
Effective Reasoning Systems for ASP Related Paradigms

by

Edward Wertz, B.S.

A Dissertation

in

Computer Science

Submitted to the Graduate Faculty
of Texas Tech University in

Partial Fulfillment of
the Requirements for

the Degree of

DOCTOR OF PHILOSOPHY

Approved

Yuanlin Zhang
Chair of Committee

Michael Gelfond

Richard Watson

Mark Sheridan
Dean of the Graduate School

August, 2019

© 2019 Edward Wertz

Texas Tech University, Edward Wertz, August 2019

ACKNOWLEDGMENTS

I give sincere thanks and appreciation to Dr. Yuanlin Zhang for believing in me and

serving as my committee chair. I give thanks and appreciation to Dr. Michael Gel-

fond for his many conversations and guidance. To the many graduate students that

have helped me, thank you for your time and effort in helping me achieve milestones

along the way. To my wife and kids, I thank your for your patience and sacrifice of

time with me through this process.

ii

Texas Tech University, Edward Wertz, August 2019

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

ABSTRACT . v

1 INTRODUCTION . 1

2 CALM . 6

2.1 Basic Action Theory (BAT) 6

2.1.1 Sorted Signature . 6

2.1.2 Basic Action Theory (BAT) 8

2.1.3 Semantics of BAT . 11

2.2 Syntax and Semantics of ALM System Description 16

2.2.1 Syntax of ALM . 17

2.2.2 Semantics of ALM System Descriptions 22

2.3 Design Of CALM . 33

2.3.1 Background . 33

2.3.2 Translation . 35

2.3.3 Semantic Errors . 42

2.3.4 Reasoning System . 52

2.4 Implementation of CALM . 56

2.4.1 Parsing System Descriptions and Tasks 56

2.4.2 Modeling a Basic Action Theory 57

2.4.3 Error Checking and Reporting 58

2.4.4 Translation to SPARC . 62

2.4.5 System Usage . 69

3 ICLP . 70

3.1 Constraint Logic Programming (CLP) 72

3.1.1 CLP Program . 72

iii

Texas Tech University, Edward Wertz, August 2019

3.1.2 Queries and Derivation Trees 74

3.2 The Incremental Query Problem 77

3.2.1 Incremental Query . 77

3.2.2 The Incremental Query Problem And Solution 79

3.3 Records Of Computation . 79

3.3.1 Computation Trees and Paths Of Computation 79

3.3.2 Record Of Computation 82

3.4 IQ Transition Diagram . 83

3.4.1 IQ State Of Computation 83

3.4.2 IQ State Transitions . 85

3.4.3 IQTD Path . 94

4 CONCLUSION AND FUTURE WORK 97

4.1 CALM Conclusion . 97

4.2 CALM Future Work . 97

4.3 ICLP Conclusion . 98

4.4 ICLP Future Work . 99

BIBLIOGRAPHY . 100

APPENDICES . 104

A ALM Grammar in ANTLR4 . 104

B CALM User and Developer Manual . 121

C IQTD Proofs . 129

iv

Texas Tech University, Edward Wertz, August 2019

ABSTRACT

This dissertation focuses on improving the effectiveness of two Answer Set Pro-

gramming (ASP) related paradigms. The first paradigm is ALM, a recent action

language that allows the modular specification of ontologies and state transition dia-

grams to model actions and their effects in finite dynamic domains. Currently there

is no publicly available compiler or reasoning system which accepts ALM System

Descriptions as input. In this dissertation we describe and implement CALM, a com-

piler and reasoning system that translates ALM System Descriptions to SPARC,

a variant of ASP . CALM enables the development of knowledge libraries and the

investigation of best practices in modeling with ALM.

One future extension of ALM is to incorporate elements of action language

H which enable reasoning about continuous change over time. In order to reason in

continuous domains, programs in H are translated to AC(C), an extension of ASP to

include constraint logic programming (CLP) reasoning and query answering in con-

tinuous domains. Our second area of focus is improving the effectiveness of the

CLP algorithm used in AC(C) solvers. AC(C) solvers extend ASP solvers with an

incrementally changing query to the CLP program derived from the AC(C) program.

Current solvers restart CLP reasoning from scratch when the query changes, leading

to redundant computation in the search for answers to the portions of the query that

did not change. In this dissertation we formalize the incremental query problem and

provide an incremental algorithm that reuses the solutions of previous queries in the

search for answers to the modified query.

v

Texas Tech University, Edward Wertz, August 2019

CHAPTER 1

INTRODUCTION

This dissertation focuses on improving the effectiveness of two Answer Set Pro-

gramming (ASP)[17, 16] related paradigms. The first paradigm is ALM[24], a re-

cent action language that allows the modular specification of ontologies and state

transition diagrams to model actions and their effects in finite dynamic domains.

Currently there is no publicly available compiler or reasoning system which accepts

ALM System Descriptions as input. In this dissertation we describe and implement

CALM, a compiler and reasoning system that translates ALM System Descriptions

to SPARC[2, 1], a variant of ASP . CALM enables the development of knowledge

libraries and the investigation of best practices in modeling with ALM.

One future extension ofALM is to incorporate elements of action languageH[7, 6]

which enable reasoning about continuous change over time. In order to reason in

continuous domains, programs in H are translated to AC(C)[35, 36, 18], an exten-

sion of ASP to include constraint logic programming (CLP)[25, 26] reasoning and

query answering in continuous domains. Our second area of focus is improving the

effectiveness of the CLP algorithm used in AC(C) solvers. AC(C) solvers extend

ASP solvers with an incrementally changing query to the CLP program derived

from the AC(C) program. Current solvers restart CLP reasoning from scratch when

the query changes, leading to redundant computation in the search for answers to the

portions of the query that did not change. In this dissertation we formalize the incre-

mental query problem and provide an incremental algorithm that reuses the solutions

of previous queries in the search for answers to the modified query.

A dynamic domain can be viewed as a transition diagram whose nodes are possible

states of the domain and whose arcs are actions in the domain. Action languages have

been used to conveniently specify the state transition diagram, but are restricted to

1

Texas Tech University, Edward Wertz, August 2019

small or medium sized domains [15]. ALM is a recently developed modular action

language that addresses larger domains [24]. It supports the modeling by the concepts

of modules, module hierarchy and library.

In this dissertation we present CALM – a compiler for ALM. It can trans-

late an ALM system description P into a SPARC program which specifies the

same state transition diagram of P . CALM also supports language for specifying

temporal projection and planning problems. CALM will translate a given system

description and the specification of a temporal projection or planning problem into a

SPARC program whose answer sets contain solutions to these problems.

CALM is the first compiler to support the complete syntax of ALM and per-

form semantic error checking prior to translation into an Answer Set Programming

(ASP) program. Prior to CALM, there is a prototype translator for ALM [24].

It only works with correct system descriptions (syntactically and semantically), It

does not implement all of the syntax of ALM, but covers its significant core. An-

other modular action language is MAD[29, 10, 30]. A MAD compiler can trans-

late a MAD program into a program in the language of the Causal Calculator

(CCALC)[19, 33] that can be used to carry out reasoning tasks.

One significant difference between ALM and MAD in modeling dynamic do-

mains is that the semantics of ALM are based on the “law of inertia” [34] which

says that “things normally stay the same” while MAD is founded on the causal-

ity principle which states that “everything true in the world must be caused”[14].

ALM andMAD also differ in their organization of modules, hierarchical ontologies,

and instantiation of objects[22, 10].

Other action languages of note include TAL − C [21] and Modular BAT [20].

While TAL−C provides its semantics in translation to CCALC, it does not present a

mechanism for specifying reusable modules of knowledge and formal organization of

a hierarchical ontology. Modular BAT has similar goals to ALM[22] but is based in

2

Texas Tech University, Edward Wertz, August 2019

the situation calculus. ALMalso contains a concept of basic action theory, but our

semantics are provided through ASP .

Due to translation of ALM System Descriptions to ASP , CALM can only sup-

port finite domains for sorts. In order to support to continuous domains and their

corresponding constraint relations, ALM System Descriptions must be translated to

a to a different language. The area of Constraint Answer Set Programming (CASP)

extends ASP with constraint programming techniques which are capable of han-

dling the real number domain and its constraint relations. The languages AC(C)[36],

CLINGCON [40], and EZCSP [3, 4] have all addressed the task in various ways. Both

EZCSP and CLINGCON are equivalent to AC−[28] a subset of AC(C).

The ACSolver for AC(C) incorporates both ASP and CLP solvers to handle the

regular and constraint portions of the program. The original ACSolver[35] executes

the CLP query from scratch when the query is extended or backtracking occurs.

The LUNA solver[37] improved the performance of the ACSolver by reusing the

answer to the previous query when the query to the CLP program was extended. If

backtracking occurred and the query was reduced, the query would be re-executed

against the CLP program. This re-execution of the query during backtracking per-

forms redundant computation. In order to eliminate this redundant computation,

the CLP solver must be modified to become an incremental solver which preserves

solutions to incrementally constructed queries for reuse when the query is decre-

mented during backtracking. For a CLP solver, both ACSolver and LUNA used

CLAM(R)[27], an extension of the WAM [44] to include arithmetic constraints over

real numbers. Our eventual goal is to provide a modified instruction set and imple-

mentation to the CLAM(R) solver which saves results of incrementally constructed

queries for later reuse. As a significant step towards that goal we have developed

a state transition diagram called IQTD which models the state of an incremental

solver as it searches the sld-derivation tree for the answers to an incremental query of

3

Texas Tech University, Edward Wertz, August 2019

a logic program. As our goal was to extend the capability of the CLAM(R) solver,

we did not investigate the use of tabled logic programs[5] and slg-resolution.

The ACSolver’s query to the CLP solver behaves as a stack. The query is ex-

tended by appending a new query increment as a result of unit propagation in the

ACSolver and the most recently appended query is removed when backtracking re-

moves the context which forced the query to be extended. Our criteria for reviewing

the existing approaches to incremental CLP solvers included the requirements that it

can be implemented as a modification to CLAM(R), support a stack like behavior

for query modification, and preserve all solutions discovered for each prefix of the

active query stack to eliminate redundant computation during backtracking.

In our literature review we investigated several approaches to incremental con-

straint logic programming which we could not apply given our criteria. The Re-

active CLP scheme[11, 12] did account for the query manipulating operations, but

the solution performs transformations of the sld-derivation tree which would require

significant redesign of the CLAM(R) solver and its proofs of correctness. Many in-

cremental query efforts provide their solutions as meta-interpreters implemented in

Prolog[42, 38] and their translation to a machine instruction set would not be straight

forward.

Our solution IQTD extends the work of Peter Stuckey’s Expanding query power in

constraint logic programming languages [31] and Pascal Van Hentenryck’s Incremen-

tal search in constraint logic programming [43]. Stuckey’s work saves every solution

encountered for a query and executes a query extension in the context of each saved

solution to derive solutions for the extended query. Stuckey did not address removal of

queries except to indicate re-execution of the remaining query would be needed. Van

Hentenryck’s work re-executes portions of a path of computation when constraints

are added or removed from the query, but his work does not address addition and

removal of atoms. Our solution combines both approaches. At every level of the

4

Texas Tech University, Edward Wertz, August 2019

incremental query we save all solutions discovered and their paths of computation for

future reuse after removal of queries.

5

Texas Tech University, Edward Wertz, August 2019

CHAPTER 2

CALM

2.1 Basic Action Theory (BAT)

In this chapter we recall the concept of a Basic Action Theory (BAT) [24] by first

introducing sorted signature and then the syntax and semantics of BAT.

2.1.1 Sorted Signature

The sorted signature of a BAT is Σ = 〈C,O,H, F 〉 where C, O, and F are sets of

strings over some fixed alphabet, and

1. C = Csp t Cpd t Cud where Csp = {nodes, obj constants, universe} elements

of Csp are called special sorts; Cpd = {boolean, integer, [m..n]}, where m,n are

natural numbers and m < n, and elements of Cpd are called pre-defined sorts,

and Cud is a set and elements of Cud are called user defined sorts. Elements of

C are called sort names in general.

2. O = Opd t Oud where Opd = {true, false, 0, 1,−1, 2, . . .}, and elements of Opd

are called predefined object constants, and Oud is a set and its elements are

called user defined object constants. Elements of O are called object constants.

3. H is a directed acyclic graph (V,E), where V ⊆ ({universe} ∪Cpd ∪Cud) ∪O.

H is called a sort hierarchy. Sometimes (C,O,H) is called an ontology. For

simplicity, we assume the graph has exactly one sink node.

(a) For any (c1, c2) ∈ E, where c1, c2 6∈ O, c2 is called parent of c1. For any

sort names c1 and c2, c1 is a subsort of c2 if c1 is a descendant of c2 in H.

(b) For any (o, c) where c 6∈ O an o ∈ O, o is called of sort c. For any parent

c2 of c1, if o is of sort c1, then o is of sort c2.

6

Texas Tech University, Edward Wertz, August 2019

4. F = Fpd t Fsp t Fud where

• Fpd = {+,−,×, /,≤,≥, <,>, . . .}, and elements of Fpd are called the pre-

defined functions.

• Fsp = FspH t FspD where

FspH = {link : nodes× nodes→ boolean;

is a : universe× nodes→ booleans;

instance : universe× nodes→ booleans;

subsort : nodes× nodes→ boolean;

has child, has parent, sink, source : nodes→ boolean}, and

FspD = {(domf : c1, . . . , cn → boolean) | (f : c1, . . . , cn → c) ∈ Fud}.

Elements of FspH are called sort hierarchy functions. Elements of FspD are

called domain functions. Elements of Fsp are called special functions.

• Fud is a set of functions, and its elements are called user defined functions.

• We assume a function f ∈ F of the form f : c1, . . . , cn → c where f

is a string, c and ci (i ∈ 1..n) are sort names. f is called the name of

the function, n is called the arity of f , c1, . . . , cn are called the sorts of

parameters or domain sorts of f , and c is called the range or range sort of

f . A domain sort or range sort of f is called a signature sort of f .

A variable and an object constant is a term. If f : c1 × c1, . . . , cn → c is an element

of F , and t1, . . . , tn are terms then f(t1, . . . tn) is a term.

Expressions of the form t1 = t2 and t1 6= t2, where t1 and t2 are terms, are called

literals. The former is also called atoms. We use standard shorthand and write t and

¬t instead of t = true and t = false.

Terms and literals not containing variables are called ground.

7

Texas Tech University, Edward Wertz, August 2019

2.1.2 Basic Action Theory (BAT)

We first introduce action signatures. An action signature is a sorted signature

Σ = 〈C,O,H, F 〉

where C includes the string actions, there is a node labeled by actions and an arc

labeled by 〈actions, universe〉 in H. In an action signature, its user-defined and

special function symbols are divided into three disjoint categories: attributes, statics,

and fluents. Both statics and fluents are further divided into basic and defined. The

latter are total boolean functions that can be defined in terms of the former.

We next introduce the definitions of axiom statements.

• A dynamic causal law is an expression of the form

occurs(a) causes f(x̄) = o if instance(a, c), cond (2.1)

where occurs, causes and if are keywords, a and o are variables or object

constants and x̄ is a sequence of terms, f is a basic fluent, c is the sort actions

or a subsort

of it, and cond is a collection of literals.

The law says that an occurrence of an action a of the sort c in a state satisfying

property cond causes the value of f(x̄) to become o in any resulting state.

• A state constraint is an expression of the form

f(x̄) = o if cond (2.2)

where

8

Texas Tech University, Edward Wertz, August 2019

o is a variable or an object constant, f is any function except a defined function,

and cond is a collection of literals.

The law says that the value of f(x̄) in any state satisfying condition cond must

be o.

Additionally, f(x̄) = o can also be replaced by the object constant false, in

which case the law says that there is no state satisfying condition cond.

• The definition of a defined function p is an expression of the form

p(t1) if cond1

. . .

p(tk) if condk

(2.3)

where t̄1, . . . , t̄k are sequences of terms, and cond1, . . . , condk are collections of

literals. Moreover, if p is a static then cond1, . . . , condk can not contain fluent

literals. Statements of the definition will be often referred to as its clauses.

The statement says that, for every Y , p(Y) is true in a state σ iff there is

1 ≤ m ≤ k such that statements condm and tm = Y are true in σ.

• An executability condition for actions is an expression of the form

impossible occurs(a) if instance(a, c), cond (2.4)

where impossible is a keyword, a is a variable or an object constant, c is the

sort actions or a subsort of it, and cond is a collection of literals and expressions

of the form occurs(t) or ¬occurs(t) where t is a variable or an object constant

of the sort actions.

9

Texas Tech University, Edward Wertz, August 2019

This law says that an occurrence of an action a of the sort c is impossible when

condition cond holds.

Dynamic causal laws and constraints will be sometimes referred to as causal laws. We

use the term head to refer to the literal immediately before if in (2.1) and (2.2), and

to any of the p(ti), 1 ≤ i ≤ k, in (2.3). We call body the expression to the right of

the keyword if in statements (2.1), (2.2), (2.4), or in any of the statements of (2.3).

Statements not containing variables will be referred to as ground.

An axiom statement or axiom is dynamic causal law, a state constraint, a definition

of a defined function, or an executability condition.

A basic action theory (BAT) is a pair (Σ, A) where Σ is an action signature, and A

is a set of axioms over this signature satisfying the following:

• If f is a basic fluent then

– A contains a state constraint:

domf (X0, . . . , Xn) if f(X0, . . . , Xn) = Y (2.5)

– No dynamic causal law of A contains an atom formed by domf in the head.

• If f is a defined fluent, a static, or an attribute then A contains the definition:

domf (X0, . . . , Xn) if f(X0, . . . , Xn) = Y (2.6)

• A contains definitions of special statics of the hierarchy given in terms of func-

10

Texas Tech University, Edward Wertz, August 2019

tions is a and link:

instance(O,C) if is a(O,C)

instance(O,C2) if instance(O,C1), link(C1, C2)

has child(C2) if link(C1, C2)

has parent(C1) if link(C1, C2)

source(C) if ¬has child(C)

sink(C) if ¬has parent(C)

subsort(C1, C2) if link(C1, C2)

subsort(C1, C2) if link(C1, C), subsort(C,C2)

(2.7)

2.1.3 Semantics of BAT

We introduce the semantics of BAT by first introducing the interpretation of a

sorted signature and then the model of a BAT.

2.1.3.1 Interpretation of Sorted Signatures

Definition 1. (Interpretation)

An Interpretation I of a sorted signature Σ = 〈C,O,H, F 〉 consists of

• A non-empty set |I| of strings called the universe of I.

• An assignment that maps

– every user-defined sort c of H into a subset I(c) of |I| such that

∗ if 〈c1, c2〉 ∈ H then I(c1) ⊆ I(c2) and

∗ I(c) =
⋃
{I(ci) : ci is a child of c in H}

– every object constant o of Σ into an element of |I| such that if〈o, c〉 ∈ H

then I(o) ∈ I(c);

11

Texas Tech University, Edward Wertz, August 2019

– every user-defined function symbol f : c1 × · · · × cn → c0 of Σ into a

(possibly partial) function I(f) : I(c1)× · · · × I(cn)→ I(c0);

– The special function is a into a function I(is a) : |I| × nodes→ booleans

such that for every x ∈ |I| and every sort c ∈ nodes, I(is a)(x, c) is true

iff c is a source node of H and x ∈ I(C);

– the special function link into function I(link) : nodes×nodes→ booleans

such that for every two sort nodes c1, c2, I(link)(c1, c2) is true iff 〈c1, c2〉 ∈

H;

– the special function domf for user-defined function f : c1×· · ·×cn → c0 into

function I(domf) such that for every x̄ ∈ I(c1) × · · · × I(cn), I(domf)(x̄)

is true iff x̄ belongs to the domain of I(f).

• On pre-defined symbols, I is identified with the symbol’s standard interpreta-

tions.

2

Let signature Σ and an interpretation I be given. I can be partitioned into two

parts: the fluent part consisting of the universe of I and the restriction of I on the

sets of fluents, and the static part consisting of the same universe and the restriction

of I on the remaining elements of the signature. The static part of I is referred to as

the static interpretation of Σ.

Let signature Σ and a collection of strings U in some fixed alphabet be given. ΣU

denotes the signature obtained from Σ by expanding its set of object constants by

elements of U , which we assume are of sort universe.

2.1.3.2 Models of BAT

Given an interpretation I of an action signature Σ, we define fluent part of it consisting

of the universe of I and the restriction of I on the sets of fluents. We define static part

12

Texas Tech University, Edward Wertz, August 2019

of I consisting of the same universe and the restriction of I to the remaining elements

of the signature. Sometimes we will refer to the latter as a static interpretation of Σ.

Given an action signature Σ and a collection U of strings in some fixed alphabet, we

denote by ΣU the signature obtained from Σ by expanding its set of object constants

by elements of U , which we assume to be of sort universe

Definition 2. (Pre-Model)

Let T be a basic action theory with signature Σ and U be a collections of strings over

some fixed alphabet. A static interpretation M of ΣU is called a pre-model of T (with

the universe U) if M(universe) = U and for every object constant o of ΣU that is

not an object constant of Σ, M(o) = o.

2

A pre-model M for basic action theory T defines a model, a state transition dia-

gram, TM . We define TM through its states and transitions.

Definition 3. (Program SM)

Let M be a pre-model of basic action theory T . By SM we denote the logic program

that consists of:

• rules obtained from the state consraints and definitions of T by replacing vari-

ables with the properly typed object constants of ΣM , replacing object con-

stants with their corresponding interpretations in M , removing the constant

false from the head of state constraints, and replacing the keywork if with←,

• The Closed World Assumption:

¬d(t1, . . . , tn)← not d(t1, . . . , tn).

for every defined function d : c1×· · ·×cn → booleans and ti ∈M(ci), 1 ≤ i ≤ n.

13

Texas Tech University, Edward Wertz, August 2019

2

Definition 4. (Program SI)

For every interpretation I of Σ with static part M , by SI we denote the logic program

obtained by adding to SM the set of atoms obtained from I by removing the defined

atoms.

2

Definition 5. (State)

Let M be a pre-model of a basic action theory T . An interpretation σ with static

part M is a state of the transition diagram TM defined by M if σ is the the only

answer set of the logic program Sσ.

2

Definition 6. (Program PM)

Program PM is obtained from a basic action theory T and pre-model M by

1. replacing variables by properly typed object constants of ΣM ;

2. replacing object constants by their corresponding interpretation in M ;

3. removing the object constant false from the head of state constraints;

4. replacing every occurrence of a fluent term f(t̄) in the head of a dynamic causal

law by f(t̄, I + 1);

5. replacing every other occurrence of a fluent term f(t̄) by f(t̄, I);

6. removing “occurs(a) causes” from every dynamic causal law and adding

occurs(a) to the body.

7. replacing “impossible occurs(a)” in every executability condition by

¬occurs(a);

14

Texas Tech University, Edward Wertz, August 2019

8. replacing occurs(a) by occurs(a, I) and ¬occurs(a) by ¬occurs(a, I);

9. replacing the keyword if by ←;

10. adding the Closed World Assumption:

¬d(t1, . . . , tn, I)← not d(t1, . . . , tn, I)

for every defined fluent d : c1,× · · · × cn → booleans and ti ∈M(ci), 1 ≤ i ≤ n;

11. adding the rule:

¬f(t1, . . . , tn)← not f(t1, . . . , tn)

for every defined static of the form f : c1× · · · × cn → booleans and ti ∈M(ci),

1 ≤ i ≤ n;

12. adding the Inertia Axiom:

domf (t1, . . . , tn, I + 1)← domf (t1, . . . , tn, I), not ¬domf (t1, . . . , tn, I + 1)

¬domf (t1, . . . , tn, I + 1)← ¬domf (t1, . . . , tn, I), not domf (t1, . . . , tn, I + 1)

for every basic fluent domf : c1×· · ·×cn → booleans, and ti ∈M(Ci), 1 ≤ i ≤ n;

13. adding the Inertia Axiom:

f(t1, . . . , tn, I + 1) = t← domf (t1, . . . , tn, I + 1), f(t1, . . . , tn, I) = t,

not f(t1, . . . , tn, I + 1) 6= t

for every basic fluent f : c1 × · · ·× → c0 not formed by dom, and ti ∈ M(ci),

1 ≤ i ≤ n, and t ∈M(c0).

2

15

Texas Tech University, Edward Wertz, August 2019

Definition 7. (Program P (M,σ0, a))

Let σ0 be a state of the transition diagram defined by a pre-model M , and let a ⊆

M(actions). By P (M,σ0, a) we denote the logic program formed by adding to PM

the set of atoms obtained from σ0 by replacing every fluent atom f(t1, . . . , tn) = t by

f(t1, . . . , tn, 0) = t and adding the set of atoms {occurs(x, 0) : x ∈ a}.

2

Definition 8. (Transition)

Let σ0 and σ1 be states of the transition diagram defined by a pre-model M and

let a ⊆ M(actions). The triple 〈σ0, a, σ1〉 is a transition of the transition diagram

defined by a pre-model M of a basic action theory T if program P (M,σ0, a) has an

answer set A such that f(t1, . . . , tn) = t ∈ σ1, iff

• f is an attribute or static and f(t1, . . . , tn) = t ∈ A, or

• f is a fluent and f(t1, . . . , tn, 1) = t ∈ A.

2

Definition 9. (Model)

A transition diagram TM defined by pre-model M of a basic action theory T is called

a model of T if it has a non-empty collection of states.

2

2.2 Syntax and Semantics of ALM System Description

The ALM paper presents ALM through examples. In this chapter we will make

a more explicit treatment of the syntax and semantics of ALM. The complete

ANTLR4 grammar is contained in Appendix A.

