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Abstract This paper focuses on the investigation and improvement of knowledge
representation language P-log that allows for both logical and probabilistic rea-
soning. We refine the definition of the language by eliminating some ambiguities
and incidental decisions made in its original version and slightly modify the for-
mal semantics to better match the intuitive meaning of the language constructs.
We also define a new class of coherent (i.e., logically and probabilistically consis-
tent) P-log programs which facilitates their construction and proofs of correctness.
There are a query answering algorithm, sound for programs from this class, and a
prototype implementation which, due to their size, are not included in the paper.
They, however, can be found in the dissertation of the first author.
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1 Introduction

The language P-log, introduced in [7,8], is capable of combining non-monotonic
logical reasoning about agent’s beliefs in the style of Answer Set Prolog (ASP)
[18] and its extensions and probabilistic reasoning with Causal Bayesian Networks
[38]. To facilitate reading of the paper we briefly describe the basics of the original
language. For more details the reader should refer to [8]. An accurate description
of the syntax and semantics of the variant of P-log proposed in this paper will be
given in Section 3.
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The basic building blocks of original P-log are atoms formed by arithmetic
functions and relations, and atoms of the form f(x̄) = y, where f is a user defined
function called an attribute1 and x̄ denotes the list (x1, . . . , xn) of its parameters;
f(x̄) is called an attribute term. Literals are expressions of the form f(x̄) = y and
f(x̄) 6= y. Literals preceded by default negation not are referred to as extended
literals or simply e-literals. There are several types of P-log rules:

– Regular rules – usual non-disjunctive ASP rules built from these atoms,
– Random selection rules of the form

[ r ] random(f(x̄) : {X : p(X)})← body.

Rule r states that, given body, the value y of attribute term f(x̄) is selected at
random among f(x̄)’s possible values satisfying property p; p is often referred
to as the dynamic range of f(x̄). One can think of this selection as a result of
a particular physical or mental experiment associated with the rule.

– Activity records – special facts of the form obs(l), where l is a literal, and
do(f(x̄) = y). The former is used to record observations of the results of ran-
dom selections. The latter describes a deliberate intervention which stops the
process of random selection and simply assigns value y to f(x̄). The intuition
behind the last construct is similar to that in [38]. As in Pearl’s work it is used
to reason about causality, counterfactuals, etc. in which the difference between
actions and observations plays a critical role.

– Causal probability statements (also called pr-atoms) which are of the form
prr(f(x̄) = y) = v. A statement says that if the value of f(x̄) was fixed by
experiment r, then y is selected as the value of f(x̄) with probability v. P-log
also allows causal probability statements of the form pr(f(x̄) = y|B) = v.
(Here | stands for the causal stroke which in the original paper is denoted
by |c. The precise description of this is given in Section 3.) In the absence
of causal probability statements, the probability of a selection is computed
using indifference principle2 which says that “possible outcomes of a random
experiment are assumed to be equally probable if we have no reason to prefer
one of them to any other.”

Semantically, P-log program Π defines a collection of possible worlds correspond-
ing to beliefs of a rational agent associated with it, and probability measure defined
on sets of these worlds. Probability function PΠ(f(x̄) = y) returns the degree of
reasoner’s belief in the value of f(x̄) being y which is defined as the (normalized)
probability measure of all possible worlds in which f(x̄) takes value y. Here is
an example of a simple P-log program Π0. (For the convenience of copying and
running programs, we will use ASCII symbols :- and - instead of ← and classical
(strong) negation ¬ respectively).

a, b : boolean.

[r] random(a) :- -b.

-b :- not b.

a :- b.

1 If f is a boolean function we use f(x̄) and -f(x̄) as shorthands for f(x̄) = true and
f(x̄) = false respectively.

2 For a deeper discussion of this principle and its logical justification see, for instance, [25].



P-log: Refinement and a New Coherency Condition 3

The first statement is a declaration of 0-arity boolean attributes a and b. The
second states that if b is false, then the value of a is generated at random. The
not in the third rule is default negation of ASP. The rule states that if there is
no reason to believe b, then b should be false. The last rule says that a reasoner
believing b must also believe a. The program has two possible worlds: W1 =
{b = false, a = true} and W2 = {b = false, a = false} corresponding to two
possible assignment of values to a. By the indifference principle, PΠ0

(a = true) =
0.5. Since no possible world contains b, PΠ0

(b = true) = 0. Note, that program
Π1 = Π0 ∪ {b} has a different possible world, {a = true, b = true} and that
PΠ1

(a = true) = PΠ1
(b = true) = 1. Not surprisingly, P-log, built on ASP, is

logically non-monotonic. Learning b forces the reasoner to withdraw its previous
conclusion.

Another distinctive feature of P-log is its ability to reason with a broad range
of updates. In addition to standard conditioning on observations, P-log allows
conditioning on rules, including defaults and rules introducing new terms, deliber-
ate actions in the sense of Pearl, etc. These and several other features make P-log
representations of non-trivial probabilistic scenarios (including such classical “puz-
zles” as Simpson Paradox, Monty Hall Problem, etc.) very close to their English
descriptions which greatly facilitate a difficult task of producing their probabilis-
tic models and sheds some light on subtle issues involved in their solutions. The
ability of P-log to represent causal and counterfactual reasoning is discussed in [9].
In [20] P-log was expanded to allow abductive reasoning in the style of CR-Prolog
[6] and infinite possible worlds. In addition to being logically non-monotonic, this
extended language is also “probabilistically non-monotonic” with respect to ob-
servations — an addition of new observations can add new possible worlds and
substantially change the original probabilistic model. In the original P-log new
observations can only eliminate possible worlds. A P-log prototype query answer-
ing system (based on ASP solvers) is described in Zhu’s dissertation [49]. The
system allowed the use of P-log in a number of applications such as software for
finding best probabilistic diagnosis for certain types of failure in the Space Shuttle
[49], development and automation of mathematical models of machine ethics [39],
methods for combining probabilistic and logical reasoning in robotics [48], etc.

Despite these achievements, P-log is still lacking scalable reasoning algorithms
and systems. This drawback was partially addressed in recent dissertation of the
first author [1]. This work forced us to have a second look at the original version
of P-log and to discover a number of small, but subtle and important issues with
its original syntax and semantics. To address these issues, we

– Clarified and made explicit the treatment of P-log’s partial functions. Among
other things, we explicitly defined the truth of f(x̄) 6= y to mean that f(x̄)
has the value and this value is different from y and prohibited occurrences of
statements of the form f(x̄) 6= y in the heads of P-log rules.

– Clarified syntax and semantics of observations and actions of P-log by making
their formal semantics better reflect their informal meaning. The change led to
reifying names of random selection rules of the program and using these names
as parameters of do and random.

In addition, our work on P-log reasoning algorithms allowed us to realize the
need for better sufficient condition for coherency of P-log programs.
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Intuitively, program Π with no activity records is coherent if (a) it is logically
consistent, i.e. has at least one possible world, and (b) probabilistically consis-
tent, i.e. defines probabilistic distribution PΠ compatible with causal probabilities
specified by pr-atoms of the program. Program Π containing activity records is
coherent if it is logically consistent and the program Π ′, obtained from Π by
removing the activity records, is coherent.

Let us illustrate this by an example (for the precise definition, see [8]). Let Π
be the program

a : {0,1,2}.

random(a).

pr(a=0)=1/2.

pr(a=1)=1/2.

pr(a=2)=1/2.

Clearly, Π has three possible worlds, {a = 0}, {a = 1}, and {a = 2}, corresponding
to possible values of a. As expected, the definition of PΠ gives PΠ(a = 0) =
PΠ(a = 1) = PΠ(a = 2) = 1/3, which is different from causal probabilities defined
by pr-atoms. The program is incoherent.

To be useful, P-log programs written by a programmer or a knowledge engineer
should be coherent. To facilitate construction of such programs and proving their
coherency, [8] defines a class of causally ordered, unitary programs and shows that
such programs are coherent. Let us call this class A. The definition of class A
serves as a guideline for the design of coherent P-log programs. The corresponding
theorem guarantees coherency of the final product. Unfortunately, we discovered
that there are interesting and important coherent programs which do not belong
to this class. In this paper we define a new class, B, of dynamically causally ordered
unitary programs, and show that such programs are coherent. Even though B is
broad and contains all examples of “real” P-log programs we designed or found
in the literature, it is not a generalization of A. However, known examples of
programs belonging to A and not belonging to B are highly artificial and, in our
opinion unlikely to be found in practice. While it is possible to define a class of
coherent programs containing both A and B, the definition will be too complex
and will be difficult to use as a guideline for constructing coherent programs.
In addition to facilitating construction of coherent programs, these new results
play an important role in the development of a new P-log reasoning algorithm
[1]. Unfortunately the size of this material prevents us from including it in this
paper, but we plan to soon publish it separately. Finally, we expanded the notion
of coherency, class B and the coherency theorem to the CR-Prolog based version
of P-log. We often refer to this language as P-log with cr-rules where “cr” stands
for “consistency restoring”.

The rest of the paper is organized as follows. Section 2 discusses the reasons
for the proposed changes in P-log syntax and semantics. Section 3 defines the new
syntax and semantics precisely. Section 4 contains the background necessary for
the definition of the new class, B, of coherent programs. Section 5 defines class
B and states the main coherency theorem. Section 6 gives a number of examples
of programs from this class which were not covered by previous results. Section 7
expands the notion of coherency to P-log with cr-rules, defines an extension, B+, of
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B to this language and proves coherency of its programs. Section 8 discusses related
work and Section 9 concludes the paper. The appendix given in this paper contains
accurate definitions of the probability in the new version of P-log. Appendix B from
the full version of the paper3 contains the proof of coherency of programs from
B. The paper contains substantial amount of material not presented in [3]. It has
more detailed and accurate description of the language, more examples, definition
of class B and the corresponding coherency theorem. Moreover, all examples of
programs given in the paper, not including those with cr-rules from CR-Prolog,
were run on prototype implementation4.

2 Discussion of the Proposed Changes

In this section we discuss the changes we decided to make in the informal and
formal descriptions of P-log and give several examples relevant to these changes.
The examples are meant to illustrate the changes and give an additional evidence
of the power of P-log as a tool for knowledge representation and reasoning.

Partial Functions: The designers of the original P-log did not pay sufficient
attention to the treatment of partial functions in the language. They were neither
explicitly prohibited nor explicitly allowed. This oversight in the design of the
original P-log led to allowing negative literals of the form f(x̄) 6= y in the head
of a rule. If f is a total function then the decision does not cause any problems.
If, however, f is partial, it leads to a discrepancy between intuitive meaning of
the program and its formal semantics. To see that, let us consider a program Π
consisting of the only rule:

a 6= false

where a is declared as a : boolean.

There is no explicit definition of the meaning of the statement f(x̄) 6= y in the
original P-log, but it is assumed to mean that f(x̄) is defined, i.e. has a value, and
this value is different from y. The intuition agrees with some other extensions of
ASP with function symbols, e.g. [5,10,11]. Together with declaration a : boolean,
this statement should imply that the value of a is true. However, the program Π
has one possible world consisting of literal a 6= false and hence Π does not entail
a = true. To avoid this discrepancy, the new version of P-log prohibits the use of
negative literals in the heads of rules. This restriction does not seem to cause any
problems from the knowledge representation perspective. Moreover, disallowing
this syntactic feature leads to a substantial simplification of the formal semantics
of P-log. Instead of defining possible worlds as sets of literals, we can view them
simply as (partial) interpretations of the attribute terms from the program’s sig-
nature (in other words, as collections of atoms). So far we were not able to find
any adverse effect of our restriction on the original syntax.

3 https://github.com/iensen/plog2.0/raw/master/papers/plog_ref_dco_full.pdf
4 The programs, written in syntax suitable for our current implementation, can be found at

https://github.com/iensen/plog2.0/tree/master/plogapp/tests/aspocp_amai. The imple-
mentation is available from https://github.com/iensen/plog2.0/wiki.

https://github.com/iensen/plog2.0/raw/master/papers/plog_ref_dco_full.pdf
https://github.com/iensen/plog2.0/tree/master/plogapp/tests/aspocp_amai
https://github.com/iensen/plog2.0/wiki
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P-log observations: Another problem with the original P-log is related to the
intuitive meaning of P-log observations. According to the original P-log [8], such
observations are used “to record the outcomes of random events”. However, axiom
(12) from [8] does not faithfully reflect this intuition. The axiom does not prohibit
observations of non-random events. Instead, it simply views obs(f(x̄) = y) as a
shorthand for the constraint

← not f(x̄) = y

where f is an arbitrary attribute. The observation simply eliminates some of the
possible worlds of the program, which reflects the understanding of observations
in classical probability theory. This view is also compatible with the treatment
of observations in action languages. So, our version of P-log allows observations
of values of arbitrary attributes. This eliminates the necessity to precisely define
random events, which may include “conditionally” random attributes – the at-
tributes whose value is generated randomly in one possible world of a program
and is deterministic in another one. Capturing this intuition is a non-trivial task.
We were not able to find any adverse consequences of this decision.

The following example contains observations of values of attributes which are
generated by random experiments as well as observations of values of attributes
which are not generated in this manner. The example uses the version of P-log
with cr-rules and, we believe, has some independent interest from the knowledge
representation perspective.

