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Abstract

In this paper we define the notion of causes of events in trajectories of dynamic domains from the standpoint
of an agent acting in this domain. We assume that the agent’s knowledge about the domain is axiomatized in
P-log with consistency restoring rules – a powerful knowledge representation language combining various
forms of logical and probabilistic reasoning. The proposed model of causality is tested on a number of
examples of causal domains frequently used in the literature.
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1 Introduction

This paper is a contribution to a research program aimed at finding precise mathematical formal-
ization of substantial parts of commonsense knowledge and developing commonsense reasoning
methods in knowledge representation languages based on Answer Set Prolog (ASP). We con-
centrate on causal reasoning, which seems to be of vital importance for our understanding of
the world. The nature of causality and various causal relations has, for a long time, been de-
bated by philosophers, physicists, statisticians, researchers in AI, etc. For recent AI work see, for
instance, (Pearl 2009),(Halpern 2016),(Beckers and Vennekens 2012),(Bochman 2018). But de-
spite the amazing progress, we do not yet have fully adequate understanding of the subject. There
are still different interpretations of the intuitive meaning of causality, answers provided to causal
questions by various formalisms do not always match the intuition, and some “causal stories”
simply cannot be expressed in existing languages. In our approach we address these problems by
using rich knowledge representation language capable of expressing non-trivial causal relations
as well as various forms of commonsense background knowledge. We opted for logic program-
ming language P-log with consistency-restoring rules (cr-rules) (Baral et al. 2009; Gelfond and
Rushton 2010; Balai et al. 2019). It is an extension of ASP with well known methodology for
representing defaults and their direct and indirect exceptions, recursive definitions, probability,
direct and indirect effects of actions (including parallel and non-deterministic actions), time, etc.
Its non-monotonic reasoning system combines standard ASP reasoning, abduction, and proba-
bilistic computation. We are primarily interested in dynamic domains and, as in many theories of
action and change, view the agent’s knowledge base as a description of possible trajectories of the
domain. The events in these trajectories are caused by actions. This is different from a large body
of work in which the agent’s knowledge is represented by structural equations, causal logic or
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other formalisms emphasizing purely causal reasoning at the expense of background knowledge.
Usually, but not always, these approaches provide counterfactual account of causality. There is a
number of recent approaches (see, for instance, (Batusov and Soutchanski 2018; LeBlanc et al.
2019; Cabalar et al. 2014)) which seem to share our philosophy. There are, however, many sub-
stantial differences related to the power of our KR-language and other factors. The multiplicity of
interpretations of the word cause is partially addressed by concentrating on what is often referred
to as actual causes. In our approach time (or at least ordering of events) is an integral part of this
notion. We further deal with this problem by dividing causes of events into those which consist
of deliberate actions, those which contain at least one accidental (but known) action, and those
which include some exogenous actions not native to the agent’s model of the world. The methods
of testing our definitions and KR methodology are determined by our goal. We view our work
as a step in an attempt to pass what J.Pearl calls Mini-Turing Test (Pearl and Mackenzie 2018):
“The idea is to take a simple story, encode it on a machine in some way, and then test to see
if the machine can correctly answer causal questions that a human can answer.” So, naturally,
we use this to test accuracy of our modeling and relationship with other approaches. (Of course,
only few of such examples are presented in this paper.) To make sure that wrong answers to these
questions are not caused by inadequate representation of the problem we pay serious attention to
developing KR methodology which properly combines causal and background knowledge about
the domain. The paper is organized as follows. We assume some knowledge of P-log and define
notions of an agent’s background theory and scenario, which together form the agent’s causal
theory. The background theory contains general knowledge about the domain while the scenario
describes a particular story to be analyzed. Next section contain definitions of three types of
causes accompanied by some explanatory examples. Next we give examples of our approach by
using it to analyze causal relations in several simple stories, followed by conclusion and future
work. We assume reader’s familiarity with ASP and some knowledge of P-log.

2 Representing Agent’s Knowledge

Knowledge of an agent will be represented by a P-log program tailored for reasoning about
effects of actions and causes of events. Regular function symbols of a program will be parti-
tioned into fluent, action, static and auxiliary and used to form fluent, action, static and auxiliary
terms respectively. We assume that actions are Boolean. The last parameter of functions from
the first two groups is of a special sort called time-step (usually represented by natural num-
bers); time-steps are not allowed in statics. Recall that P-log terms formed by random are of
the form random(m, f (x̄), p). This expression can also be viewed as at atom (a shorthand for
random(m, f , p)= true), which states that, as the result of a random experiment m which is either
genuine or deliberately interfered with, f (x̄) should take the value from {Y : p(Y )∩ range( f )}.
In addition, we require that for every time steps t1 and t2 occurring in m and f respectively, t2 > t1
if f is a fluent, and t2 ≥ t1 if f is an action. Finally, both m and random(m, f (x̄), p) are viewed
as action terms. Sometimes we say that f (x̄, t) is an instance of abstract fluent f (x̄) and that the
value y of f (x̄, t) is the value of abstract fluent f (x̄) at time-step t. Similarly for abstract actions.
Atoms formed by action terms are called action atoms. Similarly for fluent and static atoms. In
this paper we are especially interested in properties of events – statements describing occurrences
of actions and values of fluents at given time-steps. More precisely, an action event is a collection
of action atoms. Similarly for fluent events. An event is a fluent event or an action event. The pro-
gram representing the agent’s knowledge is divided into two parts: a particular story (also called
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domain scenario or recorded history of the domain) to be analyzed by the agent and background
theory representing general knowledge about agent’s domain.

Scenarios: Agent’s scenario is a recorded history of time-stepped observations and deliberate
(intended) actions which happened in the domain up to the current time-step. The initial time-
step of a scenario is usually assumed to be 0. Observations are expressions of the form obs(atom),
actions are of the form do(a(x̄, t)= y). Expression do(a(x̄, t)= true) indicates a deliberate execu-
tion of action a(x̄, t); do(a(x̄, t) = f alse) indicates a deliberate refusal of such execution. Another
form of do-operator is very similar to do-operator of the original P-log (Baral et al. 2009) and
Pearl’s causal networks (Pearl 2009). If random(m,e(x̄, t), p) is a random experiment and y is
a possible value of e(x̄, t) then do(m,y) represents an intervention into random experiment m
which forces e(x̄, t) to take value y. If the value y of e(x̄, t) is simply observed this is recorded as
obs(e(x̄, t) = y). Whenever possible, we omit do from the description of actions in our scenarios.

Background Theory. An agent’s background theory T is a P-log program which satisfies the
following conditions:

• T contains no deliberate actions and observations. Theory T will be used in conjunction
with a scenario S which will contain all deliberate actions and observations of the agent.

• The program T reg obtained from T by removing its cr-rules has a possible world. This
guarantees that the program’s description of its dynamic domain does not use rare events.
Such events can only be used to resolve unexpected actions and observations from a par-
ticular scenario.

• If a time-step t occurs in the head of rule r from T then time-steps of fluents and actions in
the body of r shall not exceed t and t−1 respectively. This is a broadly shared principle of
causality which says that the cause must precede its effect.

• T contains a set of causal mechanisms or causal laws, which have the form

— – if a is an action:

m : a(x̄) = y← body, not ab(m), not inter f ere(a(x̄),y)1 (∗)

where m is the mechanism’s name, ab and inter f ere are auxiliary functions;
inter f ere(a(x̄),y) holds if action a(x̄) is deliberately assigned value different
from y; ab(m) captures indirect exceptions to m.

– If a is a fluent:

m : a(x̄) = y← body, not ab(m)

In both rules body is non-empty and contains no default negation.
— Contingency Axiom

ab(m)
+← body

If the causal mechanism is not defeasible, then the contingency axiom and the correspond-
ing “not ab(m)” from the body of a causal law can be omitted. Intuitively, the first two rules
say that normally body is a sufficient cause for head. The guard inter f ere(a(x̄),y) present
in rule (∗) allows deliberate actions to defeat triggering defaults. We will use shorthand

1 If a(x̄) is formed by random(r, f (ū), p), then m is omitted and the causal mechanism is named r. Random experiments
are normally named by action terms.
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inter f ere(a(x̄)) to denote inter f ere(a(x̄), true). The last axiom, referred to as the Con-
tingency Axiom for m, allows causal mechanisms to be defeated by observations. It is a
consistency-restoring rule of a version of ASP called CR-Prolog (Balduccini and Gelfond
2003b). It says that “causal mechanisms m may be disabled, but such a possibility is very
rare and, whenever possible, should be ignored”. For more details, see the Appendix 1
and/or (Gelfond and Kahl 2014).

The default, expressing the contingency axiom for m, can be accompanied by records of direct
exceptions to this default, default preferences, consequences of ab(m(x̄)), etc. For instance, if x̄
is a strong exception to m, i.e., the head, a(x̄) = y of the rule must be defeated we can add

random(name,a(x̄)) : {Y : Y 6= y})}← ab(m(x̄))

or simply

¬a(x̄)← ab(m(x̄))

if a is Boolean and y = true. (Similarly for y = f alse.)

Let us illustrate the notion of agent’s background theory by formalizing two informal examples
frequently used in the literature on causation.

Example 2.1 (Firing Squad)
A certain chain of events is required for a lawful execution of a prisoner. First, the court must
order the execution. The order goes to a captain, who signals the soldiers on the firing squad
(denoted by a and b) to shoot. We’ll assume that they are obedient and expert marksmen, so they
only shoot on command, and if either of them shoots, the prisoner dies.