16

Texas Tech University, Edward Wertz, August 2019

2.2.1 Syntax of ALM

2.2.1.1 Syntax of ALM Theories

A sort declaration is of the form:

id1, . . . , idn :: sort1, . . . , sortm

attr1 : c1,1 × · · · × c1,k1 → c1,0

. . .

attrl : cl,1 × · · · × cl,kl → cl,0

where for i ∈ [1..n], j ∈ [1..m], idi and sortj are identifiers and called sort names and

idi is called a declared sort and a declared subsort of sortj. All attr1, . . . , attrl are

optional attribute function declarations. The syntax for attribute function declaration

is a shorthand: for i ∈ [1..m], j ∈ [1..l], the signature of the attribute function has

the form attrj : sorti × cj,1 × · · · × cj,kj → cj,0. If sortj is the only domain argument

to the signature, the attribute declarations have the form attrj : cj,0.

A sort declarations section is of the form

sort declarations sd1 . . . sdn

where sort declarations are reserved identifiers, sdi is a sort declaration.

We next define constant declaration which introduces a collection of named object

constants and indicates to which sorts they belong.

A constant declaration is of the form

id1, . . . , idn :: sort1, . . . , sortm

where for i ∈ [1..n], j ∈ [1..m], idi is called a declared constant and sortj is called a

declared sort of constant idi. A constant declarations section is of the form

constant declarations cd1 . . . cdn

where constant declarations are reserved identifiers, cdi is a constant declarations.

17

Texas Tech University, Edward Wertz, August 2019

A function declaration is of the form

[total] f : sort1, . . . , sortn → sort

where f is an identifier and called function name and for i ∈ [1..n], sorti is a sort

name. Each function declaration is also called a user-defined function signature. A

functions declaration section is of the form

function declarations

statics

basic bf1 . . . bfn1

defined bd1 . . . bdn2

fluents

basic ff1 . . . ffn3

defined fd1 . . . fdn4

where function declarations, statics, basic and defined are reserved words,

n1, · · · , n4 are numbers, and every bfi, bdi, ffi and fdi is a function declaration.

An axioms section is of the form

axioms a1 . . . an

where axioms is a reserved identifier, and ai is an axiom as defined in BAT.1

A module dependencies section is of the form

depends on M1, . . . ,Mn

where Mi is a module name (which will be defined later).

A module is of the form

module mname mdep sdec cdec fdec axioms

1The notion of literals is used in the definition of axioms in BAT. This notion can be redefined
using the terminologies here, but we do not repeat the definitions.

18

Texas Tech University, Edward Wertz, August 2019

where module is a reserved identifier, mname is an identifier and called a module

name, mdep is a module dependencies section, sdec is a sort declarations section,

cdec is a constant declarations section, fdec is a function declarations section, and

axioms is an axioms section.

A theory is of the form

theory tname m1 . . . mn

where theory is a reserved identifier, tname is an identifier and called a theory

name, and mi is a module.

2.2.1.2 Syntax of ALM Structures

A structure consists of constant definition, instance definition, instance schema

definition, and statics definition. Those concepts will be defined below in order.

A constant definition is of the form

id = groundterm

An instance definition is of the form

groundterm in sort.

An instance schema definition is of the form

19

Texas Tech University, Edward Wertz, August 2019

id(V1, . . . , Vn) in c where l1, . . . , lm

f1(t̄1) = V1

. . .

fn(t̄n) = Vn

where f1, . . . , fn are attribute functions de-

clared for c and its super sorts, V1, . . . , Vn

are variables, the sort of Vi is the range sort

of fi, l1, . . . , lm are literals, and t̄1, . . . t̄n are

vectors of terms. If a vector t̄i is empty, the

containing parenthesis () are removed.

A statics definition is of the form

l0 if l1, . . . , ln.

where l0 is a static function literal and

l1, . . . , ln are static literals.

A structure is of the form

structure sname consdef insdef statdef

where structure is a reserved identifier, sname is an identifier and called a struc-

ture name, consdef is a sequence of constant definitions, insdef is a sequence of

instance definitions and instance schema definitions, and statdef is a sequence of

statics definitions.

2.2.1.3 ALM System Descriptions

An ALM system description is of the form

system description name theory structure

20

Texas Tech University, Edward Wertz, August 2019

where system description are reserved identifiers, name is an identifier and called

a system description name, theory is a theory and structure is a structure.

2.2.1.4 Well Defined System Descriptions

In this dissertation, we consider only a special class of system descriptions. First,

we define the notion of sort dependency.

Definition 10. The Sort Dependency Graph of a System Description

Given a system description P with core BAT T = (Σ = 〈C,O,H = (V,E), F 〉, A),

the sort dependency graph is the minimal directed graph (V ′, E ′) such that V ′ ⊂ V

and E ′ is defined as follows:

• 〈c2, c1〉 ∈ E ′ where 〈c1, c2〉 ∈ E and c1 ∈ C.

• For any instance schema definition of P with the following form:

id(V1, . . ., Vn) in c1 (where l1, . . . , lm)?

f1(t̄1) = V1

. . .

fn(t̄n) = Vn

〈c1, c2〉 ∈ E ′ where c2, c2 6= c1, is user defined signature sort of some attribute

function fi (i ∈ [1..n]), or a user defined signature sort of a function occurring

in l1, . . . , lm, or occurs in any sort hierarchy functions that occurs in l1, . . . , lm.

• For any static function definition r in the structure of P such that c1 is a

signature sort of a function occurring in the head of r and c2 is a signature sort

of a function occurring in the body of r

A sort c2 depends on c1 if there is a path from c2 to c1 in (V ′, E ′).

2

21

Texas Tech University, Edward Wertz, August 2019

Definition 11. Well Defined System Descriptions

A system description P is well defined if its sort dependency graph is acyclic.

2

2.2.2 Semantics of ALM System Descriptions

In the following treatment of the semantics of ALM system descriptions, we assume

a single module theory is present. A multi-module theory can be flattened into a single

module [24].

An ALM system description P defines a BAT and its premodel(s).

2.2.2.1 Core BAT Defined by a System Description

Definition 12. The Core BAT Defined by the Theory of a System Description

Given a System Description P , the core basic action theory T = (Σ = 〈 C,O,H, F 〉,

A) defined by P ’s theory is as follows:

• C = Csp ∪ Cpd ∪ Cud where Csp and Cpd are the set of special sort names and

predefined sort names as previously defined for BAT, and Cud = {s | where s is

a declared sort in P},

• O = Opd∪Oud where Opd is the set of predefined constants as previously defined

for BAT and Oud = {o | where o is a declared constant in P},

• H = (V,E) is the directed acyclic graph such that the set of nodes V =

{universe, actions} ∪ Cpd ∪ Cud ∪ O and the set of edges E = Esp ∪ Epd ∪ Eud
where Esp and Epd are as defined previously for BAT and Eud = {〈v1, v2〉 |

either v1 ∈ Cud, v2 ∈ Cud ∪ {actions, universe} and v1 is a declared subsort of

v2 in P , or, v1 ∈ Oud, v2 ∈ Cud and v2 is a declared sort for constant v1 in P},

• F = Fsp ∪ Fpd ∪ Fud where Fpd is as previously defined for BAT, Fud = {f :

c1 × · · · × cn → c | f : c1 × · · · × cn → c is a user-defined function signature in

22

Texas Tech University, Edward Wertz, August 2019

P}, and the previous definition of Fsp for BAT is extended by the set {domf :

c1 × · · · × cn → booleans | f : c1 × · · · × cn → c ∈ Fud}, and

• A = Asp∪Aud where Asp are axioms from equations (2.5) to (2.7), and Aud = {a

| a is a user-defined axiom in P}.

2

Proposition 1. The core BAT defined by the theory of a system description is a

BAT.

Proof. By comparing the definition of BAT and Definition 12, we can verify that this

proposition holds.

2

2.2.2.2 Static Interpretations Defined by ALM System Descriptions

An ALM system description is designed to specify an interpretation. We focus

here on the static portion of the interpretation. The following diagram illustrates

the key components leading to a static interpretation: the signature defined by a

system description, the extended signature defined by such a description and the

establishment of the is a relation.

23

Texas Tech University, Edward Wertz, August 2019

Theory
…
constant declaration
o::sort

…

Structure
…
constant definition
id=groundterm

…
instance schema definition
id(X) in sort where li
attribute = X

…
statics definition

Signature
defined by P

System Description P

O (constants)

C (sorts)

H (sort
hierarchy)
object‐sort link
sort‐sort link

F (functions)

U
niverse U

defined by P

Extended
Signature
defined by P

O’ (constants)

C’ (sorts) = C

H’ (sort
hierarchy)
object‐sort link
sort‐sort link

F’ (functions)=F

Static
interpretation

We guess is_a
between a universe
element and a
source sort such
that all object‐sort
links (instance) are
derivable.

** All arrowed lines mean obtained from.
* Dependency exists between instance
schema, state constraints and statics def.

Due to the possible interactions among the instance schema definition, the state

constraints on static functions and the statics definitions, we will use an ASP program

to define the static interpretation specified by a system description.

Given an ALM system description P , let T = (Σ = 〈C,O,H, F 〉, A) be the core

BAT defined by the theory of P . We need the following predicates:

• universe(X) meaning X is an element of the universe U to be specified,

• constantInTheory(X) meaning X is a constant declared in the theory of P ,

• extendedConstants(X) meaning X is an extended constant, i.e., a constant

from constant declaration, constant definition or instance schema definition,

• I extendedConstants(X, V alue) meaning extended constant X is mapped to

V alue of universe U ,

• I sorts(o, c) meaning the interpretation of the sorts, i.e. o is an element of sort

c,

24

Texas Tech University, Edward Wertz, August 2019

• link constantInTheory(o, c) meaning that (o, c) ∈ H,

• link constantInStructure(o, c) meaning that (o, c) occurs in an instance schema

definition or a constant definition,

• link extendedConstant(o, c) meaning that an object sort edge (o, c) occurs ei-

ther in H or in structure,

• consInTheoryDef(id, groundterm) meaning that the id = groundterm occurs

in the structure,

• link(c1, c2) meaning that (c1, c2) ∈ H.

2.2.2.3 ASP Program Π1 for Universe and Extended Signature

We define Π1 as follows:

• Represent H from the core BAT of P .

%% 2-1 for every syntactic constant o, there is a sort for it. This is from H, i.e.,

for every (o, c) ∈ H,

link constantInTheory(o, c).

%% 2-2 for every (c1, c2) ∈ H where c1, c2 ∈ C

link(c1, c2).

% syntacticConstants from H

constantInTheory(X) :- link constantInTheory(X,C).

• Define syntactic constants from constant definition of the structure of P .

% the constant definition id = groundterm in structure is represented as

consInTheoryDef(id, groundterm).

25

Texas Tech University, Edward Wertz, August 2019

%% We introduce consInTheoryDefined(X) meaning syntactic constant X is

defined in structure

consInTheoryDefined(X) :- consInTheoryDef(X,Term).

• Define/Represent other user-defined elements of universe. They may be from

constant definition or instance (schema) definition in the structure, or from

constants not defined in the structure.

%% 3-1 for every constant definition id = groundterm such that the declared

sort of id is c,

link constantInStructure(groundterm, c).

%% 3-2 for every instance definition t in c

link constantInStructure(t, c).

%% 3-3 for every instance schema id(V 1, . . . , V n) in c where l1, . . . , lm (with)

fi(t̄i) = Vi, 1 ≤ i ≤ n.

link constantInStructure(id(V 1, . . . , V n), c) :-

l1, . . . , lm,

instance(t̄1, c̄11), . . . , instance(t̄n, ¯c1n),

instance(V 1, c21), . . . , instance(V n, c2n).

where c̄1i are the domain sorts of fi and c2i is the range sort of fi.

%% This schema also defines the attribute functions. For i ∈ 1..n,

fi(id(V 1, ..., V n), V i) :- link constantInStructure(id(V 1, . . . , V n), c).

% universe is all the instances in instance (schema) definitions in structure, i.e.,

link explicitUniverseConstants, and the syntactic constants not defined in the

structure.

universe(X) :- link constantInStructure(X,C).

26

Texas Tech University, Edward Wertz, August 2019

universe(X) :- constantInTheory(X), not consInTheoryDef(X).

• Extended constants of the extended signature with universe

% extendedConstants are the union of syntactic constants and explicit element

in universe

extendedConstants(X) :- constantInTheory(X).

extendedConstants(X) :- link constantInStructure(X,C).

2.2.2.4 ASP Program Π2 for Interpretation of Extended Constants, is a, and Sorts

• Map from extended constants to universe

% the map as defined in the constant definitions in structure

I extendedConstants(Id,Groundterm) :-

constantInTheory(Id),

consInTheoryDef(Id,Groundterm).

%% for element in the universe, it is mapped to itself

I extendedConstants(Id, Id) :- universe(Id).

• Object-sort links in the hierarchy on extended constants. Note that there is NO

object-sort link between a defined syntactic constants and any sort.

% build link between universe constants and sorts

%% 2-1 link between explicit universe constants and their sorts

link extendedConstant(O,C) :- link constantInStructure(O,C).

%% 2-2 link for H where syntactic constants are not defined in structure, i.e.,

mapped to themselves

link extendedConstant(O,C) :- link constantInTheory(O,C),

I extendedConstants(O,O).

27

Texas Tech University, Edward Wertz, August 2019

• Common axioms for BAT are useful for later definition of is a relation, e.g., the

definition of source sorts, subsorts etc.

%% 2-1 For every state constraint or definition that involve static functions

only, include ASP rules for it. (These rules correspond to axioms 2.2 and 2.3.)

%% 2-2 for every static definition in structure of P , include ASP rules for them.

• Define is a. Intuitively, is a is a relation relates any universe element to a

source sort such that all object sort links can be “derived”.

%% 2-1: if (o,c) is an “extended” link and c is source sort.

is a(O,C) :- link extendedConstant(O,C), source(C).

%% 2-2: if (o,c) is in “extended” link and c is NOT a source sort . We introduce

o into any leaf (source) subsort of c.

1{is a(O, SubC) : subsort(SubC,C), source(SubC)}1 :-

link extendedConstant(O,C), not source(C).

2.2.2.5 Pre-model Defined by a System be Description

Given a system description P , we call the program ΠA = Π1 ∪ Π2, where Π1

and Π2 are defined as above, the ASP program defined by P . Given P , let T = (Σ =

〈C,O,H, F 〉, A) be the core BAT defined by the theory of P . Σ is called the signature

defined by P .

Definition 13 (Universe and Extended Signature). A universe U defined by an

answer set S of Π is U = {x : universe(x) ∈ S}. An extended signature 〈C,O′, H ′, F 〉

defined by an answer set S of Π is

• Extended Constants: O′ = {o : extendedConstants(o) ∈ S},

• Sort hierarchy H ′ = (V,E) where V = O′ ∪ C, E = {(c1, c2) : link(c1, c2) ∈

S} ∪ {(o, c) : link extendedConstant(o, c) ∈ S}.

28

Texas Tech University, Edward Wertz, August 2019

2

Clearly, the extended signature defined by an answer set of Π is a sorted signature.

Let U and Σ′ = 〈C,O′, H ′, F 〉 be the universe and extended signature defined by an

answer set of Π. Note that Σ′ and ΣU share the same object constants. The difference

between Σ′ and ΣU is the difference between H ′ and H. Intuitively compared with

ΣU , Σ′ includes information on which constant of U belongs to which sort in its sort

hierarchy (the sort hierarchy of ΣU contains information only on constants of O but

not U).

Definition 14. The static interpretation M defined by an answer set S of Π is

• The universe of M is the one defined by S.

• The assignment M is defined as follows:

– For every c ∈ Cud, M(c) = {x : instance(x, c) ∈ S}.

– For every o1 such that extendedConstants(o1) ∈ S,

M(o1) = o2 such that I extendedConstants(o1, o2) ∈ S.2

– Each static user defined function f : c1 × · · · × cn → c0 ∈ Fud is mapped

into the possibly partial function M(f) : M(c1) × · · · ×M(cn) → M(c0)

such that, M(f)(M(t1), . . . ,M(tn)) = M(t) where f(t1, . . . , tn) = t ∈ S.

– The special function is a is mapped to the function M(is a): M(is a)(o, c)

is true iff is a(o, c) ∈ S.

– The special function link is mapped to function M(link): M(link)(c1, c2)

is true iff link(c1, c2) ∈ S.

– For every static function f ∈ Fud, the special function domf : c1×· · ·×cn →

booleans is mapped to M(domf) such that for every x̄ ∈ M(c0) × · · · ×

M(cn), M(domf)(t̄) is true iff domf (t̄) ∈ S.
2This is well defined: o2 exists and unique.

29

Texas Tech University, Edward Wertz, August 2019

• On predefined symbols, M is identified with the symbol’s standard interpreta-

tion.

2

Proposition 2. Let Σ be the signature defined by P and U the universe defined by

an answer set S of Π. A static interpretation M defined by S is a static interpretation

of ΣU .

Proof. Let Σ′ = (C ′, O′, H ′, F ′) be the extended signature defined by S. We will

first show that M is a static interpretation of Σ′, and then show that it is a static

interpretation of ΣU . Clearly M consists of only static information.

By the definition of interpretation (definition 1), M satisfies the clauses in defi-

nition 1 in a straightforward manner except the conditions on M(is a) and M(c) =⋃
{M(ci) : ci is a child of c}. Here we use the new definition of interpretation by

Gelfond [23].

1) We prove the condition on M(is a). For is a, we can verify M(is a) : universe×

nodes → boolean. Note that universe denotes U . We will show that for every

x ∈ universe and every sort c ∈ nodes, M(is a)(x, c) is true iff c is a source node of

H and x ∈M(c).

By definition 14, M(is a)(x, c) is true iff is a(x, c) ∈ S. We have two rules of Π

defining is a:

is a(O,C) :- link extendedConstant(O,C), source(C).

1{is a(O, SubC) : subsort(SubC,C), source(SubC)}1 :-

link extendedConstant(O,C), not source(C).

=⇒: Since is a(x, c) ∈ S, from the the two rules above, we have source(c) ∈ S

which implies that c is a source node (because of the axioms 2.7). Since is a(x, c) ∈ S,

axioms 2.7 implies that instance(x, c) ∈ S which implies that x ∈ M(c) by defini-

tion 14. Done.

30

Texas Tech University, Edward Wertz, August 2019

⇐=: Since x ∈ M(c), by definition 14, instance(x, c) ∈ S. Since c is a source

sort, there is no c1 such that link(c1, c). Hence, instance(x, c) ∈ S is supported by

the ASP rule of the first axiom in equation 2.7.

Therefore, is a(x, c) ∈ S. Done.

2) On M(c) =
⋃
{M(ci) : ci is a child of c}. We know M(c) = {x : instance(x, c)}

and for each child ci of c, M(ci) = {x : instance(x, ci)}. Since ci is a child of

c in H ′, link(ci, c) ∈ Π. By hierarchy axioms 2.7, instance(,c) is only defined by

instance(∗, ci). Therefore, M(c) =
⋃
{M(ci) : ci is a child of c}.

Finally, ΣU differs from Σ′ only by the sort hierarchy where the edges of latter is a

super set of the former. Hence, an interpretation of Σ′ is an interpretation of ΣU .

Therefore, M is a static interpretation of ΣU . 2

Definition 15. A static interpretation defined by a system description P is a static

interpretation defined by an answer set of the program defined by P . 2

Theorem 1. Given a system description P , let signature Σ and core BAT T be

defined by P . Let S be an answer set of Π, U and M are the universe and static

interpretation defined by S respectively. M is a pre-model of T with universe U .

Proof. Let Σ be (O,C,H, F) and M be a static interpretation of P . ΣU = (O ∪

U,C,H, F). O is the set of declared constants and predefined constants. We can

ignore predefined constants.

By definition 2 of pre-models, to show M is a pre-model of T with universe U , we

show 1) M is a static interpretation of ΣU , 2) M(universe) = U , and 3) for every

object constant o of ΣU that is not an object constant of Σ, M(o) = o.

1) holds by Proposition 2.

2) holds directly by the first clause of definition 14 of static interpretation defined by

an answer set of Π.

31

Texas Tech University, Edward Wertz, August 2019

3) for every object constant o of ΣU , if o 6∈ O, we show M(o) = o. Since o 6∈ O, we

do not have the following rule in Π

link constantInTheory(o, c).

Since Π has only one rule defining constantInTheory()

constantInTheory(X) :- link constantInTheory(X,C)

we have constantInTheory(o) 6∈ S. (1)

Since o ∈ O∪U , we have o ∈ U and thus universe(o) ∈ S. Since Π has the following

rule

I extendedConstants(Id, Id) :- universe(Id)

we have I extendedConstants(o, o) ∈ S. (2)

By Π, the rules defining universe() are

universe(X) :- link constantInStructure(X,C).

universe(X) :- constantInTheory(X), not consInTheoryDef(X).

Therefore, link constantInStructure(o, C) ∈ S for some sort C because of (1). By

the following rule of Π

extendedConstants(X) :- link constantInStructure(X,C)

we have extendedConstants(o) ∈ S, which, together with (2), implies that M(o) = o

by (the second subclause of the second clause of) definition 14. Now we complete the

proof of 3) and thus the proof of this theorem. 2

2.2.2.6 Semantics of a System Description

Definition 16. (Model of System Description)

Given a system description P , let Π be the program defined by P and T the core

BAT defined by P , and U and M the universe and static interpretation defined by

an answer set of Π. A model of P is a transition diagram TM defined by pre-model

M of T with universe U such that it has a non-empty collection of states. 2

32

Texas Tech University, Edward Wertz, August 2019

2.3 Design Of CALM

2.3.1 Background

2.3.1.1 SPARC

SPARC is a variant of ASP where the signature of the logic program is explicitly

described through providing a formal description of the sort hierarchy and providing

the sorted signature of each predicate used in the rules of the program.

Sort Definitions The sorts section occurs at the top of a SPARC program, begins

with the keyword sorts and is followed by a sequence of sort definitions. Each sort

definition has the following form:

#sort name = sort expression.

The complete syntax for describing sorts is available in the SPARCmanual. We

provide here the subset of syntax we use in CALM. Basic sort expressions include

enumerated sets of ground terms {id1, id2, ...}, integer ranges number1..number2, sort

names #sort name, and records record name(#sort1,#sort2, ...,#sortn). Complex

sort expressions incorporate set theoretic operators between simple sort expressions.

In our case we employ the + operator to perform union operations. A sort must be

defined before use in records and complex sort expressions.

Example Sort Section:

sorts

#fruits = {apples , bananas }.

#vegetables = {peas , carrots }.

#edibles = #fruits + #vegetables

+ pair(#fruits ,# vegetables).

Predicate Declarations The predicates section follows the sorts section, begins with

the keyword predicates and is followed by a sequence of predicate declarations. Each

33

Texas Tech University, Edward Wertz, August 2019

predicate declaration has the following form:

predicate name(#sort1,#sort2, . . . ,#sortn)

Example Predication Section:

predicates

prefer (#edibles , #edibles)

eat(# edibles)

available (# edibles)

satiated ()

Program Rules The rules section follows the predicate section, begins with the key-

word rules and is followed by a sequence of ASP rules over the predicates that have

been declared in the predicates section. A rule has the following form:

l1 or l2 or . . . or lk ← lk+1, . . . , lm, not lm+1, . . . , not ln.

For i ∈ [1..n], each li is either a predicate, its negation, or a relation over terms

or variables that have occurred within a predicate in the same rule.

Example Rules Section:

rules

satiated :- eat(X).

eat(X) :- prefer(X,Y), available(X), not -eat(X).

-eat(X) :- prefer(Y,X), available(Y), available(X).

-eat(X) :- not available(X).

available(pair(X,Y)) :- available(X), available(Y).

prefer(apples , bananas). prefer(peas , carrots).

prefer(pair(apples ,carrots), apples).

available(apples). available(bananas).

available(carrots).

34

Texas Tech University, Edward Wertz, August 2019

A solver will ground rules, substituting values for variables in accordance with the

predicate signatures and the sort definitions provided in their respective sections.

2.3.2 Translation

2.3.2.1 Algorithm

The steps of the algorithm are explained in detail in the following sections.

CALM Algorithm

input: an ALM system description P

output: a SPARC program ΠC

1. Parse P to verify that it is syntactically and

semantically correct and report any errors.

2. Construct the Core BAT T as defined by P .

3. Construct the static SPARC Program ΠM from T .

4. Obtain the answer sets AM of ΠM .

4.1 There must be exactly one answer set in AM .

5. Construct SPARC program ΠC from ΠM , AM , and T .

5.1 Each sort c is defined by {X : instance(X, c) ∈ AM}.

5.2 The predicates section is copied from ΠM .

5.3 The rules are copied from ΠM and extended with

rules translated from the non -static axioms in T .

We break the creation of the output program ΠC into two parts. First we construct

the static program ΠM which encodes the action signature ΣM where M is the model

defined by P . ΠM also contains all static axioms and static function definitions which

may influence the definition of instances for sorts. If more or less than one answer

set exists for ΠM , we report an error. If there is no answer set to the static program,

35

Texas Tech University, Edward Wertz, August 2019

then there is no possible transition diagram described by ΠC . It is more informative

to know that the sub-program ΠM failed than trying to discern this fact from ΠC

failing to have an answer set. Currently CALMdoes not support system descriptions

which define sort instance for non-source sorts in the hierarchy. Such programs have

multiple answer sets for the static program ΠM .

From our calculation of the answer set AM , we replace the definitions of the sorts

in ΠC with an enumeration of the instances indicated in AM . We believe the explicit

enumeration of each sort with its calculated instances helps to reduce the size of the

final ground program and saves some of the computation needed to calculate the sort

instances in ΠC .

Part of our selection of SPARC as a target for translation is its ability to represent

the sort hierarchy separate from the rules of the program. Its automated type checking

of rules based on predicate signatures has proved useful in catching errors during

development of CALM. While the current implementation of SPARC translates to

the DLV ASP solver, a future direct implementation of SPARC can utilize the sort

definitions and predicate signatures to optimize grounding and solver execution. If

happens, CALM will benefit from its use of SPARC over un-sorted ASP variants.