Example 1 [Indirect exceptions to defaults, observations, and “explaining away”
phenomena] Consider a default “Normally, healthy people do not have a slow heart
rate” represented by defeasible rule

¬slow rate(P )← healthy(P ), not ab(P ) (1)

where ab(P ) (read as“abnormal” P ) holds when the default is not applicable to
the person in question. This is one of several ways to represent defaults discussed
in, say, [16] where this rule is used together with a cr-rule

ab(P )
+← (2)

encoding possible indirect exceptions to this default. According to the semantics
of CR-Prolog, rule (2) says that default (1) may not be applicable to P , but
this is very rare and can be ignored unless needed for restoring consistency of
the program. (More information on the semantics of CR-Prolog and on indirect
exceptions to defaults can be found in [16]). If used together with

healthy(bob) (3)

which states that Bob is healthy, the program will ignore cr-rule (2) and entail
¬slow rate(bob).

Let us assume, in addition, that

– there are two possible causes for slow heart rate in healthy people: a person is
physically active or is maintaining a special diet to lower blood pressure,

– according to some reliable statistics, eight out of ten healthy people with slow
heart rate are physically active and two follow the special diet.
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For simplicity, we assume that our causes are deterministic and represent the first
statement by rules:

slow rate(P )← active(P ) (4)

slow rate(P )← diet(P ) (5)

(Non-deterministic causes can be represented by defaults or random selection
rules.) To better understand the reasoning of CR-Prolog, it will be instructive
to expand the program by an observation

obs(slow rate(bob)) (6)

The observation is understood as a constraint eliminating the possibility of Bob
not having a slow heart rate and hence contradicts the conclusion of the default.
Rule 2, however, may prevent the default’s application and hence eliminate this
source of inconsistency. Notice, however, that program still can not derive that
Bob’s heart rate is slow. This can only be done by rules (4) and (5), but to use
them the reasoner should look at possible causes of Bob’s slow rate. There are,
however, no rules allowing the reasoners to do that. Hence, the program written
so far does not satisfy (6) and, therefore, is inconsistent. To remedy the problem,
we should expand the program by information which would allow the reasoner to
select possible causes of our observation. This can be naturally done in P-log by
two random selection rules:

[ ra(P ) ] random(active(P ))← ab(P ) (7)

[ rd(P ) ] random(diet(P ))← ab(P ) (8)

The above mentioned statistics allowing the reasoner to assign probabilities to
these causes is given by the corresponding causal probability statements:

prra(P )(active(P )) = 0.8 (9)

referring to rule (7) and

prrd(P )(diet(P )) = 0.3 (10)

referring to (8). The program consisting of rules (1)–(10) has possible worlds:

W1 = {ab, healthy, slow rate, active,¬diet}
W2 = {ab, healthy, slow rate, diet,¬active}
W3 = {ab, healthy, slow rate, active, diet}

(For readability we are omitting parameter “bob” from the literals). The prob-
ability measures of the possible worlds are approximately 0.65, 0.07 and 0.28,
respectively.

Let us denote the resulting program by Πobs. Then,

PΠobs
(active) ≈ 0.65 + 0.28 = 0.93 (11)

and

PΠobs
(diet) ≈ 0.07 + 0.28 = 0.35. (12)
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As expected, active is the more likely cause of the observed slow heart rate
of Bob. Let us now consider a case where some direct or indirect observations
established that our patient is on the special diet. This is represented by a program
Π2
obs = Πobs ∪ {obs(diet(bob))} which has two possible worlds: W2 and W3.

PΠ2
obs

(active) =
0.8× 0.3

0.3× 0.8 + 0.3× 0.2
= 0.8 (13)

(a decrease from 0.93) and, clearly,

PΠ2
obs

(diet) = 1. (14)

This is an example of so called explaining away phenomena (see, for instance,
[47]): if there are competing possible causes for some event, and the chances of one
of those causes increases, the chances of the other cause must decline since it is
being ”explained away” by the first explanation.

The example shows how the representation of a normal behavior of a system
together with possible causes of system’s deviation from this behavior can be
used to do predictions based on normality assumptions as well as explanations of
unexpected observations. We believe that the methodology it illustrates may be
useful in various domains dealing with causal reasoning.

P-log intervening actions: Now we discuss a modification we made to informal
and formal semantics of intervening actions. The original P-log represents such an
intervention by statement do(f(x̄) = y) which indicates that “f(x̄) = y is made
true as a result of a deliberate (non-random) action”. Note that this formulation
does not require f(x̄) to be in any way connected to randomness. It does not have
to be declared as random or depend on another random attribute term. This was,
most likely, deliberate. The original intervening action do of Pearl, which served as
a model of intervention in P-log, only applies to random variables (no other types
are available in Bayesian Nets) and seems to be understood as intervention into a
random process. One would expect the original P-log follow this model. This is,
however, not entirely trivial. Unlike Bayesian nets, attributes of P-log may not be
random. Moreover, the notion of randomness in the original P-log is conditional:
the statement

[ r ] random(f(x̄))← body

declares f(x̄) to be random only when the body of the rule is satisfied. So it was
not immediately clear how to express the restriction limiting application of do to
random attributes only. Instead, do was made applicable to arbitrary attributes.
This seemed harmless since, according to the original semantics, for non-random
f(x̄), do(f(x̄) = y) is (modulo do) equivalent to f(x̄) = y. We now believe that
this original impression was wrong. First, the decision allowed the same thought
to be expressed by two different language constructs which violates an important
principle of language design frequently advocated by N. Wirth and others: When-
ever possible, make sure that each important type of informal statements you want
expressible in your formal language corresponds to exactly one language construct.
Moreover, applying do to interfere with a random experiment in which the value
of random f(x̄) is selected from the collection of values satisfying some property
p causes an ambiguity of an intuitive interpretation: should the value deliberately
assigned to f(x̄) belong to its dynamic range or any value from the range of f(x̄)
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must be allowed? The formal semantics from [8] corresponds to the second option,
but, according to the best recollection of the authors of [8], this is accidental. We
believe now that the first approach is more faithful to the intuition behind the
notion of dynamic domain. These considerations led to the decision of limiting ap-
plications of do to random attributes. To express the corresponding constraint we
slightly modified the notion of possible world by allowing possible worlds contain
special atoms formed by random and did necessary changes in the set of general
axioms of P-log as described in Section 3. At the first glance, this new under-
standing runs into a conflict with later work by J. Pearl in which intervention is
done in the context of structural models (which are different from Bayesian nets).
Such a model describes an autonomous mechanism which determines a value of
one particular non-deterministic (endogenous) variable in terms of its immediate
causes and random “disturbances” coming from outside the system. In this ap-
proach performing interventions on non-random variables becomes essential for
answering a variety of important queries such as “The probability that event B
occurred because of event A” or “The probability that event B would have been
different if it were not for event A” (see, for instance, [23,24])

The following firing squad example, originally introduced in [37] to demonstrate
reasoning with causal models, shows how this can be done in the new version of
P-log.

Example 2 Consider the following story: “A captain may give an order to shoot
the prisoner. The order causes guards A and B to shoot, and shooting causes death
of a prisoner. The guard A is new to the job and can pull the trigger (and kill
the prisoner) by accident.” It is naturally represented in P-log by program F with
declarations:

guards = {a, b}

order, dead : boolean

pull, shoot : guards→ boolean

two “random selection rules” which tell that captain may or may not give an
order and guard A may or may not pull the trigger and that these events happen
according to some random mechanisms:

[ rorder ] random(order)

[ ra ] random(pull(a))

causal relations of the story represented by defaults:

shoot(G)← order, not ¬shoot(G)

shoot(G)← pull(G), not ¬shoot(G)

dead← shoot(G), not ¬dead

read as “Normally, order causes guards to shoot, pulling the trigger causes shoot-
ing, and shooting causes death of the prisoner”,
and implicit assumptions about completeness of our causes which are present in
the story implicitly:
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¬shoot(G)← ¬order,¬pull(G)

¬dead← ¬shoot(a),¬shoot(b)
which say that “guards do not shoot except by order or by accidentally pulling
the trigger and that prisoner does not die from natural causes”. Finally, the story
seems to assume that guard B is experienced enough not to pull the trigger by
accident, so we add

¬pull(b)
This completes the construction of program F .

Note, that the representation of causal relations by defaults (instead of strict
rules used, for instance, in the original translation of structural models into P-log
[9]) is justified by the fact that usually such relations are not totally deterministic.
After all, a guard can refuse the order or deliberately miss, and we may want
to ask what would happen and with what probability if this were the case. It is
exactly this representation which allows P-log to deal with complex conditional
and counterfactual queries.

Let us use F to show how this works by answering a query “What is the prob-
ability that the prisoner is dead given that A is prevented5 from shooting?”. To
answer we simply need to compute probability, PF∪{¬shoot(a)}(dead), of dead with
respect to program F ∪ {¬shoot(a)}. It is easy to check that PF (dead) = 0.75,
PF∪{¬shoot(a)}(dead) = 0.5, and, therefore, PF∪{¬shoot(a)}(dead) < PF (dead).
Program F can also be used to answer counterfactual queries using the technique
developed in [9].

Notice that, unlike defaults, strict rules of P-log do not correspond to Pearl’s
mechanisms which can be modified by interventions. This is intentional. Rules,
say,

alive(X)← ¬dead(X)

¬alive(X)← dead(X)

can be viewed as a definition of alive in terms of dead and definitions, we believe,
shall not be interfered with.

We hope that this example demonstrates how the richness of P-log can be used
to give an accurate formal representation of an informal story, to capture nuances
which will be difficult to express otherwise, and to answer complex queries. It
allows us to prohibit application of do to non-random attribute terms and to stay
as close as possible to the intuition of do as an intervention into (a physical or
mental) random experiment.

3 Syntax and Semantics of the New Version of P-log

A program of the new version of P-log will be defined as a pair consisting of a
sorted signature and a collection of P-log rules and causal probability atoms. As
usual, the program will define the collection of possible worlds corresponding to the
beliefs of a rational reasoner associated with it as well as the probability function
on the sets of these worlds describing degrees of the reasoner’s beliefs. We start
with defining the sorted signature of P-log and the syntax of P-log programs.

5 By removing bullets from his gun or by some other means.
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3.1 Syntax and Informal Semantics

A sorted signature Σ of P-log is a tuple 〈S,O, F 〉, where S is a finite non-empty
set of sort names, O is a finite set of object constants, and F is a finite non-empty
set of function symbols.

– Every sort name s ∈ S is assigned the sort denoted by it - a collection of
object constants from O. We say that an object o from this collection belongs
to sort s and write o ∈ s. Whenever it is clear from the context, we will abuse
the notation by using the same letter to refer to the sort name and the sort
denoted by it.
We assume that S contains universal sort U consisting of all object constants
from O, sort R whose elements are called rule names, sort boolean, and
sorts N and Q of standard representations of natural and rational numbers
respectively.

– Every function symbol from F has sort names assigned to its parameters and
its range. In what follows we use standard mathematical notation

f : s1, . . . , sn → s

to describe these assignments. We assume that for each sort name s, F has
function symbol instances : U → boolean (where instances(o) = true iff
o ∈ s).

– Set F is partitioned into two parts: attributes and arithmetic functions such as
+, −, etc., defined on natural or rational numbers. (The precise collection of
arithmetic functions available to the users will depend on the language imple-
mentation).

Now we define terms and atoms of P-log signature Σ. Every such signature
has three types of variable-free terms:

– Standard arithmetic terms.
– Regular terms - expressions of the form f(x̄) where f : s1, . . . , sn → s is an

attribute and x̄ is a list of n constants such that for every i, xi ∈ si. We say
that s is the range of term f(x̄). Sometimes we write it as range(f(x̄)).

– Special terms listed below. Note that f(x̄) denotes a regular term, r is a rule
name, y is a constant from the range of f(x̄), and p is a unary boolean attribute.
– do(r, f(x̄), y), which reads as “a random experiment r assigning value to
f(x̄) is deliberately interfered with and f(x̄) is assigned the value y”.

– obs(f(x̄), y, true), which reads as “the value of f(x̄) is observed to be y”
and obs(f(x̄), y, false), which reads as “the value of f(x̄) is observed to be
different from y”.6

– random(r, f(x̄), p), which says that “f(x̄) may take the value from the set
{X : p(X)} ∩ range(f(x̄)) as the result of a random experiment r which
is either genuine or deliberately interfered with.” For the sake of com-
patibility with original P-log, we will sometimes write random(r, f(x̄) :
{X : p(X)}) instead of random(r, f(x̄), p). In the former case, all oc-
currences of variable X in {X : p(X)} are bound. The parameter, p of

6 To simplify the notation, we sometimes write obs(f(x̄), y, true) and obs(f(x̄), y, false)
as obs(f(x̄), y) (or obs(f(x̄) = y)) and ¬obs(f(x̄), y) (or obs(f(x̄) 6= y)) respectively; if f is
boolean, then obs(f(x̄), true, true) will be written as obs(f(x̄)).



12 Evgenii Balai et al.

random can be omitted, in which case random(r, f(x̄)) is understood as
random(r, f(x̄), instancerange(f(x̄))).

– truly random(r, f(x̄)), which says that “f(x̄) takes value as the result of
the genuine random experiment r (i.e., the one without any outside inter-
ference)”.

The range of all special terms is boolean.
To maintain compatibility with [8], non-arithmetic terms will be often referred
to as attribute terms.