Background theory FS for this example contains abstract actions court order, captain order,
shoot(a) and shoot(b), inertial abstract fluent dead, and standard auxiliary symbols ab and
inter f ere. FS consists of causal mechanisms:

(1a) [m1(T )] : captain order(T +1) ← court order(T ),
not ab(m1(T )),
not inter f ere(captain order(T +1))

which is a defeasible version of dynamic causal law used in actions languages. Two other rules:

(1b) [m2(G,T )] : shoot(G,T +1) ← captain order(T ),
not ab(m2(G,T )),
not inter f ere(shoot(G,T +1))

(1c) [m3(G,T )] : dead(T +1) ← shoot(G,T ),
not ab(m3(G,T ))

are defeasible triggers. We also have the contingency axioms

2a ab(m1(T ))
+← court order(T )

2b ab(m2(G,T )) +← captain order(T )
2c ab(m3(G,T )) +← shoot(G,T )

The closed world assumptions (CWA) for actions are given by defaults:

3a ¬shoot(G,T )← not shoot(G,T )
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3b ¬captain order(T )← not captain order(T )
3c ¬court order(T )← not court order(T )

Since we know that at rare occasions the court can order prisoner’s execution we allow to use
this possibility to explain some of our observations. This is done by a cr-rule:

4 court order(T ) +←

which can be viewed as a typical indirect exception to a default. In principle, similar axioms
can be written for (3a) and (3b) but, for simplicity we assume that though captain may, at rare
occasions, do not follow the court order or even shoot on his own these events are so rare that
we will not use them for explanations. Similarly, for guards. Hence, we will have no indirect
exceptions for (3a) and (3b)2.

We also need inertia axioms for dead:

5a ¬dead(T +1)←¬dead(T ),not dead(T +1)
5b dead(T +1)← dead(T ),not ¬dead(T +1)

Note that, despite the fact that the story insists that the guards only shoot on command, the
corresponding causal law is defeasible. This is essential since we would like to consider scenarios
in which, say, guards may refuse to follow the orders or simply fail to do so by unspecified
reasons. Similarly for other causal mechanisms.

The next example shows a simple non-deterministic background theory describing a throw of a
coin.

Example 2.2 (Flipping a Coin)
A theory TC has “transient” fluent agreed to play (players agreed to start the game), and a
“transient” fluent head (the coin landed heads). Transient fluents are partial functions which do
not satisfy inertia; head is defined at time-steps immediately following f lip. TC also contain
action f lip (flip the coin). Causal mechanism

random( f lip(T ),head(T +1)) ← agreed to play(T ),
not ab(m(T )),
not inter f ere(random( f lip(T ),head(T +1)))

together with the usual contingency axiom states that agreed to play normally triggers an oc-
currence of a random experiment f lip which ends in heads or in tails.

Agent’s Causal Theory and its Models. The agent’s knowledge about the domain will be
represented by causal theory T (S) which combines general knowledge from T with a particular
scenario S. We refer to it as agent’s causal theory. To define syntax and semantics of T (S), we
need to explain the exact encoding of S which is actually used in the definition of T (S), describe
special axioms enforcing the intuitive meaning of its constructs and define preference relation
between the sets of cr-rules of a program tailored to causal reasoning.

A scenario S is encoded in P-log as follows: obs(A), where A is time-stepped by 0 is encoded

2 Of course this assumption can be easily removed by adding axiom captain order(1) +← not court order(0). Similarly
for the guards.
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by A; If the time-step of A is greater than 0 then obs(A) is encoded by a constraint: “← not A”.
Do-statements of S remain unchanged. We denote this encoding by enc(S).

Causal theory T (S) representing the agent’s knowledge is defined as follows:

T (S) =de f T ∪ enc(S)∪DO.

where S is a scenario of T and DO is a collection of special axioms which, together with General
Axioms of P-log (see Appendix 2) enforce the intuitive meaning of do:

• for every do(a(x̄, t) = y) from S axiom

a(x̄, t) = y← do(a(x̄, t) = y)

connects do with an actual occurrence of an action;
• and

inter f ere(a(x̄, t) = Y )← Y 6= y,do(a(x̄, t) = y)

which allows a deliberate action interfere with a defeasible trigger assigning value y to
action a(x̄, t).

• for every do(m,y) from S

do(m,a(x̄, t),y)← do(m,y)

guarantees that on random experiments do coincides with the original do of P-log and

inter f ere(a(x̄, t),Y )← Y 6= y,do(m,y)

to define interference with random experiments.

Usually we omit enc and simply write S instead. We only consider S for which T (S) is a coherent
P-log program in which multiplicity of models can only be a result of general axiom (19) from
(Balai et al. 2019) for random.

To complete the definition of T (S) we have to define preference relation on sets of CR-rules of
the program. The ultimate choice of such a relation requires further investigation so our defini-
tions will be parameterized with respect to such preference relations. The difference, however,
will only show in the strategy employed by an agent in forming explanations of unexpected ob-
servations. Other patterns of reasoning will remain unchanged. In the examples we usually use
standard preference relations of CR-Prolog based on ordering of sets by the subset relation. An
additional preference, which maybe more suitable for causal reasoning, minimizes the number
of of cr-rules which are not relevant to actions and observations from S. The precise definition of
such relevance based preference is given in the appendix. It remains to be seen if it will require
further modification.

As any P-log program, T (S) comes with the definition of its possible worlds and probability
function. A possible world W of T (S) can be written as

W = 〈σ(t f ),α(t f ), . . . ,σ(i),α(i), . . .α(tl−1),σ(tl)〉

where α(i) is the set of all action events from W time-stepped by i and σ(i) is the set of all fluent
atoms of W time-stepped by i and statics from W . It is tempting to view W as a possible trajectory
of a dynamic system associated with T (S). This is indeed the case when the regular part T reg(S)
of T (S) is consistent, i.e., no cr-rules are used in the construction of its world views. If it is not
the case, however, then possible worlds are determined by our preference relation over sets of
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cr-rules. Note that though all actions from α(i) start at i, their effects may manifest themselves
at different time-steps.

Definition 2.1 (Model and Entailment)
A model of scenario S of T is a possible world of T (S). T (S) entails an event E (T (S) |= E) if E
holds in all models of T (S).

Let us demonstrate this notion by going back to the Firing Squad example.

Example 2.3 (Firing Squad: models)
Let us fix background theory FS from Example 2.1. Then, in the model of the scenario

S0 = 〈obs(¬dead(0))〉

the prisoner is alive at every time step of the model. There are no actions. Scenario

S1 = 〈obs(¬dead(0)),court order(0)〉

has one model, M3: (When displaying a model we usually omit negations of actions derived by
the CWA and the do statements.)

¬dead(0),court order(0), ¬dead(1),captain order(1)
¬dead(2),shoot(a,2),shoot(b,2), dead(3), inter f ere(court order(0), f alse).

The next scenario

S2 = 〈obs(¬dead(0)),court order(0),¬shoot(a,2),¬shoot(b,2)〉

is more interesting. Deliberate actions ¬shoot(a,2),¬shoot(b,2) from S together with axioms
from DO cancel axiom m2(G,2). The only model M of S2 is

¬dead(0),court order(0)
¬dead(1),captain order(1)
¬dead(2), inter f ere(a,2), inter f ere(b,2),¬shoot(a,2),¬shoot(b,2),
¬dead(3)

(In what follows we do not show atoms formed by inter f ere in the models). Next consider
scenario

S3 = 〈obs(¬dead(0)),court order(0),obs(¬dead(3))〉
with a non-initial observation which contradicts the effects of our causal mechanisms. The con-
tradiction can be resolved by assuming that the captain was not able to follow the court order
or that his order could not have been executed by the guards. This is done by the Contingency
Axioms. The contradiction can be avoided by finding abductive support of FS(S3).

In our case there are two such supports: R1 consisting of contingency axioms of the form
(2b) and R2 consisting of (2a). The first derives ab(m2(a,1)) and ab(m2(b,1)) and hence disable
m2(a,1) and m2(b,1). By inertia, FSR1 will conclude ¬dead(3) which leads to the first model
M1 of FS:

ab(m2(a,1)), ab(m2(b,1))
¬dead(0),court order(0)

3 The model can be computed using our prototype P-log solver. For more details, refer to https://github.com/
iensen/plog2.0/tree/master/plogapp/tests/causality.
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¬dead(1),captain order(1)
¬dead(2),¬shoot(a,2),¬shoot(b,2),
¬dead(3)

Abductive support R2 disables causal connection between court and captain orders and, by CWA,
no order will be given by the captain. This will lead to the second model M2 of FS:

ab(m1(0))
¬dead(0),court order(0)
¬dead(1),¬captain order(1)
¬dead(2),¬shoot(a,2),¬shoot(b,2),
¬dead(3)

In both cases ¬dead(3) is proven by inertia.

In scenario

S4 = 〈obs(¬dead(0)),obs(dead(3))〉
the only way to satisfy the last observation is to use rule (4) of FS and assume court order(0).The
resulting model, M, is the same as that of S1.

Now let us look at models of the “coin domain” scenarios.

Example 2.4 (Flipping a Coin (Models))
It is easy to see that any model of scenario

S0 = 〈obs(agreed to play(0))〉

must contain a random experiment random( f lip(0),head(1)) (which we shorten to f lip(0)).
According to the semantics of P-log the experiment generates two possible outcomes head(1)
and ¬head(1). Thus, scenario S0 has two models: M1 = {agreed to play(0), f lip(0),head(1)}
and M2 = {agreed to play(0), f lip(0),¬head(1)}.
M1 is the only model of scenario S1 = 〈agreed to play(0),obs(head(1))〉. The model M2 of
scenario

S2 = 〈agreed to play(0),do( f lip(0), true)〉
is M1∪{do( f lip(0),head(1), true)}.

It is worth noting that causal theories and their entailment relation allows us to answer many
interesting queries which are usually answered using structural equations or other similar for-
malisms. Consider, for instance, several questions related to the Firing Squad Example which
are used in (Pearl and Mackenzie 2018) to illustrate several non-trivial types of causal reasoning.
First the authors want to know “if the prisoner would be dead after the court order was given
but not otherwise”. In the language of causal theories to answer the first part of this question
we simply check if there is i such that FS(S1) |= dead(i). The answer, of course, is yes. The
second part of the question can be understood as a request to show that if the court order is
not given, the prisoner will be alive. This may refer to scenario S0 = 〈obs(¬dead(0))〉 or S0 =

S0 ∪{¬court order(0)}. Clearly, in both cases the answer would be yes. Next the authors ask:
“Will the prisoner be dead or alive if the guard “a” decides to fire on his own initiative, without
waiting for the captains command?”. This may correspond to scenario S1 = S0∪{shoot(a,2)}.
Clearly, FS(S1) |= dead(3), i.e., the answer is yes. As pointed out by Pearl, the follow up ques-
tion “Did guard “b” shoot too?” should be answered by the no, which is indeed the case in our
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approach. Note, that this is rather different from scenario S2 = S0 ∪{obs(shoot(a,2))}. Given
this scenario we will conclude that shooting happen because of the court order and hence guard
b did shoot. This is a difference between observing and doing which Pearl and many others
(including us) believe to be very important for understanding and modeling causation.

