). In the proof of case 1 we have already shown that the body of any rule of
rR

phi(A) is the same as body(rar). By (25) and definition of set introduction reduct,
rR

phi(A) contains a rule of the form← body(rar). Since C satisfies body(rar) (19)2285

, it does not satisfy the rule, contradicting that C satisfies ΦR
α(A) (17). There,

assumption (25) is false and we have (24).

This implies that rR
phi(A) consists of rules

(27) p(t)← body(rar) for every p(t) ∈ A.

Let p(t̄) ∈ A. Since C satisfies rR
phi(A) (17) we have that (19) and (27) imply2290

(28) p(t̄) ∈C.

Since the head of rar is true in A and p(t̄) ∈ A,

(29) q(t̄) ∈ body(rar)

by definition of set introduction reduct. Therefore, (19) and (29) imply

(30) q(t̄) ∈C.2295

By (2), C ⊂ A implies C∩ S ⊆ B. Hence, (30) implies q(t̄) ∈ B. Together with
(28), it implies C satisfies or{t:q(t)∈B}p(t), i.e., head(rar) (23).

Therefore, C satisfies B∪AR(Φα ,B). But since, by (18), C is a proper subset of A
this contradicts A being an answer set of B∪AR(Φα ,B), and hence (16) is true.

By the definition of answer set, and statements (7) and (16) we have that A is an2300

answer set of B∪Φα , which completes the proof of the lemma. �

77

Proposition 4 (Stratification). If an A log program Π is stratified then it is con-
sistent.

Proof of the proposition. Let ‖ ‖ be a leveling stratifying Π with maximal ordinal
λ and Πα and Φα be as in definition 18. The proof consists of two parts: con-2305

structing a sequence Aα of sets of regular atoms of levels not exceeding α and
proving that Aα is an answer set of Πα . In what follows we use the following
notation:

A<α =de f

{
Aα−1 if α is zero or a successor ordinal,⋃

β<α Aβ if α is a limit ordinal.

Part one. Consider a program

Π<α =de f {r : r ∈Π and ‖ r ‖< α}.

It is easy to see that by the definition of Πα and Φα ,

(1) Πα = Π<α ∪Φα .2310

A sequence Aα is defined using recursion on ordinals. To limit the number of
cases in the inductive proof we start with A−1 = {}.
Case 1 of construction: α is 0 or a successor ordinal.
In this case

(1a) Π<α = Πα−12315

where Π−1 = {}. Consider a program A<α ∪AR(Φα ,A<α). By construction of

A<α ,

(2) the levels of atoms of A<α are less than α .

Hence, by Lemma 8, auxiliary reduct AR(Φα ,A<α) has an answer set. By Lemma
6,2320

(3) the level of heads of the rules of the auxiliary reduct is α .

This implies that the set S of atoms of levels less than α is a splitting set of A<α ∪
AR(Φα ,A<α), and, this, by the splitting set theorem,

(4) program A<α ∪AR(Φα ,A<α) has an answer set.

Hence, by (2), (3), and the supportedness property of ASP programs, levels of
atoms in such answer sets do not exceed α . This leads to the following definition.
Let

Aα be an answer set of A<α ∪AR(Φα ,A<α).

78

Case 2 of construction: α is a limit ordinal2325

In this case

(1b) Π<α =
⋃

β<α Πβ .

Consider a program A<α ∪AR(Φα ,A<α). As in the previous case we can use the
splitting set theorem together with Lemmas 6 and 8 to show that the program has
an answer set and that levels of members of these answer sets do not exceed α .
This time, let

Aα be an answer set of A<α ∪AR(Φα ,A<α).

Clearly, by construction, the levels of elements of Aα do not exceed α . This
completes the construction of the sequence.

Part Two: We use transfinite induction to show that for every −1≤ α ≤ λ ,2330

(5a) Aα is an answer set of Πα

and for every 0≤ α ≤ λ ,

(5b) A<α is an answer set of Π<α .

Base. Since A−1,A<0 = {} and Π−1,Π<0 = {} the base is obvious.

Inductive hypothesis: Assume that for every β < α , Aβ is an answer set of Πβ2335

and A<β is an answer set of Π<β .

We first show (5b).

If α is not a limit ordinal this follows immediately from inductive hypothesis,
(1a), and the definition of A<α .