An atom (or positive literal) of signature Σ is a statement of one of the forms:

1. t = y, which says that “y is the value of t”, where t is a non-arithmetic term
and y is an object constant from the range of t, or

2. t1 � t2 where t1 and t2 are arithmetic terms and � is one of the standard
arithmetic relations, =, 6=, >, etc. These atoms are called arithmetic

A negative literal is an expression ¬(t = y) (also written as t 6= y), which says
that “t has a value and it is different from y”. If t is boolean then t = true and
t = false will often be written as t and ¬t7.

An atom of the form t = y is called special if t is a special term, otherwise it
is called regular.

If t is of one of the forms obs(f(x̄), z, true) or obs(f(x̄), z, false), the atom is
called an observation. If t is of the form do(r, f(x̄), z), the atom is called an action
(or an intervention).

A literal of Σ is either a positive literal of Σ or a negative literal of Σ. A
literal, possibly preceded by the default negation not, is called an extended literal
or simply an e-literal of Σ. The e-literal not l reads as “l is not believed to be true”
(which is, of course, different from “l is believed to be false”). Sometimes we use
atoms(Σ) and e-lits(Σ) to denote the sets of atoms and e-literals over signature
Σ respectively.

A P-log rule, r over signature Σ is of the form:

head(r)← body(r) (15)

where head(r) is an atom of Σ and body(r) is a collection of e-literals of Σ. As
discussed in the introduction, the syntax defined here does not allow negative
literals in heads. Moreover, head(r) cannot be of the form ST = false where ST
is a special term, and cannot be an arithmetic atom. The head of the rule can be
omitted. Such rules are referred to as constraints. If head(r) is an observation or
an action, we require body(r) to be empty and the rule is called an activity record.
If head(r) is of the form random(rn, a, p), the rule is called a random selection rule
with name rn, a is referred to as random attribute term of the program containing
such a rule. A rule which is not an activity record or a random selection rule is
called a regular rule.

For readability, we will sometimes omit the first parameter of random, pr, do
and truly random, if the program Π from the context satisfies at least one of the
following conditions:

7 Note that this can sometimes lead to ambiguities: t can be viewed as attribute, attribute
term, and an atom. However, such ambiguities can always be resolved from the context.



P-log: Refinement and a New Coherency Condition 13

1. Π contains only one selection rule for attribute term a,
2. Π contains no do statements for a.

Similar to regular ASP, P-log allows variables (denoted by identifiers starting
with an upper case letter) in a rule wherever a constant may be used. So one
can write, say, a rule r of the form f(X) ← q(X) where for some sorts s1 and
s2, f : s1 → boolean and g : s2 → boolean. As usual, this is understood as a
shorthand for the set of all ground instances of this rule, i.e. rules obtained from r
by replacing its variables by properly sorted object constants of the language and
evaluating the arithmetic terms. In our case X will be replaced by object constants
from s1∩s2. (Note that if s1 and s2 are disjoint the set of such instances is empty.)
The collection of all ground instances of r is referred to as r’s grounding.

By a P-log program we mean a pair consisting of a signature Σ and a collec-
tion R of P-log rules and causal probability statements (also called pr-atoms) –
expressions of the form

pr(r, f(x̄) = y | B) = v (16)

where f(x̄) is a regular term such that y ∈ range(f(x̄)), B is a set of e-literals
of Σ and v ∈ [0, 1] is a rational number. The statement says that “if the value of
f(x̄) is generated randomly by experiment r and B holds, then the probability of
the selection of y for the value of f(x̄) is v. Moreover, there is a potential existence
of a direct causal relationship between B and the possible value of f(x̄).” We will
refer to f(x̄) = y as the head of the pr-atom and to B as the body of the pr-atom.
We will refer to v as the probability assigned to f(x̄) = y by the pr-atom.

Unless otherwise stated, we will assume that a P-log program contains the
following rules, called general P-log axioms.

General P-log axioms:

– For every regular term f(x̄) of Σ the rules

← not f(x̄) = Y, obs(f(x̄), Y, true) (17)

← not f(x̄) 6= Y, obs(f(x̄), Y, false). (18)

The rules are often referred to as reality check axioms. Intuitively, they pro-
hibit observations of undefined attribute terms as well as observations which
contradict the agent’s beliefs.

– For every atom random(r, f(x̄), p) of Σ such that range(f(x̄)) = {y1, . . . , yk},
the rules:

f(x̄) = y1 or . . . or f(x̄) = yk ← random(r, f(x̄), p)8 (19)

truly random(r, f(x̄)) ← random(r, f(x̄), p),
not do(r, f(x̄), y1), . . . , not do(r, f(x̄), yk)

(20)

← f(x̄) = Y, not p(Y ), random(r, f(x̄), p) (21)

8 Disjunction here is a so called shifted disjunction [14] and hence, can be eliminated.
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← random(r, f(x̄), p),
not f(X̄) = Y,
do(r, f(X̄), Y ).

(22)

Intuitively, the rules (19) and (21) guarantee that if random(r, f(x̄), p) is true,
then f(x̄) is assigned the value satisfying condition p by experiment r, rule
(20) makes sure that truly random(r, f(x̄)) is true iff the value of f(x̄) is
assigned as the result of a truly random experiment r, i.e., an experiment
without any intervention, and rule (22) guarantees that the atoms made true
by interventions are indeed true if random(r, f(x̄), p) is true.

In addition, for every rule r which is not a general axiom, we disallow literals
formed by obs, do, truly random and random to occur in the body of r. Elements
of a program such as terms, e-literals, rules, programs, etc., are called ground
if they contain no free occurrence of any variable and no names of arithmetic
functions. The grounding of a program with variables is the union of the grounding
of every rule of the program. A ground program is valid if no two random selection
rules have the same name. A program with variables is valid if its grounding is
valid. From now on, we only consider valid programs.

As was mentioned in the introduction, the new syntax differs from the syntax
defined in [8] in the following ways:

a) Partial attributes are explicitly allowed in the language.
b) Negative literals are not allowed in the rules’ heads.

More details on the proposed changes and a more general definition of P-log syntax
can be found in [1,3].

3.2 Semantics

Now we are ready to define the semantics of P-log programs. Since every variable-
free program can be translated into a ground one by evaluating its arithmetic
expressions, in what follows, by a program we will mean a ground program of P-
log. The semantics of such a program Π is given by the collectionW(Π) of possible
worlds of Π and the probability function PΠ

9, defined on the sets of these worlds.
The former correspond to possible sets of beliefs of a rational agent associated
with the program, and the latter specifies degrees of such beliefs.

Possible worlds
The definition of W(Π) is very similar to the definition of answer sets of logic
programs. An interpretation over signature Σ is a (possibly partial) mapping I,
defined on variable-free terms of Σ, which

– maps attribute terms of Σ into values from their corresponding ranges,
– maps arithmetic terms into their standard intended values,
– maps every attribute term instances(x), where s is a sort name, to true if x

is an element of s and to false otherwise.

9 When Π is clear from the context we may simply write P instead of PΠ .
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Since attributes of P-log can be partial, special care should be taken in defining
satisfiability relation (|=) for atoms preceded by ¬ and not. In order to define the
relation, we will use the notation for elements of Σ: a denotes a ground attribute
term, l denotes a literal, el denotes an extended literal, and B denotes a set of
extended literals.

The satisfiability relation is defined as follows:

1. I |= a = y if I(a) = y,
2. I |= ¬(a = y) if I(a) = y′ where y′ 6= y,
3. I |= not l if I 6|= l,
4. I |= B if for every el ∈ B, I |= el,
5. I |= l← B if I 6|= B or I |= l, and
6. I |=← B if I 6|= B.

We say that an atom A of Σ is true in I if I |= A and false in I if I |= ¬A. If A
is neither true nor false in I, then it is undefined in I. We will often represent an
interpretation I as the set of non-arithmetic atoms satisfied by I. Note, that an
interpretation in which a and b are undefined satisfies rule a ← ¬b but does not
satisfy rule a ← not b. Let ΠI denote the standard reduct [17] of a program Π
with respect to interpretation I – a program obtained from Π by:

a) removing all rules containing not l such that I |= l;
b) removing all other rules containing not.

Then possible worlds are defined as follows:

Definition 1 (Possible World)
Interpretation I is a possible world of Π if

1. Every rule of ΠI is satisfied by I.
2. There is no interpretation I0 such that I0 ( I and I0 satisfies the rules of ΠI .

The following examples illustrate the definition. Recall that, in addition to the
explicitly stated rules, every program below contains general P-log axioms (17)–
(22). To simplify the specification of programs’ signatures, we use standard math-
ematical declarations of functions, f : s1, . . . , sn → s and sorts s = {t1, . . . , tm}. If
n = 0, we simply write f : s. We follow the input language of our implementation
and start the sort names with #.

Example 3 Consider the program P1

a,b,c: #boolean.

random(a).

b :- c, -a.

do(a, false).

random(c).

It is not difficult to see that the program has two possible worlds W1 and W2:

W1 = {¬a, b, c, do(a, false), random(a), truly random(c), random(c)}

and

W2 = {¬a,¬c, do(a, false), random(a), truly random(c), random(c)}.
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Example 4 Consider the program P2:

a: #boolean.

obs(a=true).

P2 has no possible worlds. Note that W = {obs(a = true)} is not a possible world,
because of the reality check axiom (17).

If we add the rule
random(a)

to P2, the new program will have one possible world

W = {obs(a = true), a, truly random(a), random(a)}

where the observation obs(a = true) is consistent with the belief in a. If however
we were to replace random(a) by

¬a

the program would become inconsistent again, because any interpretation that
satisfies both rules ¬a and obs(a, true) will violate reality check axiom (17).

Probability Function

With one small exception which we will mention shortly, our definition of proba-
bility function PΠ of program Π is the same as that in [8], so we do not present it
here. Instead, we will illustrate the construction of PΠ by a simple example. The
complete definition can be found in the appendix of this paper.

Consider a program P3:

#s = {1,2,3}.

a : #s.

b : #boolean.

random(a).

random(b).

pr(a=1) = 1/2.

The program has six possible worlds corresponding to choices of values for a and
b. For every possible world W and every attribute term a s.t. truly random(a) ∈
W we first define causal probability, P (W,a = y) for every possible outcome y
of a (for the precise definition of possible outcome we refer the reader to [8]).
Let us consider a possible world W1 containing a = 1 and b = true. Causal
probability P (W1, a = 1) is directly determined by the pr-atom of the program
and is equal to 1/2; the value of P (W1, b = true) is determined by the indifference
principle which says that possible values of random attribute term are assumed to
be equally probable if we have no reason to prefer one of them to any other, i.e.,
P (W1, b = true) = 1/2. Now consider a possible world W2 containing a = 2 and
b = true. From the pr-atom of the program we know that the causal probability
of a being equal to 2 or to 3 is 1/2. Hence, by the indifference principle we have
P (W2, a = 2) = 1/4. Now we are ready to compute unnormalized measure, µ̂Π(W )
defined as the product of causal probabilities of random atoms from W . In our
case, µ̂P3

(W1) = 1/2 × 1/2 = 1/4 and µ̂P3
(W2) = 1/4 × 1/2 = 1/8. As expected,
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the measure µ(W ) is the unnormalized measure of W divided by the sum of the
unnormalized measures of all possible worlds of Π. Suppose now that Π is a P-log
program having at least one possible world with nonzero unnormalized probability.
The probability, PΠ(E), of a set E of possible worlds of program Π is the sum of the
measures of the possible worlds from E. The probability with respect to program Π
of a literal l of Π, PΠ(l), is the sum of the measures of the possible worlds of Π that
satisfy l. For example, PP3

(a = 1) is 1/2 because W1 and W3 = {a = 1, b = false}
are the only possible worlds of P3 that contain a = 1 and µ(W1) + µ(W3) = 1/2.

As discussed in [8], the corresponding probability functions are only defined
for programs which satisfy three conditions on possible worlds of a program Π.
Roughly speaking, the conditions ensure that for every W there is at most one
random selection rule determining possible values of a in W , at most one pr-atom
which can be used to define P (W,a = y), and that P (W,a = y) is not defined for
y outside of the set of a’s possible values determined by the random selection rule
for a. The first condition is strengthened compared to its original version.

Condition 1 (Unique selection rule) For any possible world W of Π and any
random selection rule:

random(rn1, a, p)← body

such that W satisfies body, there is no other rule whose head is of the form a = y
or random(rn2, a, q) and whose body is satisfied by W .

The original condition allows for a program with a possible world W to contain
rules r1 : random(a)← B1 and r2 : a = y ← B2 s.t. W satisfies both B1 and B2,
while the new one prohibits such programs. We believe that the new condition
better captures the intuition of a unique value selection for random attribute
terms. Moreover, it is not clear whether or not a should be considered random in
a possible world which satisfies the bodies of both of the rules r1 and r2.

The other two conditions remain unchanged (except the addition of rule names
to random and pr). We restate them here for completeness. The second condition
says:

Condition 2 (Unique probability assignment)
If Π contains a random selection rule

random(rn, a, p)← B (23)

along with two different probability atoms

pr(rn, a = y | B1) = v1 and pr(rn, a = y | B2) = v2 (24)

then no possible world of Π satisfies B, B1, and B2.

The justification of this condition is as follows. If B is satisfied by a possible
worldW ofΠ, then we would have two different assignments to probability of a = y
which would be either contradictory (if v1 6= v2) or repeat the same information
(if v1 = v2). Both situations are undesirable.