2.3.2.2 Translation of BAT to SPARC

Let a basic action theory T = (Σ = 〈C,O,H, F 〉, A) be given. We construct

the SPARC Program ΠC in two stages. We first construct the SPARC Program ΠM

derived from the signature and static rules of T .

Definition 17. Static Translation ΠM of a System Description P Let T = (Σ =

〈C,O,H, F 〉, A) be the core BAT of System Description P .

Each sort definition in the sort section of ΠM has the following structure:

#sort = #sort1 + ... + #sortn

36

Texas Tech University, Edward Wertz, August 2019

+ id1(#sort1,1 ..., #sort1,n1)

+ ...

+ idk(#sortk,1, ..., #sortk,nk
)

+ {const1, ..., consts}.

such that the following properties hold:

• All sorts used on the right hand side of the = have been previously defined above

this sort definition.

• for i ∈ [1..n], sorti ∈ {sort1 . . . sortn} if and only if (sort, sorti)∈ H.

• for j ∈ [1..k], idj(#sortj,1, . . . ,#sortj,nj
) is in the sort definition if and only if

there is a schema definition in the structure of P of the form

idj(Vj,1, . . ., Vj,nj
) in sort (where l1, . . . , lm)?

f1(t̄1) = V1

. . .

fnj
(¯tnj

) = Vnj

such that the range sorts of f1 . . . fnj
are sortj,1, . . . ,sortj,nj

respectively.

• const∈ { const1 . . . consts} if and only if const is a ground term and either

is a declared constant for sort in P , defines a declared constant for sort in P ,

or there is an instance definition in P of the form

const in sort.

Each predicate definition in the predicate section of ΠM has the following form:

fun(#sort1, ..., #sortn−1, #sortn)

37

Texas Tech University, Edward Wertz, August 2019

such that either fun:sort1,...,sortn−1 →sortn is a static function in F or

fun:sort1,...,sortn−2 →sortn−1 is a fluent function in F and sortn is the time

step sort.

The rules section of ΠM include all static auxiliary rules (2.2, 2.3, 2.7) and

all the static user defined axioms from the theory and the structure translated to

SPARC rules.

2

2.3.2.3 Correctness Of Translation

Definition 18. Temporal Interpretation

Given a BAT signature Σ, let I be an interpretation of Σ and T ∈ N . The

temporal interpretation I(T) is the set of fluents and statics:

{f(t̄, T) = V | fluent f(t̄) = V ∈ I}
⋃
{f(t̄) = V | static f(t̄) = V ∈ I}

2

Definition 19. Predicate Representation of an Interpretation

Let I be an interpretation for a BAT signature Σ and T ∈ N . The predicate

representation of I is the set of predicates:

{f(t̄, V)|f(t̄) = V ∈ I}
⋃
{¬f(t̄, V ′)|f(t̄) = V ∈ I and V 6= V ′}

where V and V ′ are different instances in the range sort of f .

2

Definition 20. State Defined By The SPARC Program ΠC

Given a System Description P such that ΠA, the ASP program defined by P ,

has only one answer set S, let Σ and M be the core BAT and static interpretation

38

Texas Tech University, Edward Wertz, August 2019

defined by P respectively. Let ΠC be the output of CALM on P . An interpretation

σ of Σ with static part M is a state defined by the SPARC program ΠC if and only

if σ′(0), the predicate representation of the temporal interpretation σ(0), is the only

answerset of the program ΠC ∪K where K is σ′(0) with the defined literals removed.

2

Definition 21. Transition Defined By The SPARC Program ΠC

Given a System Description P such that ΠA, the ASP program defined by P ,

has only one answer set S, let Σ and M be the core BAT and static interpretation

defined by P respectively. Let ΠC be the output of CALM on P . Let σ0 and σ1

be states defined by ΠC and a ⊂ M(actions). Let σ′0(0) and σ′1(1) be the predicate

representations of the temporal interpretations σ0(0) and σ1(1) respectively. Let

A = σ′0(0)
⋃
{occurs(x, 0)|x ∈ a}

⋃
σ′1(1). The triple 〈σ0, a, σ1〉 is a transition defined

by the SPARC program ΠC if and only if A is the only answer set of the program

ΠC ∪K where K is σ′0(0)
⋃
{occurs(x, 0)|x ∈ a} with the defined literals removed.

2

Definition 22. State Transition Diagram Defined By The SPARC Program ΠC

Given a System Description P such that ΠA, the ASP program defined by P , has

only one answer set, let ΠC be the output of CALM on P . The Transition Diagram

defined by ΠC is the transition diagram defined by the set of states and transitions

defined by ΠC if the set of states is non-empty.

2

Proposition 3. Given an ALM system description P , let ΠC be the output of

CALM on input P . ST is a transition diagram defined by ΠC if and only if ST is a

model of P .

Proof

39

Texas Tech University, Edward Wertz, August 2019

Let Π be the ASP program defined by P and T the core BAT defined by P ,

and U and M the universe and static interpretation defined by an answer set

of Π.

Assumption: ST is a transition diagram defined by ΠC

We will show that ST is a model of P by showing that σ is a state of ST if and

only if σ is a state of TM and that 〈σ0, a, σ1〉 is a transition of ST if and only if

〈σ0, a, σ1〉 is a transition of TM .

Assumption: σ is a state of ST .

σ′(0), the predicate representation of the temporal interpretation σ(0) with the

defined literals removed, is the only answerset of the program ΠC ∪ σ′(0) with

the defined literals removed.

Note that σ′(0) contains no occurrences of actions.

The rules within ΠC that have been translated from dynamic causal laws and

executability conditions do not have their bodies satisfied.

The ground SPARC program ΠC with the dynamic causal laws and executabil-

ity conditions removed is equivalent to the logic program SM .

Since σ′(0) is the predicate representation of the temporal interpertation σ(0),

σ is the only answerset of the logic program Sσ.

σ is a state of TM .

Assumption: σ is a state of TM .

σ is the only answerset of the program Sσ.

40

Texas Tech University, Edward Wertz, August 2019

The ground SPARC program ΠC with the dynamic causal laws and executabil-

ity conditions removed is equivalent to the logic program SM .

σ′(0), the predicate representation of the temporal interpretation σ(0) with the

defined literals removed, is the only answerset of the program ΠC ∪ σ′(0) with

the defined literals removed.

σ is a state of ST .

Therefore σ is a state of ST if and only if σ is a state of TM .

Assumption: 〈σ0, a, σ1〉 is a transition of ST

Let AST = σ′0(0)
⋃
{occurs(x, 0)|x ∈ a}

⋃
σ′1(1) where σ′0(0) and σ′1(1) are the

predicate representations of the temporal interpretations σ0(0) and σ1(1) re-

spectively.

AST is the only answer set of the program ΠC ∪K where K is

σ′0(0)
⋃
{occurs(x, 0) | x ∈ a} with the defined literals removed.

Program P (M,σ0, a) has an answer set A such that f(t1, . . . , tn) = t ∈ σ1, iff

f(t1, . . . , tn) = t ∈ A when f is an attribute or static and f(t1, . . . , tn, 1) = t ∈ A

when f is a fluent.

〈σ0, a, σ1〉 is a transition of TM .

Assumption: 〈σ0, a, σ1〉 is a transition of TM

program P (M,σ0, a) has an answer set A such that f(t1, . . . , tn) = t ∈ σ1, iff

f(t1, . . . , tn) = t ∈ A when f is an attribute or static and f(t1, . . . , tn, 1) = t ∈ A

when f is a fluent.

〈σ0, a, σ1〉 is a transition of ST

41

Texas Tech University, Edward Wertz, August 2019

Therefore 〈σ0, a, σ1〉 is a transition of ST if and only if 〈σ0, a, σ1〉 is a transition

of TM

Since ST = TM and ST has a non-empty set of states,

ST is a transition diagram defined by pre-model M of T with universe U such

that it has a non-empty collection of states.

Conclusion: ST is a model of P

2

2.3.3 Semantic Errors

One of the primary contributions of CALMis the integration of syntax and se-

mantic error detection in the compilation process of translating a System Description

to the SPARCprogram ΠC . In this section we encode the understanding of a Well

Defined System Description. We detail the semantic errors in context of their relevant

grammatical elements from the syntax of a system description.

When evaluating a grammatical element for semantic errors it is evaluated with

respect to the partial construction of the Basic Action Theory (BAT) 〈C,O,H, F 〉

defined by processing module dependencies and previously processed grammatical

elements.

2.3.3.1 Theory

The following semantic requirements must be satisfied for locally defined theories:

• Within a System Description there is exactly one theory defined or imported.

• An imported theory must indicate the library from which it is being imported

and the library and theory name must resolve to a file on disk.

42

Texas Tech University, Edward Wertz, August 2019

• Within a library file, there is exactly one theory defined and the theory name

matches the containing file.

Module Declarations The following semantic requirements must be satisfied for mod-

ule declarations and import statements.

• Module import statements must indicate the name of the containing library and

theory and the name of the module being imported.

• Module import statements must resolve to a library and theory file on disk

which contains a locally defined module of the same name being imported.

• The names of modules which are locally defined or directly imported must be

unique within the context of the containing theory.

• A module dependency declaration must resolve to either a locally defined mod-

ule or directly imported module in the containing theory.

Sort Declarations For a sort declaration statement of the form

id1, . . . , idn :: sort1, . . . , sortm

attrf : c1 × · · · × ck → c0

The following semantic requirements must be satisfied:

• For j ∈ [1..n], each sortj must have been previously declared and exists as a

node in H. (Note that this is sufficient to guarantee a path exists in H from

the node labeled by sortj to the node labeled by universe.)

• For i ∈ [1..n], j ∈ [1..m], each idi and sortj must be a unique string.

• For i ∈ [1..n], j ∈ [1..m], each idi must not occur along any path from the node

labeled by sortj to the node labeled by universe in H.

43

Texas Tech University, Edward Wertz, August 2019

• For i ∈ [1..n], j ∈ [1..m], if a node labeled by idi exists in H, there must not

already be an arc in H from the node labeled by idi to the node labeled by

sortj.

• For i ∈ [1..n], j ∈ [1..m], add idi to C and nodes labeled by idi to H if they do

not exist, and add arcs from idi to sortj in H.

• For l ∈ [0..k], there must be a node labeled by cl in H.

• For i ∈ [1..n], there must not already be a function attrf : idi×c1×· · ·×ck → c0

in F .

• For i ∈ [1..n], add the function attrf : idi×c1×· · ·×cn → c0 to F with markers

indicating the function is static and basic.

Constant Declarations For a constant declaration statement of the form

id1, . . . , idn :: sort1, . . . , sortm

The following semantic requirements must be satisfied:

• For i ∈ [1..n], idi must not be a string in either C or O.

• For j ∈ [1..m], sortj must be in C.

• For i ∈ [1..n], add idi to O and add a node labeled by idi to H.

• For i ∈ [1..n], j ∈ [1..m], add an object constant arc from the node labeled by

idi to the node labeled by sortj in H.

Function Declarations For a function declaration statement of the form

[total] f : sort1, . . . , sortn → sort0

The following semantic requirements must be satisfied:

44

Texas Tech University, Edward Wertz, August 2019

• If f is a defined function sort0 must be booleans.

• For i ∈ [0..n], sorti must be in C.

• f : sort1, . . . , sortn → sort0 must not already be a function in F .

• Add f : sort1, . . . , sortn → sort0 to F with markings indicating whether or not

the function is total, static or fluent, and basic or defined.

• Add domf : sort1, . . . , sortn → booleans to F with markings indicating whether

or not the function is total, static or fluent, and basic or defined.

Dynamic Causal Laws For a dynamic causal law of the form

occurs(a) causes f(x1, . . . , xn) = o if instance(a, c), cond

The following semantic requirements must be satisfied:

• a must be a variable.

• c must be in C and a subsort of actions according to H.

• f must be a basic fluent function in F .

• o must be either a variable occurring in the conditions, a constant in O, or a

function whose inferred sort is compatible with the range sort of f .

• For i ∈ [1..n], xi must be either a variable, a constant in O, or a function and the

inferred sort of xi must be compatible with the ith domain sort in the signature

of f .

• The type inferred for each variable in this axiom must resolve to a sort in the

sort hierarchy.

45

Texas Tech University, Edward Wertz, August 2019

• All functions occurring in the conditions of this axiom must have a unique

signature in F and have agreement between their signature and the inferred

sort for the syntactic elements appearing as domain arguments and the range

value of the function.

Executability Conditions For an executability condition of the form

impossible occurs(a) if instance(a, c), cond

The following semantic requirements must be satisfied:

• a is a variable.

• c must be in C and a subsort of actions according to H.

• The type inferred for each variable in this axiom must resolve to a sort in the

sort hierarchy.

• All functions occurring in the conditions of this axiom must have a unique

signature in F and have agreement between their signature and the inferred

sort for the syntactic elements appearing as domain arguments and the range

value of the function.

State Constraints For state constraints of the form

f(x1, . . . , xn) = o if cond

The following semantic requirements must be satisfied:

• f must be a basic function in F .

• If f is a static function then only static functions may occur in the conditions

of the state constraint.

46

Texas Tech University, Edward Wertz, August 2019

• o must be either a variable occurring in the conditions, a constant in O, or a

function whose inferred sort is compatible with the range sort of f .

• For i ∈ [1..n], xi must be either a variable, a constant in O, or a function and the

inferred sort of xi must be compatible with the ith domain sort in the signature

of f .

• The type inferred for each variable in this axiom must resolve to a sort in the

sort hierarchy.

• All functions occurring in the conditions of this axiom must have a unique

signature in F and have agreement between their signature and the inferred

sort for the syntactic elements appearing as domain arguments and the range

value of the function.

Function Definitions For function definitions of the form

f(x1, . . . , xn) if cond

The following semantic requirements must be satisfied:

• f must be a defined function in F .

• If f is a static function then only static functions may occur in the conditions

of the function definition.

• For i ∈ [1..n], xi must be either a variable, a constant in O, or a function and the

inferred sort of xi must be compatible with the ith domain sort in the signature

of f .

• The type inferred for each variable in this axiom must resolve to a sort in the

sort hierarchy.

47

Texas Tech University, Edward Wertz, August 2019

• All functions occurring in the conditions of this axiom must have a unique

signature in F and have agreement between their signature and the inferred

sort for the syntactic elements appearing as domain arguments and the range

value of the function.

2.3.3.2 Structure

All semantic requirements of a structure are related to how its syntactic expression

extend the core BAT of the theory.

Constant Definitions For constant definitions of the form

const = groundterm

The following semantic requirements must be satisfied:

• const must be a declared constant in O.

• const must not have been defined by another constant definition statement.

• This constant definition is recorded for later reference.

• The groundterm is recorded as an instance of every sort c for which there is an

object constant arc from the node const to a node labeled by c in H.

Instance Definitions For instance definitions of the form

groundterm in c

The following semantic requirements must be satisfied:

• c must be a sort name in C and a label of a node in H.

• The groundterm is recorded as an instance of c.

For instance definitions of the form

48

Texas Tech University, Edward Wertz, August 2019

id(V1, . . . , Vn) in c where l1, . . . , lm

f1(t1,1, . . . , t1,k1) = V1

. . .

fn(tn,1, . . . , tn,kn) = Vn

The following semantic requirements must be satisfied:

• c must be a sort name in C and a label of a node in H.

• id must not be the name of a function in F or a declared constant in O.

• For i ∈ [1..n], Vi is a variable

• For i ∈ [1..n], the signature of fi is an attribute function fi : c′i×ci,1×· · ·×ci,ki →

ci,0 in F such that c is a subsort of c′i in H.

• For i ∈ [1..n], the inferred sort of Vi is ci,0, c must not be a subsort of ci,0, and

c is marked as dependent on ci,0 in the BAT for later reference.

• The type inferred for other variables in this instance schema definition must

resolve to a sort in the sort hierarchy.

• All functions occurring in this instance schema definition must have a unique

signature in F and have agreement between their signature and the inferred

sort for the syntactic elements appearing as domain arguments and the range

value of the function.

Static Function Definitions Static function definitions in the structure have the same

semantic requirements as static function definitions in the theory.

49

Texas Tech University, Edward Wertz, August 2019

2.3.3.3 Type Checking

For simplicity, our discussion focuses on the type checking of the theory of a system

description.

For example, consider an example in the travel domain we discussed earlier. As-

sume function location : agents→ locations, and a state constraint

location(C) = P if

holding(A,C), location(A) = P.

We know function holding : agents ∗ carriables → booleans. So, the literal

holding(A,C) means that the variable C belongs to sort carriables. However, the

literal location(C) = P implies that C is of sort agents by function location. We also

know that the sort names carriables and agents are not related in terms of subsort.

So, we spot an error using sort (type) information of the theory.

We will define below type compliance of a BAT theory. Naturally, the definition

is recursive. We first introduce sort compatibility and then start the definition of

compliance from terms.

The sorts S1, ..., Sn of an action signature are compatible if they have a common

descendant in the directed graph of the sort hierarchy of the signature.

Given a BAT, a term t of form f(t1, ..., tn) and a variable occurrence X,

• if X is ti, let the sort of ith parameter of f be s, s is the inferred sort of X from

t,

• otherwise, let X occur in ti and s be the inferred sort of X from ti, s is the

inferred sort of X from t.

The inferred sorts of variable X from a term t is the set of the inferred sort of every

occurrence of X from t.

We can obtain the inferred sort of a constant occurrence (and constant respec-

tively) from the definition of the inferred sort of a variable occurrence (and variable

50

Texas Tech University, Edward Wertz, August 2019

respectively) by replacing variables with constants. For simplicity, we assume no

constant contains a functor.

Given a BAT, a term t of form f(t1, ..., tn) is compliant with sort S if

• the range of f is compatible with S,

• for every ti(i ∈ 1..n), ti is compliant with si which is the sort of the ith parameter

of f , and

• for every constant or variable x of t, the inferred sorts of x from t are compatible.

In the following, occurs(a), where a is either a variable or a constant, is also called

a literal.

Given a BAT, a literal l and a variable occurrence X,

• if l is of the form X = f(t1, ..., tn) or f(t1, ..., tn) = X and range of f is s, s is

the inferred sort of X from l,

• if l is of the form f(t11, ..., t1m) = g(t21, ..., t2m), X occurs in f(t11, ..., t1m) (or

g(t21, ..., t2m) respectively) and the inferred sort of X from f(t11, ..., t1m) (or

g(t21, ..., t2m) respectively), s is the inferred sort of X from l,

• if l is of the form occurs(X), the special sort actions is the inferred sort of X

from l, and

• if l is of the form instance(X, s) where s is a sort name, s is the inferred sort

of X from l.

The inferred sorts of variable X from a literal is the set of the inferred sorts of every

occurrence of X from l.

Similarly, we define the inferred sorts of constant and constant occurrence from a

literal.

Give a BAT, a literal l is type compliant if

51

Texas Tech University, Edward Wertz, August 2019

• when l is of form t1 = t2, or t1 6= t2, where t1 = f(t11, ..., t1m) and t2 =

g(t21, ..., t2n) are terms, the ranges of f and g are compatible, t1 is compliant

with range of f and t2 is compliant with range of g,

• when l is of form X = f(t1, ..., tn) or f(t1, ..., tn) = X, f(t1, ..., tn) is compliant

with the range of f ,

• for every constant or variable x, the inferred sorts of x from l are compatible.

Given a BAT, an axiom is type compliant if

• every literal of the axiom is type compliant, and

• for every constant or variable x, the inferred sorts of x from the literals of the

axiom are compatible.

A theory is type compliant if its every axiom is type compliant.

Note that due to space limitations, the type checking definition does not include

arithmetic relations.

2.3.4 Reasoning System

2.3.4.1 Histories and Trajectories

Definition 23. A Trajectory Of The State Transition Diagram Defined by ΠC

A sequence 〈σ0, a0, σ1〉, 〈σ1, a1, σ2〉, . . . , 〈σn−1, an−1, σn〉 of transitions defined by

ΠC is called a trajectory of the transition diagram of ΠC .

2

Note that a trajectory is not required to define range values for every domain

value of a basic fluent. Law of inertia for domf will preserve the undefined range

value until the range value is causally determined by a dynamic causal law.

52

Texas Tech University, Edward Wertz, August 2019

Definition 24. A History for A System Description

Given an ALM System Description P , a History ΠH for P is a collection of

ground facts defined as follows:

• if observed(f(x̄), v, t) ∈ ΠH then f(x̄) is a ground instance of a user defined

fluent in P , v is a ground instance in the range of f , and t is a positive integer

time step,

• if happened(a, t) ∈ ΠH then a is a ground instance of a subsort of actions in P

and t is a positive integer time step,

• there are no other facts in ΠH .

2

Definition 25. The Complete History Encoding of a Trajectory

Given an ALM System Description P , and a trajectory 〈σ0, a0, σ1〉, 〈σ1, a1, σ2〉,

. . . , 〈σn−1, an−1, σn〉 of the transition diagram of the SPARC program ΠC produced

by CALM on P , the complete history encoding of the trajectory is the program ΠH

defined as follows:

• observed(f(x̄), v, t) ∈ ΠH if and only if f(x̄) = v ∈ σt and f is a basic fluent.

• happened(a, t) ∈ ΠH if and only if a ∈ at.

2

Definition 26. Model Of A History

Given an ALM System Description P with SPARC program ΠC produced by

CALM on P and A History ΠH for P , a trajectory T = 〈σ0, a0, σ1〉, 〈σ1, a1, σ2〉, . . . ,

〈σn−1, an−1, σn〉 of the transition diagram of ΠC is called a model of ΠH if there exists

a program ΠCH such that the following properties hold:

53

Texas Tech University, Edward Wertz, August 2019

• ΠCH is the complete history encoding of T ,

• If observed(f(x̄), v, t) ∈ ΠH then observed(f(x̄), v, t) ∈ ΠCH ,

• happened(a, t) ∈ ΠH if and only if happened(a, t) ∈ ΠCH .

2

Note that this definition of model of a history is consistent with the definition in

the original ALM paper[24].

2.3.4.2 Temporal Projection

Definition 27. Temporal Projection Problem

Given an ALM System Description P with output of CALM ΠC and a history

ΠH for P , a temporal projection problem for P is the SPARC program ΠTP such that

• The sort section of ΠTP is the sort section of ΠC .

• The predicate section of ΠTP is an extension of the predicate section of ΠC with

the following declarations:

– observed(#universe, #universe, #timeStep)

– happened(#action, #timeStep)

• The rules section of ΠTP is the rules section of ΠC extended by ΠH and the

following rules:

– occurred(A, I):- happened(A, I).

– f(X̄, V, 0) :- observed(f(X̄), V, 0).

for each observed(f(x̄), v, 0) ∈ ΠH .

– :- not f(X̄, V, I), observed(f(X̄), V, I).

54

Texas Tech University, Edward Wertz, August 2019

for each observed(f(x̄), V, I) ∈ ΠH .

2

Definition 28. Solution of Temporal Projection Problem ΠTP

Given a temporal projection problem ΠTP for an ALM System Description P ,

let ΠC be the output of CALM on P and ΠH be the history, the collection of facts,

added to ΠC to create ΠTP . Each model of ΠH is called a solution of ΠTP .

2

Each answer set produced by the SPARC solver on a temporal projection problem

ΠTP encodes a model for the given history.

2.3.4.3 Planning

Definition 29. Planning Problem

Given anALM System Description P and a temporal projection problem ΠTP , let

t be the maximum time step in the facts of ΠH , Let ΠS be a collection of observations

of fluent values at t′ > t, i.e. ΠS ⊂ {observed(f(x̄), v, t′)|f is a basic fluent in P}.

The pair 〈ΠTP ,ΠS〉 is called a planning problem for P . ΠS is called the goal state of

the planning problem.

2

Definition 30. Solutions of Planning Problem 〈ΠTP ,ΠS〉

Given a planning problem 〈ΠTP ,ΠS〉 for an ALM System Description P , let ΠC

be the output of CALM on P and ΠH be the history of facts in ΠTP not in ΠC , let t

be the maximum time step in ΠH and t′ be the time step of the facts in ΠS. Let ΠA

be a subset of {happened(A, I)| where A is a ground instance of an action in P and

t < I < t′}. ΠA is called a solution of the planning problem 〈ΠTP ,ΠS〉 if the history

ΠH ∪ ΠA ∪ ΠS has a model and the following properties hold:

55

Texas Tech University, Edward Wertz, August 2019

• There does not exist a time k such that ΠA has no action occurring at time k

but has an action occurring after k.

• There is no proper subset Π′A of ΠA such that ΠH ∪ Π′A ∪ ΠS has a model.

2

Our method of solving planning problems is provided in section 2.4.4.3. We follow

method provided in section 4.2.1 of the original ALM paper[24]. Consistency restor-

ing rules are used to generate actions after the last time step in the history while the

goal state is not achieved by the last time step allowed in the horizon. Each answer

set of the SPARC program implementing a planning problem encodes a model of an

extension of the provided history with a schedule of actions that achieves the goal

state within the horizon.

2.4 Implementation of CALM

Java was selected as the implementation language for its cross-platform portability

as a compiled jar.

2.4.1 Parsing System Descriptions and Tasks

2.4.1.1 ANTLR4 Parser

ANTLR4 was selected for its ability to generate a syntax parser with hooks for

adding semantic processing to successfully parsed non-terminals. The ANTLR4 gram-

mar for ALM is in Appendix A. Instructions on how to modify the grammar and

change the semantics of ALM are provided in Appendix B. The output of the parser

is an object model for the abstract syntax tree of a system description. The syntax

tree of a system description is processed in two passes. The first pass builds a hier-

archy of module dependency which may include references to external libraries and

theories. The second pass through the syntax processes each module referenced into

56

Texas Tech University, Edward Wertz, August 2019

a symbol table modeling the BAT structure the module encodes. During this second

pass, each ALM statement is evaluated for semantic errors before being added to the

symbol table modeling the BAT structure. Special auxiliary and user defined axioms

are added to a collection of ASP{f} rules specifying constraints and requirements of

the ontology and state transition diagram. If semantic errors are discovered, they are

added to an error report displayed to the user to indicate where in the syntax errors

are occurring. If no syntax or semantic errors are generated, the BAT and collected

ASP{f} axioms are translated to SPARC.