Suppose now that α is a limit ordinal. By the definition of answer set, (5b) holds2340

iff

(6) A<α is an answer set of ΠR
<α(A<α).

By Lemma 5 and (1b) we have that

Π
R
<α(A<α) =

⋃
β<α

Π
R
β
(A<α).

By definition of A log reduct and clause (1b) of the definition of stratification, for
every β < α , ΠR

β
(A<α) = ΠR

β
(Aβ) thus

(7) ΠR
<α(A<α) =

⋃
β<α ΠR

β
(Aβ).2345

79

To prove (6) let us first show that

(8) A<α satisfies rules of ΠR
<α(A<α).

Let r ∈ΠR
<α(A<α) and assume that A<α satisfies the body of r.

Then, by (7), r ∈ ΠR
β
(Aβ) for some β < α . Since, by inductive hypothesis, Aβ

is an answer set of ΠR
β
(Aβ), we have that head(r) ∈ Aβ . By definition of A<α ,2350

head(r) ∈ A<α , which proves (8).

To show minimality assume that there is some proper subset X of A<α which
satisfies ΠR

<α(A<α). Since the program is positive, by (7), Xβ = {a : a ∈ X ,‖
a ‖< β} satisfies ΠR

β
(Aβ). Since α is a limit ordinal by the definition of A<α we

have that there is β0 < α such that Xβ0 is a proper subset of Aβ0 . But, since by the2355

inductive hypothesis, Aβ0 is an answer set of ΠR
β0
(Aβ0). This is impossible. Thus

A<α is a minimal set satisfying rules of ΠR
<α(A<α).

By definition of answer set, A<α is an answer set of ΠR
<α(A<α) and hence of Π<α .

This proves (8) and hence (6) and (5b).

Now let us prove (5a). Since Π is stratified, it is not difficult to check that the2360

set S of atoms of levels less than α is a splitting set of Πα = Π<α ∪Φα with Π<α

being the bottom and Φα being the top. By the definition of A<α , Aα ∩S = A<α

and hence, by the splitting set theorem (5a) holds iff

(9) A<α is an answer set of Π<α and Aα is an answer set of A<α ∪Φα .

But (9) holds by (5b) and the definition of Aα . This completes the proof of (5a)2365

and of the proposition. �

We need the definition of F-stratification (called aggregate stratification in
[27]) and a lemma to prove the result on the relation between A log and F log
on F-stratified ground programs.

Definition 20 (F log Answer Sets). Given an A F -compatible program P and2370

a set A of ground regular atoms we say that

• A is a model of P if all rules of P are satisfied by A.

• The F log reduct of P with respect to A, denoted by RF (P,A), is the program
obtained from P by removing every rule whose body contain an element not
satisfied by A.2375

80

• A is an F log answer set of P if A is a subset minimal model of RF (P,A).

Definition 21 (F-stratification). An A F -compatible program P is F-stratified if
there is a level mapping || || from the predicates of P to natural numbers, such
that for each rule r ∈ P and for each prediate a occurring in the head of r, the
following holds:2380

1. for each predicate b occurring in the body of r, ||b|| ≤ ||a||,
2. for each predicate b occurring in an aggregate atom of r, ||b||< ||a||, and
3. for each predicate b occurring in the head of r, ||b||= ||a||.

Lemma 10 (Answer Sets of a Program and Its Stratas). Given an A F -
compatible program P that is F-stratified with a level mapping, let Pi be the2385

ith strata with respect to the level mapping, Hai be the atoms occurring in the
head of Pi, and Πi = ∪ j≤iPj. For any set A of ground regular atoms, such that
A⊆∪∞

j=1Ha j, and Ai =∪ j≤i(Ha j∩A), A is an A log (F log respectively) answer
set of P iff for any i, Ai is an A log (F log respectively) answer set of Πi.

Proof.2390

For any i, by definition of Ai, we have

(1) Ai ⊆ Ai+1, and

(2) no atoms of Ai+1 \Ai occur in Πi.

a. =⇒: Assume A is an A log answer set. We have

(3) A is a minimal model of RA (P,A)A.2395

(4) RA (P,A)A = (∪ j=i
j=1RA (Pj,A)A)∪ (∪∞

j=i+1RA (Pj,A)A)
(let the latter be denoted by restPi)

= RA (Πi,A)A∪ restPi.