Finally, the last condition is:
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Condition 3 (No probabilities assigned outside of dynamic range)
If Π contains a random selection rule

random(r, a, p)← B1 (25)

along with probability atom

pr(r, a = y | B2) = v (26)

then no possible world of Π satisfies B1 and B2 but does not satisfy p(y).

The condition guarantees that pr-atoms of the program do not assign proba-
bilities to impossible values of attributes.

4 Background: Coherency and Causally Ordered Programs

It was shown in [8] that even a program satisfying Conditions 1–3 from Section 3
can be incoherent. This can be caused by logical inconsistency of the underlying
ASP program, by non-determinism of attribute terms not declared as random, or
by some other factors. In this section we review the notion of coherency introduced
in [8]. We also give an informal description of class A of coherent programs (which
in [8] are called causally ordered unitary programs) and an example of a coherent
program not belonging to this class.

Before defining coherency formally, we need some notation. Recall that the
syntax of the language only allows observations of the form obs(l), where l is a
literal. For a set of extended literals B, we introduce shorthand obs(B) denoting
the set of two rules, l′ ← B and obs(l′), where l′ is a fresh atom. The notion of
coherency, introduced in [8], is given by the following definition.

Definition 2 (Program Coherency)
A P-log program Π is called coherent if

1. Π is logically consistent, i.e., has at least one possible world, and
2. Π ′, which is obtained from Π by removing all activity records, is probabilisti-

cally consistent, i.e.,
(a) probability function PΠ′ is defined, and
(b) for every selection rule

random(r, f(x̄), p)← K

and every probability atom

pr(r, f(x̄) = y | B) = v

of Π, if PΠ′(B ∪K) 6= 0 then

PΠ′∪obs(B)∪obs(K)(f(x̄) = y) = v.

Conditions (1) and (2a) are self-explanatory. Condition (2b) insures that causal
probabilities, given by pr-atoms of program Π, agree with corresponding condi-
tional probabilities defined by its a priori part Π ′.
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Example 5 (Incoherent Programs)
Clearly, a program containing facts p and ¬p is incoherent logically, and has no

possible worlds. Probabilistic incoherency is illustrated by program P4:

a,b: #boolean.

random(a).

pr(a) = 0.3.

b :- not -b, a.

-b :- not b, a.

It is easy to see that the program has three possible worlds with unnormalized
probabilistic measures 0.3, 0.3, and 0.7, and hence the probability PP4

(a) = 6/13
which is different from the causal probability 0.3 given by the pr-atom. Intuitively,
the program is incoherent because a non-deterministic attribute term b is not
declared as random. If we were to replace the last two rules by random(b) ← a,
the program would regain coherency.

Even though Definition 2 captures the intuitive notion of coherency, it is not
always easy to use in practice. So, to facilitate the process of writing meaningful
programs and proving their coherency, [8] introduces the notions of causally ordered
and unitary programs which are comparatively easy to check and shows that every
program satisfying these two conditions is coherent.

A causally ordered program Π allows a total ordering, a1, . . . , ak of attribute
terms of Π based on a simple dependency relation, defined as follows: (a) Attribute
term a2 “immediately depends” on a1 if a2 occurs in the head of a rule or pr-atom
whose body contains an occurrence of a1. (Note, that B is the body of a pr-atom
pr(r, f = y | B) and hence f depends on any attribute term occurring in B).
(b) Dependency is defined as the reflexive, transitive closure of this relation. For
causally ordered programs the ordering must be strict on random attribute terms,
i.e., for any two distinct random attribute terms, a1 and a2, if (a1, a2) belongs to
the ordering, then (a2, a1) doesn’t.

If such an ordering is given, then the possible worlds of Π can be constructed
gradually from possible worlds of programs Π0, Π1, . . . , Πn such that Πn = Π,
Πi ⊆ Πi+1. Each Πi is associated with the language, Li, of attribute terms used
to form its rules. L0 consists of all attribute terms not dependent on any random
attribute term of Π, L1 consists of attribute terms not dependent on any ran-
dom attribute term except (possibly) a1, etc. (In what follows we often abuse the
terminology and refer to the set L of attribute terms occurring in program Π as
the signature of Π.) To ensure that non-determinism is only possible for random
attribute terms, the non-random base, Π0, of Π is required to have exactly one
possible world.

The construction of possible worlds of Π starts with the possible world W0

of Π0 and proceeds recursively by considering a possible world W of Πi with a
random selection rule for ai+1 whose body is satisfied in W , and the following
steps.

1. If there is a random selection rule for ai+1 whose body is satisfied by W ,
building new possible worlds of Πi+1 corresponding to possible values of ai+1.
In this case, for a program to be causally ordered, the possible outcomes of that
selection shall not be constrained by logical rules or other random selections.
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2. If the bodies of random selection rule for ai+1 are all not satisfied by W,
building a possible world of Πi+1 where ai+1 is undefined, or has an assignment
resulting from non-random selection rules. In this case, for a program to be
causally ordered, such a possible world must be unique.

The precise definition of causally ordered programs can be found in [8]. We
hope that it can be sufficiently illustrated by the following example.

Example 6 (Causally Ordered Programs)
Consider program, P5:

a, b, c, d, f : #boolean.

f.

random(a) :- not b, f.

pr(a) = 0.3.

c :- a.

d :- -a.

The possible worlds of the program can be obtained by first considering L0 = {b, f}
consisting of attribute terms not depending on any random attribute terms of P5

and program Π0 = {f.} whose rules contain only literals that are formed by terms
of L0. Clearly, W0 = {f}. Next, we consider L1 = L0 ∪ {a, c, d} (which, in this
case, consists of all attribute terms of the program), the corresponding Π1 which
is equal to P5, and random selection rule,

random(a)← not b, f

whose body is satisfied by W0. There are two possible outcomes for a, and two
possible worlds {f, a, c} and {f,¬a, d} corresponding to these outcomes. Since non-
determinism comes only from the selection rule and no outcomes are constrained,
the program is causally ordered. If P5 were expanded by

e← a, not e

then outcome a = true would become impossible, and the program would not
be causally ordered. It is also easy to see that program P4 is not causally ordered
since the non-determinism of b is not directly caused by any random selection rule.

It is easier to describe the notion of unitary program which simply requires the sum
of probabilities assigned by pr-atoms for the outcomes of a random experiment not
to exceed 1. (If every value in the range of an attribute has its probability assigned
by the pr-atoms, the sum must be exactly 1.) For example, in P5, we have pr-atom
for value a but not ¬a. Since pr(a) = 0.3 not exceeding 1, the program is unitary.
Note that the addition of another pr-atom,

pr(¬a) = 0.2

would make the program non-unitary.

Since P5 is both causally ordered and unitary, the theorem from [8] establishes its
coherency.

Even though many useful P-log programs which can be found in the literature
are causally ordered, there are simple and important coherent programs which
do not belong to this class. Consider, for instance, the following example (more
realistic examples will be given in Section 6).
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Example 7 (Coherent program which is not causally ordered)
Consider program: P6

a, b, c, d, f : #boolean.

f.

random(a) :- not b, f.

random(b) :- a, not f.

pr(a) = 0.3.

c :- a.

d :- -a.

obtained from P5 by adding the rule

random(b)← a, not f (∗)

Since, according to the original definition of dependency, a and b depend on each
other, there is no ordering of random attribute terms which would allow to view
P6 as the result of gradual construction of programs Π0, Π1, . . . , corresponding to
this ordering. Hence, P6 is not causally ordered. However, it is easy to check that
P6 is coherent. It has possible worlds W0 = {f, a, c}10 and W1 = {f,¬a, d} and
probability PP6

(a) = 0.3 which coincides with that of P6. This, of course, can be
immediately seen from the fact that, since f ∈ P6, the newly added rule is useless
and can therefore be removed from the program without changing its meaning.
Moreover, this fact can be discovered in the process of gradual computation of
possible worlds of P6. We should start with computing a possible world of a pro-
gram Π0 = {f} of signature L0 = {f}. Since f belongs to all possible worlds of
P6, the uselessness of rule (∗) becomes apparent and the rule can be removed.

5 Dynamically Causally Ordered Programs and the Main Theorem

We start this section from defining the class B of dynamically causally ordered
unitary programs which includes program P6 from Example 7. The main idea is
to replace causal ordering of attribute terms of the program by an ordering based
on the dependency relation between attribute terms which ignores useless rules.
To give a precise definition of such rules, we need to generalize the satisfiability
relation between an interpretation I over signature L and a set B of e-literals. The
definition of satisfiability from Section 3 only considers B consisting of e-literals
formed by attribute terms from L (symbolically, B ⊆ e-lits(L)). In what follows
we allow B containing e-literals over some other signature.

Definition 3 (Extended Satisfiability Relation)

1. Interpretation I of signature L satisfies a set B of e-literals (over an arbitrary
signature) if B ⊆ e-lits(L) and every e-literal from B is satisfied by I,

2. I falsifies B if at least one e-literal from B belongs to e-lits(L) and is not
satisfied by I.

10 To shorten the description, we will omit special terms and literals formed by them from
program signatures, interpretations, possible worlds, etc. in the remainder of this paper.
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As an example, consider a set B = {a, not b} and interpretation I0 = {a} of
L0 = {a}. Since (not b) 6∈ e-lits(L0), I0 does not satisfy B. However, interpreta-
tion I1 = {a} of L1 = {a, b} satisfies B. Similarly, interpretation I2 = {a, b} of
L1 = {a, b}, falsifies B. (It is important to notice the difference between the terms
“falsify” and “does not satisfy” – B is not satisfied by I0, but is not falsified by
it.) Of course, if B consists of e-literals over L0 then the new definition coincides
with the old one.

We will also need some notation. By Lbase(Π) we denote the set of attribute
terms of program Π which do not depend on any of its random attribute terms;
Rbase(Π) denotes the collection of rules of Π whose attribute terms belong to
Lbase. (Whenever possible we omit the parameters of Lbase and Rbase.) Program
with signature Lbase(Π) and rules Rbase(Π) is called the base of Π.

To eliminate useless rule of Π, we introduce the following notion:

Definition 4 (Reduct)

Reduct, red, is a partial function from programs to programs such that

– red(Π) is defined iff the base of Π has exactly one possible world (denoted by
Wbase), and

– red(Π) is the program obtained from Π by removing all pr-atoms and rules
whose bodies are falsified by Wbase.

Example 8 (Reduct)
Consider program P6 from Example 7. It is easy to see that Lbase(P6) = {f} and
Rbase(P6) = {f.}. The base has exactly one possible world Wbase = {f}, and thus,
red(P6) is defined.

Clearly, red eliminates the useless third rule of P6. The body {a, not f} is falsified
by Wbase (which is, of course, an interpretation of Lbase). Hence, red(P6) includes
every rule of P6 except the third one. (One may note that, as expected, red(P6) =
P5.)

For the following program P

a, b: #boolean.

a :- not b.

b :- not a.

Lbase(P ) = {a, b}, and the base of the program includes all the rules of P . Since
the base has two possible worlds, red(P ) is not defined.

Intuitively, the new ordering, based on the notion of simplification captured
by function red11, is defined in several steps. We start with a strict ordering α
of random attribute terms of Π (often referred to as probabilistic leveling), and
use the dependency relation to extend it to (not necessarily strict) ordering of all

11 Note that we consider this specific simplification which is used in the corresponding algo-
rithm and implementation. It can be easily generalized by removing other useless rules, e.g.
rules whose bodies contain contrary literals, etc., but it is not clear that implementation of
such a generalization will improve the algorithm efficiency.
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attributes of Π (referred to as total leveling). (Note that the original probabilis-
tic ordering of the program does not necessarily reflect the dependency relation
between random attribute terms.) In a manner similar to that in the definition
of causally ordered programs, this total leveling defines layers Π0, . . . , Πn of Π,
referred to as dynamic structure of Π induced by α. If α is such that possible
worlds of Π can be gradually constructed from the layers of the dynamic struc-
ture induced by α, then Π is dynamically causally ordered via α. This intuition is
captured by the following definitions.

Definition 5 (Total Leveling)

Let Π be a program such that red(Π) is defined, and α be a probabilistic
leveling of the random attribute terms of Π. We expand α to total leveling | | as
follows: (a) For a random attribute term a, |a| = α(a), and (b) for a non-random
attribute term a,

1. If a is of the form random(rn, b, p), then |random(rn, b, p)| = |b|.
2. Otherwise:

(a) |a| = 0 iff a does not depend on any random attribute term of Π in red(Π).
(b) |a| = i iff i is the level of the random attribute term b of Π such that

i. a depends on b in red(Π) and
ii. there is no random attribute term c with level j such that j > i and a

depends on c in red(Π).

We will say that total leveling | | is determined by probabilistic leveling α.
Total levelings are extended to the e-literals of Σ as follows:

|not a = y| = |not a 6= y| = |a = y| = |a 6= y| = |a|

Example 9 (Total Leveling)
Consider a probabilistic leveling α of the random attribute terms of P6 such that
α(b) = 1, α(a) = 2. In Example 8 we showed that red(P6) is defined. α can be
expanded to the total leveling | | as follows. Since f does not depend on a or b, its
level is 0, i.e., |f | = 0. random(a) has the same level as a, i.e., |random(a)| = 2.
Similarly, |random(b)| = 1. Since c, d depend on both b and a in red(P6), their
level is 2, the larger one of that of a and b. This leveling is expanded to e-literals
as follows: |not b| = |b| = 1, etc.