2.4.2 Modeling a Basic Action Theory

Proper semantic evaluation of a System Description and translation to a BAT

(Σ = 〈C,O,H, F 〉, A) requires modeling the hierarchy of module dependencies. Our

implementation uses a hierarchical symbol table to build a modular BAT representa-

tion.

2.4.2.1 Symbol Table

Our symbol table is primarily implemented as several Java based key-value maps.

For simple identifiers such as names of constants and sorts, the keys are Strings and

the values assigned are the instances of classes designed to model relevant relationships

and properties.

To model the set of sort names C we map the string name of the sort to a

SortEntry class which has a parent reference and set of child references to model

the tree structure of the sort hierarchy H. To model links from object constants to

sort nodes in H, each SortEntry has an initially empty set of instance objects that are

populated by instance definitions when parsing the structure of a system description.

Initial universe and actions sort entries are created and added to the map.

The set of object constants O in the core BAT is modeled as a map from string

57

Texas Tech University, Edward Wertz, August 2019

names of constants to instances of a ConstantEntry class which contains a field to

indicate any definition of the constant and a set of SortEntry elements to indicate

which sorts the constant belongs to. The extended object constants in O of the

extended BAT signature are modeled by the set of instances within each SortEntry.

The set of function signatures F is modeled as two maps. The first is a map

from function names to sets of normal function signature entries for the name. The

second map is from normal function signatures to the related domf signature for the

function.

The axioms of A are stored in ASP{f}form and are organized into thematic

sections. The sections are ordered when they are translated to SPARC. The auxiliary

axioms required to model the sort hierarchy and other BAT constructs are added their

own section before parsing a system description.

2.4.2.2 Module Hierarchies

In order to properly evaluate the semantic soundness of a module with respect to

its module dependencies, a symbol table per module is created. The symbol table for

one module has references to the symbol tables of the modules that are included in

dependency declarations. If the use of a sort or function in this module does not have

a local declaration within the module, they are looked up in the dependent symbol

tables recursively. If the use of a sort, function or constant cannot be resolved against

declarations through module dependency, semantic errors are reported.

Before translation, all symbol tables are flattened by taking the union of the

different maps across the symbol tables in the module hierarchy.

2.4.3 Error Checking and Reporting

An ErrorReport singleton class is accumulates syntax errors generated by the

parser and passed into the call-back handler for semantic evaluation of successfully

58

Texas Tech University, Edward Wertz, August 2019

parsed non-terminals in a system description. Error messages are generated for both

syntax and semantic errors which indicate file, line and column number of the syntax

generating the error.

2.4.3.1 Message Structure

When the ANTLR4 Parser encounters an unexpected symbol in the grammar,

it invokes a call-back method we provide to collect syntax errors. The parser pro-

vides the location of the error and a RecognitionException object which contains the

offending token and a set of expected tokens for that location. We preserve these

reported instances in a list of SyntaxError objects collected in the ErrorReport to be

displayed after parsing has completed.

Semantic Errors have the following four parts:

1. A unique string called an ErrorId,

2. The message template to display,

3. An explanation of the semantic error,

4. And a recommendation for how to fix the error.

Example:

ErrorID: CND008

Message: Term [graspers(A) at (temp -test.alm :48:32)]

has not been declared as a function term or a

constant for any sort.

Explanation: Non pre -defined and non -variable terms

must be declared before they are used.

Recommendation: Either add a function definition or a

constant definition for the term , or replace it

59

Texas Tech University, Edward Wertz, August 2019

with a declared term.

The semantic error text is stored in a pre-defined table indexed by the unique

ErrorId. The message template of each error contains numbered positions that can

be filled in dynamically with the syntax tokens that are causing the semantic error

to occur.

2.4.3.2 Semantic Error Checking

When non-terminal in the grammar is completed successfully, the ANTLR4 parse

calls a method to semantically process the grammatical elements in the non-terminal.

Within each non-terminal handler function the grammatical elements are first evalu-

ated for any semantic errors. If a semantic error is found, new semantic error object

is created in the ErrorReport with the appropriate ErrorId and a sequence of offend-

ing tokens in the grammar to fill in the message template. If no semantic errors are

created in the non-terminal handler, the grammatical elements are entered into the

appropriate parts of the symbol table.

When displaying semantic errors at the end of parsing the system description,

each message template is filled by the sequence of syntax tokens provided at the time

of error creation. Each numbered entry in the template is replaced with the corre-

sponding token’s text and file name, line and column number of where the offending

token occurs.

2.4.3.3 Type Checking

Each axiom in the theory and each instance definition and static function defini-

tion in the structure must pass type checking. Type checking is passed when every

variable in the generated logic rules has a concrete inferred type and there is agree-

ment between the expected sorts defined by a function signature and the inferred

sorts of the domain arguments and range value of the function.

60

Texas Tech University, Edward Wertz, August 2019

For example consider the function signature f : c1 × · · · × cn → c0 and the

occurrence of a literal f(x1, . . . , xn) = x0. The expected sort of x1 is c1 from the

signature of f . If x1 is a constant or instance, then it has a set of sorts s1, . . . , sm

for which it has been declared. As long as one of s1, . . . , sm is a subsort of c1, then

type checking passes for x1 in the context of f . If x1 is a variable, then we add the

requirement that the inferred sort of variable x1 be a subsort of c1.

Variable type checking is implemented as follows: For each occurrence of a vari-

able, the required sort is determined as the intersection of all the inferred sorts for

the variable’s occurrences. Intersection here is determined as the greatest common

subsort of all inferred sorts for the variable.

For example, consider a dynamic causal law for the form:

occurs(A) causes f(x1, . . . , xn) = o if instance(A, c1), instance(A, c2), cond

The first occurrence of A has an inferred sort of actions. The second occurrence of A

has an inferred sort of c1. The third occurrence of A has an inferred sort of c2. The

required sort from these occurrence is actions∩ c1∩ c2, i.e.
⋃
c3 where c3 is a subsort

of actions, c1, and c2. If no common subsort exists, then the required sort is labeled

as the EMPTY type. If the variable is free and has no inferred sort, it is labeled

with the ANY type.

The emergent type system here is analogous to expressions in set-calculus. Ex-

pressions are reducible under the following reduction rules:

1. ∩ and ∪ are commutative operators and ∩ binds more tightly than ∪ as an infix

operator.

2. c1 ∩ c2 = c1 if c1 is a subsort of c2

3. c1 ∩ c2 = EMPTY if neither is a subsort of the other.

4. c1 ∩ EMPTY = EMPTY

61

Texas Tech University, Edward Wertz, August 2019

5. c1 ∩ ANY = c1

6. c1 ∪ c2 = c1 if c2 is a subsort of c1.

7. c1 ∪ ANY = ANY

8. c1 ∪ EMPTY = c1

9. c1 ∪ · · · ∪ cn = c if c1, . . . , cn is a list of all direct subsorts of c.

Variable type checking passes when every variable in a rule has a reduced type

that is not ANY or EMPTY .

2.4.4 Translation to SPARC

The implementation of translation from BAT to SPARC is performed through

creating statements that populate the Sorts, Predicates and Rules section of the

produced SPARC program.

2.4.4.1 Sorts Section

The sorts section of the produced SPARC program is produced by recursively

defining each sort in the sort hierarchy. Begining with the universe sort, before a

sort is defined, its immediate subsorts and its dependent sorts must first be defined in

the output program. The produced SPARC sort definitions have the following form:

#c =#c1 + · · ·+#cn + s1(#c1,1, . . . ,#c1,m1) + · · ·+ sk(#ck,1, . . . ,#ck,mk
) + {g1, . . . , gl}

where c1, . . . , cn are the names of sorts that are direct subsorts of c in the sort hierar-

chy, s1(#c1,1, . . . ,#c1,m1), . . . , sk(#ck,1, . . . ,#ck,mk
) are derived from schema instance

definitions where each ci,j is the inferred sort of the jth variable in the ith schema defini-

tion for sort c, and g1, . . . , gl are ground instances defined for sort c. The SPARC sort

definition for c1, . . . , cn and each ci,j in schema pattern for si must occur before the

SPARC sort definition for c.

62

Texas Tech University, Edward Wertz, August 2019

Special and predefined sort definitions such as ranges of integers and the time

steps allowed in trajectories are defined as enumerations of ground terms.

#timeStep = {0, 1, 2, 3, . . . , n}

2.4.4.2 Predicates Section

The predicate section is populated by the predicate signatures modeling the func-

tion signatures in the set of functions F in the BAT. Let f : c1 × · · · × cn → c0 be

a function signature in F . If f is a static function, the predicate signature has the

following form:

prefix f(#c1, . . . ,#cn,#c0)

If f is a fluent function, the predicate signature has the following form:

prefix f(#c1, . . . ,#cn,#c0,#timeStep)

In both cases the prefix is determined by whether or not the function is qualified

by additional namespace requirements and whether the function is a special domain

function. In the current version of CALM the only functions which are namespace

qualified are attribute functions. For example if the function is a domain function

for an attribute function f of sort c, the predicate signature would have the following

form:

dom c f(#c,#c2, . . . ,#cn,#c0)

Future versions of CALM may add additional namespace modeling to allow dif-

ferent modules to re-use the same function names locally but have them resolve to

different functions globally in the translated program.

2.4.4.3 Rules Section

After parsing the grammatical elements of an ALM System Description, the

rules modeling the the semantics of the statements are stored in ASP{f} form in

63

Texas Tech University, Edward Wertz, August 2019

the symbol table. These rules along with auxiliary rules for modeling the BAT struc-

ture and modeling functions as predicates must be translated from ASP{f} to their

SPARC equivalent.

Normalization and Function Translation All rules, when translated fromASP{f} to

their SPARC equivalent must go through a process of normalization and translation

from functions to predicates. CALM supports nested function terms in the syntax

of ALM System Descriptions. SPARC does not support functions or the ability to

nest predicates within each other.

We explain the process of normalization by an example of nested fluent functions:

foo(A, bar(B)) = baz(C).

The result of normalization is that nested function are replaced by new variables and

new literals are added to the end of the body of the rule that equate the variable with

the function it replaced. The normalization of the above literal is the following:

foo(A,Z1) = Z2, bar(B) = Z1, baz(C) = Z2.

After normalization, the functions can be translated to their predicate equivalent

form. Since these functions are fluents, they have a time variable added to their

domain.

foo(A,Z1, Z2, T), bar(B,Z1, T), baz(C,Z2, T).

Special Auxiliary Rules There are many rules needed in addition to the explicit user

defined axioms provided in the System Description. In order to model the semantics

of BAT, the Sort Hierarchy H must be modeled along with domain functions domf in

F . The axioms for law of inertia on fluents (and their domain functions) and closed

world assumption on defined functions must also be added. Since we are modeling

64

Texas Tech University, Edward Wertz, August 2019

functions as predicates, for every function f in F we must add uniqueness constraints

on value assignments to the function. Example:

−f(t̄, V2) :- f(t̄, V1), V1 6= V2.

All of these auxiliary rules are added to the produced SPARC program in their own

sections prior to translating any of the user defined axioms in the system description.

Static Program Rules The user defined static state constraints and static function

definitions from the theory and static function definitions from the structure are added

to the SPARC

program in their respective sections.

Once all the static user defined rules are added, we send the static SPARC

program to the solver to verify that it has a unique answer set. Static programs with

multiple answer sets are not currently supported by CALM. If there is no answer set,

translation halts and a semantic error is reported to indicate that the static program

needs to be corrected before fluent rules can be added.

In the current implementation of CALM we use the resulting answer set A to

replace the sort definitions in the sort section of the SPARC program with enumer-

ations from the instance literals in the answer set.

#c = {x| instance(x, c) ∈ A}

Our thoughts on this initially is that it would be an optimization step on the grounder

to not have to recalculate the sorts in the fluent program. Doing this optimization,

however, removes the encoding of the sort hierarchy from the final CALM program,

effectively removing the capability of extending the final program manually by adding

new instances to source sorts and having super sorts inherit the new instances. It is

planned that future versions of CALM will support multiple answer sets as a result

of the static program, and in that case the sort hierarchy would need to be preserved

65

Texas Tech University, Edward Wertz, August 2019

in the final program.

Fluent Program Rules The user defined fluent axioms are normalized, translated

and added to the static program to create the program ΠC that defines the SPARC

encoding of the transition diagram that is the output of CALM on the input system

description. For dynamic causal laws with literals in the head of rules, the time

variable added to these literals is T +1 while the time variable added to fluent literals

in the body is T . This step in translation models the transition between states in

response to action occurrences. Fluent state constraints have T added to the literal

in the head to enforce the state constraint within the same time indexed state.

History Rules In the current implementation of CALM the parser will accept Sys-

tem Descriptions which have been extended with the specification of a task and an

accompanying history at the end of the ALM program. The history specifies known

values of a trajectory through the transition diagram. A history is composed of ob-

servations of values assigned to fluents and action occurrences at various points in

time. Syntax:

observed(fluent(t̄), v, n).

happened(action instance(t̄), n).

Fluent observations at time 0 specify the initial state of the trajectory. Observa-

tions at this time are translated to predicate facts in the program: Example initial

state:

fluent(t̄, v, 0).

Fluent observation at time T > 0 specify state constraints on the remainder of the

trajectory, that it must be consistent with observations, but that the observations do

not cause the trajectory to match the observed values assigned to the fluents. The

66

Texas Tech University, Edward Wertz, August 2019

action occurrences must cause the fluent values to be assigned. Example rule based

state constraint:

:- −fluent(t̄, v, T).

Action occurrences are added as facts to the program at the time indicated. Ex-

ample:

occurs(action instance(t̄), n).

If any observation or action occurrence is incompatible with the user defined

axioms governing the definition of state and transitions for the transition diagram, no

answer set will result. Currently CALM does not support any facilities for debugging

ALM system descriptions and histories which produce no answer set. To localize the

problem in the trajectory, the best approach is to start with the initial state and check

if an answer set is produced. If so, incrementally extend the trajectory with time steps

until the offending state transition is added. If the initial state is incompatible with

the transition diagram, one knows the issue is with the definition of allowed states.

Task Execution Rules The execution of a temporal projection task requires no ad-

ditional axioms or rules apart from the translation of the history into facts of actions

occurrences, initial state at time step 0 and the added constraints that trajectory

derived from the initial state through action occurrences must be consistent with the

observed fluent states.

The execution of a planning problem requires additional axioms to model the

desired goal state and to ensure that new actions are only taken after the history has

ended. Let n be the last time step recorded in the history. Let m be the horizon at

which the goal state must be reached. Let f1(t̄1) = v1, . . . , fk(t̄k) = vk be the fluent

assignments in the goal state. The following rules are added to the program:

• Indicate the time steps during which the goal is achieved.

67

Texas Tech University, Edward Wertz, August 2019

plan_goal(I) :- f1(t̄1, v1, I), . . . , fk(t̄k, vk, I).

• Indicate the current time, the next time step after the last time in the history.

current_time(n+1).

• Indicate when plan actions are allowed, at or after the current time.

plan_allow_actions(I) :- current_time(I2),I>=I2 ,I<=m.

• The plan is successful when there exists a time when actions are allowed and

the goal is achieved.

plan_success :- plan_goal(I), plan_allow_actions(I).

• It is impossible to not have a successful plan.

:- not plan_success.

• Indicate when an action occurrence is a plan action.

plan_action(I) :- occurs(A, I), plan_allow_actions(I).

• It is impossible for a plan to skip time steps in its plan of actions.

:- not plan_action(I), plan_action(I+1), I+1<=m,

plan_allow_actions(I).

• Generate actions while planning allows actions and not goal state reached.

occurs(A, I) :+ instance(A,actions), not plan_goal(I),

plan_allow_actions(I).

• It is impossible for planning to allow actions and not generation an action or

be in the goal state.

68

Texas Tech University, Edward Wertz, August 2019

:- not plan_action(I), not plan_goal(I),

plan_allow_actions(I).

2.4.5 System Usage

The CALM executable can be obtainable from the link: https://goo.gl/NvXAZq.

Download the whole folder to your computer. Examples can be found in the sub-folder

examples/.

To compile an ALM system description in file f1.alm, command

java -jar calm.jar f1.alm

will output a SPARC program to standard output if there are no errors. For tempo-

ral projection in file f2.tp or planning problem in file f3.p, we have the following

commands respectively:

java -jar calm.jar f2.tp

java -jar calm.jar f3.p

will output the answer sets that contain solutions to the problems.

If there is any difference between the usage above and that in the readme.txt, it

is recommended to follow the instructions in readme.txt.

69

Texas Tech University, Edward Wertz, August 2019

CHAPTER 3

ICLP

Notation In This Part

� denotes when a value is not relevant.

Notation For Sequences

Let A = 〈a1, . . . , an〉 and B = 〈b1, . . . , bm〉 be sequences.

The longest common prefix between two sequences is :

prefix(A,B) = 〈a1, . . . , ak〉 when ai = bi for i ∈ [1..k] and ak+1 6= bk+1.

The length of a sequence is indicated as normal: |A| = n.

The symbol ∈ denotes membership. a1 ∈ A and a1 /∈ B.

The brackets A[i] denotes the ith element of A. A[i] = ai.

The concatenation of two sequences is A _ B = 〈a1, . . . , an, b1, . . . , bm〉.

〈〉 denotes the empty sequence.

Notation For Graphs and Trees

A graph G is the pair 〈V,E〉 where V is a set of objects, and E is a subset of

{{v1, v2}|v1 ∈ V ∧ v2 ∈ V }. The elements of V are called vertices or nodes. The

elements of E are called edges.

Given a graph G, V (G) denotes the vertices of G and E(G) denotes the edges of G.

Given a graph G, a sequence of the form 〈v0, e1, v1, e2, v2, . . . , en, vn〉 is called a path

from v0 to vn in G when for all i ∈ [1..n], vi ∈ V (G), ei = {vi−1, vi} ∈ E(G) and for

all i, j ∈ [1..n], if j 6= i then ej 6= ei.

Given a graph G, G is called connected when for all u, v ∈ V (G) where u 6= v, there

exists a path from u to v in G.

70

Texas Tech University, Edward Wertz, August 2019

Given a graph G, let P = 〈v0, e1, v1, e2, v2, . . . , en, vn〉 be a path in G, P is called a

cycle or cyclic path when v0 = vn.

G = 〈〈V,E〉, LV , LE〉 is called a labeled graph when 〈V,E〉 is a graph, LV is a function

from V to a set of objects, and LE is a function from E to a set of objects.

Given a graph G, if G is connected and there are no cyclic paths in G, then G is

called a tree.

Given a tree T , for every pair of nodes u, v ∈ V (T) where u 6= v, there is exactly one

path from u to v.

Proof by contradiction: Suppose there was more than one path from u to v in T .

Let 〈u = v0, e1, v1, . . . , en, vn = v〉 be one of the paths and 〈u = u0, f1, u1, . . . , fk, uk =

v〉 be a different path. Since v0 = u0 and vn = uk:

• let ui and vi be such that ui = vi and ui+1 6= vi+1,

• let m and h be the least integers such that, um = vh, m > i, h > i, and for all

a ∈ [i+ 1..m− 1] and b ∈ [i+ 1..h− 1], ua 6= vb.

• The path 〈ui, fi+1, ui+1, . . . , um−1, fm, um, eh, vh−1, . . . , vi+1, ei+1, vi〉 is a cycle in

T which contradicts with T being a tree.

There cannot be more than one path from any node u to any node v in T . There is

at least one path since T is a connected graph. Thus there is exactly one path from

u to v in T when u 6= v. �

Given a tree T , for all v ∈ V (T), let Ev = {e|e ∈ E(T) ∧ v ∈ e}, if |Ev| = 1 then v is

called a leaf of T .

A rooted tree is a tree with a designated vertex called the root.

Given a rooted tree T , for all v ∈ V (T), let P = 〈v0, e1, v1, e2, v2, . . . , en, vn〉 be the

path from the root node v0 to vn = v in T . The node vn−1 in P is called the parent

of v in T and v1, . . . , vn−1 are called ancestors of v in T .

71

Texas Tech University, Edward Wertz, August 2019

Given a rooted tree T , for all v, u ∈ V (T), if v is the parent of u in T then u is called

a child of v in T , if v is an ancestor of u in T then u is called a descendent of v in T .

T = 〈〈V,E〉, LV , LE〉 is called a labeled tree when 〈V,E〉 is a tree and T is a labeled

graph.

3.1 Constraint Logic Programming (CLP)

We review constraint logic programming (CLP)[32] here.

3.1.1 CLP Program

3.1.1.1 Terms

A term is defined recursively:

• A variable X is a term.

• A string constant t is a term

• The Herbrand function f(t1, . . . , tn) is a term when f is a function symbol of

arity n and t1, . . . , tn are terms.

A term containing no variables is called a ground term.

s(X) – is an example of a term where s/1 is a function symbol of arity 1.

s(s(s(1))) – is an example of a ground term.

3.1.1.2 Predicates

P (t1, . . . , tn) is called an Atom or Predicate of arity n when P is a predicate symbol

and t1, . . . , tn are terms.

A predicate is called a ground predicate when it contains no variables.

72

Texas Tech University, Edward Wertz, August 2019

father(X, Y) – is an example of an atom where father/2 is a predicate symbol of

arity 2.

father(abraham, isaac) – is an example of a ground predicate.

3.1.1.3 Literals

A literal l is either an atom or a primitive constraint from some constraint domain

D.

X < Y ∗ 3.14 – is a primitive constraint where X and Y are variables from R and <

is the less-than relation from R.

lessthan(X, Y ∗3.14) – is a predicate representation of the above primitive constraint.

3.1.1.4 CLP Rules

A CLP rule r is of the form:

l0 ← l1, . . . , ln

where

• l0 is a predicate, called a user-defined constraint

• l1, . . . , ln is a possibly empty sequence of arbitrary literals.

l0 is called the head of the rule. l1, . . . , ln are called the body of the rule. Rules which

have a head but the body is empty are called facts and are written as l0 without the

← symbol.

3.1.1.5 CLP Program

Let Π be an ordered collection of CLP rules. Π is called a constraint logic program

(CLP Program).

73

Texas Tech University, Edward Wertz, August 2019

For this writing we assume that Π, an arbitrary CLP program, has been given.

Let the rules in Π be totally ordered with respect to each other. We indicate that

rule r1 is less than rule r2 in Π with the notation r1 < r2.

The total order on rules of Π creates a lexicographical ordering on sequences of rules

from Π. We denote this total ordering on sequences of rules from Π as ω and use the

notation A <ω B to indicate that the sequence of rules A is less than the sequence of

rules B with respect to ω.

Note that for a set of ordered elements L, we refer to the least element in L as the

first element in L

3.1.2 Queries and Derivation Trees

3.1.2.1 Query

An arbitrary sequence of literals 〈l1, . . . , ln〉 from Π is called a query.

3.1.2.2 CLP State

The pair 〈Q|C〉 is called a CLP State where Q is a query and C is either fail or a

consistent set of primitive constraints. C is called a constraint store.

The state 〈〈〉|C〉 is called a success CLP state when C is consistent.

In the following writing we often use Q to denote the CLP state 〈Q|∅〉.

3.1.2.3 Constraint Transition

Given CLP states S and S ′ and a primitive constraint c, 〈S, c, S ′〉 is a constraint

transition when

• S = 〈Q|C〉 where C is a consistent set of constraints.

• Q = 〈l1, l2, . . . , ln〉 where l1 = c.

74

Texas Tech University, Edward Wertz, August 2019

• Q′ = 〈l2, . . . , ln〉.

• C ′ = C ∪ {l1} if it is consistent, otherwise C ′ = fail.

• S ′ = 〈Q′|C ′〉.

We define con(〈Q|C〉) to be 〈Q′|C ′〉 when 〈〈Q|C〉, c, 〈Q′|C ′〉〉 is a constraint transition.

We define con∗(〈Q|C〉) to be the closure of applying constraint transitions.

con∗(〈Q|C〉) = con(. . . con(〈Q|C〉) . . .).

3.1.2.4 Resolution Transition

A literal l is resolvable with a rule r if the literal in the head of r has the same

predicate name and arity as l.

A CLP state 〈Q|C〉 is resolvable with a rule r if the first literal in Q is resolvable with

r.

Given CLP states S and S ′ and a rule r from a program Π, 〈S, r, S ′〉 is a resolution

transition when

• S is some CLP state 〈Q|C〉 where C is a consistent set of constraints.

• Q is of the form 〈l1 = p(t1, . . . , tm), . . . , ln〉.

• r is of the form p(s1, . . . , sm)← B1, . . . , Bk.

• Q′ = 〈B1, . . . , Bk, l2, . . . , ln〉.

• C ′ = C ∪ {t1 = s1, . . . , tm = sm} if it is consistent, otherwise C ′ = fail.

• S ′ = 〈Q′|C ′〉.

We define res(〈Q|C〉, r) to be 〈Q′|C ′〉 when 〈〈Q|C〉, r, 〈Q′|C ′〉〉 is a resolution transi-

tion.

75

Texas Tech University, Edward Wertz, August 2019

3.1.2.5 SLD-Derivation Tree

Given a CLP state 〈Q|C〉 where C 6= fail, an SLD-derivation tree for 〈Q|C〉 with

respect to Π is a labeled rooted tree T = 〈〈V,E〉, LV , LE〉 such that LV is a function

from V to CLP states, LE is a function from E to rules in Π, and T is the minimal

labeled tree satisfying the following properties:

1. For the root node a in T , LV (a) = con∗(〈Q|C〉).

2. For every node b ∈ V and for every rule r ∈ Π, if LV (b) resolves with r

then there exists a node c ∈ V such that e = {b, c} ∈ E and LV (c) =

con∗(res(LV (b), LE(e))).