For any i, we will show that Ai is an answer set of Πi (17) by showing Ai is
a minimal model of RA (Πi,Ai)

Ai (16).

Since A (= Ai ∪ (A \Ai)) is a model of RA (P,A)A and no atoms of A \Ai
occur in Πi (by the definition of Ai), (4) implies2400

(5) Ai is a model of RA (Πi,A)A.

We next show Ai is minimal (14) by contradiction. Assume that there exists
B such that

81

(6) B⊂ Ai, and

(7) B is a model of RA (Πi,A)A.2405

For any rule r ∈ restPi, assuming

(8) B∪ (A\Ai) |= body(r),

we prove B∪ (A\Ai) |= head(r) (11).

Since B∪ (A \Ai) ⊆ A and there are no negative atoms or aggregate atoms
in r, (8) implies2410

(9) A |= body(r).

Since A is a model of restPi by (3) and (4), we have A |= r and thus (9)
implies

(10) A |= head(r). Since head(r) does not occur in Πi, A\Ai |= head(r),
and thus2415

(11) B∪ (A\Ai) |= head(r). Therefore,

(12) B∪ (A\Ai) |= restPi, which, together with (7) and (4), implies

(13) B∪ (A\Ai) |= RA (P,A)A.

By B ⊂ Ai (6) and Ai ⊆ A, we have B∪ (A \Ai) ⊂ A, which, together with
(13), contradicts that A is a minimal model of RA (P,A)A. Hence,2420

(14) Ai is a minimal model of RA (Πi,A)A.

Since no atoms A \ Ai occurs in Πi, RA (Πi,A) = RA (Πi,Ai), and
RA (Πi,Ai)

A = RA (Πi,Ai)
Ai . Therefore,

(15) RA (Πi,A)A = RA (Πi,Ai)
Ai , which, together with (14), implies

(16) Ai is a minimal model of RA (Πi,Ai)
Ai , i.e.,2425

(17) Ai is an A log answer set of Πi.

⇐=:

It can be verified that

(18) A =
⋃

∞
j=1 A j.

To show A is an answer set of Π, we show first show2430

(19) A is a model of RA (Π,A)A, and

(20) A is mi nimal.

82

For any r ∈ RA (Π,A)A, assume

(21) A satisfies body(r).

We will show that A |= head(r).2435

Let r′ ∈ RA (Π,A) be the rule from which r is obtained and r′′ ∈ Π from
which r′ is obtained. There is i such that r′′ ∈Πi. We know Ai is an answer
set of Πi.
By definition of aggregate reduct and reduct, (21) implies

(22) A |= body(r′′).2440

Hence, to show Ai |= body(r′′), we show

(23) for any l occurring in body(r′′), l ∈ Ai iff l ∈ A.

Since Ai ⊆ A, l ∈ Ai implies l ∈ A. Now we prove the other direction. As-
sume l ∈ A. By Proposition 1, there must be a rule r, at the level at most i,
supporting l. Hence l ∈ A∩

⋃
j≤i Ha j and thus l ∈ Ai.2445

By (22) and (23), Ai |= body(r′′). Since Ai is an answer set of Π, Ai satisfies
r′′ and thus, Ai |= head(r′′). Therefore, Ai |= head(r) and thus A |= head(r)
because Ai ⊆ A. As a result, (19) holds.

We next prove (20) by contradiction. Assume

(24) B⊂ A is a model of RA (Π,A)A.2450

We define Bi = ∪ j≤k(Ha j∩B). Since B⊂ A, there must be k such that

(25) Bk ⊂ Ak.

Similar to the proof of (23), one can show

(26) for any l occurring in the body of any rule of Πk, l ∈ Ak iff l ∈ A.

Hence, we can verify2455

(27) RA (Πk,A)A = RA (Πk,Ak)
Ak .

Since Πk ⊆Π, we have RA (Πk,A)A⊆ RA (Π,A)A. Therefore, (24) and (27)
imply that B is a model of RA (Πk,Ak)

Ak . We now show Bk is a model of
RA (Πk,Ak)

Ak . For any rule r ∈ RA (Πk,Ak)
Ak , assume Bk |= body(r). Since

there are only positive regular literals in body(r) and Bk ⊆ B, B |= body(r).2460

Since B satisfies r, B |= head(r). By definition of Bk, B ∩ head(r) ⊆⋃k
j=1(B∩Ha j) = Bk. Hence, Bk |= head(r). Therefore, Bk is a model

of RA (Πk,Ak)
Ak , contradicting that Bk ⊂ Ak and Ak is an answer set of

RA (Πk,Ak)
Ak . Therefore,

A is an A log answer set of P.2465

83

b. =⇒: Assume A is an F log answer set of P. We have

(28) A is a minimal model of RF (P,A).