Now we are ready to define the layers of Π defined by an ordering of random
attribute terms.

Definition 6 (Dynamic Structure)

Let Π be a program such that red(Π) is defined and | | be the total ordering
determined by a probabilistic leveling a1, . . . , ak of the random attribute terms of
Π.

We say that 〈L0, Π0〉, . . . , 〈Lk, Πk〉 is the dynamic structure of Π induced by
a1, . . . , ak if for every 0 ≤ i ≤ k,

1. Li consists of all attribute terms of Π whose levels are i or less in | |,
2. for every rule or pr-atom r of Π, Πi contains r iff all the literals occurring in
r are formed by attribute terms of Li.
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Each pair 〈Li, Πi〉 (i ∈ 0..k) is called a layer. When convenient, we drop the
signatures and simply write Π0, . . . , Πk.

Example 10 (Dynamic Structure)
Consider program P6 and probabilistic leveling α(b) = 1 and α(a) = 2 from
Example 9. We have already shown that red(P6) and the corresponding total
leveling are defined. The corresponding dynamic structure consists of three layers
shown in the table below.

Table 1: The Dynamic Structure of P6 induced by α

L0 = {f} Π0 is
f.

L1 = {f, b, random(b)} Π1 is
f.

L2 = {f, b, random(b) Π2 is
a, random(a), c, d} f.

random(a) :- not b, f.
random(b) :- a, not f.
pr(a) = 0.3.
c :- a.
d :- -a.

Now we are ready to give the definition of a dynamically causally ordered
(DCO) program. The definition will consist of three parts. First, we consider pro-
grams not containing activity records, and define what it means for such programs
to be (a) DCO via a given probabilistic leveling, (b) DCO. Finally, we will define
arbitrary DCO programs.

Definition 7 (DCO via Probabilistic Leveling)

Let Π be a program not containing activity records.
Π is dynamically causally ordered (DCO) via a probabilistic leveling a1, . . . , ak

of the random attribute terms of Π if

1. red(Π) is defined,
2. the dynamic structure 〈L0, Π0〉, . . . , 〈Lk, Πk〉 induced by a1, . . . , ak satisfies

conditions

(a) 〈L0, Π0〉 has a unique possible world and
(b) for every i ∈ {1..k}, if Wi−1 is a possible world of program 〈Li−1, Πi−1〉

then
i. if r is a rule or a pr-atom of Π with ai in the head, and r is not a

ground instance of a general axiom of Π then the body of r is either
falsified or satisfied by Wi−1,

ii. if r is a random selection rule, random(rn, ai, p)← B, and Wi−1 sat-
isfies B then
– there is y ∈ range(ai) such that p(y) ∈Wi−1,
– for every y ∈ range(ai), p(y) belongs to atoms(Li−1) and, if p(y) ∈
Wi−1 then the program Wi−1 ∪Πi ∪ {← not ai = y} has exactly
one possible world,
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iii. If Wi−1 falsifies the bodies of all random selection rules with ai in the
head then Wi−1 ∪Πi has exactly one possible world.

If a program Π is DCO via a probabilistic leveling α, then α is called a dynamic
causal probabilistic leveling of Π.

Example 11 (DCO Program via a Probabilistic Leveling)
Consider program P6 and its dynamic structure induced by probabilistic leveling
α(b) = 1, α(a) = 2 from Example 10. We will verify that P6 is dynamically causally
ordered via α.

The first condition, the existence of red(P6), was established earlier. Consider
the dynamic structure induced by α from Table 1.

The first layer 〈L0, Π0〉, has a unique possible world W0 = {f} – condition
(2a) is satisfied.

Let us now check (2b) for level i = 1, i.e., for random attribute term a1 = b. The
only rule with random attribute term a1 = b in the head mentioned in condition
(i) of (2b) is the third rule of P6. Clearly, it is falsified by W0. Condition (ii) for
a1 = b is true vacuously. Condition (iii) for a1 = b is satisfied since W0 ∪Π1 does
have exactly one possible world W1 = W0. To check condition (2b) for a2 = a,
consider all rules with random attribute term a in the head. The only one such
rule is the second rule of P6. Its body is {not b, f}, it is satisfied by W1 which
proves condition (i) of (2b) for a2 = a. To establish (ii) of (2b) for a2 = a, let us
first recall that random(a) stands for random(a, instanceboolean). By definition
of interpretation, every interpretation contains instances(y) for each sort s and
y ∈ s. Hence, instanceboolean(true) ∈ Wi−1 which satisfies the first clause of (ii)
for a. To establish the second clause of (ii), it is sufficient to notice that each of
the programs W1 ∪Π2 ∪{← not a = true} and W1 ∪Π2 ∪{← not a = false} has
exactly one possible world. Condition (iii) for a2 = a is true vacuously. Therefore,
P6 is dynamically causally ordered via the given probabilistic leveling. Hence, α is
a dynamic causal probabilistic leveling of P6.

Definition 8 (Dynamically Causally Ordered Programs - I)

Let Π be a program not containing activity records. Π is dynamically causally
ordered if Π is dynamically causally ordered via some probabilistic leveling of the
random attribute terms of Π.

In the example 11, P6 is dynamically causally ordered because it is so via the
probabilistic leveling α(b) = 1, α(a) = 2.

Definition 9 (Dynamically Causally Ordered Programs - II)

Let Π be an arbitrary program, and Π ′ be the program obtained from Π by
removing all activity records. Π is dynamically causally ordered if Π ′ is dynami-
cally causally ordered. A dynamic causal probabilistic leveling of Π is a dynamic
causal probabilistic leveling of Π ′.

The class of logically consistent dynamically causally ordered unitary programs
is referred to as class B.

Theorem 1 [Main Result]
Every P-log program from class B is coherent.
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The proof of Theorem 1 is in Appendix B of the full version of this paper12. An
important intermediate result of the proof is a formulation of splitting set theorem
for P-log, originally introduced in [29] for logic programs, is given in Subsection
B.2 of the proof.

We believe the theorem is useful for at least three reasons. Firstly, as we will
show in Section 6, it can be used to establish coherency, and, therefore, consistency
and correctness, of programs that do not belong to class A of causally ordered uni-
tary programs, without computing all the possible worlds and their probabilistic
measures. Secondly, the theorem was used in the dissertation of the first author
to prove the correctness of a new efficient inference algorithm. We plan to pub-
lish these results in future. Finally, the authors of [8] suggest a methodology to
construct coherent programs: (a) non-determinism should be resulted solely from
random selection rules, and (b) the random choices not to be constrained by other
rules. We believe the methodology is better captured by class B than by causally
ordered programs. In Section 6, we will show examples of programs that follow
the methodology, belong to class B, but are not causally ordered. Also, as shown
in the same section, there are causal ordered programs that do not belong to B.
However, all such programs we know are artificial. All meaningful causally ordered
programs we are aware of belong to B.

6 B versus A: Examples

In this section, we present examples that show the difference between class B and
class A. The first three examples are rather natural P-log programs from class B
which do not belong to A. The last example is a program from A that does not
belong to B.

6.1 Die

A program for the following example is dynamically causally ordered but not
causally ordered.

We throw a die until we get outcome 1 or make 5 throws. What’s the probability
that we will make 5 throws?

A very natural P-log representation of the story is given below:

%% Die Problem

% Sorts

#outcome = 1..6.

#step = 1..5.

% Attributes

throw : #step -> #outcome.

made_5th_throw: #boolean.

12 https://github.com/iensen/plog2.0/raw/master/papers/plog_ref_dco_full.pdf

https://github.com/iensen/plog2.0/raw/master/papers/plog_ref_dco_full.pdf
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% Rules

% the outcome of the die at step 1 is random

random(throw(1)).

% if the value of the die at the previous step, T2, was not 1,

% then the outcome of the die at current step, T, is random

random(throw(T)) :- throw(T2) != 1, T = T2+1.

% the fifth throw was made if the die takes some value, X, at step 5

made_5th_throw :- throw(5) = X.

Let us denote the set of all ground instances of this program by P d. It is not
difficult to check that PP d(made 5th throw) = (5/6)4 which answers the problem’s
question.

Note, however, that P d contains rules like

random(throw(2))← throw(3) 6= 1, 2 = 3

hence throw(2) and throw(3) depend on each other, and P d is not causally ordered.
Fortunately, one can easily verify that P d is dynamically causally ordered via
probabilistic leveling α(throw(1)) = 1, . . . , α(throw(5)) = 5. It is easy to see that
the base of the program is empty, henceWbase = ∅. Recall that every possible world
contains standard interpretation of arithmetic terms which are not displayed in
our notation. Hence, Wbase falsifies 2 = 3 and eliminates the above rule as well
as all other similar rules of P d. It is not difficult to check that conditions of the
Definition 7 are satisfied. The program is obviously unitary because it doesn’t
contain pr-atoms. Hence, the program belongs to class B.

6.2 Random Tree

Consider a tree defined by a collection of facts of the form arc(X,Y ) where Y is
the parent of X. Each node of the tree is assigned a value. If a node is a leaf, the
assigned value is selected (uniformly) at random from {1, 2, 3, 4, 5, 6}. If a node is
not a leaf, its value is selected randomly from the values of the node’s children.

The natural program representing the story is:

%% Random Tree Problem

% Sorts

#node = {1,2,3,4,5}.

#value = {1,2,3,4,5,6}.

% Attributes

arc: #node, #node -> #boolean.

value_of : #node -> #value.

possible_value: #value, #node -> #boolean.

leaf: #node -> #boolean.

% Rules
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% Tree arcs. arc(i,j) means there is an arc from i to j

arc(4,5).

arc(3,5).

arc(2,4).

arc(1,4).

% Definition of leaves:

% Node X not a leaf if there is a directed arc with the end in X

leaf(X) = false :- arc(Y,X).

% Otherwise, X is a leaf.

leaf(X) = true :- not leaf(X) = false.

% Random selections:

% Every leaf node takes a value at random

random(value_of(N)) :- leaf(N).

% Every non-leaf node X takes a value from the set of possible

% values {X:possible_value(X,N)}

random(value_of(N):{X:possible_value(X,N)}) :- -leaf(N).

% Value N is possible in non-leaf node X if it a value

% of its child

possible_value(X,N) :- arc(N1,N), value_of(N1) = X.

Let P t denote the set of ground instances of the rules of the program. Its random
attribute terms are: value of(1), . . . , value of(5). P t contains rules

random(value of(1) : {X : possible value(X, 1)})← ¬leaf(1)

possible value(3, 1)← arc(4, 1), value of(4) = 3

Clearly, rules obtained from the two rules above by replacing 1 by 4 and 4 by
1 also belong to P t. Hence, value of(1) and value of(4) are dependent on each
other. Hence, the program is not causally ordered.

To show that P t is dynamically causally ordered we need to find a proper
probabilistic leveling of its attribute terms. To do that consider the tree described
by the program:

5

3 4

1 2
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Intuitively, the values of its leaves do not “depend” on each other or any other ran-
dom attribute terms. Hence value of(1), value of(2) and value of(3) can be or-
dered arbitrarily. Consider, for instance, an ordering α where α(value of(1)) = 1,
α(value of(2)) = 2 and α(value of(3)) = 3. Since value of(4) “depends” only on
value of(1), and value of(2), its level should be greater than α(value of(1)) and
α(value of(2)). Since α(value of(3)) = 3, we can have α(value of(4)) = 4. Since
value of(5) “depends” on value of(3) and value of(4), we have α(value of(5)) =
5.

Let us now show that P t is dynamically causally ordered via α. Clearly,
Lbase(P

t) is {arc(X,Y ) : X,Y ∈ #node} ∪ {leaf(X) : X ∈ #node} and the
base of P t consists of rules

arc(4, 5)

arc(3, 5)

arc(2, 4)

arc(1, 4)

leaf(X) = false← arc(Y,X)

leaf(X) = true← not leaf(X) = false

which has the unique possible world

Wbase = {arc(4, 5), arc(3, 5), arc(2, 4), arc(1, 4),

leaf(1), leaf(2), leaf(3),¬leaf(4),¬leaf(5)}

Hence, red(P t) is defined.

Let 〈L0, Π0〉, . . . , 〈L5, Π5〉 be the dynamic structure induced by α. It is easy
to see that L0 = Lbase(P

t) and hence W0 = Wbase is the unique possible world
of 〈L0, Π0〉. To show that the structure satisfies condition (2b) of Definition 7 we
start with level i = 1 and random attribute term value of(1). The rules with
value of(1) in their heads are:

random(value of(1))← leaf(1)

random(value of(1) : {X : possible value(X, 1)})← ¬leaf(1)

possible value(X, 1)← arc(N1, 1), value of(N1) = X

The first rule is satisfied by W0, the second one is falsified by W0, and every
instance of the third rule for X ∈ 1..6, N1 ∈ 1..5 is falsified by W0, because
arc(N1, 1) is not satisfied by W0. Hence, condition (i) of Definition 7 is satisfied.
For the first rule, for every value y from the range of value of(1), W0 ∪ Π1 ∪
{← not value of(1) = y} has exactly one possible world. Hence condition (ii) of
Definition 7 holds. Condition (iii) of Definition 7 is true vacuously.