Given an SLD-derivation tree T = 〈〈V,E〉, LV , LE〉 for a CLP state 〈Q|C〉, for every

b ∈ V , let Pb = 〈v0, e1, v1, . . . , en, vn〉 be the path from the root node v0 to b = vn

in T , the sequence of rules Pr = 〈LE(e1), . . . , LE(en)〉 is called the path of derivation

for b in T . Pb is called the corresponding path in T for Pr. If LV (b) is of the form

〈〈〉|C ′ 6= fail〉 then P is called a successful path of derivation, C ′ is called the solution

of P , and the pair 〈C ′, P 〉 is called an annotated solution for 〈Q|C〉.

Given a CLP state 〈Q|C〉, the annotated solutions for 〈Q|C〉 are totally ordered in

the following way: let 〈C1, P1〉 and 〈C2, P2〉 be two different annotated solutions for

〈Q|C〉, then 〈C1, P1〉 <ω 〈C2, P2〉 iff P1 <ω P2.
1

Given an SLD-derivation tree T for a CLP state 〈Q|C〉, let P1, . . . , Pn be all the

successful paths of derivation in T , in order with respect to ω. For i ∈ [1..n], let Ci

be the solution of Pi in T , Ci is called the ith solution of 〈Q|C〉 and 〈C,P 〉 is called

the ith annotated solution of 〈Q|C〉.
1 We abuse notation for <ω to indicate when objects are ordered by components containing

sequences of rules.

76

Texas Tech University, Edward Wertz, August 2019

3.2 The Incremental Query Problem

3.2.1 Incremental Query

We refer to a sequence of literals from Π as a simple query to contrast it with the

notion of an incremental query.

Given simple queries Q1, . . . , Qn, the sequence I = 〈Q1; . . . ;Qn〉 is called an incre-

mental query. For every k ∈ [1..n] the prefix Ik = 〈Q1; . . . ;Qk〉 is also an incremental

query, called a sub-incremental query of I. I is a sub-incremental query to itself.

Given an incremental query I = 〈Q1; . . . ;Qn〉, let Qn = 〈ln,1, . . . , ln,kn〉. I represents

the simple query Q1 _ Q2 _ . . . _ Qn = 〈l1,1, . . . , l1,k1 , . . . , ln,1, . . . , ln,kn〉.

flatten(I) denotes the simple query represented by incremental query I.

Given an SLD-Derivation Tree T for flatten(I), the ith solution to flatten(I) is called

the ith solution to I.

An annotated solution for flatten(I) is called an annotated solution for I

3.2.1.1 IQ Sequence

An IQ sequence is a sequence of incremental queries 〈I1, . . . , In〉 where one of the

following properties holds between Ik and Ik+1 for k ∈ [1..n− 1]:

1. Ii = 〈Q1; . . . ;Qm〉, Ii+1 = 〈Q1; . . . ;Qm;Qm+1〉

(Ii is a sub-incremental query of Ii+1)

2. Ii = 〈Q1; . . . ;Qm〉, Ii+1 = 〈Q1; . . . ;Qm−1〉

(Ii+1 is a sub-incremental query of Ii)

3. Ii = Ii+1

(Ii and Ii+1 are sub-incremental queries of each other.)

77

Texas Tech University, Edward Wertz, August 2019

3.2.1.2 IQ Commands

An IQ command is either dec(), next(), or inc(Q) where Q is a non-empty simple

query. The command inc(Q) is called a query increment and dec() is called a query

decrement.

Given a sequence of IQ commands C = 〈C1, . . . , Cn〉, the IQ sequence defined by C is

I = 〈I0 = 〈〉, I1, . . . , In〉 when the following properties hold:

For i ∈ [1..n], let Ii−1 = 〈Q1; . . . ;Qk〉:

• if ci = inc(Q) then Ii = 〈Q1; . . . ;Qk;Q〉.

• if ci = dec() and k > 1 then Ii = 〈Q1; . . . ;Qk−1〉.

• if ci = dec() and k ≤ 1 then Ii = 〈〉.

• if ci = next() then Ii = Ii−1.

Given a sequence of IQ commands C = 〈C1, . . . , Cn〉, let I = 〈I0, I1, . . . In〉 be the IQ

sequence defined by C, for each j ∈ [1..n] the position of the related increment query

command for Ij is the maximum k ∈ [1..j] such that Ck = inc(Q) and Ik = Ij. If

|Ij| = 0 then the position of the related increment query command is undefined. The

position of the related increment query command for Cj is the position of the related

increment query command for Ij when Cj 6= dec() otherwise it is the position of the

related increment query command for Ij−1.

Given a sequence of IQ commands C = 〈C1, . . . , Cn〉, let I = 〈I0, I1, . . . In〉 be the IQ

sequence defined by C, for each j ∈ [1..n] where Cj = inc(Q), the expiring position

of Cj is the least integer m ∈ [j + 1..n] such that |Im| < |Ij|

Given a sequence of IQ commands C = 〈C1, . . . , Cn〉, let I = 〈I0, . . . , In〉 be the

IQ sequence defined by C. For each j ∈ [1..n] where Cj = inc(Q), the positions of

78

Texas Tech University, Edward Wertz, August 2019

solution requests with respect to Cj is L = {k|k ∈ [j..h], |Ik| = |Ij|} where h is defined

as follows: If the expiring position of Cj exists and it is m then h = m− 1, otherwise

h = n.

3.2.2 The Incremental Query Problem And Solution

Given a sequence of IQ commands C = 〈C1, . . . , Cn〉, the pair 〈Π, C〉 is called an

incremental query problem (IQ problem).

Given an IQ problem 〈Π, C〉, let C = 〈C1, . . . , Cn〉 be the sequence of IQ commands,

let I = 〈I0 = 〈〉, I1, . . . , In〉 be the IQ sequence defined by C. A sequence S =

〈S1, . . . , Sn〉 is called an IQ Solution to 〈Π, C〉 when for each i ∈ [1..n], Si satisfies

the following properties:

• when Ci = inc(Q), if no solution exists for Ii, then Si = fail, otherwise Si is

the first annotated solution for Ii.

• when Ci = next(), if |Ii| = 0 then Si = �. If |Ii| > 0, then let h be the

position of the related increment query command for Ci, let L be the positions

of solution requests with respect to Ch, let k = |{p ∈ L|p ≤ i}|. If Ii has at least

k solutions then Si is the kth annotated solution for Ii, otherwise Si = fail.

• when Ci = dec() then Si = �.

3.3 Records Of Computation

3.3.1 Computation Trees and Paths Of Computation

Given a CLP state S, let R be the set of rules from Π which resolve with S. A

Choice Frame has the form 〈S, cr, L〉 such that cr is either ∅ or {r} where r ∈ R and

L ⊂ R \ cr. L = ∅ when cr = ∅. L is called the unused resolution rules of the choice

frame and r is called the chosen rule of the choice frame.

79

Texas Tech University, Edward Wertz, August 2019

Given a SLD-derivation tree T = 〈〈V,E〉, LV , LE〉 for a CLP state 〈Q|C〉, the labeled

rooted tree T ′ = 〈〈V ′ = V ∪∆V , E
′ = E ∪∆E〉, L′V , L′E〉, where L′V is a function from

V ′ to CLP states or success and L′E is a function from E ′ to choice frames, is called

the computation tree defined by T when the following properties are satisfied:

1. |∆V | = |∆E| is the number of successful paths of derivation in T .

2. The root node of T is the root node of T ′.

3. For every b ∈ V if LV (b) is a success CLP state, then there exists a node c ∈ ∆V

and edge {b, c} ∈ ∆E.

4. for all b ∈ V ′, L′V (b) = LV (b) when b ∈ V otherwise L′V (b) = success

5. for all e = {b, c} ∈ E ′ if c ∈ ∆V then L′E(e) = 〈LV (b), ∅, ∅〉

6. for all e = {b, c} ∈ E ′ such that b is the parent of c and c 6∈ ∆V , then L′E(e) =

〈LV (b), LE(e), Lc〉 where Lc = {LE({b, d})|d is a child of b in T , and LE(e) <

LE({b, d})}

Intuitively, if T ′ is the computation tree defined by an SLD-derivation tree T , then

every edge {b, c} in T is labeled by a choice frame 〈S, cr, L〉 in T ′ where S is the CLP

state labeling b, cr is the rule in Π labeling {b, c} in T , and L contains all the rules

labeling edges in T to the children of b which occur after the node c.

Given an SLD-derivation tree T for a CLP state 〈Q|C〉, the computation tree T ′

defined by T is called a computation tree for 〈Q|C〉.

Given a computation tree T = 〈〈V,E〉, LV , LE〉 for a CLP state 〈Q|C〉, for every

node b in T , let 〈v0, e1, v1, . . . , en, vn〉 be the path in T from the root node v0 to

b = vn, the sequence of choice frames P = 〈LE(e1), . . . , LE(en)〉 is called the path of

computation to b in T . Let S be the CLP state of LE(en). The path of computation

80

Texas Tech University, Edward Wertz, August 2019

〈LE(e1), . . . , LE(en−1)〉 is called a path of computation to S in T . If S is a success

CLP state then P is called a successful path of computation for 〈Q|C〉.

Given the computation tree T ′ defined by an SLD-derivation tree T for a CLP state

〈Q|C〉, let P = 〈F1, . . . , Fn〉 be the path of computation to a node b in T ′. If b is in T

then rules(P) denotes the path of derivation to b in T . If b is not in T then let c be

the parent node of b in T ′, c is in T and rules(P) denotes the path of derivation to c

in T . Note that the sequence of chosen rules in the choice frames of P correspond to

the sequence of rules in rules(P).

Given a computation tree T for some CLP state 〈Q|C〉, let P be a successful path of

computation in T . The annotated solution derived from P is 〈K, rules(P)〉 where K

is the constraint store of the last choice frame on P .

Given a computation tree T for some CLP state 〈Q|C〉 and a simple query Q′, let P

be a path of computation in T . The expansion of P by Q′ is the sequence of choice

frames 〈F ′1, . . . , F ′n〉 where for all i ∈ [1..n], Fi = 〈〈Qi|Ci〉, cri, Li〉 and F ′i = 〈〈Qi _

Q|Ci〉, cri, Li〉. exp(P,Q′) denotes the expansion of P by Q′.

Note that if P is a path of computation in a computation tree for some CLP state

〈Q|C〉 then

• exp(P,Q′) is a path of computation in a computation tree for CLP state 〈Q _

Q′|C〉.

• exp(exp(P,Q1), Q2) = ext(P,Q1 _ Q2).

• rules(exp(P,Q)) = rules(P).

Given a simple query Q and paths of computation P , P ′, and P ′′ such that P =

exp(P ′, Q) _ P ′′, P is called an extension of P ′ with respect to Q.

81

Texas Tech University, Edward Wertz, August 2019

Given an incremental query I = 〈Q1; . . . ;Qn〉 and a successful path of computation

P for flatten(I), let I ′ = 〈Q1; . . . ;Qm〉 be a sub-incremental query to I. A successful

path of computation P ′ for flatten(I ′) is called the precedent path of P for I ′ when

P is an extension of P ′ with respect to Qm+1 _ . . . _ Qn. precedent(P, I ′) denotes

the precedent path of P for I ′.

Note that rules(precedent(P, I ′)) is a prefix of rules(P).

Note that precedent(precedent(P, I ′), I ′′) = precedent(P, I ′′) when there exists an in-

cremental query I such that I ′ is a sub-incremental query of I, I ′′ is a sub-incremental

query of both I and I ′, and P is a path of computation for flatten(I).

Given a computation tree T ′ defined by an SLD-derivation tree T for a CLP state

〈Q|C〉, let P1, . . . , Pn be the paths of computation to all leaf nodes in T ′. The sequence

〈P1, . . . , Pn〉 is a representation of T ′ when for all i, j ∈ [1..n] such that i < j,

rules(Pi) <ω rules(Pj).

From this point forward we represent computation trees as sequences of paths of

computation.

Given a computation tree T for 〈Q|C〉, the maximum subsequence of successful paths

of computation in T is called a complete success tree for 〈Q|C〉.

Given a complete success tree T for 〈Q|C〉, any prefix of T is called a partial success

tree for 〈Q|C〉. The empty sequence 〈〉 is a trivial partial success tree for 〈Q|C〉.

3.3.2 Record Of Computation

Given an incremental query I = 〈Q1; . . . ;Qn〉, for i ∈ [1..n], let Ii = 〈Q1; . . . ;Qi〉

and let Ti be a partial success tree for flatten(Ii). The sequence R = 〈T1, . . . , Tn〉 is

called a record of computation for I when the following properties hold:

1. For i ∈ [2..n], for every P ∈ Ti, precedent(P, Ii−1) ∈ Ti−1

82

Texas Tech University, Edward Wertz, August 2019

2. Every path of computation in T1, . . . , Tn is marked as closed or open under the

following restrictions:

• all paths in Tn are marked as open.

• for i ∈ [1..n− 1], for all paths Pi ∈ Ti, if Pi is marked as closed then Ti+1

contains all the successful paths of computation for flatten(Ii+1) which

are extensions of Pi.

3.4 IQ Transition Diagram

We now describe a state transition diagram of sound paths of computation which

a solver may take for computing IQ solutions to arbitrary IQ problems. We call

the transition diagram the Incremental Query Transition Diagram for program Π,

denoted as IQTD(Π).

The state description of the solver includes the structure of the current incremental

query, a record of computation containing annotated solutions to the incremental

query and its sub-incremental queries, the current CLP state and path of exploration,

and what mode the search procedure is in.

3.4.1 IQ State Of Computation

An IQ state is of the form:

〈〈IA, ID〉, R,N, P, 〈Q|C〉,M〉

where:

IA and ID are sequences of simple queries.

IA _ ID = 〈I1, . . . , In〉 is called the incremental query of the IQ state, IA is called

the active sub-incremental query, and ID is called the dormant queries of IA _ ID.

83

Texas Tech University, Edward Wertz, August 2019

R = 〈T1, . . . , Tn〉 is a record of computation for IA _ ID.

N = 〈N1, . . . , Nn〉 is a sequence of integers with the following properties:

• 1 ≤ Ni ≤ |Ti| for i ∈ [1..n− 1]

• 1 ≤ Nn ≤ |Tn|+ 1

A record of computation may contain more solutions than what have been requested

through IQ commands. N keeps track of how many solutions have been requested by

IQ commands for each sub-incremental query of the current query.

〈Q|C〉 is either a CLP state or 〈�|�〉.

P is either a path of computation or �.

M is either proceed, backtrack, or halt.

• when M = halt then P = �, 〈Q|C〉 = 〈�|�〉.

• when M = backtrack then P 6= �, 〈Q|C〉 = 〈�|�〉.

• when M = proceed then P 6= �, 〈Q|C〉 6= 〈�|�〉.

When 〈IA, ID〉 = 〈〈Q1; . . . ;Qk〉, 〈Qk+1; . . . ;Qn〉〉

Let Ck−1 be the solution of the first open path in Tk−1.

• when M is proceed or backtrack and |P | > 0 then the CLP state of the first

choice frame in P is 〈Qk|Ck−1〉

• when M is proceed and P = 〈〉 then 〈Q|C〉 = 〈Qk|Ck−1〉

• when M is proceed and |P | > 0, let 〈〈QP |CP 〉, {r}, L〉 be the last choice frame

of P , then 〈Q|C〉 the result of conk(res(〈QP |CP 〉, r)) where conk is 0 or more

applications of constraint resolution.

84

Texas Tech University, Edward Wertz, August 2019

The initial IQ state is of the form:

〈〈IA = 〈〉, ID = 〈〉〉, N = 〈〉, R = 〈〉, P = �, 〈�|�〉, halt〉

A success IQ state is of the form:

〈〈IA, ID = 〈〉〉, R = 〈T1, . . . , Tn〉, N = 〈N1, . . . , Nn〉,�, 〈�|�〉, halt〉

where |Tn| = Nn

A fail IQ state is of the form:

〈〈IA, ID = 〈〉〉, R = 〈T1, . . . , Tn〉, N = 〈N1, . . . , Nn〉,�, 〈�|�〉, halt〉

where |Tn| < Nn

The initial, success and fail IQ states are called halted states and are the only IQ

states where M = halt.

3.4.2 IQ State Transitions

The state transitions are organized around what mode the search procedure is

in. From a halted state, the solver can receive IQ commands which modify the

incremental query and record of computation. Searching for the next solution to

an incremental query 〈Q1; . . . ;Qn〉 is done in the context of saved solutions to the

immediate sub-incremental query 〈Q1; . . . ;Qn−1〉. If all saved solutions have been

exhausted, it becomes necessary to search for new solutions to the sub-incremental

query. State transitions model the book keeping about which sub-incremental query

is being answered and which solutions have been used in the record of computation.

Backtracking must be explicitly modeled to account for re-use of the information

85

Texas Tech University, Edward Wertz, August 2019

saved in the record of computation.

An IQ state transition has the form

〈S, e, S ′〉

where

• S and S ′ are IQ states

• e ∈ {inc(Q), dec(), nexp(), c, r, save, backtrack, fail} where Q is a simple query,

c is a primitive constraint, and r is either � or a rule from Π.

Transitions are divided into 3 categories:

• command transitions - process IQ commands

• proceed transitions - model “forward” computation searching an SLD-Derivation

tree

• backtrack transitions - carry saved information “backwards” during backtrack

operations.

3.4.2.1 Command Transitions

Increment Query Command Transition

Let inc(Q) be an IQ command. 〈S, inc(Q), S ′〉 is a command transition when:

S = 〈〈IA, ID = 〈〉〉, R,N,�, 〈�|�〉, halt〉

S ′ = 〈〈I ′A, ID = 〈〉〉, R′, N ′, P ′, 〈Q′|C ′〉,M ′〉

where

86

Texas Tech University, Edward Wertz, August 2019

• IA = 〈Q1; . . . ;Qn〉

• I ′A = 〈Q1; . . . ;Qn;Q〉

• R = 〈T1, . . . , Tn〉

• R′ = 〈T1, . . . , Tn, 〈〉〉

• N = 〈N1, . . . , Nn〉

• N ′ = 〈N1, . . . , Nn, 1〉

• If S is the initial IQ state then P ′ = 〈〉, Q′ = Q, C ′ = ∅, and M ′ = proceed.

• If |Tn| = 0 then P ′ = �, 〈Q′|C ′〉 = 〈�|�〉 and M ′ = halt.

• Otherwise

– Every path in Tn is marked as open.

– Pn is the first path in Tn,

– P ′ = 〈〉, Q′ = Q, C ′ is the solution of Pn and M ′ = proceed.

Next Solution Command Transition

If S is the initial IQ state, then 〈S, next(), S〉 is a command transition.

〈S, next(), S ′〉 is a command transition when:

S = 〈〈IA, ID = 〈〉〉, R,N,�, 〈�|�〉, halt〉

S ′ = 〈〈IA, ID = 〈〉〉, R,N ′, P ′, 〈�|�〉,M ′〉

where

• IA = 〈Q1; . . . ;Qn〉

87

Texas Tech University, Edward Wertz, August 2019

• R = 〈T1, . . . , Tn〉

• N = 〈N1, . . . , Nn〉

• N ′ = 〈N1, . . . , Nn−1, Nn + 1〉

• If |Tn| 6= Nn then P ′ = � and M ′ = halt

• If |Tn| = Nn then let Pn be the last path in Tn, P ′ is such that Pn = exp(P ′′, Qn)

_ P ′ for some P ′′ ∈ Tn−1 and M ′ = backtrack,.

Decrement Query Command Transition

If S is the initial IQ state, then 〈S, dec(), S〉 is a command transition.

〈S, dec(), S ′〉 is a command transition when:

S = 〈〈IA, ID = 〈〉〉, R,N,�, 〈�|�〉, halt〉

S ′ = 〈〈I ′A, ID = 〈〉〉, R′, N ′,�, 〈�|�〉, halt〉

where

• IA = 〈Q1; . . . ;Qn〉 (n > 0)

• I ′A = 〈Q1; . . . ;Qn−1〉

• R = 〈T1, . . . , Tn〉

• R′ = 〈T1, . . . , Tn−1〉

• N = 〈N1, . . . , Nn〉

• N ′ = 〈N1, . . . , Nn−1〉

• all paths in Tn−1 are marked as open.

88

Texas Tech University, Edward Wertz, August 2019

3.4.2.2 Proceed Transitions

Proceed transitions attempt to make progress towards finding the N [n]th solution

of IA _ ID. The Constraint Transition and Resolution Transition model exploring

a particular path of derivation to a new solution for IA. The Intermediate Save

Transition records the discovery of new solutions to IA, when ID 6= 〈〉. The Final

Save Transition halts searching and records the N [n]th solution to IA when ID = 〈〉. If

a Constraint Transition or Resolution Transition cannot make forward progress, then

they will set the necessary state to initiate backtracking within the current active

sub-incremental query.

Constraint Transition

Let c be a primitive constraint. 〈S, c, S ′〉 is a proceed transition when:

S = 〈〈IA, ID〉, R,N, P, 〈Q|C〉, proceed〉

S ′ = 〈〈IA, ID〉, R,N, P, 〈Q′|C ′〉,M ′〉

where

• Q has the form 〈c, l2, . . . , lm〉

• Let 〈Qc|Cc〉 = con(〈Q|C〉)

• if Cc = fail then 〈Q′|C ′〉 = 〈�|�〉 and M ′ = backtrack

• Otherwise 〈Q′|C ′〉 = 〈Qc|Cc〉 and M = proceed.

Resolution Transition

Let r be a rule from Π or �. 〈S, r, S ′〉 is a proceed transition when:

S = 〈〈IA, ID〉, R,N, P, 〈Q|C〉, proceed〉

S ′ = 〈〈IA, ID〉, R,N, P ′, 〈Q′|C ′〉,M ′〉

89

Texas Tech University, Edward Wertz, August 2019

where

• The first literal in Q is a user defined constraint.

• L is the set of all rules from Π that resolves with 〈Q|C〉.

• If L = ∅ then r = �, P ′ = P , 〈Q′|C ′〉 = 〈�|�〉, and M ′ = backtrack.

• Otherwise

– Let r be the first rule in L.

– P ′ = P _ 〈〈〈Q|C〉, {r}, L \ {r}〉〉

– Let 〈Qr|Cr〉 = res(〈Q|C〉, r)

– if Cr = fail then 〈Q′|C ′〉 = 〈�|�〉 and M ′ = backtrack

– otherwise 〈Q′|C ′〉 = 〈Qr|Cr〉 and M = proceed

Intermediate Save Transition

〈S, save, S ′〉 is a proceed transition when:

S = 〈〈IA, ID〉, R,N, P, 〈〈〉|C〉, proceed〉

S ′ = 〈〈I ′A, I ′D〉, R′, N, 〈〉, 〈Q′|C〉, proceed〉

where

• IA = 〈Q1; . . . ;Qk〉 and ID = 〈Qk+1; . . . ;Qn〉

• I ′A = 〈Q1; . . . ;Qk;Qk+1〉 and I ′D = 〈Qk+2; . . . ;Qn〉

• R = 〈T1, . . . , Tn〉

• Pk−1 is the first open path in Tk−1.

• Pk = exp(Pk−1, Qk) _ P _ 〈〈〈∅|C〉, ∅, ∅〉〉

90

Texas Tech University, Edward Wertz, August 2019

• R′ = 〈T1, . . . , Tk−1, Tk _ 〈Pk〉, Tk+1, . . . , Tn〉

• Pk is marked as open in R′.

• Q′ = Qk+1

Final Save Transition

〈S, save, S ′〉 is a proceed transition when:

S = 〈〈IA, ID = 〈〉〉, R,N, P, 〈〈〉|C〉, proceed〉

S ′ = 〈〈IA, ID = 〈〉〉, R′, N,�, 〈�|�〉, halt〉

where

• IA = 〈Q1; . . . ;Qn〉.

• R = 〈T1, . . . , Tn〉.

• R′ = 〈T1, . . . , Tn−1, Tn _ 〈Pn〉〉 where Pn−1 is the first open path in Tn−1 and

Pn = exp(Pn−1, Qn) _ P _ 〈〈〈∅|C〉, ∅, ∅〉〉.

• Pn is marked as open in Tn.

3.4.2.3 Backtrack Transitions

The traditional search of an SLD-Derivation tree does not formally model back-

tracking. When a state is returned to through backtracking, it is assumed that the

information generated by exploring the sub-tree is no longer relevant. In our case

we are saving any new solutions to sub-incremental queries we’ve encountered in the

exploration of a failed sub-tree and we must formally model carrying this information

back up the paths of derivation. Since we are searching for solutions of incremental

queries in the context of solutions to their sub-incremental queries, backtracking must

behave differently in the following cases:

91

Texas Tech University, Edward Wertz, August 2019

• backtracking within 〈Qm|Cm−1〉 when IA = 〈Q1; . . . ;Qm〉 and Cm−1 is a solution

for 〈Q1; . . . ;Qm−1〉.

• backtracking to the next saved solution C ′m−1 for 〈Q1; . . . ;Qm−1〉 to continue

searching for a new solution to IA. (The subtree below 〈Qm|Cm−1〉 has been

exhausted and no new solution was found).

• backtracking to find a new solution to 〈Q1; . . . ;Qm−1〉 when there are no more

saved solutions C ′m−1 to search under.

• Entering a fail state when no new solution could be found to IA _ ID.

Backtrack Within Current Query Transition

〈S, backtrack, S ′〉 is a backtrack transition when:

S = 〈〈IA, ID〉, R,N, P 6= 〈〉, 〈�|�〉, backtrack〉

S ′ = 〈〈IA, ID〉, R,N, P ′, 〈Q′|C ′〉,M ′〉

where

• P = 〈F1, . . . , Fm〉.

• Fi = 〈〈QFi
|CFi
〉, rFi

, LFi
〉 is the last choice frame on P such that LFi

6= ∅.