(29) RF (P,A)=∪ j=i
j=1RF (Pj,A)∪ restPi, where restPi =∪∞

j=i+1RF (Pj,A).

Since no atoms of A\Ai occur in Πi, A = Ai∪ (A\Ai) and (28),

(30) Ai is a model of ∪ j=i
j=1RF (Pj,A), i.e., RF (Πi,A).2470

We prove that Ai is minimal (37) by contradiction. Assume

(31) B⊂ Ai, and

(32) B is a model of RF (Πi,A).

For any r ∈ restPi, assuming

(33) B∪ (A\Ai) |= body(r), we prove B∪ (A\Ai) |= head(r) (35).2475

Since r ∈ restPi, A |= body(r) (by F log reduct). By (28),

(34) A |= head(r). Since head(r) does not occur in Πi, it implies A\Ai |=
head(r), and thus

(35) B∪ (A\Ai) |= head(r). Hence,

(36) B∪ (A\Ai) |= restPi, which, together with (32) and (29), implies2480

B∪ (A \Ai) |= RF (P,A) which, together with B∪ (A \Ai) ⊂ A, contradicts
that A is a minimal model of RF (P,A) (28). Hence,

(37) Ai is a minimal model of RF (Πi,A).

Since no atoms of A \ Ai occurs in Πi, RF (Πi,A) = RF (Πi,Ai), which,
together with (37), implies2485

Ai is a minimal model of RF (Πi,Ai). Therefore, Ai is an F log answer set
of Πi.

⇐=: Similarly to the proof for the A log programs, we can show that

A is an F log answer set of P.
�2490

In the proof below, we use the following notations as defined in the lemma above:
Hai, Pi, Πi and Ai.

84

Proposition 5 (A log vs F log Semantics under F-stratification). If an A F -
compatible program P is F-stratified, then A is an A log answer set of P iff it is
an F log answer set of P.2495

Proof.

⇐=: Assuming

(38) A is an F log answer set of P,

we prove A is an A log answer set of P (79).

By (38) and Lemma 10,2500

(39) for any i, Ai is an F log answer set of Πi.

To prove (79), for any i(≥ 1), we prove Ai is an A log answer set of Πi by induc-
tion on i.

Base case: i = 1. Ai is an A log answer set of Πi because Πi contains no aggregate
e-atoms.2505

Inductive hypothesis: for any number n > 1, we assume

(40) for any k such that 1≤ k < n, Ak is an A log answer set of Πk.

We will prove that An is an A log answer set of Πn (77).

We first prove An is a model of RA (Πn,An)
An (52).

For any rule r′′ ∈ RA (Πn,An)
An , assuming2510

(41) An |= body(r′′),
we prove An |= head(r′′) (50).

Since r′′ ∈ RA (Πn,An)
An , there exists a rule r ∈ P from which r′′ is obtained after

the aggregate reduct and the classical reduct. Let r be of the form

(42) head(r) :- posReg(r), negReg(r), aggs(r).2515

posReg, negReg and aggs denotes the regular literals belonging to r, the regular
literals prefixed with not belonging to r and the aggregate atoms of r.

Since r′′ ∈ RA (Πn,An)
An .

(43) An |= aggs(r), and

(44) An |= negReg(r).2520

By (42), the form of r′′ is

85

(45) head(r) :- posReg(r), ∪agg∈aggs(r)ta(agg,An).

By (41),

(46) An |= posReg(r), which, together with (44) and (43), implies the existence
of rule r′ ∈ RF (Πn,An) which is of the same form as r:2525

(47) head(r) :- posReg(r), negReg(r), aggs(r), and

(48) An |= body(r′), which, together with (47) and An |= r (by (38)), i.e., An |= r′,
implies

(49) An |= head(r′).

By (45) and (47), head(r′) = head(r′′). So, (49) implies2530

(50) An |= head(r′′), which implies

(51) An |= r′′. Therefore,

(52) An is a model of RA (Πn,An)
An .