Similarly, we can show that for any level i ∈ 2..5, conditions (i) to (iii) of Def-
inition 7 hold. Hence P t is dynamically causally ordered via probabilistic leveling
α. The program is obviously unitary because it doesn’t contain pr-atoms. Hence,
it belongs to class B.
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6.3 Blood Type Problem

This is a typical blood type problem frequently used in probability and statistics
classes. This particular problem description is based on Section 4.1.3 from [49].

The ABO blood group system distinguishes four types of bloods: A, B, AB and
O. The type of blood of each individual is determined by two genes inherited from
his/her parents (one gene is inherited from each parent). The pair of genes is also
called a genotype. There are three types of genes: a, b and o, and 6 corresponding
genotypes: ao, bo, ab, aa, bb, oo. The genotypes ao, bo, ab, aa, bb, oo are
distributed in generation 1 with probabilities 0.24, 0.24, 0.18, 0.09, 0.09, 0.16
correspondingly. The corresponding blood type of a person for each combination of
inherited genes (which determines his/her genotype) is given in Table 2.

Table 2: ABO blood group system

hhhhhhhhhhhhhhhMother’s gene

Father’s gene
a b o

a A AB A
b AB B B
o A B O

If an individual A has genes of types X and Y, and an individual B has genes
of types F and H, their child will have one of the pairs of genes (X,F), (Y,F),
(X,H), (Y,H), and each pair is inherited with probability 0.25.

Here is a natural P-log program representing the story for three people: Mary,
Todd, and John where Mary and Todd are the parents of John.

%% Blood Type Problem

% Sorts

#person={mary, todd, john}.

#gene ={g_a,g_b,g_o}.

#genotype = {g(g_a, g_b), g(g_a, g_o), g(g_b,g_o),

g(g_a, g_a), g(g_b, g_b), g(g_o,g_o)}.

#bloodtype={b_a,b_b,b_o,b_ab}.

#generation = {1,2}.

% Attributes

genotype_of: #person -> #genotype.

bloodtype_of: #person -> #bloodtype.

mother_of: #person -> #person.

father_of: #person -> #person.

generation_of: #person -> #generation.

possible_combination: #genotype, #genotype, #genotype -> #boolean.

belongs_to: #gene, #genotype -> #boolean.

% Rules

% generations
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generation_of(john) = 2.

generation_of(mary) = 1.

generation_of(todd) = 1.

% family tree

mother_of(john)=mary.

father_of(john)=todd.

% blood_type(X)=G : the blood type of person X

% determined by the genes he or she inherits from parents

% as described in table 1

bloodtype_of(X)=b_a :- genotype_of(X) = g(g_a,Y), Y!=g_b.

bloodtype_of(X)=b_b :- genotype_of(X) = g(g_b,Y), Y!=g_a.

bloodtype_of(X)=b_ab :- genotype_of(X) = g(g_a,g_b).

bloodtype_of(X)=b_o :- genotype_of(X) = g(g_o,g_o).

% the genotypes of the parents of a person X in the old generation

% are distributed as it is given in the problem statement

random(genotype_of(X)):- generation_of(X) = 1.

pr(genotype_of(X) = g(g_a,g_o)|generation(X) = 1) = 24/100.

pr(genotype_of(X) = g(g_b,g_o)|generation(X) = 1) = 24/100.

pr(genotype_of(X) = g(g_a,g_b)|generation(X) = 1) = 18/100.

pr(genotype_of(X) = g(g_a,g_a)|generation(X) = 1) = 9/100.

pr(genotype_of(X) = g(g_b,g_b)|generation(X) = 1) = 9/100.

pr(genotype_of(X) = g(g_o,g_o)|generation(X) = 1) = 16/100.

% the genotypes of a person in the new generation are randomly

% inherited from his/her parents

random(genotype_of(P):{G:possible_genotype(P,G)}) :-

generation_of(P) = 2.

possible_genotype(P,G) :- father_of(P)=F,

mother_of(P)=M,

genotype_of(F) = U,

genotype_of(M) = V,

possible_combination(G,U,V).

% possible_combination(G,U,V) is true if G can be the genotype of a

% child whose parents have genotypes U and V

possible_combination(g(G1,G2),U,V) :- belongs_to(G1,U),

belongs_to(G2,V).

possible_combination(g(G1,G2),U,V) :- belongs_to(G2,U),

belongs_to(G1,V).
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% belongs_to(G,GT) is true if gene G belongs to the pair of genes

% in genotype GT

belongs_to(G,g(G,X)).

belongs_to(G,g(X,G)).

Let P b denote the set of ground instances of the rules of the program. The random
attribute terms of the program are genotype of(mary), genotype of(todd) and
genotype of(john). P b contains the following rules

random(genotype of(mary) :{G : possible genotype(mary,G)})←
generation of(mary) = 2

and

possible genotype(mary, g(g a, g b))←
father(mary) = john,

mother(mary) = todd,

genotype of(john) = g(g a, g b),

genotype of(todd) = g(g a, g b),

possible combination(g(g a, g b), g(g a, g b), g(g a, g b))

Clearly, rules obtained from the two rules above by replacing mary by john
and john by mary also belong to P b. Hence, attribute terms genotype of(mary)
and genotype of(john) are dependent on each other. Hence, the program is not
causally ordered.

However, one can verify that P b is dynamically causally ordered via proba-
bilistic leveling α:

α(genotype of(mary)) = 1,
α(genotype of(todd)) = 2,
α(genotype of(john)) = 3.

It is easy to check that red(P b) is defined. Let 〈L0, Π0〉, . . . , 〈L3, Π3〉 be the dy-
namic structure induced by α. Π0 consists of

generation(mary) = 1

generation(todd) = 1

generation(john) = 2

mother of(john) = mary

father of(john) = todd

Π0 has a unique possible world W0 consisting of the atoms above. Thus, we
have condition (2a). To prove condition (2b) for level 1, note that the rules with
genotype of(mary) in their heads are

random(genotype of(mary))← generation of(mary) = 1

random(genotype of(mary) : {G : possible genotype(mary,G)})←
generation of(mary) = 2
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The body of the first rule is satisfied by W0 while that of the second rule is fal-
sified. For each value y from the range of genotype of(mary), W0 ∪ Π1 ∪ {←
not genotype of(mary) = y} has exactly one possible world. So, for level 1, con-
ditions (i) to (iii) of the Definition 7 are satisfied. Similarly, we can verify these
conditions for levels 2 and 3. Hence, the program P b is dynamically causally or-
dered. The program is clearly unitary because the sum of pr-atoms over all possible
values of genotype of(X) is equal to 1. Hence, P b belongs to B.

6.4 A Causally Ordered Program Which is Not Dynamically Causally Ordered

Consider the program P :

a,b,h,x,y:#boolean.

p: #boolean -> #boolean

h.

p(true).

p(false).

random(x:{X:p(X)}).

random(y:{X:p(X)}) :- x.

a :- not b, x.

b :- not a, x.

a :- not h, y.

:- a,y.

:- a,-y.

We first illustrate that the program is causally ordered by using the following
leveling:

|h| = |p| = 0,
|x| = 1,
|y| = |a| = |b| = 2.

This leveling results in a dynamic structure 〈L0, Π0〉, . . . , 〈L2, Π2〉. To verify that
the structure satisfies definition of causally ordered program from [8], we first
need to check that Π0 has exactly one possible world. Obviously, this is W0 =
{h, p(true), p(false)}. Next we have to show that
W0 ∪Π1 ∪ {← not x = true} and W0 ∪Π1 ∪ {← not x = false}
have unique possible worlds W11 and W12 respectively. Clearly,
W11 = W0 ∪ {x = true} and W12 = W0 ∪ {x = false}.
Since W11 satisfies the body of

random(y : {X : p(X)})← x

we need to show that
W11 ∪Π2 ∪ {← not y = true} and W11 ∪Π2 ∪ {← not y = false}
have unique possible worlds W21 and W22. Constraints of the program ensure that
the rule

a← not b, x
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becomes useless in both programs, and hence
W21 = W1 ∪ {y, b} and W22 = W1 ∪ {¬y, b}. Finally, W12 does not satisfy the
body of the random selection rule for y. So the last thing to show is that W12∪Π2

has unique possible world. Clearly, it is W12. Thus, program P is causally ordered.
Since P has no pr-atoms, it is unitary, and, therefore, belongs to A.

Now we show that the program is not dynamically causally ordered. There are
only two different probabilistic levelings:
α1(y) = 1 and α1(x) = 2,
α2(y) = 2 and α2(x) = 1.
In both cases red(P ) is defined, Π0 is the same and has unique possible world W0,
and, therefore, conditions (1) and (2a) of Definition 7 are satisfied.

The program will not be dynamically causally ordered via α1. The fifth rule
of P has y in its head, but its body is neither satisfied nor falsified by W0. This
violates condition (i) of Definition 7.

Now consider probabilistic leveling α2. Note that the total leveling | |, used
for showing that the program is causally ordered, is not the total leveling deter-
mined by α2. The definition of the total leveling expanded from a probabilistic
leveling requires that a non-random attribute term must be assigned a level where
it depends on the random attribute term at this level.
Since h ∈W0, the rule

a← not h, y

is not in red(P ). Since a and b do not depend on y in red(P ), their level cannot
be 2 as in | |. As a result, a and b will depend on x only and thus have the
same level as x in the total leveling determined by α2. Let 〈L2

0, Π
2
0 〉, . . . , 〈L2

2, Π
2
2 〉

be the dynamic structure induced by the total leveling α2. We will show P1 =
W0 ∪ Π2

1 ∪ {← not x = true} does not have a unique possible world. Π2
1 will

contain

a← not b, x

b← not a, x

We can verify that P1 has two possible worlds W0 ∪ {x = true, a} and W0 ∪ {x =
true, b}. It violates the condition (ii) of Definition 7. Hence, the program is not
dynamically causally ordered via the probabilistic leveling α2.

In summary, the program is not dynamically causally ordered via any prob-
abilistic leveling. Thus, it is not dynamically causally ordered and, therefore, it
does not belong to B.

7 Coherency for P-log with CR-Rules

The story of coherency told in this paper so far is limited to P-log programs without
cr-rules. This is not surprising since the language and Definition 2 of coherency
introduced in [8] does not allow cr-rules. After the original language was expanded
in [20], no attempts were made to generalize the notion of coherency to P-log
with such rules. In this section we give such a generalization, define a new class
B+ expanding B by programs with cr-rules, and show that programs of B+ are
coherent according to the new definition. The class is rather broad. It contains
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all examples of programs of P-log with cr-rules written to formalize commonsense
scenarios which we found in the literature.

We start with a short review. Recall that, syntactically, a cr-rule is an expres-
sion of the form

head
+← body.

Intuitively, the rule says that if the reasoner associated with the program believes
the body of the rule , then it may also believe its head; however, this possibility
may be used only if there is no way to obtain consistent set of beliefs by using
only regular rules of the program. A P-log program with cr-rules is a pair consisting
of a sorted signature and a collection of P-log rules, pr-atoms and cr-rules over
this signature. Let Π be a P-log program with cr-rules. For a subset R of cr-
rules of Π, by α(R) we will denote a collection of rules obtained from rules of R

by replacing
+← with ←. By Πr (where r stands for “regular”) we will denote a

program obtained from Π by removing cr-rules. The definition of the semantics
of cr-rules is based on the notion of abductive support. The notion is usually
parameterized by preference relation on sets of cr-rules but, for simplicity, we
compare such sets by their cardinality.

Definition 10 (Abductive Support)
A cardinality-minimal collection R of cr-rules of Π such that Πr∪α(R) is logically
consistent (i.e. has a possible world) is called an abductive support of Π.

Since activity records simply activate some of the program’s constraints, it can be
shown that no abductive support can contain rules whose head is formed by obs
and do. For simplicity, we will assume that such rules do not exist in the program.

Definition 11 (Possible Worlds of P-log Programs with CR-Rules) A set
W is called a possible world of Π if it is a possible world of a regular P-log program
Πr ∪ α(R) for some abductive support R of Π.

The definition of probabilistic function defined by Π remains unchanged.

To see what changes need to be made in the original definitions of coherency,
let us recall that, intuitively, a program is coherent if it is logically consistent
and defines probability distribution compatible with its probabilistic atoms. The
addition of cr-rules does not change formalization of the first condition - we just
require existence of a possible world of the program. The second condition though
requires some changes. To see that, let us consider a program T0:

a,b,c,d: #boolean.

random(a) :- b.

pr(a|b) = 0.5.

c :- a, not d.

d :- a, not c.

b+.

The original definition of coherency (Definition 2) can be applied to program with
cr-rules. It is easy to check that according to such a definition T0 is coherent
because it is logically consistent and probabilistically consistent. The program
assigns probability 0 to each of its atoms. If we consider

T1 = T0 ∪ {obs(b)}
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then, by the original definition applied to programs with cr-rules, T1 is also co-
herent. It has a possible world {b, a, c} and thus logically consistent. T ′1 = T0

and, hence, is probabilistically consistent. Therefore, T1 is coherent. But this is
unintuitive, since program T2

random(a) :- b.

pr(a|b) = 0.5.

c :- a, not d.

d :- a, not c.

b.

which is logically equivalent to T1 and has the same probability atoms is not prob-
abilistically coherent. This happens, because of probabilistic non-monotonicity of
observations. In the presence of cr-rules, addition of observations may create new
possible worlds and substantially change probabilistic distribution defined by the
program. This is what happened in T1. Even though the distribution defined by
T ′1 = T0 is vacuously compatible with pr-atom pr(a | b) = 0.5 which is useless in
T0, it is not enough to render T1 probabilistically consistent. For that the pr-atom
should be compatible with the new distribution defined by T1, which is, of course,
not the case.