Another interesting question from (Pearl and Mackenzie 2018) is: “Supposing that the court
order was given, what would happen if the guard “a” had decided not to shoot?” Since scenario
S1 = 〈obs(¬dead(0)),court order(0)〉 entails shoot(a,2) the question can be viewed as having
a counterfactual character. It can be answered by considering scenario S2 = S1∪{¬shoot(a,2)}
and extracting actions from its unique model. One can see that the captain will give the or-
der, guard “b” will shoot, but the mechanism m2(a,2) causing “a” to follow the captain’s order
and shoot will be defeated by a’s action. Clearly, the prisoner will be dead anyway because of
m3(b,2). If both guards were to refuse the order, the prisoner would remain alive.

This concludes our description of casual theories and their scenarios. Now we are ready to
discuss the notion of cause.

3 What is a Cause?

There are several reasons which contribute to the difficulty of defining the meaning of the verb
“causes”. This includes variety of uses of this word in natural language, the ambiguity of the
meaning of a given text, and the dependency of identifying causes on the text’s formal repre-
sentation. When different representations correspond to different disambiguations of the text the
latter is a good thing. But sometimes the differences are caused by not fully accurate represen-
tations or by idiosyncrasies or insufficient expressiveness of a particular formalism. We attempt
to alleviate these problems by starting with intuitive understanding of the notion we are trying to
formalize, using a powerful KR language, employing general methodology in formalizing par-
ticular examples, and by discussing consequences of some of our representational choices. Our
framework is based on the following Basic Assumption:

1. We assume that an agent is supplied with a (fixed) background theory T and a scenario
S with the last time step n, which consist of observations and the complete collection of
deliberate actions which occurred in the domain up to that time.
2. In addition, we assume that every uninterrupted random experiment of a scenario used
for determining causes is immediately followed by the observation of its outcome.

In what follows we introduce three different types of actual cause: deliberate, accidental and ex-
ogenous. The best explanation of an event will be given by finding its deliberate cause. If this is
impossible we attempt to find causes which include accidental (i.e. not deliberate) actions explic-
itly mentioned in the domain. As the last resort we allow causes containing unknown exogenous
actions.

Deliberate Cause: Our definition of a deliberate cause can be viewed as a formalization of the
following intuition:
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“A cause of e(x̄,k) = y is a deliberate action event α which initiates a chain of events
bringing about e(x̄,k) = y. Moreover, α must be in some sense minimal, i.e. no parts of
α can be removed without loss of causal information about e(x̄,k) = y.”

An expression “chain of events” from our informal description will be modeled by notion of
proof. Let Π be a consistent regular P-log program, M be a set of ground literals, and M− =

{not l : l is not satisfied by M}.
Definition 3.1 (Proof )
• A sequence P = 〈r0, l0,r1, l1 . . . ,rn, ln〉 where ls are literals from M and rs are rules or

names of random experiments of program Π is called a proof of ln in M from Π (M,Π ` ln)
if

— For every i, body(ri) is satisfied by {l0, . . . , li−1}∪M−,
— li is the head of ri or
— li is e(k) = y and li−1 is random(n,e(k), p) representing a non-interrupted random

experiment (i.e., there is no y such that do(n,e(k) = y) is in S), ri is n, and p(y) ∈
{l0, . . . , li−1}

— No proper sub-sequence of P satisfies the above conditions.

Note that in P-log facts are viewed as rules with the empty bodies. If M is a possible world
of Π we simply say that P is a proof of ln in M;

• A scenario S of background theory T derives event e(k) = y in a model M of S if there is a
proof of e(k) = y in M from T (S); S derives e(k) = y if S derives e(k) = y in every model
of S.

The idea of a deliberate (or intentional) action is formalized as follows.

Definition 3.2 (Deliberate Action)
Let S′ be the result of removing action event a(i) = y from a scenario S of T . We say that a(i) = y
is deliberate in T (S) if no model of S′ contains a(i) = y.

As an example consider background theories T1 = { f (1)← a(0)} and T2 =T1∪{a(0)← not ¬a(0)}
and scenario S = 〈a(0)〉. It is easy to check that a(0) is deliberate in T1(S) but not deliberate in
T2(S).
To define a cause of an event e(k) = y in a scenario S of T we introduce a notion of the event’s
inflection point - a time-step i ≤ k such that i−1 is the last time-step of S in which the value of
e(k) is not predicted to be y. To make this precise we need some notation: Let S[i] consists of
observations of S made at points not exceeding i and all actions S which occurred at steps not
exceeding i−1, i.e.

S[i] =de f {obs( f ( j) = y) ∈ S : j ≤ i}∪{a( j) = y ∈ S : j < i}

Definition 3.3 (Inflection Point)
Step i is the inflection point for e(k) = y in S if

• T (S[i−1]) does not derive e(k) = y and
• for every j ∈ [i,k], T (S[ j]) derives e(k) = y.

Now we are ready for the main definition. Let R be a collection of cr-rules of program T . By
T R we denote from T by dropping all cr-rules not in R and turning cr-rules from R into regular
rules. For precise definition see the appendix.
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Definition 3.4 (Deliberate Cause)
Let S be a scenario of T , obs(e(k) = y) ∈ S, M be a model of S generated by a (possibly empty)
abductive support R, and i be the inflection point of e(k) = y in scenario S of T R. A non-empty
set α of actions from S is called a cause of e(k) = y in M (with respect to T (S)) if

(a) T R(S[i−1]∪α) derives e(k) = y in M,
(b) For every β ⊂ α there is a proof of e(k) = y from T R(S[i− 1]∪α) in M which is not a

proof of e(k) = y from T R(S[i−1]∪β ) in M.

We say that α is a possible cause of e(k) = y in S if it is a cause of e(k) = y in some model of S.
Finally, α causes e(k) = y in S if it causes e(k) = y in all models of S.

To illustrate the definition consider scenario S1 from Example 2.3. Clearly, the inflection point
for dead(3) in S1 ∪{obs(dead(3))} is 1. It’s cause is court order(0) with the proof consisting
of applications of causal mechanisms of FS. The same results hold for the value of dead at, say,
point 4.

Let us now look at a theory T with action a, inertial fluent f and causal law

f (T )← a(T −1)

and at scenario

S = 〈obs(¬ f (0)),random(m(0),a(1)),obs(a(1))〉.
Clearly M = {¬ f (0),m(0),a(1),¬ f (1), f (2)} is the only model of S. The only deliberate action
random(m(0),a(1)) of S is the only cause of f (2) in M. To bring our terminology closer to
the one used in natural language we say that f (2) is caused by the outcome a(1) of random
experiment m(0). This reading will be used throughout the paper. Next consider theory T with
inertial fluent f and actions a and b consisting of a strict causal law

(1) f (1)← b(0)

and a cr-rule

(2) b(0) +← a(0).

A scenario

S = {¬ f (0),a(0),obs( f (1))}
of T has unique model M = {¬ f (0),a(0),b(0), f (1)} generated by abductive support R consist-
ing of rule (2). To find a cause of f (1) in M we need first to find the inflection point of f (1) in
scenario S of T R. Clearly S[0] does not contain a(0) and hence T R ∪ S[0] does not derive f (1).
But, for every i > 0, T R∪S[i] does. Hence, the inflection point of f (1) is 1. Now one can easily
check that in M (and hence in S), f (1) is caused by a(0).

The next example explains why the second condition of Definition 3.4 cannot be replaced by
subset minimality. This is an adaptation of Example from page 31 in (LeBlanc 2019).

Example 3.1 (LeBlanc)
Consider a background theory T

1. d1(1)← e1(0)

2. d2(1)← e1(0)

3. d3(1)← e2(0)
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4. l(I)← d1(I)

5. l(I)← d2(I),d3(I)

For i ∈ {1,2}
6.¬ei(0)← not ei(0)

7.ei(0) :+ .

where l is a fluent defined in terms of inertial fluents d1,d2,d3 and e1 and e2 are actions. Let
Init = {¬d1(0),¬d2(0),¬d3(0),¬l(0)} and consider scenario

S0 = Init ∪{e1(0),e2(0)}.

The unique model, M, of S is Init ∪{e1(0),e2(0),d1(1),d2(1),d3(1), l(1)}. The inflection point
for l(1) in S0 is 1. Clearly, β = {e1(0)} is a possible cause of l(1); the corresponding causal
chain goes from e1(0) to l(1) using rules (1) and (4). Note, that e1(0) would also be a cause of
l1 if we were to replace (b) by the subset minimality condition. But, as pointed out by Le Blanc,
it seems that α = {e1(0),e2(0)} also should be a possible cause of l(1) - due to the presence of
e2(0) there is a causal chain from α to l(1) which uses rules (2), (3), and (5). Hence dropping
e2(0) will result in loosing some causal information about l(1) which does not match with our
informal semantics. Under standard minimality condition, however, α will not be a case of l(1).
But, according to our definition, both β and α are causes of l(1).

Causes Containing Accidental Actions. To see the need for causes with accidental actions
consider scenario

S4 = {obs(¬dead(0)),obs(dead(3))}
from Example 2.3. Since S4 contains no deliberate actions, dead(3) has no deliberate cause. One
can, however, argue that action court order(0) should be a cause of dead(3) in the unique model
M of S4 even though it is not deliberate. This intuition can be justified by the following informal
principle:

Execution of a non-deliberate (accidental) action is a part of an event’s cause if it’s
deliberate execution is.

One should, however, be careful in formalizing this intuition. An attempt to make an action
deliberate by simply adding it to the original scenario does not work. Since court order is derived
in the model of S0, it is not deliberate in scenario S5 = S4 ∪ {court order(0)} and hence our
previous definition is not applicable.