We next show An is minimal (76) by contradiction. Assume there exists B such
that2535

(53) B⊂ An, and

(54) B is a model of RA (Πn,An)
An .

We note

(55) An \Han = An−1 by the definition of An.

Since An is an F log answer set of Πn (39), (53) implies that there is some rule r2540

of RF (Πn,An) which is not satisfied by B, i.e.,

(56) B |= body(r), and

(57) B 6|= head(r).

Since r ∈ RF (Πn,An), r ∈Πn. Let r be of the form:

(58) head(r) :- posReg(r), negReg(r), aggs(r).2545

Since r ∈ RF (Πn,An),

(59) An |= posReg(r),

(60) An |= negReg(r), and

(61) An |= aggs(r).

86

(59) to (61) imply that there is a rule r′′ ∈ RA (Πn,An)
An which is obtained from2550

r. Rule r′′ is of the form:

(62) head(r) :- posReg(r), ∪agg∈aggs(r)ta(agg,An).

We now prove an intermediate result An−1 = B\Han (68).

Since B⊂ An (53) and An \Han = An−1 (55),

(63) B\Han ⊆ An−1.2555

By definition of Πn and that B is a model of RA (Πn,An)
An (54),

(64) B is a model of RA (Πn−1,An)
An .

Since atoms of Han do not occur in Πn−1, (64)

(65) B\Han is a model of RA (Πn−1,An)
An = RA (Πn−1,An−1)

An−1 (because no
atoms of An \An−1 occur in Πn−1).2560

By induction hypothesis, An−1 is an A log answer set of Πn−1. Therefore,

(66) An−1 is a minimal model of RA (Πn−1,An−1)
An−1 , which, together with (65),

implies

(67) (B\Han) 6⊂ An−1, which together with (63), implies

(68) An−1 = B\Han.2565

We next prove B |= ∪agg∈aggs(r)ta(agg,An) (73).

Since r ∈Πn, by definition of Han, for any agg ∈ aggs(r), we have

(69) Base(agg)∩Han = {}. Therefore,

(70) ta(agg,An) = ta(agg,An \Han)
= ta(agg,An−1) because An \Han = An−1 (55)
= ta(agg,B\Han) because An−1 = B\Han (68)
= ta(agg,B) by (69).

Hence,2570

(71) ta(agg,An) = ta(agg,B). Since B |= ta(agg,B), we have

(72) B |= ta(agg,An). Hence,

(73) B |= ∪agg∈aggs(r)ta(agg,An).

By B |= body(r) (56),

(74) B |= posReg(r).2575

87

(74) and (73) imply the body of rule r′′ (62) is satisfied. Since B is a model of
RA (Πn,An)

An (54), B |= r′′. Therefore, B |= head(r′′), i.e.,

(75) B |= head(r) because head(r′′) = head(r), which contradicts B 6|= head(r)
(57). Hence,

(76) An is a minimal model of RA (Πn,An)
An . Therefore,2580

(77) An is an A log answer set of Πn. So,

(78) For any i≥ 1, Ai is an A log answer set of Πi.

By Lemma 10, (78) implies

(79) A is an A log answer set of P.

⇐=: this is a special case of the results in [41, 42]. �2585

We next prove the stability result.

Proposition 6 (Stability of Arithmetics). Let f be an aggregate name, S a set
expression, y an integer and � an arithmetic relation. Program P2 obtained from
program P1 by replacing a rule

head← body, f (S)� y

by
head← body, f (S) = Z,Z� y.

is strongly equivalent to P1.

Proof.
We will show that for any program P, P∪P1 and P∪P2 have the same answer
sets, i.e., for any A, A is an answer set of Π1 iff A is an answer set of Π2. Let2590

Π1 = P∪P1 and Π2 = P∪P2. Rule head← body, f (S)�y of P1 is denoted by r1,
and head← body, f (S) = Z,Z� y is denoted by r2.

Consider three cases: f (S)� y is undefined, false and true in A.