• Let r be the first rule in LFi
.

• P ′ = 〈F1, . . . , Fi−1〉_ 〈〈〈QFi
|CFi
〉, {r}, LFi

\ {r}〉〉.

• 〈Qr|Cr〉 = res(〈QFi
|CFi
〉, r)

• if Cr = fail then 〈Q′|C ′〉 = 〈�|�〉 and M ′ = backtrack.

• otherwise 〈Q′|C ′〉 = 〈Qr|Cr〉 and M = proceed.

92

Texas Tech University, Edward Wertz, August 2019

Next Existing Solution To Previous Query Transition

〈S, backtrack, S ′〉 is a backtrack transition when:

S = 〈〈IA, ID〉, R,N, P, 〈�|�〉, backtrack〉

S ′ = 〈〈IA, ID〉, R′, N, 〈〉, 〈Q′|C ′〉, proceed〉

where

• P has no choice frame with unused resolution rules.

• IA = 〈Q1; . . . ;Qk〉 and ID = 〈Qk+1; . . . ;Qn〉 with k ≥ 1

• R = 〈T1, . . . , Tn〉

• There are 2 or more open paths in Tk−1

• Let P1 and P2 be the first and second paths marked as open in Tk−1.

• R′ is R with P1 marked as closed.

• Q′ = Qk and C ′ is the solution of P2.

Find New Solution To Previous Query Transition

〈S, backtrack, S ′〉 is a backtrack transition when:

S = 〈〈IA, ID〉, R,N, P, 〈�|�〉, backtrack〉

S ′ = 〈〈I ′A, I ′D〉, R′, N, P ′, 〈�|�〉, backtrack〉

where

• P has no choice frame with unused resolution rules.

• IA = 〈Q1; . . . ;Qk〉 and ID = 〈Qk+1; . . . ;Qn〉 with k ≥ 2

93

Texas Tech University, Edward Wertz, August 2019

• I ′A = 〈Q1; . . . ;Qk−1〉 and I ′D = 〈Qk;Qk+1; . . . ;Qn〉

• R = 〈T1, . . . , Tn〉

• There is only one open path in Tk−1, and let Pk−1 be that path.

• Pk−2 = precedent(Pk−1, 〈Q1, . . . , Qk−2〉)

• P ′ is such that Pk−1 = exp(Pk−2, Qk−1) _ P ′

• R′ is R with Pk−1 marked as closed .

Fail Transition

〈S, fail, S ′〉 is a backtrack transition when:

S = 〈〈IA, ID〉, R,N, P, 〈�|�〉, backtrack〉

S ′ = 〈〈I ′A, I ′D = 〈〉〉, R,N,�, 〈�|�〉, halt〉

where

• P has no choice frame with unused resolution rules.

• either k = 1, or when k > 2 there is only 1 open path in Tk−1 and no open

paths in Tk−2.

• I ′A = IA _ ID.

3.4.3 IQTD Path

Given a CLP program Π, we use the term IQTD(Π) to denote the state diagram

defined by the IQ state transitions.

Given the state diagram IQTD(Π), let P = 〈s0, e1, s1, . . . en, sn〉 be a sequence of

labels on states and edges in IQTD(Π) such that for each i ∈ [1..n], 〈si−1, ei, si〉 is an

94

Texas Tech University, Edward Wertz, August 2019

IQ state transition, P is called a path in IQTD(Π). If s0 is the initial IQ state, then

P is called a sound path. If sn is a relevant IQ state, and P is a sound path, then P

is called a halted sound path.

Given a CLP program Π and a halted path P = 〈s0, e1, s1, . . . en, sn〉 from IQTD(Π),

let C = 〈C1, . . . , Ck〉 be the maximal subsequence of IQ commands labeling edges

along P , C is called the sequence of IQ commands defined by P .

Given a CLP program Π, let P be a halted sound path in IQTD(Π), let C =

〈C1, . . . , Cn〉 be the sequence of IQ commands defined by P and let L = 〈L0, . . . , Ln〉

be the sequence of halted IQ states along P .

For i ∈ [0..n]:

• let Li = 〈〈IAi
, 〈〉〉, Ri, Ni,�, 〈�|�〉, halt〉.

• let Ri = 〈Ti,1, . . . , Ti,ki〉.

• let Ni = 〈Ni,1, . . . , Ni,ki〉.

• let Ti,ki = 〈Pi,1, . . . , Pi,mi
〉.

The IQ solution defined by P is the sequence S = 〈S1, . . . , Sn〉 such that for j ∈ [1..n]:

• If Cj = dec(), then Sj = �

• If Cj = next() and IAj
= 〈〉, then Sj = �

• If Cj 6= dec(), IAj
6= 〈〉 and |Tj,kj | < Nj,kj , then Sj = fail.

• Otherwise let h = Nj,kj , Sj is the annotated solution derived from Pj,h.

Theorem Given an IQ problem 〈Π, C = 〈C1, . . . , Cn〉〉, S = 〈S1, . . . , Sn〉 is an IQ

solution to 〈Π, C〉 if and only if there exists a halted sound path P in IQTD(Π) such

95

Texas Tech University, Edward Wertz, August 2019

that C is the sequence of IQ commands defined by P and S is the IQ solution defined

by P .

The proof is found in the appendix C.4.

96

Texas Tech University, Edward Wertz, August 2019

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 CALM Conclusion

CALM is the first robust compiler for ALM supporting the full syntax and

able to handle malformed system descriptions through providing semantic errors.

CALM has already been used in the context of Processing Narratives by Means of

Action Languages [39]. Without a robust compiler it is rare for a new programming

language to be investigated for its effectiveness as a modeling language. We hope the

existence of CALM will allow enable the ALM approach to action languages and

modeling dynamic domains.

In the original ALM paper[24] it was suggested that an instance definition D for a

non-source sort S with sub-sorts could be implemented by adding a disjunctive clause

which would investigate D as being is a of each source sub-sort of S. Due to limita-

tions with SPARC’s implementation of sorts, this is not possible. SPARC requires

that the sort declarations be total and closed. There is no facility for the hypothetical

consideration of elements in sub-sorts in the hierarchy.

The original paper did not explain the concept of a parameterized constant as

used in the monkey banana problem. Implementation of constant definitions in the

structure proved complex for non-ground constants. Our implementation only sup-

ports the definition of ground constants. Parameterized constant declarations in the

theory are supported. Instances are treated as belonging to an anonymous subsort of

the declared sort for the constants.

4.2 CALM Future Work

There are many basic extensions to the ALM syntax that would expand utility

and expressiveness of the language. The following extensions could be implemented

97

Texas Tech University, Edward Wertz, August 2019

with the SPARC solver:

• Adding support for aggregate literals[41, 8, 13] in the body of axioms.

• Adding support for discrete time parameters in fluent axioms such as dynamic

causal laws. This would allow the specification of the effects of actions to occur

later than the next time step.

• Replacing the implementation of parameterized constants with support for pa-

rameterized sort declarations whose instances are automatically instantiated

through schema definitions.

• Adding support for additional constraints on generated plans in planning prob-

lems.

• Adding support for diagnosis and explanation problems[9].

In order to expand capability of ALM to continuous constraint domains, trans-

lation to a constraint enabled ASP solver is required. One such solver is AC(C).

4.3 ICLP Conclusion

Our work in the development of an Incremental Query Transition Diagram

(IQT D) extends and generalized the work of Peter Stuckey[31] and Pascal Van

Hentenryck[43]. Our transition diagram models the state of an sld-resolution based

solver that is capable of saving the solution and path of computation for each sub-

incremental query in the query stack when they are discovered. This transition dia-

gram will form the basis for modifying the CLAM(R) solver with new instructions

for saving incremental solutions. An Incremental CLAM(R) solver will allow for an

implementation of the ACSolver which does not have to restart the CLP solver each

time a query is withdrawn during backtracking on guesses.

98

Texas Tech University, Edward Wertz, August 2019

4.4 ICLP Future Work

The next step towards the development of an ACSolver which utilizes an incre-

mental CLAM(R) solver is to optimize the IQT D states to eliminate redundant

representatation of common paths to solutions between nested sld-derivation trees.

The successful paths of computation saved at level n should reference and extend

successful paths of computation saved for level n − 1. After this optimization, the

successful paths of computation reflect the paths of computation saved in theWAM

and CLAM(R). The semantics of the existing instruction set can be modified and

augmented to facilitate saving and restoring both paths of computation and solutions

in the constraint store.

99

Texas Tech University, Edward Wertz, August 2019

BIBLIOGRAPHY

[1] E. Balai, M. Gelfond, and Y. Zhang. Sparc-sorted asp with consistency restoring
rules. arXiv preprint arXiv:1301.1386, 2013.

[2] E. Balai, M. Gelfond, and Y. Zhang. Towards answer set programming with
sorts. In Logic Programming and Nonmonotonic Reasoning, 12th International
Conference, LPNMR 2013, Corunna, Spain, September 15-19, 2013. Proceed-
ings, pages 135–147, 2013.

[3] M. Balduccini. Representing constraint satisfaction problems in answer set pro-
gramming. In ICLP 2009 Workshop on Answer Set Programming and Other
Computing Paradigms (ASPOCP 2009)(July 2009), 2009.

[4] M. Balduccini. Some recent advances in answer set programming (from the
perspective of nlp). Language Processing and Automated Reasoning (NLPAR)
2013, 2013.

[5] W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. Journal of the ACM (JACM), 43(1):20–74, 1996.

[6] S. Chintabathina. Towards Answer Set Programming Based Architectures for
Intelligent Agents. PhD thesis, Texas Tech University, 2010.

[7] S. Chintabathina, M. Gelfond, and R. Watson. Modeling hybrid domains using
process description language. In Answer Set Programming, 2005.

[8] T. Dell’Armi, W. Faber, G. Ielpa, N. Leone, and G. Pfeifer. Aggregate functions
in disjunctive logic programming: semantics, complexity, and implementation in
dlv. In IJCAI, volume 3, pages 847–852, 2003.

[9] E. Erdem, M. Gelfond, and N. Leone. Applications of Answer Set Programming.
AI Magazine, 37(3):53–68, 2016.

[10] S. T. Erdougan. A library of general-purpose action descriptions. 2008.

[11] F. Fages, J. Fowler, and T. Sola. A reactive constraint logic programming scheme.
In ICLP, pages 149–163, 1995.

[12] F. Fages, J. Fowler, and T. Sola. Experiments in reactive constraint logic pro-
gramming. The Journal of Logic Programming, 37(1-3):185–212, 1998.

100

Texas Tech University, Edward Wertz, August 2019

[13] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and M. Schnei-
der. Potassco: The potsdam answer set solving collection. Ai Communications,
24(2):107–124, 2011.

[14] M. Gelfond and D. Inclezan. Yet another modular action language. In Proceedings
of the Second International Workshop on Software Engineering for Answer Set
Programming, pages 64–78, 2009.

[15] M. Gelfond and Y. Kahl. Knowledge Representation, Reasoning, and the Design
of Intelligent Agents. Cambridge University Press, 2014.

[16] M. Gelfond and Y. Kahl. Knowledge representation, reasoning, and the design of
intelligent agents: The answer-set programming approach. Cambridge University
Press, 2014.

[17] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of ICLP-88, pages 1070–1080, 1988.

[18] M. Gelfond, V. S. Mellarkod, and Y. Zhang. Systems integrating answer set
programming and constraint programming. In Proceedings of 2nd International
Workshop on Logic and Search (LaSh), pages 145–152, 2008.

[19] E. Giunchiglia and V. Lifschitz. An action language based on causal explanation:
Preliminary report. In AAAI/IAAI, pages 623–630, 1998.

[20] Y. Gu and M. Soutchanski. Modular basic action theories. In Proceedings of
the 7th IJCAI International Workshop on Nonmontonic Reasoning, Action and
Change (NRAC-07), pages 73–78. Citeseer, 2007.

[21] J. Gustafsson and J. Kvarnström. Elaboration tolerance through object-
orientation. Artificial Intelligence, 153(1-2):239–285, 2004.

[22] D. Inclezan. Modular action language ALM for dynamic domain representation.
PhD thesis, 2012.

[23] D. Inclezan and M. Gelfond. Modular action language ALM. Revised version
of the original paper [24], 2019.

[24] D. Inclezan and M. Gelfond. Modular action language ALM. Theory and
Practice of Logic Programming, 16(2):189–235, 2016.

[25] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings of
the 14th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 111–119. ACM, 1987.

101

Texas Tech University, Edward Wertz, August 2019

[26] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. The journal
of logic programming, 19:503–581, 1994.

[27] J. Jaffar, P. J. Stuckey, S. Michaylov, and R. H. Yap. An abstract machine for
clp (r). In ACM SIGPLAN Notices, volume 27, pages 128–139. ACM, 1992.

[28] Y. Lierler. Relating constraint answer set programming languages and algo-
rithms. Artificial Intelligence, 207:1–22, 2014.

[29] V. Lifschitz and W. Ren. Toward a modular action description language. AAAI
2006 Spring Symposium Series, 2006. to appear.

[30] V. Lifschitz and W. Ren. Towards a modular action description language.
In AAAI Spring Symposium: Formalizing and Compiling Background Knowl-
edge and Its Applications to Knowledge Representation and Question Answering,
pages 33–43, 2006.

[31] M. J. Maher and P. J. Stuckey. Expanding query power in constraint logic pro-
gramming languages. IBM Thomas J. Watson Research Division, 1989.

[32] K. Marriott, P. J. Stuckey, and P. J. Stuckey. Programming with constraints: an
introduction. MIT press, 1998.

[33] N. C. McCain. Causality in commonsense reasoning about actions. PhD thesis,
Citeseer, 1997.

[34] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint
of artificial intelligence. In Readings in artificial intelligence, pages 431–450.
Elsevier, 1981.

[35] V. S. Mellarkod. Integrating ASP and CLP systems: computing answer sets from
partially ground programs. PhD thesis, Texas Tech University, 2007.

[36] V. S. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set program-
ming and constraint logic programming. Annals of Mathematics and Artificial
Intelligence, 53(1-4):251–287, 2008.

[37] R. Morales. Improving efficiency of solving computational problems with ASP.
PhD thesis, 2010.

[38] M. Ohki, A. Takeuchi, and K. Furukawa. A framework for interactive problem
solving based on interactive query revision. In Conference on Logic Programming,
pages 137–146. Springer, 1986.

102

Texas Tech University, Edward Wertz, August 2019

[39] C. Olson. Processing narratives by means of action languages. 2019.

[40] M. Ostrowski and T. Schaub. Asp modulo csp: The clingcon system. arXiv
preprint arXiv:1210.2287, 2012.

[41] T. C. Son and E. Pontelli. A constructive semantic characterization of aggre-
gates in answer set programming. Theory and Practice of Logic Programming,
7(3):355–375, 2007.

[42] M. H. Van Emden, M. Ohki, and A. Takeuchi. Spreadsheets with incremental
queries as a user interface for logic programming. New Generation Computing,
4(3):287–304, 1986.

[43] P. Van Hentenryck and T. Le Provost. Incremental search in constraint logic
programming. New Generation Computing, 9(3-4):257, 1991.

[44] D. H. Warren. An abstract prolog instruction set. Technical note 309, 1983.

103

Texas Tech University, Edward Wertz, August 2019

APPENDICES

Appendix A

ALM Grammar in ANTLR4

/**

* This Grammar Follows the BNF for ALM as described in

* Appendix A of "Modular Action Language ALM"

* by Daniela Inclezan and Michael Gelfond.

*

* This document was created by Edward Wertz

* Date: 7/2/2015

* Copyright: Texas Tech University

*/

grammar ALM;

/* ABOUT THE GRAMMAR RULES THAT FOLLOW:

* 1) Lexer Rules and TOKEN names start with capitol letters.

* 2) parser rules start with lowercase letters

*

* Parser rules are clustered based on their "rank", "rank" is

* the maximum distance from lexer tokens in the BNF grammer

* The top-level rule will be the last rule in the grammar.

*/

/*

* LEXER RULES

104

Texas Tech University, Edward Wertz, August 2019

*/

// ORDER OF RULES IN FILE (TOP TO BOTTOM) matters

// ORDER OF DEFINITIONS (LEFT TO RIGHT) within

// NON-TERMINAL and TOKENS matters

COMMENT: ’%’ ~[\r\n]* (’\r’? ’\n’ | EOF) -> skip;

WhiteSpace: (’ ’|’\t’|’\r’|’\n’) -> skip; //SKIP WHITESPACE

//EAGERLY CREATE THESE SPECIFIC TOKENS

MOD: ’mod’;

EQ: ’=’;// Describes <eq>

NEQ: ’!=’; //Describes <neq>

ARITH_OP: ’+’ | ’-’ | ’*’ | ’/’ | ’mod’ | ’^’; //<arithmetic_op>

COMP_REL: ’>’ | ’<’ | ’<=’ | ’>=’; // <comparison_rel>

RIGHT_ARROW: ’->’; //Used in describing Function signatures.

OCCURS: ’occurs’; //key word

INSTANCE: ’instance’; //key word

IS_A: ’is_a’; //key word

HAS_CHILD: ’has_child’; //special function

HAS_PARENT: ’has_parent’; //special function

LINK: ’link’; //special function

SOURCE: ’source’; //special function

SINK: ’sink’; //special function

SUBSORT: ’subsort’; //special function

DOM: ’DOM’; //key word

105

Texas Tech University, Edward Wertz, August 2019

SORT: ’sort’;

STATE: ’state’;

CONSTRAINTS: ’constraints’;

FUNCTION: ’function’;

DECLARATIONS: ’declarations’;

DEFINITIONS: ’definitions’;

SYSTEM: ’system’;

DESCRIPTION: ’description’;

THEORY: ’theory’;

MODULE: ’module’;

IMPORT: ’import’;

FROM: ’from’;

DEPENDS: ’depends’;

ON: ’on’;

ATTRIBUTES: ’attributes’;

OBJECT: ’object’;

CONSTANT: ’constant’;

STATICS: ’statics’;

FLUENTS: ’fluents’;

BASIC: ’basic’;

DEFINED: ’defined’;

TOTAL: ’total’;

AXIOMS: ’axioms’;

DYNAMIC: ’dynamic’;

CAUSAL: ’causal’;

LAWS: ’laws’;

EXECUTABILITY: ’executability’;

106

Texas Tech University, Edward Wertz, August 2019

CONDITIONS: ’conditions’;

CAUSES: ’causes’;

IMPOSSIBLE: ’impossible’;

IF: ’if’;

FALSE: ’false’;

TRUE: ’true’;

STRUCTURE: ’structure’;

IN: ’in’;

WHERE: ’where’;

VALUE: ’value’;

OF: ’of’;

INSTANCES: ’instances’;

TEMPORAL : ’temporal’;

PROJECTION : ’projection’;

MAX: ’max’;

STEPS: ’steps’;

HISTORY : ’history’;

OBSERVED: ’observed’;

HAPPENED: ’happened’;

PLANNING: ’planning’;

PROBLEM: ’problem’;

DIAGNOSTIC: ’diagnostic’;

GOAL : ’goal’;

SITUATION : ’situation’;

WHEN : ’when’;

NORMAL: ’normal’;

ACTION: ’action’;

107

Texas Tech University, Edward Wertz, August 2019

ADDITIONAL: ’additional’;

RESTRICTIONS : ’restrictions’;

PERMISSIONS : ’permissions’;

POSSIBLE: ’possible’;

AVOID: ’avoid’;

BOOLEANS: ’booleans’;

INTEGERS: ’integers’;

UNIVERSE: ’universe’;

ACTIONS: ’actions’;

CURRENT: ’current’;

TIME: ’time’;

// THESE TOKENS ARE MORE GENERAL AND LESS EAGERLY DETERMINED

ID: [a-z]([a-zA-Z0-9_\-])*; //<identifier>

VAR: [A-Z]([a-zA-Z0-9_\-])*; //<variable>

POSINT: [1-9][0-9]*; // <positive_integer>

NEGINT: ’-’[1-9][0-9]*;//<negative_integer>

ZERO: [0]+; //ZERO

/*

* ALM BNF RULES subsumed by LEXER rules

* ----------------------------

* <boolean> -> BOOL

* <non_zero_digit> -> POSINT and NEGINT

* <digit> -> POSINT and NEGINT and ID and VAR

* <lowercase_letter> -> ID and VAR

* <uppercase_letter> -> ID and VAR

108

Texas Tech University, Edward Wertz, August 2019

* <letter> -> ID and VAR

* <identifier> -> ID

* <variable> -> VAR

* <positive_integer> -> POSINT

* <integer> -> ZERO and POSINT and NEGINT

* <arithmetic_op> -> ARITH_OP

* <comparison_rel> -> COMP_REL

*/

/*

* BASIC PARSER RULES BUILT OUT OF SPECIAL LEXER TOKENS

*/

bool : TRUE | FALSE;

nat_num : ZERO | POSINT; //<natural_number>

integer : ZERO | POSINT | NEGINT; //<integer>

relation: EQ | NEQ | COMP_REL; //<arithmetic_rel>

// RECOVER KEYWORDS && INTEGERS INTO IDENTIFIER

id : OCCURS | INSTANCE | IS_A | HAS_CHILD | HAS_PARENT | LINK

| SOURCE | SINK | SUBSORT | DOM | ID | MOD | SORT | STATE

| CONSTRAINTS | FUNCTION | DECLARATIONS | DEFINITIONS | SYSTEM

| DESCRIPTION | THEORY | MODULE | IMPORT | FROM | DEPENDS

109

Texas Tech University, Edward Wertz, August 2019

| ON | ATTRIBUTES | OBJECT | CONSTANT | STATICS | FLUENTS

| BASIC | DEFINED | TOTAL | AXIOMS | DYNAMIC | CAUSAL | LAWS

| EXECUTABILITY | CONDITIONS | CAUSES | IMPOSSIBLE | IF | FALSE

| TRUE | STRUCTURE | IN | WHERE | VALUE | OF | INSTANCES

| TEMPORAL | PROJECTION | MAX | STEPS | HISTORY | OBSERVED

| HAPPENED | PLANNING | PROBLEM | DIAGNOSTIC | GOAL

| SITUATION | WHEN | NORMAL | ACTION | ADDITIONAL | RESTRICTIONS

| PERMISSIONS | POSSIBLE | AVOID | BOOLEANS | INTEGERS | UNIVERSE

| ACTIONS | CURRENT | TIME | integer;

alm_name : id | VAR;

/*

* TERMS denote objects which populate sorts.

* integers are terms .

* true and false are terms.

* variables are terms.

* f(t1, ..., tn) is a term where all ti are terms

* and f is an identifier.

* */

//The pattern for instance and constants of user defined sorts.

object_constant: (id (’(’ term (’,’ term)* ’)’)? | integer);

110

Texas Tech University, Edward Wertz, August 2019

//function_terms and object_constants have the same syntax.

function_term: object_constant;

//terms denote values of sorts.

term: bool | VAR | id | integer | function_term | expression;

var_or_obj: (object_constant | VAR);

/* EXPRESSIONS

* An expression is a mathematical entity which denotes an integer.

* addition/subtraction

* multiplication/division/modulus/exponent

* factors participate in the above operations.