The new definition of probabilistic consistency formalizes this observation:

Definition 12 [Probabilistic consistency for P-log programs with cr-rules]
Let Π be a P-log program without activity records.

– Π is probabilistically consistent with respect to a collection of activity records
O if Π ∪O has unique abductive support R13 and regular program Πr ∪α(R)
is probabilistically consistent.

– Π is probabilistically consistent if it is probabilistically consistent with respect
to every collection of activity records O compatible with Π, i.e., such that Π∪O
is logically consistent.

Definition 13 [Coherency]
P-log program Π is called coherent if it is logically consistent and program Π ′,
obtained from Π by dropping activity records, is probabilistically consistent.

It is not difficult to verify that for programs without cr-rules Definitions 2 and
13 are equivalent, i.e., a program Π without cr-rules is coherent according to
Definition 2 iff it is coherent according to Definition 13.

We illustrate our new definition of coherency by considering programs T0 and

T1 described above. The cr-rule b
+← is not activated in T0, the program’s possible

world is empty, PT0
(b) = 0; T0 is both logically and probabilistically consistent

and, hence, coherent. Program T1, however, is not probabilistically consistent and
hence is not coherent. To see that, let us notice that activity record O = obs(b)
is compatible with T ′1 because T ′1 ∪O is logically consistent. T ′1 ∪O has a unique
abductive support which is {b}. (T ′1)r∪{b} is program T2 which is clearly not prob-
abilistically consistent. Hence, T ′1 is not probabilistically consistent with respect
to O and, therefore, T1 is not coherent.

13 It may be possible to relax the uniqueness requirement and allow some programs with
multiple abductive supports. This option, however, needs a more careful study and thus will
be left for future work.
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We now define a new class of programs, B+, expanding B by programs with cr-rules
and generalize our coherency result for this class.

Definition 14 [B+]
Let Π be a program possibly containing cr-rules. Let Π ′ be the program obtained
from Π by removing activity records. Π belongs to B+ if and only if the following
two conditions hold.

1. Π is logically consistent.
2. For each set O of activity records compatible with Π ′, Π ′ ∪ O has a unique

abductive support R, and Π ′r ∪ α(R) belongs to B.

Theorem 2 Every program from B+ is coherent.

Proof Let Π be a program that belongs to B+. By clause 1 of Definition 14, we
have that Π is logically consistent. Therefore, it is sufficient to show that

Π ′ is probabilistically consistent. (27)

Let O be an arbitrary collection of activity records compatible with Π ′. By Defi-
nition 12, to prove (27), it is sufficient to show that:

Π ′ is probabilistically consistent with respect to O (28)

By clause 2 of Definition 14, we have:

Π ′ ∪O has a unique abductive support R and Π ′r ∪ α(R) belongs to B. (29)

Since cr-rules in the programs we consider do not have do and obs in the heads, the
program Π ′r ∪ α(R) doesn’t have activity records. Therefore, from (29), Theorem
1 and Definition 2 we have:

Π ′r ∪ α(R) is probabilistically consistent. (30)

From (30) and Definition 14, we have (28). 2

Now we will use this result to show that program Πobs from Example 1 is
coherent. By Theorem 2, we just need to show that

Πobs ∈ B+ (31)

The program has only one cr-rule ab
+←, in what follows denoted by r. As shown

in Section 2, Πobs is consistent, so it is sufficient to show that both programs
(Π ′obs)r and (Π ′obs)r∪{ab} belong to B. Clearly, both programs are unitary because
the sum of values of pr-atoms for each attribute term does not exceed 1. The
first program has a unique possible world containing atoms ¬slow rate(bob) and
healthy(bob), and the bodies of all probability atoms and random selection rules are
falsified by the absence of ab. So, it’s fairly straightforward to see that conditions
of dynamically causally ordered programs are satisfied for an arbitrary leveling.
It also can be checked that the second program, (Π ′obs)r ∪ {ab}, is dynamically
causally ordered via the leveling assigning levels 1 and 2 to attributes active and
diet respectively. Therefore, Πobs belongs to B+ and, by Theorem 2, coherent.
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8 Related Work

Our paper belongs to the collection of works aimed at the development of declar-
ative languages and knowledge representation methodology combining logic pro-
gramming and probabilistic reasoning. This direction of research goes back to
Probabilistic Horn Abduction of Poole [40] and Distribution Semantics of Sato
[43]. While the original attempts were limited to definite programs they were
quickly extended to languages with non-monotonic negation. Our work continues
the investigation of one such attempt: knowledge representation language P-log.
The logical foundation of the first version of P-log, introduced in [7,8], was Answer
Set Prolog. In [6] this was extended to CR-Prolog which allows an important type
of abductive reasoning. As it was described in the paper, our work is also closely
connected with that by Weijun Zhu [49].

There is a substantial amount of work on languages combining non-monotonic
logical reasoning with reasoning about probability which is different from P-log.
The original P-log paper [8] presents the comparison with some of this work,
including L-PLP [30], PRISM [44], NS-PLP [34] , SLP [33], PKB [35] , BLP [26],
LPAD [46], ICL [41], PHA [41] and others. Since these languages contain neither
partial functions nor other features of P-log which are refined in our paper, this
comparison is still valid. Recently, several other languages expanding ASP with
probabilistic information whose goals overlap with that of P-log, were introduced
by various authors. In what follows we discuss the relationship between P-log and
one of such languages – PDLP [31] (also known as Credal Logic [12]). A detailed

study of the relationship between another relevant formalism LPMLN[27] and
P-log can be found in [28] and [2].

A program of Credal Logic is a pair consisting of an ASP program Π and a
collection of “probabilistic facts” - logical facts preceded by their probability. In
what follows we use program C

0.3 :: insomnia.

work ← not sleep.

sleep← not work, not insomnia.

from [12] as the running example. The first line of C is a probabilistic fact which
says that insomnia holds with probability 0.3. Intuitively, C can be viewed as a
generator of two ASP programs:

insomnia.

work ← not sleep.

sleep← not work, not insomnia.

which is generated with probability 0.3, and

work ← not sleep.

sleep← not work, not insomnia.

generated with probability 0.7. The first program has one stable model14,

S1 = {insomnia,work}
14 As usual for the representation of stable models, atoms not listed in the models are false.
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while the second has two stable models,

S2 = {sleep}

and

S3 = {work}.

The semantics of the program is given by its credal set - the collection of
probability measures of the form P (S1) = 0.3, P (S2) = γ ∗ (1− 0.3), and P (S3) =
(1 − γ) ∗ (1 − 0.3) for every γ ∈ [0, 1]. If we want to reason about a particular
distribution, we can fix γ. Otherwise, we can compute maximum and minimum
probability of a given event over all elements of the credal set.

To illustrate the difference between P-log and Credal Logic, we will first write
a P-log program defining the probability model Pγ of C with a particular, fixed
γ. Next, we discuss how P-log can be used to specify the credal set defined by C.

Since P-log is a sorted language, we will start with the declarations. The story
formalized in C seems to be about different types of person’s activity, so we define
a sort

#activity = {work, sleep},

a non-boolean attribute

act : #activity

and boolean attributes

insomnia : #boolean

possible : #activity → #boolean.

Both, insomnia and act, are random attributes defined by the following random
selection rules:

random(insomnia).

random(act : {Y : possible(Y )}).

The last rule defines act as a function with values randomly selected from its
“dynamic domain” - the set {Y : possible(Y )}.

Definition of possible is based on the default “Normally an agent described by the
program can perform every activity”:

possible(X)← not ¬possible(X).

But there could be exceptions, e.g:

¬possible(sleep)← insomnia.

The program has the following possible worlds:

W1 = {insomnia, possible(work),¬possible(sleep), act = work}

W2 = {¬insomnia, possible(work), possible(sleep), act = work}

W3 = {¬insomnia, possible(work), possible(sleep), act = sleep}.
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Modulo the new term possible, the program is logically equivalent to C. To ensure
that our program defines probability distribution Pγ , we simply add

pr(insomnia) = 0.3.

pr(act = sleep | ¬insomnia) = γ.

It is easy to check that the resulting program, Πγ , defines Pγ , belongs to class B
and is, therefore, coherent.

The program Πγ illustrates several features of P-log not available in Credal
Logic. This includes the use of random, the use of non-boolean functions, the
ability to specify conditional probabilities and random attributes with dynamic
domains, and the sort system which helps to capture a number of type related
errors. Some other features of P-log like the do operator allowing intervention,
and availability of cr-rules greatly facilitating abduction and diagnostic reasoning
are also not available in Credal Logic.

The latter, however, has an interesting feature not available in P-log - the
ability to specify credal set, i.e. the whole collection of distributions compatible
with the program. If the collection has more than one element, it, of course, cannot
be specified by a P-log program. To better understand the reason let us consider
the program ΠC obtained from Πγ by dropping information not present in C,
namely, the pr-atom pr(act = sleep | ¬insomnia) = γ. Even though ΠC and
C are equivalent logically, the probabilistic semantics of the two programs are
different. Instead of defining the credal set of C, the P-log program ΠC defines
one probabilistic model determined by the probability measure, which is 0.3 on
S1 and 0.5 · (1 − 0.3) on S2 and on S3. This is, of course, a consequence of the
indifference principle embedded in the semantics of P-log. While the principle is
very convenient for a programmer, it precludes a P-log program from specifying
two or more probability distributions.

To define credal sets similar to those of Credal Logic, we should probably go
from a P-log program to a P-log module.

For the purpose of our discussion, by a P-log module, M , we mean a P-log program
Π together with a collection of pr-atoms IN referred to as possible inputs of Π.
A subset I of IN is called a valid input of Π if Π ∪ I is a coherent program. A
probability distribution defined by module M is the probability distribution defined
by P-log program Π ∪ I for some valid input I15.

To illustrate the definition let us go back to our example.

Consider a module M consisting of P-log program ΠC and the set IN of pr-atoms
of the form

pr(act = sleep | ¬insomnia) = γ

where γ ∈ [0, 1]. It is easy to see that module M defines the same credal set as
C. It is interesting to check if the notion of P-log module can be used to capture
credal sets of arbitrary programs of Credal Logic but this is a subject for future
work.

There is another language, Probabilistic Answer Set Programming (PASP) [32]
which superficially may look similar to P-log. However, according to the authors

15 This definition is similar to that of ASP module (see, for instance, [36]).
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of PASP, the languages are actually very different: “Even though both PASP and
P-log are both methods of extending ASP with probabilities, their focus are very
different and they should be used for different tasks.”

There is a number of other interesting languages which have much in common
with P-log. Logic of Causal Probability (CP-logic) introduced in [45] is a logical
language for representing probabilistic causal laws. It is based on the well-founded
semantics of logic programs. Here is how the authors of the language comment on
the relationship between CP-logic and P-log: “In summary, the scope of P-log is
significantly broader than that of CP-logic and it is a more full-blown knowledge
representation language than CP-logic, which is only aimed at expressing a specific
kind of probabilistic causal laws. However, when it comes to representing just this
kind of knowledge, CP-logic offers the same advantages over P-log that it does
over Bayesian networks.”

There are also some similarities between P-log and another popular language
combining logic programming and probability - Problog [13,15]. The underlying
semantics of the original Problog [42] is close to that of PRISM [44]. Currently, the
semantics is defined for programs with unique stable model which coincides with
the program’s two valued well-founded model. While the relationship between P-
log and PRISM had been studied earlier, no such comparison between P-log and
Problog is known to the authors. There are some distinguishing features of P-log
like sorts, non-boolean attributes, dynamic domains, cr-rules, do operator, clear
separation between logical and probabilistic constructs of the language, etc., which
make it a powerful knowledge representation language. On another hand, unlike
P-log, Problog has a well developed reasoning system (which, among other things,
is capable of parametric learning) and good on-line documentation. We hope that
a more detailed and accurate comparison between the languages will be made in
the future.

9 Conclusion and Future Work

In this paper we

– Refined the syntax and semantics of P-log by eliminating some ambiguities and
incidental decisions made in its original version and narrowing the distance
between the intuitive meaning of the language constructs and their formal
semantics. The new features are illustrated by several examples which may
also be of interest from the standpoint of P-log programming methodology.

– Defined a new class, B, of dynamically causally ordered unitary programs, and
showed that such programs are coherent (i.e., logically and probabilistically
consistent). The result facilitates construction of P-log programs and proofs
of their coherency. We also gave examples of natural programs from B not
belonging to previously known coherency class A of causally ordered unitary
programs from [8]. Even though the class B is broad and contains all examples
of P-log programs we found in the literature, we showed that there are programs
from A which do not belong to B. We were not able, however, to find realistic
examples of such programs.

– Defined the notion of coherency for programs of P-log with cr-rules, expanded
the class B to allow such rules, and proved that programs from the new class
B+ are coherent according to the new definition.



42 Evgenii Balai et al.

– Gave an informal discussion comparing P-log and several other recently intro-
duced languages combining ASP and probabilistic reasoning including Credal
Logic.

We believe that this work made P-log a clearer and more expressive knowledge rep-
resentation language, and added some new insights into its features and method-
ology of its use.