Case 1: f (S)� y is undefined in A. No rule of aggregate reduct RA (Π1,A) is
obtained from r1 because f (S)� y is undefined in A. Similarly, no rule of aggre-2595

gate reduct RA (Π2,A) is obtained from r2. Since the Π1 and Π2 differ only on r1
and r2, RA (Π1,A) = RA (Π2,A). Hence, RS (RA (Π1,A),A) = RS (RA (Π2,A),A)
(one can verify that for any program, its answer sets do not depend on the order

88

of applying the aggregate and set introduction reduct). Hence A is an answer set
of Π1 iff A is an answer set of Π2.2600

Case 2: f (S)� y is false in A. No rule of aggregate reduct RA (Π1,A) is ob-
tained from r1. If no rule of aggregate reduct RA (Π2,A) is obtained from (a
ground instance of) r2, the proof is the same as Case 1. Assume there is such
a rule r. It will contain f (S) = z,z� y. By definition of aggregate reduct,
f (S) = z is true. (Otherwise, r does not exist.) Hence, z� y is false. (Oth-2605

erwise, f (S)� y is true, contradicting assumption of Case 2.) By definition of
set introduction reduct, any rule of RS (RA (Π2,A),A) obtained from r2 contains
z� y. Since z� y is false, such rule is useless. Let Π′ = RS (RA (Π2,A),A)\{r ∈
RS (RA (Π2,A),A) : r is obtained from r2}. One can verify that Π′ has the same
answer sets as RS (RA (Π2,A),A). Since Π′ = RA (RS (Π1,A),A), A is an answer2610

set of Π1 iff A is an answer set of Π2.

Case 3: f (S)� y is true in A. Let Q1 be the set of rules of RA (RS (Π1,A),A)A

that are obtained from r1, and Q2 the set of rules of RA (RS (Π2,A),A)A that are
obtained from r2. Since f is a function and f (S)� y is true in A, there is only one
z such that f (S) = z and z� y is true. One can verify that rules in Q1 are identical2615

to those in Q2 except that the body of the latter contains z� y while that of the
former does not. One can verify that Q1 is strongly equivalent to Q2. Hence,
RA (RS (Π1,A),A)A and RA (RS (Π2,A),A)A have the same answer sets. Hence,
A is an answer set of Π1 iff A is an answer set of Π2.

In summary, we complete the proof. �2620

Proposition 7 (Complexity of A log Programs). The problem of checking if a
ground atom a belongs to all answer sets of an A log program is ΠP

2 complete.

Proof: Given a ground atom a, it is a cautious consequence of an A log program
Q if it is true in every answer set of Q. We use cautious reasoning over Q to
denote the problem of checking is a is a cautious consequence of Q.2625

First, cautious reasoning over programs without set atoms is ΠP
2 hard by [78].

We next show that the cautious reasoning problem for A log programs belongs to
ΠP

2 . For an A log program Q and a ground atom a, the complementary problem
is to check if there exists an answer set S of Q such that a /∈ S. A guess of a set
S of literals can be verified with an NP oracle: Q′ = RA (RS (Q,S),S)S can be2630

calculated in polynomial time. Testing if S is a minimal model of Q′ is in co-NP
[79] and hence decidable with one query to an NP oracle. Clearly checking if a is
not true in Q is polynomial.

89

Therefore cautious reasoning over A log programs is ΠP
2 complete. �

Proposition 8 (Complexity of A log Programs without Disjunctions). The2635

problem of checking if a ground literal l belongs to all answer sets of an A log
program without disjunctions is coNP complete.

Proof. The complementary problem is: given a literal l and a program Π, checking
the existence of an answer set S of Π such that p 6∈ S. We will show the comple-
mentary problem is in NP. By [45], checking the existing of an answer set of Q2640

without non-aggregate set atoms is NP-complete. We next show that checking
a given set a solution of the complementary problem can be done in polynomial
time. Let S be a set of literals such that p 6∈ S. RA (RS (Q,S),S)S can be obtained
in polynomial time. It is disjunction, negation and aggregate free, and thus its
unique answer set S1 can be obtained in polynomial time. The complementary2645

problem can be answered by comparing S and S1 in polynomial time. Hence, the
complementary problem is in NP, and thus the proposition holds. �.

Proposition 9. Let Π be a core S log program. A set A is an S log answer set of
Π iff it is an S-answer set of Π.

Proof. For a positive normal logic program P (i.e., a program without not, disjunc-2650

tion or set atoms), we use TP to denote the standard one step fixpoint operator.