*/

expression: expression ’+’ arithmetic_term

| expression ’-’ arithmetic_term | arithmetic_term;

arithmetic_term: arithmetic_term ’*’ factor

| arithmetic_term ’/’ factor | arithmetic_term MOD factor

| factor ’^’ factor | factor;

factor: VAR | ’-’ VAR | integer | function_term

| ’-’ function_term | ’(’ expression ’)’

| ’-’ ’(’ expression ’)’;

// (’-’ integer) is not a factor, integer includes NEGINT

111

Texas Tech University, Edward Wertz, August 2019

/* LITERALS */

//These these literals are handled per occurrence.

occurs_atom: OCCURS ’(’ var_or_obj ’)’;

instance_atom: INSTANCE ’(’ var_or_obj ’,’ sort_name ’)’;

is_a_atom: IS_A ’(’ var_or_obj ’,’ sort_name ’)’;

link_atom: LINK ’(’ sort_name ’,’ sort_name ’)’;

subsort_atom: SUBSORT ’(’ sort_name ’,’ sort_name ’)’;

has_child_atom: HAS_CHILD ’(’ sort_name ’)’;

has_parent_atom: HAS_PARENT ’(’ sort_name ’)’;

sink_atom: SINK ’(’ sort_name ’)’;

source_atom: SOURCE ’(’ sort_name ’)’;

//Pattern for any atom (positive occurrence of a predicate),

// including special atoms.

atom: instance_atom | is_a_atom | link_atom | subsort_atom

| has_child_atom | has_parent_atom | sink_atom | source_atom

| function_term ;

//<literal> not including special literals

literal: atom | ’-’ atom | term relation term ;

occurs_literal: occurs_atom | ’-’ occurs_atom;

/* ALM FILE */

112

Texas Tech University, Edward Wertz, August 2019

alm_file : (system_description | theory | module) EOF;

/* ALM SYSTEM DESCRIPTION */

library_name: alm_name;

sys_desc_name: alm_name;

system_description : SYSTEM DESCRIPTION sys_desc_name theory

(structure solver_mode?)? EOF; //<system_description>

/* ALM THEORY */

theory_name: alm_name;

theory: (THEORY theory_name sequence_of_modules)

| (IMPORT theory_name FROM library_name);//<theory>

/* ALM MODULE */

module_name: alm_name;

//<set_of_modules><remainder_modules>

sequence_of_modules: (module)+;

//<module>

module: (MODULE module_name module_body)

| (IMPORT theory_name (’.’ module_name)? FROM library_name);

module_body: module_dependencies? sort_declarations?

constant_declarations? function_declarations? axioms?;

113

Texas Tech University, Edward Wertz, August 2019

/* ALM MODULE DEPENDENCIES */

module_dependencies: DEPENDS ON one_dependency

(’,’ one_dependency)*;

one_dependency: (theory_name ’.’)? module_name;

/* ALM SORT DECLARATIONS */

integer_range: integer ’..’ integer ;

predefined_sorts: BOOLEANS | INTEGERS | integer_range;

sort_name: predefined_sorts | UNIVERSE | ACTIONS | id ;

new_sort_name : id | integer_range;

//<sort_declaration><remainder_sort_declaration>

sort_declarations: SORT DECLARATIONS (one_sort_decl)+ ;

//<one_sort_decl>,<sort_name>,<remainder_sort_names>,

//<remainder_sorts>

one_sort_decl: new_sort_name (’,’ new_sort_name)* ’::’

sort_name (’,’ sort_name)* attributes?;

//<attributes><remainder_attribute_declarations>

attributes: ATTRIBUTES (one_attribute_decl)+;

//<one_attribue_decl>,<arguments>,<remainder_args>

one_attribute_decl: id ’:’ (sort_name (’,’ sort_name)*

RIGHT_ARROW)? sort_name;

114

Texas Tech University, Edward Wertz, August 2019

/* ALM CONSTANT DECLARATIONS */

//<constant_declaraions><remainder_constant_declarations>

constant_declarations: CONSTANT DECLARATIONS (one_constant_decl)+;

//<one_constant_decl>,<const_params>,<remainder_const_params>

one_constant_decl: object_constant (’,’ object_constant)* ’:’

sort_name (’,’ sort_name)* attribute_defs?;

/* ALM FUNCTION DECLARATIONS */

function_name:id;

function_declarations: FUNCTION DECLARATIONS static_declarations?

fluent_declarations?;

static_declarations: STATICS basic_function_declarations?

defined_function_declarations?;

fluent_declarations: FLUENTS basic_function_declarations?

defined_function_declarations?;

basic_function_declarations: BASIC (one_function_decl)+;

defined_function_declarations: DEFINED (one_function_decl)+;

one_function_decl: (TOTAL)? function_name ’:’ sort_name

((’*’ sort_name)* RIGHT_ARROW sort_name)?;

115

Texas Tech University, Edward Wertz, August 2019

pos_fun_def: function_term EQ term | function_term

| ’-’ function_term;

neg_fun_def: function_term NEQ term;

fun_def : (pos_fun_def | neg_fun_def);

/* ALM AXIOMS */

//<axioms>,<remainder_axioms>

axioms: AXIOMS (dynamic_causal_laws | executability_conditions

| state_constraints | function_definitions)+ ;

dynamic_causal_laws: DYNAMIC CAUSAL LAWS

(one_dynamic_causal_law)*;

executability_conditions: EXECUTABILITY CONDITIONS

(one_executability_condition)*;

state_constraints: STATE CONSTRAINTS (one_state_constraint)*;

function_definitions: FUNCTION DEFINITIONS (one_definition)*;

/* DYNAMIC CAUSAL LAW */

//<dynamic_causal_law><body>

one_dynamic_causal_law: occurs_atom CAUSES pos_fun_def IF

instance_atom (’,’ literal)* ’.’;

/* EXECUTABILITY CONDITION */

116

Texas Tech University, Edward Wertz, August 2019

//<executability_condition>, <extended body>

one_executability_condition: IMPOSSIBLE occurs_atom IF

instance_atom (’,’ (occurs_literal| literal))* ’.’;

/* STATE CONSTRAINT */

one_state_constraint: fun_def ’.’ | (FALSE | fun_def) IF

literal (’,’ literal)* ’.’;

/* DEFINITION */

one_definition: function_term ’.’ | function_term IF

literal (’,’ literal)* ’.’;

/* ALM STRUCTURE */

structure_name: alm_name;

structure: STRUCTURE structure_name (constant_defs

| instance_defs | statics_defs)*;

/* CONSTANT DEFINITIONS */

//<constant_defs><remainder_constant_defs>

constant_defs: CONSTANT DEFINITIONS (one_constant_def)+;

one_constant_def: object_constant ’=’ term;

117

Texas Tech University, Edward Wertz, August 2019

/* INSTANCE DEFINITIONS */

//<instance_defs><remainder_instance_defs>

instance_defs: INSTANCES (one_instance_def)+;

//<one_instance_def>

one_instance_def: var_or_obj (’,’ var_or_obj)* IN sort_name

(’,’ sort_name)* (WHERE literal (’,’ literal)*)? attribute_defs;

attribute_defs: (one_attribute_def)*;

one_attribute_def: function_term EQ term;

/* STATICS DEFINITIONS */

statics_defs: VALUE OF STATICS (one_static_def)+ ;

one_static_def: fun_def (IF literal (’,’ literal)*)? ’.’;

//<one_static_literal><body>

/* SOLVER MODES */

solver_mode : (temporal_projection | planning_problem

| diagnostic_problem) added_constraints? action_conditions?;

/* SOLVER MODE COMMON PARTS */

max_steps : MAX STEPS POSINT;

current_time: CURRENT TIME nat_num;

history : HISTORY (observed | happened)+;

118

Texas Tech University, Edward Wertz, August 2019

observed : OBSERVED ’(’ function_term ’,’ term ’,’

nat_num ’)’ ’.’ ;

happened : HAPPENED ’(’ object_constant ’,’ nat_num ’)’ ’.’;

/* SOLVER MODE ADDITIONAL CONSTRAINTS */

added_constraints: ADDITIONAL CONSTRAINTS (one_added_constraint)+;

one_added_constraint: (IMPOSSIBLE | AVOID) literal

(’,’ literal)* ’.’;

action_conditions: ACTION (RESTRICTIONS | PERMISSIONS)

(one_action_condition)+;

one_action_condition: (POSSIBLE | IMPOSSIBLE | AVOID)

function_term WHEN literal (’,’ literal)* ’.’;

/* TEMPORAL PROJECTION SPECIFIC */

temporal_projection : TEMPORAL PROJECTION max_steps history;

/* PLANNING PROBLEM SPECIFIC */

planning_problem : PLANNING PROBLEM max_steps current_time?

history goal_state;

goal_state: GOAL EQ ’{’ literal (’,’ literal)* ’}’;

/* DIAGNOSTIC PROBLEM SPECIFIC */

119

Texas Tech University, Edward Wertz, August 2019

diagnostic_problem : DIAGNOSTIC PROBLEM max_steps current_time?

history normal_conditions? current_state;

normal_conditions: NORMAL CONDITIONS (one_normal_condition)+;

one_normal_condition : id ’:’ literal (’when’ literal

(’,’ literal)*)?’.’;

current_state: SITUATION EQ ’{’ literal (’,’ literal)* ’}’ ’.’;

120

Texas Tech University, Edward Wertz, August 2019

Appendix B

CALM User and Developer Manual

B.1 Using CALM

B.1.1 Prerequisites

Required applications for executing CALM.

Java Java JDK version 8 (1.8) or higher.

https://www.oracle.com/technetwork/java/javase/downloads/index.html

• Download zip or executable.

• unzip binary into a directory.

• Set JAVA HOME environment variable to the directory

B.1.2 CALM Distributable

Build the CALM Distributable from source by following the development instructions

below or download the Windows distributable from the following url:

https://drive.google.com/open?id=1muof2vvDdJerEaaigVbOMQq6E_s8M7Ku

B.1.3 Commandline Usage

From the CALM\ directory, perform the following command:

java -jar calm.jar <path>\<file>

Where <path>\<file> is the path to a file containing an ALM System description

and optional task. The output of the execution will be located in the directory

CALM\output\<file>\

121

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://drive.google.com/open?id=1muof2vvDdJerEaaigVbOMQq6E_s8M7Ku

Texas Tech University, Edward Wertz, August 2019

B.1.4 Example Applications

If the distributable was downloaded from the above url, an examples directory is

included with sample System Descriptions to execute. If the distributable was man-

ually assembled from the development instructions, examples can be copied from the

following location:

ALM-Compiler\src\test\resources\sysdesc\unittest\programs

Execute the following from within the CALM directory:

java -jar calm.jar ./examples/basicMotion.tp

The output of execution will be located at the following directory:

CALM\output\basicMotion.tp\

B.2 CALM Development

B.2.1 Prerequisites

Required applications for compiling CALM.

Java Java JDK version 8 (1.8) or higher.

https://www.oracle.com/technetwork/java/javase/downloads/index.html

• Download zip or executable.

• If zip, unzip binary into a directory.

• Set JAVA HOME environment variable to the directory

Maven Maven version 3.0 or higher.

https://maven.apache.org/download.cgi

• Download zip of binary.

• Unzip binary into a directory.

122

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://maven.apache.org/download.cgi

Texas Tech University, Edward Wertz, August 2019

• Set MAVEN HOME environment variable to the directory.

• Set M2 HOME environment variable to the directory.

• Add the bin sub-folder to the PATH environment variable.

• Windows:

https://howtodoinjava.com/maven/how-to-install-maven-on-windows/

• Linux :

https://www.baeldung.com/install-maven-on-windows-linux-mac

B.2.2 Compiling CALM

From a clean directory on your file system perform the following commands:

> git clone https :// github.com/Topology/ALM -Compiler.git

> cd ./ALM -Compiler

> mvn clean build package

The compiled jar with all dependencies is in the target sub-directory.

B.2.3 Creating The CALM Distributable

After compiling the maven project (mvn clean build package) follow the following

steps to create a distributable directory for the intended target operating system.

1. Create a new empty directory called CALM\.

2. Copy and rename the alm compiler jar containing its dependencies from

ALM-Compiler\target\alm-compiler-...-with-dependencies.jar

to the new directory: CALM\calm.jar

3. Create a subfolder CALM\clingo\.

123

https://howtodoinjava.com/maven/how-to-install-maven-on-windows/
https://www.baeldung.com/install-maven-on-windows-linux-mac

Texas Tech University, Edward Wertz, August 2019

4. Download and unzip the appropriate OS specific version of clingo from

https://sourceforge.net/projects/potassco/files/clingo/4.5.4/

into the CALM\clingo\ directory.

5. Rename the clingo executable to clingo or clingo.exe as required by your

operating system. The program CALM\clingo\clingo should be executable.

6. Create a new folder CALM\sparc\

7. Download the sparc.jar from

https://github.com/iensen/sparc/raw/master/sparc.jar

into the directory and verify that java -jar CALM\sparc\sparc.jar executes.

8. Create a subfolder CALM\output\

9. Create a subfolder CALM\library\

10. Add any libraries and theories under the following pattern:

CALM\library\<library_name>\<theory_name>.alm

where the file <theory_name>.alm contains an ALM Theory with the same

name as the file name.

B.2.4 CALM Architecture

The organization of the source code is presented here through describing the contents

of important directories and files.

ALM Grammar and Parser ALM-Compiler\src\main\antlr4\ALM.g4

• This file contains the ALM grammar encoded in ANTLR4’s input language.

After modifying the grammar, this file is given as input to the ANTLR4 tool

to generate a new parser for the modified ALM grammar.

124

https://sourceforge.net/projects/potassco/files/clingo/4.5.4/
https://github.com/iensen/sparc/raw/master/sparc.jar

Texas Tech University, Edward Wertz, August 2019

After modifying the ALM grammar, the parser is created in 3 steps:

1. Compile the project to generate the ANTLR4 parser from the grammar.

2. Copy the generated code (except ALMBaseListener.java) to the right location.

3. Update the previous ALMBaseListener.java implementation.

We recommend developing CALM using an IDE. Changes to the grammar will alter

the generated parser in complex ways. Using an IDE will track changes between the

new ALMListener.java interface and the old ALMBaseListener.java implementation

of the interface.

ALM-Compiler\target\generated-sources\antlr4\

• Contains the generated source code for the ANTLR4 parser after the maven

project has been compiled: mvn clean build.

(Do not copy the ALMBaseListener.java.)

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\parser

• Copy the generated ANTLR4 parser (except ALMBaseListener.java) to this

location. Open the project in an IDE to edit the old copy of ALMBaseLis-

tener.java. The IDE will indicate the places where the old ALMBaseListener is

incompatible with the new parser and ALMListener interface.

The Main Class and Compiler Configuration

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\ALMCompiler.java

• This file contains the main function which processes commandline arguments,

configures the CALM settings, parses the input ALM System Description, and

translates the system description to SPARC.

125

Texas Tech University, Edward Wertz, August 2019

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\ALMCompilerSettings.java

• This file contains the configuration of CALM and processing of commandline

arguments.

Multi-Module BAT Hierarchy

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\ALMModuleManager.java

• This file keeps track of the references to libraries and modules and resolves

a module reference to the portion of the symbol table created by parsing the

module definition. The resolveModules() function recursively imports mod-

ules from libraries on disk until all module references are resolved or there is a

module resolution failure.

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\datastruct\sig\

• This directory contains the SymbolTable.java class, which models a modular

or hierarchical BAT signature. It also contains the class definitions needed to

model elements within the BAT Signature.

Semantics and Error Checking

ALM-...\src\main\java\edu\ttu\krlab\alm\parser\ALMBaseListener.java

• This file contains the implementations of the enter and exit functions called

before and after parsing each non-terminal in the ALM grammar. The exit

function is provided the syntax tree produced by the ANTLR4 parser. Through

implementing the non-terminal exit functions of key grammatical elements of

ALM we perform error checking, construction of the BAT Symbol Table, and

creation of ASP{f}rules for user defined and auxiliary axioms.

126

Texas Tech University, Edward Wertz, August 2019

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\datastruct\ALMTerm.java

• This class assists with parsing and translating ANTLR4 syntax tree objects to

terms in ALM. It also assists with type checking nested terms.

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\datastruct\err\

• This directory contains the ErrorReport.java class for reporting errors during

compilation and the ErrorMessageTable.java class which defines the messages

to produce when reporting each error.

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\datastruct\type\

• This directory contains the TypeChecker.java class which is used to track vari-

able occurrences in ASP{f}rules and check that a consistent type or sort can

be inferred between all variable occurrences.

Translation to SPARC

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\datastruct\sparc\

• This directory contains SPARCProgram.java class and other elements needed

to model the elements of a SPARCProgram.

ALM-Compiler\src\main\java\edu\ttu\krlab\alm\ALMTranslator.java

• This class contains the functions which translate the BAT Signature in the

symbol table to the sorts section, translate the function signatures in the symbol

table to the predicate section, and translate the ASP{f}rules to ASPrules in

the rules section of the SPARCprogram.

127

Texas Tech University, Edward Wertz, August 2019

Interacting with the SPARCSolver

ALM-Compiler\src\main\java\edu\ttu\krlab\answerset\parser\

• This directory contains classes and utilities needed to execute the SPARC solver

and process the resulting answer sets.

128

Texas Tech University, Edward Wertz, August 2019

Appendix C

IQTD Proofs

C.1 Extra Definitions

Given an IQ problem 〈Π, C〉, let I = 〈I0, I1, . . . , In〉 be the IQ sequence defined by

C. 〈Π, C〉 is called a finite IQ problem if for i ∈ [1..n] the sld-derivation tree for

〈flatten(Ii)|∅〉 is finite with respect to Π.

Given an IQ state S = 〈〈IA, ID〉, N,R, P, 〈Q|C〉,M〉, let n = |IA _ ID|, m = |IA|,

and R = 〈T1, . . . , Tn〉. The rank of S, denoted rank(S), is defined as follows:

• If M = halt, let P ′ be the last path of computation in Tn. rank(S) = rules(P ′)

• If M = proceed, let P ′ be the first open path of computation in Tm−1. rank(S)

= rules(exp(P ′, IA[|IA|]) _ P)

• IfM = backtrack, let P ′ be the first open path of computation in Tm−1. rank(S)

is the greatest path of derivation in the sld-derivation tree of 〈flatten(IA _

ID)|∅〉 which has rules(exp(P ′, IA[|IA|]) _ P) as a prefix.

Given a CLP Program Π, a path P = 〈s0, e1, s1, . . . , ez, sz〉 in IQTD(Π) is called a

run when s0 and sz are halted IQ states and for i ∈ [1..z − 1], si is not a halted IQ

state.

Given a CLP Program Π and a run P = 〈s0, e1, s1, . . . , ez, sz〉 in IQTD(Π), the IQ

Command of the run is the IQ command labeling the first IQ State transition of P .

Note that from the definition of the IQ State transitions, the first transition must be

an IQ Command Transition and there can be no other IQ Command Transitions in

the run.

129

Texas Tech University, Edward Wertz, August 2019

Given a CLP Program Π and a halted sound path P = 〈s0, e1, s1, . . . , ez, sz〉 in

IQTD(Π), let L = 〈L0, . . . , Ln〉 be the halted IQ states along P where s0 = L0

and Sz = LN , for i ∈ [1..n] the ith run of P is the path from Li−1 to Li, the ith IQ

Command of P is the IQ Command Ci labeling the first IQ State Transition in the ith

run, and the sequence 〈C1, . . . , Cn〉 is called the Sequence of IQ Commands defined

by P .

C.2 Deterministic Run Lemma

Given an IQ command C ′ and a halted sound path P in IQTD(Π) where C =

〈C1, . . . , Cn〉 is the sequence of IQ commands defined by P and L = 〈L0, L1, . . . , Ln〉

is the sequence of halted IQ states in P , if 〈Π, C _ 〈C ′〉〉 is a finite IQ problem then

there exists a unique run 〈s0, e1, s1, . . . , ez, sz〉 in IQTD(Π) such that s0 = Ln and

e1 = C ′.

Proof

Assume C ′ is an IQ command and P is a halted sound path in IQTD(Π). (3)

Let C = 〈C1, . . . , Cn〉 be the IQ commands along P , L = 〈L0, L1, . . . , Ln〉 be

the sequence of halted IQ states along P , and I = 〈I0, I1, . . . , In, In+1〉 be the IQ

sequence defined by 〈C1, . . . , Cn, C
′〉.

Assume 〈Π, C _ 〈C ′〉〉 is a finite IQ problem. (4)

We construct a path P ′ in IQTD(Π) as follows:

1. If 〈Ln, C ′, s1〉 is an IQ command transition in IQTD(Π) then

P ′ := 〈Ln, C ′, s1〉

2. Loop

(a) P ′ is of the form 〈Ln, C ′, s1, . . . , ej, sj〉

130

Texas Tech University, Edward Wertz, August 2019

(b) If there exists an IQ state transition 〈sj, ej+1, sj+1〉 in IQTD(Π) that is

not an IQ command transition then

P ′ := 〈Ln, C ′, s1, . . . , ej, sj, ej+1, sj+1〉

(c) otherwise exit the loop

From the definition of all state transitions, each non-halted state s′ along P ′ after

Ln has a unique transition 〈s′, e, s′′〉.

Since the IQ problem is finite (4), there are a finite number of state transitions in

P ′ and P ′ ends in a halted IQ state.

P ′ is the only run starting with the IQ command transition 〈Ln, C ′, s1〉.

�

C.3 The Correspondence Lemma

The first element, 〈IA, ID〉, of a IQ state is called the query of the state.

Given a halted sound path P = 〈s0, e1, · · · , ez, sz〉, for any IQ state si, we define

c(i) as the maximal number such that

• c(i) 6 i, and

• Cc(i) is an IQ command.

We call Cc(i) the IQ command for si.

For any state si and sj (j > i) of P , let 〈IA, ID〉 be the query of si. we say si

is useful for sj if for all m ∈ [c(i), j], IA is a prefix of Im let Im be the IQ sequence

defined by 〈C1, · · · , Cc(m)〉. 2

Given a halted sound path P in IQTD(Π) let

• P be of the form 〈s0, e1, si, . . . , ez, sz〉

131

Texas Tech University, Edward Wertz, August 2019

• C = 〈C1, . . . , Cn〉 be the sequence of IQ commands defined by P .

• I = 〈I0, . . . , In〉 be the IQ Sequence defined by C,

• for i ∈ [1..n] and g ∈ [1..|Ii|], let mi,g be the number of solutions for incremental

query Ii[1..g]

• L = 〈L0, . . . , Ln〉 be the sequence of halted states in P

• for k ∈ [1..n], let Pk = 〈slk = Lk−1, elk+1 = Ck, slk+1, . . . , elk+i, slk+i = Lk〉 be

the kth run of P

• for i ∈ [0..z], let 〈〈IAi
, IDi
〉, Ri, Ni, Pi, 〈Qi|Ci〉,Mi〉 be the form of each IQ state

si.

For j ∈ [0..z], let k be the least integer such that run Pk contains sj, then the following

holds:

• If sj is the first IQ state in Pk then IAj
_ IDj

= Ik−1, otherwise IAj
_ IDj

= Ik.

(CL.1)

• For i ∈ [1..|Ik|], for g ∈ [1..|Rj[i]|], Rj[i][g] is a successful path of computation

for 〈flatten(Ik[1..i])|∅〉 and the annotated solution derived from Rj[i][g] is the

gth annotated solution of incremental query Ik[1..i] (CL.2)

• If Ck = dec() then let q = |Ik|, otherwise let q = |Ik−1|. For g ∈ [1..q] if Nj[g] <

mk,g then Nj[g] ≤ |Rj[g]| ≤ mk,g otherwise |Rj[g]| = mk,g.

(CL.3)

• If Ck = inc(Q) and sj is not the first IQ State of Pk, let q = |Ik|, then Nj[q] = 1.

If sj is the last IQ State in Pk andmk,q > 0 then |Rj[q]| = 1 otherwise |Rj[q]| = 0.

(CL.4)

132

Texas Tech University, Edward Wertz, August 2019

• If Ck = next(), Ik 6= I0, and sj is not the first IQ State of Pk, let h be the

position of the related increment query command for Ck, let r be the number

of solution requests for Ik in 〈Ch, . . . , Ck〉, let q = |Ik|, then Nj[q] = r. If

r > mk,q then |Rj[q]| = mk,q. If r ≤ mk,q and sj is the last IQ State of Pk

then r ≤ |Rj[q]| ≤ mk,q. If r ≤ mk,q and sj is not the last IQ State of Pk then

r − 1 ≤ |Rj[q]| ≤ mk,q. (CL.5)

• If Mj 6= halt, let q = |IAj
| and P be defined as follows: If q = 1 then P = Pj.

If q > 1 then P = exp(Po, IAj
[q]) _ 〈Pj〉 where Po is the first open path of

Rj[q − 1]. Let 〈F1, . . . , Fm〉 be the sequence of choice frames along P . Let T =

〈〈V,E〉, LV , LE〉 be the computation tree for 〈flatten(IAj
)|∅〉. For a ∈ [1..m]

there exists a node ba ∈ V such that 〈F1, . . . , Fa〉 is the path of computation to

ba in T and LV (ba) = con∗(res(〈Qa|Ca〉, ra)) where Fa = 〈〈Qa|Ca〉, {ra}, La〉. If

a = m and Mj = proceed then LV (ba) = con∗(〈Qj|Cj〉). (CL.6)

• If j > 0 and 〈sj−1, ej, sj〉 is not an increment query or decrement query com-

mand transition, then rank(sj) ≥ω rank(sj−1). For i ∈ [1..|Ik|] Let Tsldi =

〈〈Vsldi , Esldi〉, LVsldi , LEsldi
〉 be the sld-derivation tree for 〈flatten(Ik[1..i])|∅〉 and

for all b ∈ Vsldi let Db be the path of derivation to b in Tsldi . If Db ≤ω rank(sj)

there exists sx such that sx is useful for sj, rank(sx) = Db, and if Db is a success-

ful path of derivation then 〈sx, e, sx+1〉 is either a intermediate save transition

or a final save transition. (CL.7)

• If Pj 6= � then for i ∈ [1..|Pj|] let 〈〈Qi|Ci〉, {ri}, Li〉 = Pj[i] and let L∗i be the

set of rules from Π which resolve with 〈Qi|Ci〉. The following properties hold:

ri ∈ L∗i and ∀r∗ ∈ L∗i , r∗ ∈ Li iff r∗ >ω ri. (CL.8)

Proof

133

Texas Tech University, Edward Wertz, August 2019

Let the premises of the correspondence lemma be given. We prove that all claims

(CL.1) through (CL.8) hold through strong induction on the length of a prefix of

P = 〈s0, e1, · · · , ez, sz〉.

It is clear that all claims hold for s0, the initial IQ halted state.

Assume for n ∈ [1..z − 1] that all claims hold for all states si such that i ∈ [1..n], we

show by cases that each claim holds for sn+1. (5)

Proof of claim (CL.1):

Suppose sn+1 is in the kth run of P .

case 1: sn+1 is the first IQ state of Pk

sn+1 is the last IQ state of Pk−1

IAn+1 _ IDn+1 = Ik−1 holds by (5) for claim (CL.1)

case 2: sn+1 is not the first IQ state of Pk

Let 〈st, Ck, st+1 be the first state transition of Pk.

by case 1 IAt _ IDt = Ik−1

by the definition of all IQ Command Transitions, IAt+1 _ IDt+1 = Ik

by the definition of all state transitions that are not IQ Command Transitions,

for all states si ∈ [st+1, . . . , sn+1] in Pk, IAi
_ IDi

= Ik

therefore IAn+1 _ IDn+1 = Ik

claim (CL.1) is proven.

Proof of claim (CL.2):

case 1: 〈sn, en+1, sn+1〉 is not a save or a command transition.

134

Texas Tech University, Edward Wertz, August 2019

(CL.2) holds by strong inductive hypothesis for all states prior to sn+1

for IQ state transitions that are not save or command transitions, the record of

computation and the incremental queries of sn+1 and sn are the same.

claim (CL.2) is satisfied in this case.

case 2: 〈sn, en+1, sn+1〉 is an increment command transition

Ik−1 is a proper sub-incremental query of Ik |Ik−1| < |Ik|

Rn+1 = Rn _ 〈〉

claim (CL.2) is satisfied in this case.

case 3: 〈sn, en+1, sn+1〉 is a next command transition

The incremental query and record of computation remain unchanged between

sn and sn+1

by the assumption of strong inductive hypothesis (CL.2) holds for sn

claim (CL.2) for sn+1 is satisfied in this case.

case 4: 〈sn, en+1, sn+1〉 is a decrement command transition

Ik is a proper sub-incremental query of Ik−1

Rn+1 is a proper prefix of Rn

by the assumption of strong inductive hypothesis (CL.2) holds for sn

claim (CL.2) holds for Ik and Rn+1 in sn+1

case 5: 〈sn, en+1, sn+1〉 is a save transition

The incremental queries of sn and sn+1 are the same.