One way to avoid the difficulty is to remove from FS consistency-restoring rule (4) (which allows
to derive court order(0) in our scenario) and consider S5 to be a scenario of a new theory FS∗;
court order(0) is deliberate in FS∗(S5). After this “surgery”, somewhat reminiscent of Pearl’s
surgery on causal networks, dead(3) would indeed be caused by court order(0). Here is another
example.
Consider theory T0 with action a, fluent f , causal law

(1) f (T )← a(T −1)
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and default

(2) a(T )← not ab(T −1)

together with a scenario

S0 = 〈obs(¬ f (0)),obs( f (2))〉
of T0. Even though there is no deliberate cause of f (2), one may legitimately say that it is caused
by a(1). As in the previous example we may model our informal counterfactual reasoning by
considering scenario

S1 = 〈obs(¬ f (0)),a(1),obs( f (2))〉
of a new theory T ∗0 obtained from T0 by removing default (2) (which would, otherwise, auto-
matically trigger a(0)). Note, that action a(1) would be deliberate in scenario S1 of T ∗0 . One can
check that a(1) is a cause of f (2) in S1, and hence, by our informal principle, it is also a cause
of f (2) in S0.

To correctly deal with this counterfactual argument in scenarios containing random events we
need another small operation. The new scenario, obtained from the original one by adding to it a
random experiment, should also be extended by the observation of the outcome of this experiment
taken from the corresponding model. To illustrate the problem and the solution let us replace the
default (2) in T0 by

random(m(0),a(1))← not ab(0).

In this case it is not sufficient to remove the default from the new theory T1 and expand S0 by
random(m(0),a(1)). The resulting scenario will not satisfy our Basic Assumption. To avoid that,
S0 should also be extended by the required observation of the outcome of this experiment - in
our case obs(a(1)). Note that action m(0) is deliberate in scenario

S∗0 = 〈obs(¬ f (0)),random(m(0),a(1)),obs(a(1)),obs( f (2))〉

of theory T ∗1 consisting of rule (1) of T0. Moreover, in this scenario the outcome a(1) of m(0)
is the only cause of f (2). According to the intuitive principle above, a(1) can be viewed as
accidental cause of f (2) in scenario S0 of T1.

These observations lead to the following definition. Let M be a model of a scenario S of
T , E be an action atom accidental in T (S), c(E,M) be E if E is regular, and random(m, f )
followed by the outcome f = y of m in M if E is random(m, f ). If α is an action event then
c(α,M) =de f {c(E,M) : E ∈ α}. We say that a rule r generates the value of term a(i) if head(r)
is a(i) = y for some y or is of the form random(m,a(i), p). By surg(T,α) we denote a theory
obtained from T as follows: For every a(i) such that α contains random(m,a(i), p) or a(i) = y
for some y remove from T every rule generating the value of a(i).

Definition 3.5 (Causes Containing Accidental Actions)
Given a model M of scenario S of T and action event α ⊂M we say that α is an accidental cause
of e(k) = y in M with respect to T (S) if there is an action event β ⊂M not deliberate in S such
that

• M is a model of scenario S∗ =de f S∪ c(β ,M) of T1 = surg(T,β ). (Note that, by construc-
tion, all actions of S∗ are deliberate).

• α is a deliberate cause of e(k) = y in M with respect to T1(S∗).
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Let us apply this definition to the unique model M of scenario S0 of theory T0 from the above
example and show that, in this model, f (2) is caused by α = {a(1)}. Let β = α . Then S∗ =
S0 ∪{a(1)} and surg(T0,β ) consists of rule (1) of T0. Clearly M is the model of scenario S∗ of
surg(T0,β ). All actions of this scenario are deliberate. It is easy to check that α is indeed the
deliberate cause of f (2) in M.
Let us consider scenario S0 over theory T1 from the same example. Its unique model M is
{¬ f (0),random(m(0),a(1)),¬ f (1),a(1), f (2)}. To show that the only cause of f (2) in M is
the outcome a(1) of random experiment m(0) let β be random(m(0),a(1)). The correspond-
ing S∗ =de f S0∪{random(m(0),a(1)),obs(a(1))} and surg(T0,β ) consists of rule (1) of T0. All
conditions of Definition 3.5 are clearly satisfied.

Next consider scenario S4 = 〈obs(¬dead(0)),obs(dead(3))〉 from Example 2.3 and show
that the cause of dead(3) in model M of S4 is indeed court order(0). The model contains
court order(0) included in it by cr-rule (4) of theory FS. Let α = β = {court order(0)}. it
is easy to check that court order(0) is a deliberate cause of dead(3) in scenario

S∗4 = S4∪{court order(0)}

of surg(FS,β ) obtained from FS by removing rule (4). Note, that captain order(1) will not be
a cause of dead(3) in M since M is not a model of S4∪{captain order(1)}.

Next, consider scenario S3 from Example 2.3. As was shown there it has two models: M1 in
which guards refuse to shoot and M2 in which captain does not follow his order. One can check
that refusal to shoot is the cause of ¬dead(3) in M1. In M2 the cause is ¬captain order(1).

To see how the definition works for random events consider the unique model M1 of scenario

S1 = 〈obs(agreed to play(0)),obs(head(1))〉

from Example 2.4. The inflection point for head(1) in S1 is 1. The scenario contains no deliber-
ate actions and hence head(1) has no deliberate cause. It is, however, not difficult to show that,
according to the Definition 3.5, head(1) is caused by a random experiment f lip(1). In the model
M2 of S2. however, head(1) is the result of deliberate intervening action do(head(1), true). The
difference between Pearl’s actions and observations is important not only for computing proba-
bility of events but also for discovering their causes.

Finally, let us revisit background theory T from Example 3.1 and expand the original example
by considering a scenario

S1 = Init ∪obs(l(1)).

It is natural to expect that causes of l(1) in this scenario and scenario S0 = Init ∪{e1(0),e2(0)}
will coincide. But this may or may not be the case, depending on preference relation between sets
of cr-rules. To construct a model T (S1) one need to explain unexpected observation of l(1). A
subset-minimal preference relation allows us to find only one such explanation – {e1(0)}. In the
unique model of this program (and hence in S1) {e1(0)} will be the only cause of l(1). Another
possible cause will be missing. The relevance based preference gives a different result. Since l(1)
depends on e1(0) and on e2(0), under this preference T (S1) will have two models. One containing
e1(0) and another containing e1(0) and e2(0). Hence both, {e1(0)} and {e1(0),e2(0)}, will be
possible causes of l(1).

In examples we consider so far β from Definition 3.5 was equal to α . It is not always the case.
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Consider background theory T consisting of causal law

f (1)← a1(0),a2(0)

where f is an inertial fluent and a1 and a2 are actions, and cr-rule

a2(0)
+← .

It is easy to see that scenario

S = 〈¬ f (0),a1(0),obs( f (1))〉

of T has unique model M in which unexpected observation f (1) is explained by a2(0). To show
that α = {a1(0),a2(0)} is an accidental cause of f (1) in M we need to select β = {a2(0)}.

So far, we have been looking for causes of events occurring in a model M among actions from
M. Now we slightly modify this approach by allowing to search for causes among a specific type
of actions not present in M.

Causes Containing Exogenous Actions.

If an event has no cause consisting of deliberate and accidental actions then it may be
useful to admit causes containing unknown, exogenous actions responsible for bringing
about events in the initial state of the scenario and/or abnormality relations in rules of the
theory.

This can be done in two steps. First, we increase time-steps in S (and, if necessary, in T ) to
have a new initial state with no actions and undefined fluents. Denote the new scenario by S∗.
For every fluent f such that, for some y, obs( f (x̄,1) = y) ∈ S∗ and for every ab(m(i)) ∈ M we
expand T by causal laws

f (x̄,1) = y← brought about( f (x̄,1) = y,0)

ab(m(i))← brought about(ab(m(i)), i−1)

where brought about is a new action. Denote the result by T ∗ and the set of all actions formed
by brought about by E.

Definition 3.6 (Causes Containing Exogenous Actions)
Given a model M of scenario S of T , an action event α ⊂ M ∪E, and an event e(k) = y in M
which has no cause consisting of actions from M we say that α is an exogenous cause of e(k) = y
in M if there is a model M∗ of T ∗(S∗∪α) such that

• For every atom u(i) 6∈ E, u(i) ∈M if and only if u(i+1) ∈M∗,
• α is a (deliberate or accidental) cause of e(k+1) = y in M∗.

If e(k) = y is caused by brought about( f (x̄) = y,0) we often abuse the language and simply say
that e(k) = y is caused by f (x̄,0) = y. Similarly for ab.

To illustrate the definition let us go back to the Firing Squad example 2.3 and consider the
only model M0 of scenario

S0 = 〈obs(¬dead(0)),obs(¬dead(3))〉
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and show that a(0) = {brought about(¬dead(1),0)} is the cause of ¬dead(3) in S0. To do that
we need to show that a(1) is a (deliberate) cause of ¬dead(3) in scenario

S = 〈a(0),obs(¬dead(1)),obs(¬dead(4))〉

of FS∗. The inflection point here is 1. Clearly there is a proof of ¬dead(3) from FS∗(S[0]∪a(0))
which uses axiom ¬dead(1)← brought about(¬dead(1),0) and the inertia, and no proof of
¬dead(3) from S[0]. Thus, conditions of Definition 3.4 are satisfied.

[p.s. If instead of inertia we had some form of CWA for ¬dead(I) then ¬dead(3) would still
have no cause.]

Similarly, given a theory T

m(T ) : f (T )← not ab(m(T −1))

ab(m(T )) +←

¬ f (T )← ab(m(T ))

and scenario

S = 〈obs(¬ f (1))〉
the cause of ¬ f (1) in the only model M of S is the exogenous action which brought about
ab(m(0)).

Let us now consider scenario

S2 = 〈obs(¬dead(0)),court order(0),¬shoot(a,2),¬shoot(b,2)〉

from Example 2.3. In the only model of S2, ¬dead(3) is true by inertia and hence its only
cause is an exogenous action which brought about ¬dead(0). Intuitively, however, action event
{¬shoot(a,2),¬shoot(b,2)} is in some way responsible for the prisoner being alive at the end
of the story since it prevented prisoner’s death, which otherwise would have happened. This is
captured by the following definition.

Definition 3.7 (Event Prevention)
Let S be a scenario of T and i be a time step such that for some y1 6= y2

• T (s[i−1]) derives e(k) = y1

• T (s[i]) derives e(k) = y2.