=⇒: Since A is an S-answer set of Π, let RA (Π,A) be an S-reduct of Π wrt A such
that A is the least fixpoint of RA (Π,A)A. For any aggregate atom occurrence agg
in Π that is true in A, we use γ(agg) to denote the regular atoms used to replace
agg in the S-reduct.2655

In the following, for any number n, we use I′n to denote KΠ
A ↑ n and I′′n to denote

TRA (Π,A)A ↑ n.

We first show I′′n ⊆ I′n by induction on n. The base case of n = 0 holds. We
assume for any n ≥ 1, I′′n−1 ⊆ I′n−1. We will prove I′′n ⊆ I′n. For any a ∈ I′′n , we
will show a ∈ I′n (90). Since a ∈ I′′n , there exists a rule r′′ of RA (Π,A)A such that2660

a = head(r′′) and

(80) I′′n−1 |= body(r′′).

Since r′′ ∈ RA (Π,A)A, there exists r ∈ Π such that r′′ is obtained from r, and we
have A |= aggs(r) and

(81) A |= neg(r), which implies that2665

90

there exists a rule r′ ∈ AΠ such that r′ is obtained from r.

For any agg ∈ aggs(r), we prove (I′n−1,A) |= agg (89), i.e., show 〈B,Base(agg)\
A〉, where B = I′n−1∩A∩Base(agg), is an aggregate solution of agg. By definition
of aggregate solution, for any S such that

(82) B⊆ S and S∩ (Base(agg)\A) = {},2670

we need show S |= agg. Since γ(agg) is a minimal guarantee support of agg
wrt A, γ(agg) is a subset of A and of Base(agg). Therefore, γ(agg) ⊆ I′′n−1 ∩
A∩Base(agg) because γ(agg) ⊆ body(r′′) and (80)). By induction hypothesis,
I′′n−1 ⊆ I′n−1, and thus we have

(83) γ(agg)⊆ I′n−1∩A∩Base(agg) = B.2675

Since γ(agg) is a minimal guarantee support of agg wrt A,

(84) for any set S1 such that γ(agg)⊆ S1 ⊆ A, S1 |= agg.

Consider two cases: S⊆ A and A⊂ S.

Case 1: S ⊆ A. By (82) and (83), γ(agg) ⊆ S. Therefore, by (84) and S ⊆ A,
S |= agg.2680

Case 2: A⊂ S. We show, by contradiction,

(85) (S\A)∩Base(agg) = {}.

Assume (S\A)∩Base(agg) 6= {}. There exists x ∈ (S\A)∩Base(agg), i.e.,

(86) x ∈ S,

(87) x 6∈ A, and2685

(88) x ∈ Base(agg).

By (86) and (88), x∈ S∩Base(agg). Therefore, by (87), S∩(Base(agg)\A) 6= {},
contradicting (82). By (84), A |= agg, which, together with A⊂ S and (85), implies
that S |= agg.

In summary,2690

(89) for any agg ∈ aggs(r), (I′n−1,A) |= agg.

By (80), I′′n−1 |= pos(r) and thus I′n−1 |= pos(r) because I′′n−1 ⊆ I′n−1. Since pos(r)
contains no aggregate atoms, (I′n−1,A) |= pos(r). Together with (89), it implies
that (I′n−1,A) |= body(r′). Therefore, by definition of KΠ

A ,

(90) a ∈ I′n. Therefore,2695

91

(91) I′′n ⊆ I′n and thus l f p(TRA (Π,A)A)⊆ l f p(KΠ
A).

Hence,

(92) A⊆ l f p(KΠ
A).

We next show

(93) KΠ
A (A) = A.2700

We first show KΠ
A (A) ⊆ A (95). For any a ∈ KΠ

A (A), there is a rule r′ ∈ AΠ such
that a = head(r′) and

(94) (A,A) |= body(r′).

Let r be the rule of Π from which r′ results. r′ ∈ AΠ implies A |= neg(r). By (94),
A |= aggs(r). Therefore, there is a rule r′′ ∈ RA (Π,A)A which is obtained from r.2705

For all agg occurring in r, γ(agg) ⊆ A. So, (94) implies A |= body(r′′) and thus
a ∈ TRA (Π,A)A(A) = A. So,

(95) KΠ
A (A)⊆ A.

We next show A ⊆ KΠ
A (A) (97). For any a ∈ A = TRA (Π,A)A(A), there is a rule

r′′ ∈ RA (Π,A)A such that a = head(r′′) and2710

(96) A |= body(r′′).