Rn+1 is the same as Rn except that Rn+1[|IAn|] = Rn[|IAn|] _ 〈〈P ′〉〉 where P ′

is a successful path of computation to a solution of flatten(IAn).

135

Texas Tech University, Edward Wertz, August 2019

Let g be such that Rn+1[|IAn|][g] = P ′.

The rank or P ′ is greater than all other saved paths in Rn+1 by the assumption

of strong inductive hypothesis for claim (CL.7)

By the assumption of strong inductive hypothesis for claim (CL.8), the rank

of P ′ is less than all remaining unexplored paths.

By the definition of all state transitions, resolution always picks the least rule

to resolve with the remaining query and no branch in the sld-derivation tree is

skipped.

Rn+1[|IAn |][g] = P ′ is the gth annotated solution for flatten(IAn).

claim (CL.2) for sn+1 is satisfied in this case.

claim (CL.2) is proven.

Proof of claim (CL.3):

by strong inductive hypothesis (CL.3) is satisfied for sn.

by the definition of each state transition, (CL.3) is satisfied in each case.

claim (CL.3) is proven.

Proof of claim (CL.4):

let Pk be the run containing the transition 〈sn, en+1, sn+1〉

By the deterministic run lemma and the fact that the IQ problem is finite, Pk is

finite in length.

Assume Ck is an increment command.

For all states along Pk after the command transition |Rn+1[|IAn+1|]| = 0

136

Texas Tech University, Edward Wertz, August 2019

Pk either ends in a final save transition and |Rn+1[|IAn+1|]| = 1 or ends in a fail

transition and |Rn+1[|IAn+1|]| = 0

claim (CL.4) is proven.

Proof of claim (CL.5):

let Pk be the run containing the transition 〈sn, en+1, sn+1〉

let q = |Ik|.

By the deterministic run lemma and the fact that the IQ problem is finite, Pk is

finite in length.

Assume Ck is a next command and sx is the first IQ state in Pk such that x < n+1.

For all states si along Pk after the command transition and before the final state

|Ri[q]| = |Rx[q]| and Ni[q] = Nx[q] + 1.

by the assumption of strong induction, claim (CL.5) holds for all states along Pk

prior to sn+1.

case 1: 〈sn, en+1, sn+1〉 is not the final transition in Pk, claim (CL.5) holds.

case 2: |Rn[q]| = mk,q and 〈sn, en+1, sn+1〉 is the final transition in Pk.

All solutions have been previously found for flatten(Ik).

by the assumption of strong induction, all claims hold for all states prior to

sn+1.

from claim (CL.7) the paths of derivation in the sld-derivation tree are explored

in a monotonically increasing manner.

since the last annotated solution has been previously recorded, all paths of

derivation of higher rank do not lead to new solutions.

137

Texas Tech University, Edward Wertz, August 2019

Pk ends in a fail transition.

|Rn+1[q]| = mk,q and Nn+1[q] = Nn[q].

claim (CL.5) holds for sn+1.

case 3: |Rn[q]| < mk,qand 〈sn, en+1, sn+1〉 is the final transition in Pk.

〈sn, en+1, sn+1〉 is either a fail transition or a final save transition.

by the assumption of strong induction, all claims hold for all states prior to

sn+1.

from claim (CL.7) the paths of derivation in the sld-derivation tree are explored

in a monotonically increasing manner.

from claim (CL.8) the paths of derivation are explored in order.

since not all solutions have been recorded, there are successful paths of deriva-

tion remaining to be explored.

〈sn, en+1, sn+1〉 must be a final save transition.

From the definition of all transitions along Pk, Nn+1[q] = Nn[q] = Nx[q] + 1 and

|Rn+1[q]| = |Rx[q]|+ 1

since claim (CL.5) holds for sx, claim (CL.5) holds for sn+1.

claim (CL.5) is proven.

Proof of claim (CL.6):

We prove claim (CL.6) by examining modes of the solver as it explores the sld-

derivation tree and constructs paths of computation. This claim asserts that for

every non-halted state of the solver, there is a well defined node in the computation

tree for the active incremental query that the solver is visiting.

case 1: Mn+1 = proceed

138

Texas Tech University, Edward Wertz, August 2019

by assumption of strong inductive hypothesis, claim (CL.6) holds for sn.

case 1.1: 〈sn, en+1, sn+1〉 is a resolution transition.

Let b be the node in the computation tree of 〈flatten(IAn), ∅〉 for state sn

Since 〈sn, en+1, sn+1〉 is a resolution transition, there exists rules which resolve

with the head of the active CLP query.

let r be the rule chosen for resolution by this transition.

let br be the node in the computation tree annotated by the choice frame

reflecting resolution with r.

The existence of br satisfies claim (CL.6) in this case.

case 1.2: 〈sn, en+1, sn+1〉 is a constraint transition.

Let b be the node in the computation tree of 〈flatten(IAn), ∅〉 for state sn

Since 〈sn, en+1, sn+1〉 is a constraint transition, b is the node in the compu-

tation tree satisfying claim (CL.6) in this case.

case 1.3: 〈sn, en+1, sn+1〉 is an intermediate save transition.

Note that the active path of computation in sn+1 is an empty extension of

the active path of computation in sn.

Let b be the node in the computation tree of 〈flatten(IAn), ∅〉 for state sn

by strong inductive hypothesis.

b is the node in the computation tree satisfying claim (CL.6) in this case.

case 2: Mn+1 = backtrack

Note that proceed transitions build the active path of computation one choice

frame at a time.

The sequence of choice frames along active path in a state whose mode is back-

track has been previously active in a proceed transition. Let sx be the proceed

transition prior to sn+1 which had the same active path.

139

Texas Tech University, Edward Wertz, August 2019

by assumption in strong induction, claim (CL.6) holds for sx.

claim (CL.6) holds for sn+1

claim (CL.6) is proven.

Proof of claim (CL.7):

The essence of this claim is that the sld-derivation trees are searched and paths

of computation are constructed in a monotonically increasing order with respect

to rank and that all solutions belonging to paths of derivation of lower rank have

been saved in the record of computation.

We prove claim (CL.7) in cases of the 〈sn, en+1, sn+1〉 transition.

by assumption of strong inductive hypothesis, claim (CL.6) holds for all states si

where i < n.

case 1: 〈sn, en+1, sn+1〉 is a next command transition, constraint transition or save

transition.

By the definition of rank and the definition of the transition, rank(sn+1) =ω

rank(sn)

Since sn+1 is of the same rank as sn and claim (CL.7) holds for sn, claim

(CL.7) holds for sn+1.

case 2: 〈sn, en+1, sn+1〉 is a resolution transition.

Let P ′n be the active path of computation for state sn

Let P ′n+1 be the active path of computation for state sn+1

By definition of a resolution transition P ′n+1 extends P ′n and rules(P ′n) <ω

rules(P ′n+1)

140

Texas Tech University, Edward Wertz, August 2019

Since P ′n is a prefix of P ′n+1 and resolution selected the least rule to resolve with,

there does not exist a path of derivation Pb in the sld-derivation tree such that

rules(P ′n) <ω Pb <ω rules(P
′
n+1).

Since claim (CL.7) holds for sn by strong inductive hypothesis, (CL.7) holds

for sn+1 in this case

case 3: 〈sn, en+1, sn+1〉 is any backtrack transition except for the fail transition.

Let P ′ be the active path of computation for state sn+1

Let x < n+1 be the largest integer such that 〈sx−1, ex, sx〉 is a proceed transition

and P ′ is the active path of computation for state sx

By definition of rank, rank(sx) = rank(sn+1)

by assumption of strong inductive hypothesis, claim (CL.7) holds for sx

claim (CL.7) holds for sn+1 in this case.

case 4: 〈sn, en+1, sn+1〉 is any backtrack transition except for the fail transition.

Let P ′ be the active path of computation for state sn+1

Let x < n+1 be the largest integer such that 〈sx−1, ex, sx〉 is a proceed transition

and P ′ is the active path of computation for state sx

By definition of rank, rank(sx) = rank(sn+1)

by assumption of strong inductive hypothesis, claim (CL.7) holds for sx

claim (CL.7) holds for sn+1 in this case.

case 5: 〈sn, en+1, sn+1〉 is a decrement command transition or fail transition.

Let P ′ be the last saved successful path of computation in Rn+1[|IAn+1 |].

Let x < n + 1 be the largest integer such that 〈sx−1, ex, sx〉 is the final save

transition which add P ′ to Rn+1.

141

Texas Tech University, Edward Wertz, August 2019

By definition of rank, rank(sx) = rank(sn+1)

by assumption of strong inductive hypothesis, claim (CL.7) holds for sx

claim (CL.7) holds for sn+1 in this case.

case 6: 〈sn, en+1, sn+1〉 is an increment command transition.

Let P ′ be the first saved successful path of computation in Rn+1[|IAn+1 | − 1].

Let x < n+1 be the largest integer such that 〈sx−1, ex, sx〉 is the save transition

which add P ′ to Rx.

By definition of rank, rank(sx) = rank(sn+1)

by assumption of strong inductive hypothesis, claim (CL.7) holds for sx

claim (CL.7) holds for sn+1 in this case.

claim (CL.7) is proven.

Proof of claim (CL.8):

The essence of claim (CL.8) is that in each application of the resolution transition

and the backtrack within current query transitions, the construction of the choice

frame is such that the least available rule is chosen for resolution. This ensures

that the sld-derivation tree is explored in order with respect to the <ω ordering

on paths of derivation.

This property is trivially satisfied by strong inductive hypothesis for all transitions

〈sn, en+1, sn+1〉 other than the resolution transition and the backtrack within the

current query transition.

When 〈sn, en+1, sn+1〉 is either the resolution transition or the backtrack within

the current query transition, this claim is satisfied by construction of the active

path of computation in the definition of the transitions.

142

Texas Tech University, Edward Wertz, August 2019

claim (CL.8) is proven.

By strong induction, The Correspondence Lemma holds for all states along every

sound path in the IQTD transition diagram.

�

C.4 Proof Of Theorem

Theorem Given a finite IQ problem 〈Π, C〉, S is an IQ solution to 〈Π, C〉 if and

only if there exists a halted sound path P in IQTD(Π) such that C is the sequence

of IQ commands defined by P and S is the IQ solution defined by P .

Proof ⇐ (uses Correspondence Lemma)

Claim: Given an IQ problem 〈Π, C = 〈C1, . . . , Cn〉〉, S is an IQ solution to 〈Π, C〉

if there exists a halted sound path P in IQTD(Π) such that C is the sequence of IQ

commands defined by P and S is the IQ solution defined by P .

Proof:

Assume P is a halted sound in IQTD(Π) where C is the sequence of IQ commands

in P

Let S be the IQ solution defined by P

Let L = 〈L0, . . . , Ln〉 be the sequence of halted IQ states along P , C be

〈C1, . . . , Cn〉, S be 〈S1, . . . , Sn〉, I = 〈I0, . . . , In〉 be the IQ Sequence defined

by C, and for i ∈ [1..n], let Li be 〈〈IAi
, IDi

= 〈〉〉, Ri, Ni,�, 〈�|�〉, halt〉.

To prove that S is the IQ Solution for the IQ Problem 〈Π, C〉 ??, for i ∈ [1..n],

we consider three cases of the IQ Command Ci in the ith run 〈Li−1, Ci, . . . , Li〉

of P which defines Si.

Case 1: Ci = inc(Q). We consider two possibilities for Ii in our proof of 16

143

Texas Tech University, Edward Wertz, August 2019

Case 1.1: No solution exists for Ii has

From Ci = inc(Q) we have that Ci 6= dec(). (6)

By the definition of IQ Sequence defined by C and C = inq(Q), Ii

contains the query Q and |Ii| > 0.

By the correspondance lemma (CL.1), since Li is in the ith run of P

and not the first halted state in the run, Ii = IAi
_ IDi

.

Since IDi
= 〈〉 we have that Ii = IAi

and |IAi
| > 0. (7)

By the correspondance lemma (CL.4), since Li is in the ith run of P

and is not the first halted state of the run and Ci = inc(Q) we have

Ni[k] = 1.

By the correspondance lemma (CL.4), since Ii is the incremental query

of Li and Ii has 0 solutions, and 0 < Ni[k] = 1, we conclude that

|Ri[k]| = 0.

Therefore |Ri[k]| < Ni[k] (8)

From the definition of IQ Solution defined by P , if Ci 6= dec(), |IAi
| =

k > 0 and |Ri[k]| < Ni[k], then Si = fail.

Since 6, 7 and 8 hold, we conclude that:

Si = fail (9)

Case 1.2: Ii has At least 1 solution

By the definition of IQ Sequence defined by C and Ci = inc(Q), Ii

contains the query Q and |Ii| > 0.

Let |Ii| = k for some k > 0.

By the correspondance lemma (CL.1), since Li is in the ith run of P

and not the first halted state in the run, Ii = IAi
_ IDi

.

Since IDi
= 〈〉 we have that Ii = IAi

and |IAi
| = k > 0. (10)

144

Texas Tech University, Edward Wertz, August 2019

From Ci = inc(Q) we have Ci 6= dec. (11)

By the correspondance lemma (CL.4), since Li is in the ith run of P

and is not the first halted state of the run and Ci = inc(Q) we have

Ni[k] = 1.

By 10 Ii is the incremental query of Li. (12)

Ii has at least 1 solution and Li is a halted IQ state and 1 ≥ Ni[k] = 1.

(13)

By 12, 13 and correspondance lemma (CL4) we have |Ri[k]| = Ni[k]

and then we have |Ri[k]| ≥ Ni[k]. (14)

By 11, 14 and from the definition of IQ Solution defined by P, Si is the

annotated solution derived from Ri[k][Ni[k]] = Ri[k][1].

By the correspondance (Cl.2), the annotated solution derived from

Ri[k][1] is the kth annotated solution of incremental query Ii[1..k].

Since k = |Ii| therefore Ii[1..k] is Ii.

Si is the first annotated solution for Ii. (15)

Combining 9 and 15 we have that when Ci = inc(Q), if no solution exists

for Ii, then Si = fail, otherwise Si is the first annotated solution for Ii.

(16)

Case 2: Ci = next(). We consider two possibilities for |Ii| in our proof of 35.

Case 2.1: |Ii| = 0

By the correspondance lemma (CL.1), since Li is in the ith run of P

and not the first halted state in the run, Ii = IAi
_ IDi

.

Since IDi
= 〈〉 we have that Ii = IAi

. (17)

By 17 and |Ii| = 0 we have |IAi
| = 0. (18)

By 18, Ci = next() and from the definition of IQ Solution defined by

P, if Ci = next() and |IAi
| = 0 then Si = �.

145

Texas Tech University, Edward Wertz, August 2019

Si = � (19)

Case 2.2: |Ii| > 0. We consider two possibilities for Ii in our proof of 34.

Before start to prove sub cases of case 2.2, we want to prove 22 and

23.

By the correspondance lemma (CL.1), since Li is in the ith run of P

and not the first halted state in the run, Ii = IAi
_ IDi

.

Since IDi
= 〈〉 we have that Ii = IAi

. (20)

By 20 and |Ii| > 0 we have |IAi
| > 0. (21)

By 20 Ii is the incremental query of Li. (22)

Let r be the number of solution requests for Ii in 〈Ch, ..., Ci〉 where h

is the position of the related increment query command for Ci.

Let k = |Ii| for some k > 0.

By the correspondance lemma (CL.5) and because Li is not the first

IQ state of ith run we have Ni[k] = r. (23)

Let m be the number of solutions for incremental query Ii.

Case 2.2.1: Ii has at least r solutions.

Ii has at least r solutions means that m ≥ r. (24)

Li is the last IQ state of ith run and because of 24 By the cor-

respondance lemma (CL.5) we have r ≤ |Ri[k]| ≤ m. (25)

By 23 and 25 we have |Ri[k]| ≥ Ni[k]. (26)

By 26, 20, Ci = next() and from the definition of IQ Solution de-

fined by P, Si is the annotated solution derived from Ri[k][Ni[k]].

(27) .

By 27 and 23 we have Si is the annotated solution derived from

Ri[k][r]. (28)

146

Texas Tech University, Edward Wertz, August 2019

By the correspondance (Cl.2), the annotated solution derived

from Ri[k][r] is the rth annotated solution of incremental query

Ii[1..k].

Since |Ii| = k therefore Ii[1..k] is Ii.

Si is the rth annotated solution for Ii (29)

Case 2.2.2: Ii has less than r solutions

Ii has at most r solutions means that m < r. (30)

By the correspondance lemma (CL.5) and 30 we have |Ri[k]| =

m. (31)

By 23, 31 and 30 we have Ni[k] > |Ri[k]|. (32)

by 32, Ci 6= dec(), 21 and From the definition of IQ Solution

defined by P , if Ci 6= dec(), |IAi
| > 0 and |Ri[k]| < Ni[k] then

Si = fail.

Si = fail. (33)

From 29 and 33 If |Ii| > 0, then let h be the position of the related

increment query command for Ci, let k be the number of solution requests

for Ii in 〈Ch, . . . , Ci〉. If Ii has at least r solutions then Si is the rth

annotated solution for Ii, otherwise Si = fail. (34)

Combining 19 and 34 we have that when Ci = next(), if |Ii| = 0 then Si = �.

If |Ii| > 0, then let h be the position of the related increment query command

for Ci, let k be the number of solution requests for Ii in 〈Ch, . . . , Ci〉. If Ii

has at least r solutions then Si is the rth annotated solution for Ii, otherwise

Si = fail. (35) .

Case 3: Ci = dec()

From the definition of IQ Solution defined by P, If Ci = dec(), then

Si = �.

147

Texas Tech University, Edward Wertz, August 2019

when Ci = dec() then Si = � (36) .

By the definition of an IQ Solution to an IQ Problem and 16, 35, 36 S is an IQ

solution to 〈Π, C〉.

�

Proof ⇒ (uses Deterministic Run Lemma)

We must show that if S is an IQ solution to the IQ problem 〈Π, C〉 then there exists

a halted sound path P in IQTD(Π) such that C is the sequence of IQ commands

defined by P and S is the IQ solution defined by P . 48

Assume S is an IQ solution to an IQ problem 〈Π, C〉. (37)

By the definition of an IQ problem, C is a sequence of IQ commands of the form

〈C1, . . . , Cn〉

Let I = 〈I0, I1, . . . , In〉 be the IQ sequence defined by C.

From the definition of S being an IQ solution to 〈Π, C〉, S = 〈S1, . . . , Sn〉 we have

that for i ∈ [1..n], Si satisfies the following properties: (38)

• when Ci = inc(Q), if no solution exists for Ii, then Si = fail, otherwise Si is

the first annotated solution for Ii.

• when Ci = next(), if |Ii| = 0 then Si = �. If |Ii| > 0, then let h be the

position of the related increment query command for Ci, let k be the number

of solution requests for Ii in 〈Ch, . . . , Ci〉. If Ii has at least k solutions then

Si is the kth annotated solution for Ii, otherwise Si = fail.

• when Ci = dec() then Si = �.

We construct a path P in IQTD(Π) as follows:

148

Texas Tech University, Edward Wertz, August 2019

Let P ′ = 〈L0〉 such that L0 is the initial halted IQ state.

Repeat for i ∈ [1..n] in order

• Let Li−1 be the last state in P ′.

• By construction Li−1 is a halted IQ state.

• Let 〈Li−1, Ci, s′, . . . , Li〉 be the unique run as determined by the determin-

istic run lemma.

• P ′ := P ′ _ 〈Li−1, Ci, s′, . . . , Li〉

P = P ′ at the end of the above construction.

P is a halted sound path in IQTD(Π) (39)

Let C ′ be the sequence of IQ Commands defined by P .

By construction of P , C = C ′

C is the sequence of IQ commands defined by P . (40)

Let S ′ = 〈S ′1, . . . , S ′n〉 be the IQ solution defined by P .

By the proof of the theorem in the reverse direction, S ′ is the IQ solution of the

IQ problem 〈Π, C〉.

We show 47 holds by proving S = S ′.

Let L = 〈L0, L1, . . . , Ln〉 be the halted IQ states along P where L0 is the initial

IQ state and for i ∈ [0..n] Li is of the form 〈〈IAi
, 〈〉〉, Ri, Ni,�, 〈�|�〉, halt〉.

For i ∈ [1..n] we consider the definitions of Si and S ′i and the ith run of P , Pi =

〈Li−1, ei,1 = Ci, si,1, ei,2, si,2, . . . , ei,ki , Li〉.

Case 1: Ci = dec():

149

Texas Tech University, Edward Wertz, August 2019

From the definition of S being the IQ solution to the IQ problem 〈Π, C〉, when

Ci = dec(), Si = �.

From the definition of S ′ being the IQ solution defined by P , when Ci = dec(),

when Ci = dec(), S ′i = �.

Si = S ′i. (41)

Let qi = |Ii| and mi be the number of solutions to Ii.

By the correspondence lemma (CL.1) and Li not being the first IQ state in Pi,

Ii = IAi
_ IDi

.

From IDi
= 〈〉 we have that Ii = IAi

and |IAi
| = qi.

Case 2: Ci = inc(Q):

From the definition of S being the IQ solution to the IQ problem 〈Π, C〉, when

Ci = inc(Q), if no solution exists for Ii, then Si = fail, otherwise Si is the first

annotated solution for Ii.

We consider two cases for mi.

Case 2.1: mi = 0

Si = fail

By the correspondence lemma (CL.4), since Li is not the first IQ state of Pi

and mi = 0 then Ni[qi] = 1 and |Ri[qi]| = 0.

|Ri[qi]| < Ni[qi]

By the definition of S ′ being the IQ solution defined by P , If Ci 6= dec(),

|IAi
| = qi > 0 and |Ri[qi]| < Ni[qi], then S ′i = fail.

S ′i = fail.

Si = S ′i. (42)

150

Texas Tech University, Edward Wertz, August 2019

Case 2.2: mi > 0

Si is the first annotated solution to Ii.

By the correspondence lemma (CL.4), since Li is not the first IQ state of Pi

and mi = 0 then Ni[qi] = 1 and |Ri[qi]| = 1.

|Ri[qi]| ≥ Ni[qi]

By the definition of S ′ being the IQ solution defined by P , If Ci 6= dec(),

|IAi
| = qi > 0 and |Ri[qi]| ≥ Ni[qi], then S ′i is the annotated solution derived

from Ri[qi][Ni[qi] = 1].

By the correspondence lemma (CL.2), the annotated solution derived from

Ri[qi][1] is the first annotated solution of incremental query Ii[1..qi].

Ii = Ii[1..qi]

S ′i is the first annotated solution of Ii.

Si = S ′i. (43)

Case 3: Ci = next()

let h be the position of the related increment query command for Ci and let

k be the number of solution requests or Ii in 〈Ch, . . . , Ci〉.

From the definition of S being the IQ solution to the IQ problem 〈Π, C〉,

when Ci = next(), if |Ii| = 0 then Si = �, otherwise If |Ii| > 0 and Ii has

at least k solutions then Si is the kth annotated solution for Ii, otherwise

Si = fail.

We consider the values for qi, mi and k.

Case 3.1: qi = 0

Si = �

|IAi
| = |Ii| = qi = 0

151

Texas Tech University, Edward Wertz, August 2019

By the definition of S ′ being the IQ solution defined by P , if Ci = next()

and |IAi
| = 0, then S ′i = �.

S ′i = � cl.7

Si = S ′i (44)

Case 3.2: qi > 0 and mi < k

Si = fail

By the correspondence lemma (CL.5), since Li is the last IQ state of Pi

and mi < k, then Ni[qi] = k and |Ri[qi]| = mi.

|Ri[qi]| < Ni[qi].

By the definition of S ′ being the IQ solution defined by P , If Ci 6= dec(),

|IAi
| = qi > 0 and |Ri[qi]| < Ni[qi], then S ′i = fail.

S ′i = fail.

Si = S ′i. (45)

Case 3.3: qi > 0 and mi ≥ k

Si is the kth annotated solution for Ii.

By the correspondence lemma (CL.5), since Li is the last IQ state of Pi

and mi ≥ k, then Ni[qi] = k and k ≤ |Ri[qi]| ≤ mi.

|Ri[qi]| ≥ Ni[qi].

By the definition of S ′ being the IQ solution defined by P , If Ci 6= dec(),

|IAi
| = qi > 0 and |Ri[qi]| ≥ Ni[qi], then S ′i is the annotated solution

derived from Ri[qi][Ni[qi] = k].

By the correspondence lemma (CL.2), the annotated solution derived from

Ri[qi][k] is the kth annotated solution of incremental query Ii[1..qi].

Ii = Ii[1..qi]

S ′i is the kth annotated solution of Ii.

152

Texas Tech University, Edward Wertz, August 2019

Si = S ′i. (46)

For i ∈ [1..n], in all cases 41, 42, 43, 44, 45, and 46 Si = S ′i.

S = S ′.

From S ′ being the IQ solution defined by P and S = S ′, S is the IQ solution

defined by P . (47)

From showing 39, 40, and 47 under the assumption of 37 we conclude that:

If S is an IQ solution to the IQ problem 〈Π, C〉 then there exists a halted sound path

P in IQTD(Π) such that C is the sequence of IQ commands defined by P and S is

the IQ solution defined by P . (48)

�

153

	ACKNOWLEDGMENTS
	ABSTRACT
	1 INTRODUCTION
	2 CALM
	3 ICLP
	4 CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	APPENDICES
	A ALM Grammar in ANTLR4
	B CALM User and Developer Manual
	C IQTD Proofs