We say that an action event α(i−1) from S prevents e(k) = y1 from being true in S if

(a) T (s[i−1]∪α(i−1)) derives e(k) = y2

(b) There is no β (i−1)⊂ α(i−1) such that T (s[i−1]∪β (i−1)) derives e(k) = y2

It is not difficult to check that {¬shoot(a,2),¬shoot(b,2)} indeed prevented dead(3) from being
true in S2. We plan to further investigate the notion of prevention in follow-ups to this paper.

4 Examples

To further illustrate the above definitions, methodology of representing causal knowledge, and
the differences between our approach and several others, we discuss a number of examples. To
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save space, we often omit names of casual mechanisms, abnormality predicates, and some com-
mon axioms. Our first example, (often used to highlight difficulties with counterfactual approach
to causation (see, for instance (Halpern and Hitchcock 2014)) deals with so called “late preemp-
tion”.

Example 4.1 (Breaking the Bottle)
Suzy and Billy both throw rocks at a bottle. Suzy’s rock arrives first and shatters the bottle. Billy’s
arrives second and so does not shatter the bottle. Both throws are accurate: Billy’s would have
shattered the bottle if Suzy’s had not.

The background theory, T S of the story, with steps ranging from 0 to 2 contains actions throw(suzy)
and throw(bill) with static attributes duration(suzy) = 1 and duration(bill) = 2 for durations of
agents’ throws, causal mechanism m(A,T1)

shattered(T2)← throw(A,T1),duration(A)=D,T2 =T1+D,¬shattered(T2−1),not ab(m(A,T1))

determining the effect of throwing, contingency axiom for this rule, CWA for actions and the
inertia axiom for shattered. Consider scenario

S0 = 〈obs(¬shattered(0)), throw(suzy,0), throw(bill,0),obs(¬shattered(1))〉.

The only model M0 of S0 is:

¬shattered(0), throw(suzy,0), throw(bill,0), shattered(1),shattered(2)

Step 1 is the inflection point for shattered(1) and shattered(2) in M0 and their only cause is
throw(suzy,0). Now consider

S1 = S0∪{obs(¬shattered(1))}

and its model M1:

¬shattered(0), throw(suzy,0), throw(bill,0),ab(m(suzy,0)),¬shattered(1),shattered(2)

(Since the contingency axiom for ab(m(suzy,0)) is the only cr-rule the observation¬shattered(1)
in S1 depends upon, this is the only model of S1 for every one of our preference relations.)

Step 1 is still the inflection point for shattered(2) in M1. It is now caused by throw(bill,0).

By Definition 3.6 ¬shattered(1) ∈ M1 is caused by an exogenous action which brought about
¬shattered(0).

Next consider

S2 = 〈obs(¬shattered(0)), throw(bill,0), throw(suzy,1),obs(shattered(2))〉.

It is easy to check that in its only model shattered(2) has two causes: throw(bill,0) and throw(suzy,1).

If we modify causal mechanism m(A,T ) by assuming that the bottle get shattered only if it is
hit simultaneously by both stones, and use the new theory together with S2, the timing of throw
would become important. Even though both stones arrive simultaneously the shattering of the
bottle would be caused by the latest throw. This does not contradict our intuition. However, if Bill
and Suzy were to agree that Suzy’s throw should follow that of Bill, i.e., if our theory contained
a rule throw(suzy, I+1)← throw(bill, I), then shattering of the bottle would be caused by Billy.

Here is another example, taken from (Hall 2004).
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Example 4.2 (Hall’s Neuron Net)
Consider a neuron net from figure 1. If a link from neuron n1 to neuron n2 is ended by an arrow,
then n1 stimulates n2; if it is ended by a bullet, then n1 inhibits n2; e is a “stubborn” neuron,
requiring two stimulatory signals to fire. For other neurons one stimulating signal is sufficient.

A background theory NN for this example will have sorts for neurons, an action stim(S)
which stimulates neurons from the set S, Boolean fluents stimulated and inhibited, and stat-
ics link and stubborn. The net will be represented by a collection of atoms link(a,d,stm),
link(a, f , inh), etc., where link(X ,Y,stm) / link(X ,Y, inh) indicates that X stimulates/inhibits Y ,
and facts stubborn(e)∪{¬stubborn(N) : N 6= e}. We will need two time steps: 0 and 1 with 0
being used for the execution of actions and 1 for their effects, and two inputs, s1 and s2 of action
stim defined by statics:

member(c,s1), member(c,s2), member(a,s2).

The causal mechanisms of NN are

[m0(X ,S)] : stimulated(X ,1)← stim(S,0),member(X ,S)

[m1(X ,Y )] : stimulated(Y,1) ← ¬stubborn(Y ),¬inhibited(Y,1),
link(X ,Y,stm),stimulated(X ,1)

[m2(Y )] : stimulated(Y,1) ← stubborn(Y ),¬inhibited(Y,1),
card{X : link(X ,Y,stm),stimulated(X ,1)}> 1

[m3(X ,Y )] : inhibited(Y,1)← link(X ,Y, inh),stimulated(X ,1)

We assume that all neuron directly stimulated by stim are included in its parameter S, which
eliminates the possibility of parallel stim actions, i.e. we have

¬stim(S1, I)← stim(S2, I),S1 6= S2

Finally, we need the inertia axiom for the fluents, and CWA with indirect exceptions for action
stim:

¬stim(S,0)← not stim(S,0)

stim(S,0) :+

Let us consider NN together with a scenario

S0 = init ∪{obs(stimulated(e,1))}

where init = {obs(¬stimulated(X ,0)),obs(¬inhibited(X ,0)) : neuron(X)}. The regular part of
NN(S0) is inconsistent. There are two ways to restore consistency using abductive supports
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{stim(s1)} or {stim(s2)}. Note that {stim(s1),stim(s2)} is not an abductive support of the pro-
gram. This is obvious for standard minimality based preferences. This is also the case for the
relevance based preference since parallel execution of stim is prohibited and therefore both cr-
rules cannot be activated simultaneously. Thus S0 has two models – M1 containing stim(s1,0) in
which e is stimulated via neurons c, f , and b and M2 which contains stim(s2,0). In M2 neuron f is
inhibited and e is stimulated via neurons a, c, d, and b. Clearly, in the first model stimulated(e,1)
is caused by stim(s1,0) and in the second by stim(s2,0). Hence in S0, stimulated(e,1) has two
possible causes.

One can argue that stim(s2,0) shall not be a possible cause of stimulated(e,1) in S0 since there
is a better “minimally sufficient” candidate stim(s1,0). Indeed, since s1 ⊂ s2, action stim(s1,0) is
simpler than stim(s2,0) but we believe that this does not preclude stim(s2,0) from being viewed
as a valid possible cause of stimulated(e,1) in S0. This seems to agree with the Hall’s view.

It is also worth noting that our formalization of the story avoids parallel actions. Instead, we
consider actions whose parameters are sets of neurons. We believe this to be a reasonable for-
malization, but it also allows to avoid differences in determination of causes based on varying
preference relations of CR-Prolog. Suppose that, instead defining stim on sets of neurons we
define it on input neurons a and c. The new theory, with obvious causal laws, will be denoted by
NN1. Then consistency of NN1(S0) will be restored by abductive support {stim(c,0)} indepen-
dently of preference relation used in the program. However, under relevance based preference the
program will have one more abductive support – {stim(c,0),stim(a,0)}. This means that under
standard minimality preference stimulated(e,1) will have only one model and only one cause –
{stim(c)}. Under the relevance based preference there will be two models. In one, {stim(c)} will
be the only cause. In another both, {stim(c)} and {stim(a),stim(c)} will be possible causes.

The next example appears in multiple papers. Our version is taken from (Beckers and Ven-
nekens 2012).

Example 4.3 (Switch)
An engineer is standing by a switch in the railroad track. A train approaches in the distance. She
flips the switch, so that the train travels down the left-hand track, instead of the right. Since the
tracks re-converge up ahead, the train arrives at its destination all the same.

This story is slightly more complicated and its causal analysis will depend substantially on parts
of the story abstracted out in the process of its formalization (which may explain different views
on what constitute proper cause for the train’s arrival at its destination in some scenarios). So
we use this example to illustrate our step-wise methodology of story formalization and consider
several, increasingly more detailed, versions of the story. In a nutshell, the train story consists of
two sentences: “a train appeared” and “the train arrived at its destination”. We can represent
this by introducing a sort loc for locations and a sort move for actions of the type “move”.
The former will be initially populated by s and f denoting the initial and the final positions
respectively. The actions from move may have attributes - source, dest, and route. Fluent pos : loc
indicates position of the train on a given time-step. For every action e ∈ move we have a causal
law

m0(e, I−1) : pos(I) = L ← e(I−1),
dest(e) = L,
not ab(m0(e, I−1))
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For move e to be successful its source and destination must be connected. So we add static
connected(s, f ) and constraint

← source(e) = L1,

dest(e) = L2,

not connected(L1,L2)

We also need CWA

¬e(I)← not e(I)

e(I) +←
We denote these axioms, together with contingency axioms for m0, and inertia axioms by T0.
Let a with source = s and dest = f be an action from move. It is easy to check that a(0) is the
(deliberate) cause of pos(2) = f in scenario

S0 = 〈obs(pos(0) = s),a(0),obs(pos(2) = f )〉

of T0. This action will also be the cause of pos(2) = f in scenario

S1 = 〈obs(pos(0) = s),obs(pos(2) = f )〉

This conclusion follows from the contingency axiom for CWA for action a and holds for every
one of our preference relations. This time the cause is accidental.

The engineer’s action f lip can be included in the story by introducing one more location, say
f ork, and new sort routes initially populated by two routes, le f t and right, leading from f ork to
the final destination f . The availability of the route is controlled by action f lip, via the following
causal law:

m1(I−1) : available(I) = le f t ← f lip(I−1),
available(I−1) = right,
not ab(m1(I−1))

where available : {le f t,right} is an inertial fluent. Similarly, for switching from le f t to right.
Let us denote expansion of T0 by this law and the corresponding standard axioms (including the
CWA with indirect exceptions for f lip) by T1. Consider scenario

S2 = S0∪{obs(available(0) = right), f lip(1),obs(available(2) = le f t)}

One can check that the cause of pos(2) = f in T1(S0) is still a(0). But, in addition, we can now
inquire about the cause of available(2) = le f t. Clearly the answer would be f lip(1).