Let r be the rule of Π from which r′′ results. Since r′′ ∈ RA (Π,A)A, A |= neg(r).
Therefore, there is a rule r′ ∈ AΠ which is obtained from r. For any aggregate
atom agg ∈ aggs(r), A |= agg because r′′ ∈ RA (Π,A)A. So, (A,A) |= agg. (96)
implies (A,A) |= pos(r′). Hence, (A,A) |= body(r′) and thus a ∈ KΠ

A (A). So,2715

(97) A⊆ KΠ
A (A).

In summary, (93) holds. Therefore l f p(KΠ
A) ⊆ A, which, together with (92), im-

plies A = l f p(KΠ
A). Therefore, A is an S log answer set of Π.

⇐=: Since A is an S log answer set,

(98) A = l f p(KΠ
A).2720

We now construct an S-reduct of Π wrt A: RA (Π,A). For any aggregate atom
agg occurring in a rule r of Π whose body is satisfied by A, let k be the least
number such that (I′k,A) |= agg. Since A |= agg, such k must exist. Let B =
I′k∩A∩Base(agg). 〈B,Base(agg)\A〉 is an aggregate solution of agg. Hence, for
any S such that B⊆ S and S∩ (Base(agg)\A) = {}, S |= agg. So, for any S such2725

that B ⊆ S and S ⊆ A, S |= agg. Therefore, there must be C ⊆ B such that C is a

92

minimal guarantee support of agg wrt A. Let γ(agg) =C. For aggregate atom agg
occurring in rules of Π whose body contains not l and A |= l or agg is not satisfied
by A, γ(agg) is not defined. However, these rules will be removed in producing
RA (Π,A)A.2730

We now show I′n = I′′n by induction on n. The base case of n = 0 holds. For any
n≥ 1, we assume I′n−1 = I′′n−1 and will prove I′n = I′′n below.

We first show I′n ⊆ I′′n (101). For any atom a ∈ I′n, there exists r′ ∈ AΠ such that
a = head(r′) and

(99) (I′n−1,A) |= body(r′).2735

Since r′ ∈ AΠ, there exists r ∈ Π such that r′ is obtained from r and A |= neg(r).
(99) implies (I′n−1,A) |= aggs(r) which in turn implies A |= aggs(r). Therefore,
there exists r′′ ∈ RA (Π,A)A such that r′′ is obtained from r.

By (98) and the monotonicity of KΠ
A , I′n−1 ⊆ A. For any agg ∈ aggs(r), (99)

implies (I′n−1,A) |= agg, which implies I′n−1 |= agg. By the construction of γ and2740

monotonicity of KΠ
A , γ(agg)⊆ I′n−1. Hence,

(100) I′n−1 |= γ(agg).

By (99), I′n−1 |= pos(r), which, together with (100), implies I′n−1 |= body(r′′),
which, together with the inductive hypothesis I′n−1 = I′′n−1, implies I′′n−1 |=
body(r′′). Since head(r′′) = head(r′) = a, by the definition of I′′n , a ∈ I′′n . There-2745

fore,
(101) I′n ⊆ I′′n .

Since the proof of I′′n ⊆ I′n (91) in the necessary condition does not depend on any
specific γ . So, the same proof applies to show I′′n ⊆ I′n which, together with (101),
implies I′n = I′′n . Hence (98) implies that A is the least fixpoint of RA (Π,A)A too.2750

Therefore, A is an S-answer set of Π. �

93

	Introduction
	Sets of Alog
	Aggregates of Alog
	Syntax of Aggregates
	Semantics of Aggregates

	Expanding Alog by a Subset Relation
	Syntax and Semantic of Alog
	Syntax
	Semantics
	Programs without Set Introduction Rules
	Programs with Set Introduction Rules

	Properties of Alog Programs
	Basic Properties
	Splitting an Alog Program
	Stratification of A-log Programs
	Definition of Stratification and a Consistency Result
	Discussion of the Definition of Stratification
	Stratifications in Alog and Flog – a Comparison

	Stability Condition
	Complexity

	An Application of Additive Reduct
	Syntax and Semantic of Slog
	Additive Reduct Based Definition of Core Slog and Its Extension

	Related Work
	Conclusion
	Acknowledgment