So far, we abstracted out features of the story which could have allowed us to ask questions
about the path the train followed to arrive at its destination. To include the relevant information
we expand sort move by new actions: a0 with source(a0) = s and dest(a0) = f ork, a1 with
source(a1) = f ork, dest(a1) = f , route(a1) = le f t and a2 with source(a2) = f ork, dest(a2) = f ,
route(a2) = right. Action a can now be viewed as a complex action, i.e., a sequence consisting
of two consecutive actions - moving from s to f ork and from f ork to the destination via the
available route. This can be formalized by removing a from the sort move which only consists
of simple actions (not sequences of actions); a will still belong to sort actions. This will remove
axiom m0(a,0) from our theory but still allow a(0) to be viewed as a deliberate action in scenario
S0. Next axioms define actions triggered by a(I):

a0(I)← a(I)
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a1(I)← a0(I−1),available(I) = le f t

a2(I)← a0(I−1),available(I) = right

A new Boolean fluent arrived by(D,R) holds when the train arrives at its destination D by route
R. For every action e ∈ move, location d and route r the new theory will include causal law
connecting this fluent with e:

m2(I−1) : arrived by(d,r, I) ← e(I−1),
dest(e) = d,
route(e) = r,
not ab(m2(I−1))

The expansion of T1 by these axioms together with standard axioms for new laws, fluents and
actions will be denoted by T2. Let arr = {¬arrived by(d,r,0) : d ∈ loc and r ∈ routes} and
consider scenario

S3 = S0∪arr∪{obs(available(0) = right),obs(arrived by( f ,right,2))}

One can check that the cause of arrived by( f ,right,2) in scenario S3 is a(0). (Note, that a2(1)
is not a cause since it is not a deliberate action). The cause of arrived by( f , le f t,2) in scenario

S4 = S0∪arr∪{obs(available(0) = right),obs(arrived by( f , le f t,2))}

is {a(0), f lip(0)}. The latter is derived by abductive reasoning which resolves the contradiction
with the last observation by assuming that f lip(0) is an indirect exception to CWA for f lip. Note
that the cause of pos(2) = f is still a(0). Even though f lip(0) changes the route the train used
to reach its destination, it is not responsible for the train being there at the end. If f lip(0) did not
occur, the train will be there anyway.

The next example deals with a story which, in addition to regular causal mechanisms, involves
intentions and random experiments.

Example 4.4 (A shooting story)
Consider a variant of Yale Shooting story: Fred has a loaded gun and intends to kill a turkey for
dinner. Mary can unload the gun before Fred’s departure without being noticed by him. Mary is
tormented by the situation. On the one hand she wants to save the turkey. On the other hand she
is reluctant to deprive Fred from having his dinner. She decides to rely on chance and flip a coin.
If the coin shows “heads” she will unload the gun. Otherwise, she will not interfere.

Our background theory Y has regular actions shoot (which is impossible if the gun is un-
loaded), and unload, random action random( f lip(I),head(I + 1)), where head (the coin lands
heads) is a transient fluent, and inertial fluents loaded and alive. To talk about Fred’s intent we
need a mental action intend(shoot(T )) and non-procrastination axiom

shoot(T )← intend(shoot(T ), I), I ≤ T, not ¬shoot(T )

from (Baral and Gelfond 2005). Next two laws specify the effects of shoot and unload

[m1(T )] : ¬alive(T +1)← shoot(T ),not ab(m1(T ))

[m2(T )] : ¬loaded(T +1)← unload(T ),not ab(m2(T ))

We also need executability condition for shoot

¬shoot(T )←¬loaded(T )
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causal mechanism describing the Mary’s strategy

[m3(T )] : unload(T )← head(T ),not ab(m3(T ))

and the inertia and the contingency axioms for causal laws. In theory of intentions one must be
careful with closed world assumption - it is only applicable if the action is not intended. So CWA
for shoot will look as follows:

¬shoot(T )←¬intend(shoot,T ),not shoot(T ).

CWA for other actions are regular. For simplicity we do not allow indirect exceptions to any of
our CWA.

Suppose now that the agent recorded the story together with observations of the Mary’s experi-
ment and the value of fluent alive at time-step 3. First assume that the coin shows head and, as
expected, alive(3) is observed to be true, i.e., we have scenario

S1 = S∪{obs(head(1)),obs(alive(3))}

where S = 〈obs(alive(0)),obs(loaded(0)), intend(shoot(2),0),random( f lip(0),head(1))〉.
One can check that
M1 = {alive(0), loaded(0), intend(shoot(2),0), f lip(0),head(1), loaded(1),alive(1),
unload(1),¬loaded(2),¬shoot(2),alive(2),¬loaded(3),alive(3)}
is the only model of S1.

To find a cause of alive(3) ∈ M1 first notice that its inflection point is 1. Indeed, S1[0] has two
models: one containing head(1) and alive(3) and another containing ¬head(1) and ¬alive(3).
Thus, S1[0] does not derive alive(3). For any 0 < i≤ 3, M1 is the only model of S1[i] and hence
S1[i] derives alive(3). Both conditions of Definition 3.3 are satisfied. Since no deliberate action
happen in S after time-point 0, Definition 3.4 is not applicable. In fact, no action occurring in the
model changes the value of alive(0) and hence alive(3) is caused by an exogenous action which
brought about alive(0).

Note that, since our theory does not allow indirect exceptions to CWA for load and shoot, sce-
nario in which the agent observes head(1) and ¬alive(3) is inconsistent and will not be consid-
ered. We have two other possibilities:

S2 = S∪{obs(¬head(1)),obs(¬alive(3))}

and

S3 = S∪{obs(¬head(1)),obs(alive(3))}
The first, expected one, has unique model M2:

alive(0), loaded(0), intend(shoot(2),0), f lip(0),¬head(1), loaded(1),alive(1),
loaded(2),alive(2),shoot(2), loaded(3),¬alive(3)}

The inflection point for ¬alive(3) is 1 and, by Definition 3.5, ¬alive(3) is caused by shoot(2).
The only model of S3 contains ab(m1(2)) which, by Definition 3.6, is caused by an unknown
exogenous event responsible for malfunctioning of the gun; by the same definition the turkey is
alive due to an unknown exogenous event which caused the turkey to be alive at the beginning of
the story.

The following example – similar to one from (Halpern 2016) – illustrates our treatment of pref-
erences between causal mechanisms.
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Example 4.5 (Multiple Orders)
Suppose that a captain and a sergeant stand before a private, both shout “Charge” at the same
time, and the private charges. We follow Halpern and assume that “Orders from higher-ranking
officers trump orders from lower-ranking officers”. This will be represented by background the-
ory T containing sorts person= {c,s, p}, rank = {1,2,3}, command = {advance,retreat}, static
rank(c) = 3,rank(s) = 2 and rank(p) = 1. There are actions do(A,C) (A executes command C)
and order(A,B,C) (A orders B to do C). A causal mechanism

[m(A,P,C, I−1)] : do(B,C, I)← order(A,B,C, I−1),not ab(m(A,B,C, I−1))

indicates that, as a rule, person B executes command C given to him by A. We, of course, assume
that commands are legal, e.g.

¬order(A,B,C, I)← rank(A)<= rank(B),

that at most one command is given by one person at the time, etc. Multiple orders, however,
can be given by different people. In this case one is supposed to execute the order given by the
person of the highest rank (we assume that there is only one such person) and ignore all the
others. This will be modeled by stating preferences between the defaults. This can be done by
following standard ASP methodology. In our case we simply say:

ab(m(A1,B,C1, I))← order(A1,B,C1, I−1),order(A2,B,C2, I−1),rank(A1)< rank(A2).

In a scenario

S0 = 〈order(c, p,attack,0),order(s, p,retreat,0),obs(do(p,attack,1))〉

event do(p,attack,1) is caused by the order of c. The same is true in scenario

S0 = 〈order(c, p,attack,0),order(s, p,attack,0),obs(do(p,attack,1))〉

So far, we have only considered stories which contain no specific information about probabili-
ties of outcomes of random events. Of course, we could ask and answer some probability related
questions typical for P-log, e.g., “What is the probability of the coin showing head in scenario
〈agreed to play(0)〉 from Example 2.2?” By the indifference principle built into the semantics
of P-log the answer would be 0.54. If, however, we learn that the coin is not fair and lands heads
with probability 0.6, we expend the program by pr f lip(T−1)(head(T )) = 0.6. This will change
the answer to 0.6.

It is more difficult to reason about likelihood of causes in theories which use cr-rules. This will
be later addressed in the full paper.

5 Related Work

In this section we briefly discuss the relationship between our approach and several others. We
start with, currently best known and influential, Halpern-Pearl (HP) definition of causality. There
are several basic differences between our approach and that of HP.

4 For more details see Appendix 2 and/or (Balai et al. 2019)
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• HP is based on counterfactual interpretation of causality and, as all counterfactual based
definitions, takes as its starting point the “but for” test. A is a cause of B if, but for A, B
would not have happened. Our intuition is more direct. It’s starting point, based on theories
of actions and their effects, views A as a cause of B if A initiates a chain of events which,
according to universal causal laws, brings about B.

• Both approaches recognize the dependence of mathematical definition of causality on for-
mal language used to represent agent’s knowledge. The HP approach concentrates primar-
ily on causal knowledge and bases its definitions on the language of structural equations
(ref). In its pure form the language is propositional. We believe that, in many cases, cor-
rect causal reasoning requires substantial amount of non-causal background knowledge,
such as explicit and recursive definitions, wide range of defaults and their exceptions, on-
tological knowledge, time, etc. Consequently, our language of choice is P-log, which uses
variables and covers these and other types of knowledge.

These foundational differences lead to different treatment of particular examples. Let us illustrate
this by looking at Forest Fire Example from (Halpern 2016) in which the agent is trying to
determine whether a forest fire was caused by lightning or arsonist. The domain is modeled
by three Boolean variables: f f for forest fire, l for lightning, and md for match dropped (by
arsonist). In the conjunctive model both the match and lightning are needed to start the fire.
This is expressed by causal equation: f f = md ∧ l. An exogenous variable u is a context which
determines the values of l and md in particular scenarios. If u = (1,1) the lightning strikes and
arsonist drops the match; u = (1,0) corresponds to lightning but no match, etc. According to (all
three) HP definitions considered in the book both the lighting (l) and the dropped match (md)
are causes of the fire; if either one had not occurred the fire would not have happened; l ∧md
however is not a fire’s cause.

In our approach the story will be modeled by causal mechanism

m(0) : f f (1)← md(0), l(0),not ab(m(0))

where f f , md, and l are actions, and scenario

S = {md(0), l(0),obs( f f (1))}.

One can easily check that the cause of f f (1) in our setting is action {md(0), l(0)} which cor-
responds to l(0)∧md(0); l(0) however is not a cause of f f (1). This fits well with our informal
understanding of causality. Execution of {md(0), l(0)} does “bring about” f f (1) while execution
of l(0) does not. We need both actions.

The difference is even more pronounced in the disjunctive model given by structural equation
f f = l ∨md. First, in this case there are differences between three HP definitions presented in
the book. With the last, so called modified, definition neither l nor md is a cause of f f . Instead,
its cause is l(0)∧md(0). The authors acknowledge that calling the conjunction l∧md a cause of
f f “does not seem to accord with natural language usage”. As one of possible ways to address
this concern they suggest that “it may be better to think of parts of causes as coming closer to
what we call causes in natural language”. None of these problems exist in our approach, where
the disjunctive structural equation is modeled by causal mechanisms

m1(0) : f f (1)← md(0),not ab(m1(0))

m2(0) : f f (1)← l(0),not ab(m2(0))
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Now f f (1) from scenario S has two causes: l(0) and md(0). We believe that this is the view
which is in tune with everyday language use. Note, that the same answer is given by two earlier
versions of HP definition.

There is a number of papers aimed at giving definition of causality based on theory of action
and change. In (Batusov and Soutchanski 2018) the authors represent knowledge needed for
causal reasoning in Situation Calculus - an action formalism proposed in (Mccarthy and Hayes
1969) and further elaborated in (Reiter 2001). The basic intuition behind definition of causality
is similar to ours. It is formulated as follows: “If some action α of the action sequence σ triggers
the formula φ(s) to change its truth value from false to true and if there is no action in σ after α

that changes the value of φ(s) back to false, then α is an actual cause of achieving φ(s) in σ .” If
such action exists it can be found by a form of backward chaining. Even though in some respects
Situation Calculus is more expressive then the language of structural equation the authors realize
its limitations. They write: “It is clear that a broader definition of actual cause requires more
expressive action theories that can model not only sequences of actions, but can also include
explicit time and concurrent actions.” This is what is done in our approach. We have explicit
time, concurrent actions, triggers, can represent defaults, recursive definitions, state constraints,
intentions, etc. The rich power of P-log allows to reason about incomplete scenarios, explain
unexpected observations, and compute likelihoods of causes.

Another work which is similar in spirit to that of (Batusov and Soutchanski 2018) as well as
to our work is (LeBlanc et al. 2019). Here background theory is formulated in action language
A L (Gelfond and Inclezan 2009) which, unlike the form of Situation Calculus used in (Batusov
and Soutchanski 2018), allows state constraints and defined fluents. In the authors’ approach the
distinction between direct and indirect effects of actions plays an important role in determining
causes of events. More effort is needed for serious study of the relationship but, as in the case
of Situation Calculus, our background theory is stated in a much richer language. In addition,
the authors acknowledge, that their framework identifies partially counter-intuitive subsets of
elementary events as indirect causes. This is illustrated by the following example from (LeBlanc
2019) adopted to our language. Consider background theory T :

m1 : d1(1)← e1(0)

m2 : d2(1)← e2(0)

f1(1)← d1(1)

f2(1)← d2(1)

and scenario

S = {e1(0),e2(0)}.
Then, “Due to the definitions of static chains and the improved definition of indirect cause, both
e1(0) and {e1(0),e2(0)}will be identified as indirect causes of f1(1), even though intuitively one
might expect only e1(0) to be an indirect cause.” Our definition gives the correct answer.

We are also currently investigating a close relationship which seems to exist between our work
and that of (Cabalar et al. 2014). In this approach an agent’s knowledge is represented by a nor-
mal logic program and causes are defined as causal graphs – directed graphs of rule labels that
reflect some order of applications of rules which could have been used in constructing a particular
model. In this way, each true atom of the model is assigned the value that contains justifications
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for its derivation from the existing rules. We tentatively conjecture that for programs without
cr-rules, random events, and observations, causal chains leading from the inflection points to an
event in our approach correspond to causal chains which can be extracted from causal graphs.
There are, however, substantial differences between the approaches. Signatures of our causal
theories include fluents and actions, with actions playing special role in the definition of causes.
There is no such distinction in (Cabalar et al. 2014). There is also no separation between back-
ground knowledge and scenarios and between deliberate, accidental and exogenous actions, etc.
We believe that these features shed some light on the nature of causes, may increase elaboration
tolerance and readability of programs and help with methodology of knowledge representation.
Of course the possibility to express indirect exceptions to default increases expressive power of
the language and allows to reason with unexpected observations which cannot be explained by
explicitly stated exceptions as well as with deliberate actions. Similarly with probabilistic rea-
soning. However, one important feature hinted at in (Cabalar et al. 2014) and further elaborated
in (?) is missing from our approach. While we concentrate on using knowledge to determine
various cause-effect relations our language does not provide the means to use these relations to
derive new conclusions. We cannot say “if a causes f then g is true”. Languages discussed in the
cited papers above can. We believe this to be an important feature and hope to be able to include
it in our approach.

This is certainly not a complete list of works on causality in logic programming and theory of
action and change but, to the best of our knowledge, it contains papers which are closest to our
work. We plan to eventually expand the section but this is left for the future work.

6 Conclusion and Future Work

The paper reports on the ongoing work aimed at analysis of causal events in trajectories of dy-
namic domains. In our approach the background knowledge of an agent is formulated in powerful
knowledge representation language P-log which combines reasoning in Answer Set Prolog and
abductive reasoning with consistency restoring rules and causal probabilistic reasoning. The di-
vision of agent’s knowledge into general part describing properties of a dynamic domain and a
particular history of actions and observations recorded by the agent allows for higher degree of
elaboration tolerance (McCarthy 1998) and more transparent representation. It also allows use-
ful distinction between deliberate and accidental causes. We believe that determination of causes
depends substantially on formal representation of informal knowledge and try the best we can
to use general knowledge representation methodology developed in logic programming, non-
monotonic reasoning, and theory of action and change communities in the last twenty years. In
fact, our definitions of causes is given in terms of causal laws developed in this area of research as
opposed to counterfactual approach powerfully advocated by Pearl, Halpern, and others. Discov-
ery of precise relationship between this and other contemporary approaches to causality with our
work is an interesting and important open problem. Even though in some respects our formalism
is a more powerful modeling tool than that of structural equations and graphical models advo-
cated by Pearl and many others it remains to be seen if it can also expand their computational
power. There are many open mathematical problems associated with causal theories. Just as an
example we mention the need for mathematical theory of causal equivalence. Here is a suggested
definition: We say that two background theories T1 and T2 are causally equivalent with respect
to scenario S if causes of observations and actions from S are the same in T1(S) and T2(S); T1

and T2 are strongly causally equivalent if they are causally equivalent with respect to every sce-
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nario S. Can we find reasonable sufficient conditions to guarantee these properties of programs?
Of course we need to develop and implement algorithms for computing causal queries, further
develop methodology for representing causal knowledge, better understand what preference re-
lation (or relations) is most suitable for combining diagnostic and causal reasoning, etc. The list
is large and serious progress may only be possible with more people getting interested in the
subject.

7 Appendix 1 – Cr-Prolog

In what follows we give a brief description of the syntax and semantics of CR-Prolog. A program
of the language is a four-tuple consisting of

1. A (possibly sorted) signature.
2. A collection of regular rules of ASP.
3. A collection of rules Π of the form

l0
+← l1, . . . , lk,not lk+1, . . . ,not ln (1)

where ls are literals. Rules of type (1) are called consistency restoring rules (cr-rules).
4. A partial order, ≤, defined on sets of cr-rules. This partial order is often referred to as a

preference relation.

Whenever signature can be extracted from the rules and the preference relation is clear from the
context we refer to this program as Π. Intuitively, rule (1) says that if the reasoner associated with
the program believes the body of the rule, then it “may possibly” believe its head; however, this
possibility may be used only if there is no way to obtain a consistent set of beliefs by using only
regular rules of the program. The partial order over sets of cr-rules is used to select preferred pos-
sible resolutions of the conflict. Currently the inference engines of CR-Prolog support two such
relations. One is based on the set-theoretic inclusion (R1 ≤1 R2 holds iff R1 ⊆ R2). Another is de-
fined by the cardinality of the corresponding sets (R1 ≤2 R2 holds iff |R1| ≤ |R2|). Unfortunately,
neither is fully adequate if we want explanations which do not lose causal relations relevant to
our domain. To see the problem consider a simple program T consisting of rules

f (1)← e1(0)
f (1)← e2(0)
e1(0)

+←
e2(0)

+←

The first two rules is a simplified representation of the fact that symptom f (1) has exactly two
possible causes - e1(0) and e2(0). According to the mentioned above minimality criteria program
T used together with a scenario S = 〈obs(¬ f (0)),obs( f (1))〉 has two possible worlds:

W1 = {¬ f (1),e1(0), f (1)}
W2 = {¬ f (1),e2(0), f (1)}

There is no possible world in which both e1(0) and e2(0) happen simultaneously. This, however,
can be important since the presence of an additional cause can influence treatment of the patient
or have some other important causal consequences, and/or influence probability of the domain
events.

So in this paper we introduce another preference relation, based on the idea of relevance. First,
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some definitions. Given terms f (x̄1) and p(x̄2) of program T we say that f (x̄1) directly depends
on p(x̄2) in Π if

• there is a rule r in Π such that f (x̄1) occurs in the head of r and p(x̄2) occurs in r’s body,
or

• head of r has the form random(m, f (x̄1), p), where p(x̄2) is an instance of p(X);

f (x̄1) depends on p(x̄2) in Π if it belongs to reflexive, transitive closure of this relation; f (x̄) =
y depends on cr-rule r in Π if f (x̄) depends on a term occurring in the head of r. A cr-rule is called
irrelevant to the observations of program Π if no observation from Π depends on r. Let R be a
set of cr-rules from Π. By rank(R) we denote the number of rules of R irrelevant to observations
from Π + 1 if R 6= { } and 0 otherwise.

Definition 7.1 (Relevance Based Preference Relation)
Let R1 and R2 be sets of cr-rules of program Π. We say that R1 is preferred to R2 (and write
R1 < R2) if rank(R1)< rank(R2).

To give the precise semantics we need more terminology and notation.
The set of regular rules of a CR-Prolog program Π is denoted by Πreg; the set of cr-rules of Π

is denoted by Πcr. By α(r) we denote a regular rule obtained from a consistency restoring rule r
by replacing +← by←; α is expanded in a standard way to a set R of cr-rules, i.e.,

α(R) =de f {α(r) : r ∈ R}.

Finally

T R =de f Π
reg∪α(R).

As in the case of ASP, the semantics of CR-Prolog is given for ground programs. A rule with
variables is viewed as a shorthand for a schema of ground rules.

Definition 7.2
(Abductive Support)
A minimal (with respect to the preference relation of the program) collection R of cr-rules of Π

such that T R is consistent (i.e. has an answer set) is called an abductive support of Π.

Definition 7.3
(Answer Sets of CR-Prolog)
A set A is called an answer set of Π if it is an answer set of a regular program T R for some
abductive support R of Π.

Consider, for instance, the following CR-Prolog program:

p(a)← not q(a).
¬p(a).
q(a) +← .

It is easy to see that the regular part of this program (consisting of the program’s first two rules)
is inconsistent. The third rule, however, provides an abductive support which allows to resolve
inconsistency. Hence the program has one answer set {q(a),¬p(a)}. This example has only
one possible resolution of the conflict and hence its abductive support does not depend on the
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preference relation of the program. This is of course not always the case. Consider program T
and scenario S described above. Then program T (S) = T ∪S has three possible worlds

W1 = {¬ f (1),e1(0), f (1)}
W2 = {¬ f (1),e2(0), f (1)}
W3 = {¬ f (1),e1(0),e2(0), f (1)}

each generated by a collection of cr-rules of rank 1. Note, that if we were to expand T by e3(0)
+←

then the rank of this rule in the new program T1(S) would be 2. In other words this addition will
not change possible worlds of the program.

8 Appendix 2 – P-log

Terms of a sorted signature of a P-log program are divided onto

• Standard arithmetic terms.
• Regular terms - expressions of the form f (x̄) where f is a function symbol with signature

s1, . . . ,sn→ s.
• Special terms - listed below.

— do(r, f (x̄),y) – “a random experiment r assigning value to f (x̄) is deliberately inter-
fered with and f (x̄) is assigned the value y”.

— obs( f (x̄),y) – “the value of f (x̄) is observed to be y”. If f is boolean we sometimes
write obs( f (x̄)) and obs(¬ f (x̄)) for y = true and y− f alse respectively.

— random(r, f (x̄), p) – “ f (x̄) may take the value from the set {X : p(X)}∩range( f (x̄))
as the result of a random experiment r which is either genuine or deliberately inter-
fered with.”

— truly random(r, f (x̄)) – “ f (x̄) takes value as the result of the genuine random ex-
periment r (i.e., the one without any outside interference)”.

The range of all special terms is boolean. Arithmetic atoms are defined as usual; non-arithmetic
atoms are of the form t = y where t is a term and y is its possible value. An atom t = y is called
special if t is a special term, otherwise it is called regular. Atoms formed by obs and do are
called observation and A P-log rule, r, is of the form:

head(r)← body(r) (2)

where head(r) is an atom and body(r) is a collection of atoms possibly preceded by default
negation not . If head(r) is an observation or an action, we require body(r) to be empty and the
rule is called an activity record. If head(r) is of the form random(rn,a, p), the rule is called a
random selection rule with name rn, a is referred to as random attribute term of the program
containing such a rule. Otherwise a rule is called regular.

By a P-log program we mean a pair consisting of a signature Σ and a collection R of P-log
rules and causal probability statements (also called pr-atoms) – expressions of the form

pr(r, f (x̄) = y | B) = v (3)

where f (x̄) is a regular term such that y ∈ range( f (x̄)), B is a set of atoms, possibly preceded by
not , and v ∈ [0,1] is a rational number. The statement says that “if the value of f (x̄) is generated
randomly by experiment r and B holds then the probability of the selection of y for the value
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of f (x̄) is v. We will refer to f (x̄) = y as the head of the pr-atom and to B as the body of the
pr-atom. We will refer to v as the probability assigned to f (x̄) = y by the pr-atom.

In addition, every P-log program contains the following rules, called general P-log axioms.

General P-log axioms:

• For every regular term f (x̄) of Σ the rules

← not f (x̄) = Y, obs( f (x̄),Y, true) (4)

← not f (x̄) 6= Y, obs( f (x̄),Y, f alse). (5)

The rules are often referred to as reality check axioms. Intuitively, they prohibit obser-
vations of undefined attribute terms as well as observations which contradict the agent’s
beliefs.

• For every atom random(r, f (x̄), p) of Σ such that range( f (x̄)) = {y1, . . . ,yk}, the rules :

f (x̄) = y1 or . . . or f (x̄) = yk ← random(r, f (x̄), p) (6)

truly random(r, f (x̄)) ← random(r, f (x̄), p),
not do(r, f (x̄),y1), . . . ,not do(r, f (x̄),yk)

(7)

← f (x̄) = Y, not p(Y ),random(r, f (x̄), p) (8)

← random(r, f (x̄), p),
not f (X̄) = Y,
do(r, f (X̄),Y ).

(9)

Intuitively, the rules (6) and (8) guarantee that if random(r, f (x̄), p) is true, then f (x̄)
is assigned the value satisfying condition p by experiment r, rule (7) makes sure that
truly random(r, f (x̄)) is true iff the value of f (x̄) is assigned as the result of a truly random
experiment r, i.e., an experiment without any intervention, and rule (9) guarantees that the
atoms made true by interventions are indeed true if random(r, f (x̄), p) is true.

In addition, for every rule r which is not a general axiom, we disallow literals formed by obs, do,
truly random and random to occur in the body of r. Elements of a program such as terms, atoms,
rules, programs, etc., are called ground if they contain no free occurrence of any variable and no
names of arithmetic functions. As usual, the semantics will be defined for ground programs. In
addition, we only allow programs in which no two random selection rules have the same name.

The semantics of a P-log program Π is given by the collection W (Π) of possible worlds of Π

and the probability function PΠ
5, defined on the sets of these worlds. The former correspond to

possible sets of beliefs of a rational agent associated with the program, and the latter specifies
degrees of such beliefs. The following examples illustrate the definition. Recall that, in addi-
tion to the explicitly stated rules, every program below contains general P-log axioms 4–9. To
simplify the specification of programs’ signatures, we use standard mathematical declarations of
functions, f : s1, . . . ,sn→ s and sorts s = {t1, . . . , tm}. If n = 0, we simply write f : s. We follow
the input language of P-log implementation – start the sort names with # and replace ¬ by -.

5 When Π is clear from the context we may simply write P instead of PΠ.
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Example 8.1
Consider the program Π1

a,b,c: #boolean.

random(r1,a).

b :- c, -a.

do(r1,a, false).

random(r2,c).

It is not difficult to see that Π1 has two possible worlds W1 and W2:

W1 = {¬a,b,c,do(r1,a, f alse),random(r1,a), truly random(r2,c),random(r2,c)}

and

W2 = {¬a,¬c,do(r1,a, f alse),random(r1,a), truly random(r2,c),random(r2,c)}.

In both worlds r1 is interfered with, while r2 is truly random.

Example 8.2
Consider the program Π2:

a: #boolean.

obs(a,true).

It has no possible worlds. Note that W = {obs(a, true)} is not a possible world, because of the
reality check axiom (4). If we expand the program by cr-rule a +← the new program Π3 will have
possible world W = {obs(a, true),a}.

The precise definition of probability function defined by a P-log program is rather involved, but
the intuition behind the definition is simple. So we illustrate it by an example.

Consider a program Π:

#s = {1,2,3}.

a : #s.

b : #boolean.

random(a).

random(b).

pr(a=1) = 1/2.

The program has six possible worlds corresponding to choices of values for a and b. For every
possible world W and every attribute term a s.t. truly random(a) ∈W we first define causal
probability, P(W,a = y) for every possible outcome y of a (for the precise definition of possible
outcome we refer the reader to (Baral et al. 2009)). Let us consider a possible world W1 containing
a = 1 and b = true. Causal probability P(W1,a = 1) is directly determined by the pr-atom of the
program and is equal to 1/2; the value of P(W1,b = true) is determined by the indifference
principle which says that possible values of random attribute term are assumed to be equally
probable if we have no reason to prefer one of them to any other, i.e., P(W1,b = true) = 1/2.
Now consider a possible world W2 containing a = 2 and b = true. From the pr-atom of the
program we know that the causal probability of a being equal to 2 or to 3 is 1/2. Hence, by the
indifference principle we have P(W2,a = 2) = 1/4. Now we are ready to compute unnormalized
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measure, µ̂Π(W ) defined as the product of causal probabilities of random atoms from W . In our
case, µ̂Π(W1) = 1/2× 1/2 = 1/4 and µ̂Π(W2) = 1/4× 1/2 = 1/8. As expected, the measure,
µ(W ) is the unnormalized probability of W divided by the sum of the unnormalized probabilities
of all possible worlds of Π. Suppose now that Π is a P-log program having at least one possible
world with nonzero unnormalized probability. The probability, PΠ(E), of a set E of possible
worlds of program Π is the sum of the measures of the possible worlds from E. The probability
with respect to program Π of a literal l of Π, PΠ(l), is the sum of the measures of the possible
worlds of Π that satisfy l.

The corresponding functions are only defined for programs which satisfy three conditions on
possible worlds of a program Π. Roughly speaking, the conditions ensure that for every W there
is at most one random selection rule determining possible values of a in W , at most one pr-atom
which can be used to define P(W,a = y), and that P(W,a = y) is not defined for y outside of the
set of a’s possible values determined by the random selection rule for a. For more information
see (Balai et al. 2019).
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