There is a query answering algorithm sound for programs from the class B
(see [1]). Prototype implementation of this algorithm was used to run all relevant
examples from this paper. Our future plans include expanding the language by the
more powerful type system in the style of [4] and by aggregates and other set re-
lated constructs from [22,21]. We also plan to expand our implementation to cover
programs with cr-rules. Such an expansion does not require any additional theo-
retical work but may have a substantial influence on the implementation. This will
further improve P-log as a tool for teaching. To make P-log more suitable for large
applications, one needs to improve efficiency of its reasoning systems. Substantial
improvements can be achieved by optimizing the algorithm and data structures
used in the current implementation. It would also be interesting to investigate
other approaches to P-log inference. One can develop approximate inference al-
gorithms (possibly based on Monte-Carlo sampling methods). It is also possible

to use inference methods for a recently introduced new formalism LPMLN[27]. A
detailed study of the relationship between this formalism and P-log can be found
in [28] and [2]. Among other things, the results from these papers would allow us

to use P-log inference for LPMLN, and vice versa. Additional comparison of P-log
with other formalisms combining logic and probability deserves further studies.
We plan to continue work on P-log modules and use it to establish relationship
between them and credal programs. It also can be interesting to establish formal
relationship between P-log and Problog, and investigate if algorithms implemented
in inference engines of Problog and other similar languages can be adopted for rea-
soning in P-log. As mentioned above we are also planning to use the results from
this paper to continue our work on the new P-log reasoning system.
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Appendix A: Definition of Probability

In this appendix we formally define the probabilistic measure defined by a P-log
program satisfying Conditions 1-3 from Section 3 . The definition is very simi-
lar to the one from [8], with a small difference related to the addition of rules
names to special terms random, truly random, do and probability atoms and the
corresponding changes in axioms, introduced in this paper.

Let Π be a P-log program with signature Σ, W be an interpretation of Σ, a
be an attribute term of Σ. Consider random selection rule of the form

random(rn, a, p)← B

such that W satisfies B. Let PO(W, rn, a) be the set of constants defined as follows:

PO(W, rn, a) = {y | W satisfies p(y) and y ∈ range(a)}.
We will refer to elements of the set PO(W, rn, a) as possible outcomes of a in W
via rule rn, and to every atom a = y s.t. y ∈ PO(W, rn, a) as a possible atom in W
via rn. Note that, by Condition 1, there can be at most one rule such that a = y
is possible in W vie that rule, so we will sometimes say that a = y is possible in
W if there is a rule rn′ such that a = y is possible in W via rn′.

Let Π be a P-log program and a be a random attribute term of the signature of
Π. For every possible world W of Π and every possible atom a = y in W via some
rule random(r, a, p) ← B, such that W |= truly random(r, a), we will define the
corresponding causal probability P (W,a = y). Whenever possible, the probability
of an atom a = y will be directly assigned by pr-atoms of the program and denoted
by PA(W,a = y). To define probabilities of the remaining atoms we assume that
by default, all values of a given attribute which are not assigned a probability by
pr-atoms are equally likely. Their probabilities will be denoted by PD(W,a = y).
(PA stands for assigned probability and PD stands for default probability).

More precisely, for each atom a = y possible in W via some rule r or Π:

1. Assigned probability:
If Π contains pr(r, a = y | B′) = v, W |= B′, then

PA(W,a = y) = v

(note that Condition 2 implies that the probability is uniquely defined).
2. Default probability:

Let

Aa(W ) = {y | a = y is possible in W and PA(W,a = y) is defined},

Da(W ) = {y | a = y is possible in W} \Aa(W )

and αa(W ) =
∑
y∈Aa(W ) PA(W,a = y).

The default probability of a = y in W is defined as follows:

PD(W,a = y) =
1− αa(W )

|Da(W )|

3. Finally, the causal probability P (W,a = y) of a = y in W is defined by:

P (W,a = y) =

{
PA(W,a = y) if y ∈ Aa(W )
PD(W,a = y) otherwise.
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Definition 15 (Measure)

1. Let W be an interpretation of Π. The unnormalized probability, µ̂Π(W ), of W
induced by Π is

µ̂Π(W ) =
∏

W (a)=y

P (W,a = y)

where the product is taken over atoms for which P (W,a = y) is defined.
2. Suppose Π is a P-log program having at least one possible world with nonzero

unnormalized probability. The measure, µΠ(W ), of a possible world W in-
duced by Π is the unnormalized probability of W divided by the sum of the
unnormalized probabilities of all possible worlds of Π, i.e.,

µΠ(W ) =
µ̂Π(W )∑

Wi∈Ω(Π) µ̂Π(Wi)

When the program Π is clear from the context we may simply write µ̂ and µ
instead of µ̂Π and µΠ respectively.

Definition 16 (Probability)
Suppose Π is a P-log program having at least one possible world with nonzero
unnormalized probability. The probability, PΠ(E), of a set E of possible worlds of
program Π is the sum of the measures of the possible worlds from E, i.e.

PΠ(E) =
∑
W∈E

µΠ(W ).

When Π is clear from the context we may simply write P instead of PΠ .

Definition 17 (Probability of a literal)
The probability with respect to program Π of a literal l of Π, PΠ(l), is the sum of
the measures of the possible worlds of Π in which l is true, i.e.

PΠ(l) =
∑
W |=l

µΠ(W ).

Note that, given that conditions 1-3 are satisfied, the function PΠ is defined
iff ∑

Wi∈Ω(Π)

µ̂Π(Wi) 6= 0

Appendix B: Proof of the Main Result

We prove Theorem 1 in 3 steps. In section B.1 we describe a translation τ from
P-log programs into ASP programs and show the relationship between the possible
worlds of a given P-log program Π and answer sets of its translation τ(Π). Then,
in section B.2 we formulate splitting set theorem for P-log originally defined in [29]
for Answer Set Prolog programs. Finally, in section B.3 we prove theorem 1 using
the results from sections B.1 and B.2. The proof refines many of the results used
in [8] to prove the coherency of causally ordered unitary programs in the original
P-log language.
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B.1 Translation from P-log to ASP

For every P-log program Π, not necessarily containing general axioms, with signa-
ture Σ we define an ASP program τ(Π) whose answer sets correspond to possible
worlds of Π. More precisely, τ is defined on elements of Π as follows:

1. if f(x̄) = y is a literal of Σ, τ(f(x̄) = y) is f(x̄, y);
2. if f(x̄) 6= y is a literal of Σ, τ(f(x̄) 6= y) is ¬f(x̄, y);
3. if r is a rule of Π, τ(r) is an ASP rule obtained from r by replacing all occur-

rences of literals in the rule with their translations;
4. if Π is a P-log program with signature Σ, τ(Π) is an ASP program consisting

of
(a) the rules in the set {τ(r) | r is a rule of Π}; and
(b) the rules of the form

¬f(x̄, y1)← f(x̄, y2) (32)

for each two atoms f(x̄) = y1 and f(x̄) = y2 of Σ such that y1 6= y2;
5. if A is a set of atoms of Σ, then τ(A) is the set of ASP literals

{f(x̄, y) | f(x̄) = y ∈ A} ∪ {¬f(x̄, y) | f(x̄) = y1 ∈ A∧ y1 6= y ∧ y ∈ range(f)}

6. If L is a set of literals of Σ, then τ(L) is the set of ASP literals:

τ({f(x̄) = y | f(x̄) = y ∈ L}) ∪ {τ(f(x̄) 6= y) | f(x̄) 6= y ∈ L}

Lemma 1 If I is an interpretation of Σ, then I satisfies a literal l of Σ if and
only if τ(I) satisfies τ(l)

Proof
⇒

1. if l is of the form f(x̄) = y and I satisfies f(x̄) = y, τ(I) contains an atom
τ(l) = f(x̄, y).

2. If l is of the form f(x̄) 6= y, and I satisfies l, by definition of satisfiability there
must exists an atom f(x̄) = y1, where y1 6= y, such that I satisfies f(x̄) = y1.
Therefore, from part 5 of the definition of τ , τ(I) contains ¬f(x̄, y).

⇐

1. if l is of the form f(x̄, y) and τ(I) satisfies f(x̄, y), then, by construction of
τ(I), we have f(x̄) = y ∈ I.

2. If l is of the form ¬f(x̄, y), and τ(I) satisfies l, by construction of τ(I), I must
contain an atom f(x̄) = y1 for y1 6= y. Therefore, by definition of satisfiability,
I satisfies f(x̄) 6= y.

Lemma 2 Let Π be a P-log program not necessarily containing all general ax-
ioms. An interpretation W of Π is a possible world of Π if and only if τ(W ) is an
answer set of τ(Π)

Proof

⇒ Let W be a possible world of Π. We prove that τ(W ) is an answer set of
τ(Π).
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1) We show that τ(W ) is a consistent set of ASP literals. We prove by contra-
diction. Suppose τ(W ) is inconsistent. Thus, there exists an ASP atom f(x̄, y)
such that τ(W ) contains both f(x̄, y) and ¬f(x̄, y). By definition of τ(W ), it
implies that I(f(x̄)) = y and there exists y1 6= y such that I(f(x̄)) = y1. Thus,
since I is a mapping by definition, we have a contradiction.

2) We show that τ(W ) satisfies the rules of the reduct τ(Π)τ(W ). By Ra we denote
the rules of τ(Π) described in 4.a) of the definition of τ ; by Rb we denote rules

described in 4.b) of the same definition. Clearly, τ(Π)τ(W ) = R
τ(W )
a ∪Rτ(W )

b .

(a) We show that τ(W ) satisfies the rules of R
τ(W )
a . Let r be a rule in R

τ(W )
a

such that τ(W ) satisfies the body of r. We prove that τ(W ) satisfies the
head of r. From lemma 1, the definition of τ and the definition of Ra, we
conclude that there is a rule r′ in ΠW such that r = τ(r′). By lemma 1 and
the definition of τ(W ), W satisfies the body of r′. Since W is a possible
world of Π, W satisfies the head of r′. By lemma 1 and the definition of
τ(r′), τ(W ) satisfies the head of r.

(b) We show that τ(W ) satisfies the rules of R
τ(W )
b . Let r be a rule in R

τ(W )
b

given below

¬f(x̄, y1)← f(x̄, y2)

such that τ(W ) satisfies f(x̄, y2). We need to show that τ(W ) satisfies
¬f(x̄, y1).
By lemma 1, since τ(W ) satisfies f(x̄, y2), W satisfies f(x̄) = y2, that, by
definition of τ(W ), implies that τ(W ) satisfies ¬f(x̄, y).

3) We show that τ(W ) is minimal, that is, there does not exist a set of literals A
such that A satisfies the rules of τ(Π)τ(W ) and A is a proper subset of τ(W ).
We prove by contradiction. Suppose there is A such that

A satisfies all the rules in τ(Π)τ(W ) (33)

and

A is a proper subset of τ(W ) (34)

Since A ( τ(W ), by construction of τ(W ) and the fact that W is an interpre-
tation, A does not contain a pair of atoms f(x̄, y1), f(x̄, y2) for y1 6= y2. Thus,
we can construct interpretation I of Σ such that I maps f(x̄) to y if and only
if f(x̄, y) belongs to A.
In a) we show that I satisfies the rules of ΠW . In b) we show that I ( W ,
thus, obtaining a contradiction (by the definition of possible world, W should
be a minimal interpretation satisfying ΠW ).
(a) We prove that I satisfies the rules of ΠW . Let r be a rule of ΠW such that

I satisfies the body of r. We need to show that I satisfies the head of r.
First we prove that A satisfies the body of τ(r). Since r belongs to ΠW , r
does not contain literals preceded by default negation.

– Let l be a literal of the form f(x̄, y) belonging to the body of τ(r).
Since I satisfies the body of r, I(f(x̄)) = y. By construction of I, A
satisfies f(x̄, y).

– Let l be a literal of the form ¬f(x̄, y) belonging to the body of τ(r).
Since I satisfies the body of r, I(f(x̄)) = y1, where y1 6= y. By construc-
tion of I, f(x̄, y1) belongs to A. Since A satisfies the rules of τ(Π)τ(W ),
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including the rule
¬f(x̄, y)← f(x̄, y1)

Therefore, A satisfies ¬f(x̄, y).
By definition of reduct and from lemma 1 it follows that τ(r) belongs to
τ(Π)τ(W ). Therefore, since A satisfies the body of τ(r), and A satisfies the
rules of τ(Π)τ(W ), it follows that A satisfies the head of τ(r). Therefore,
there exists an ASP literal f(x̄, y) in the head of τ(r) satisfied by A. By
construction of I, I satisfies literal f(x̄) = y. By definition of τ(r), the head
of r contains the literal f(x̄) = y. Therefore, I satisfies the head of r.

(b) We prove that I (W . By construction of I, I contains a literal f(x̄) = y if
an only if f(x̄, y) ∈ A. By definition of τ(W ), W contains a literal f(x̄) = y
if and only if f(x̄, y) ∈ τ(W ). For a set of ASP literals S, by S+ we denote
the subset of S containing all positive literals of S and by S− we denote
the subset of S containing all negative literals in S (that is, literals of
the form ¬f(ȳ)). It is sufficient to show that A+ ( τ(W )+. We prove by
contradiction

i. Suppose A+ is not a proper subset of τ(W )+

ii. Since A is a proper subset of τ(W ), A+ is a subset of A and τ(W )+ is
a subset of τ(W ), from i. we have

|τ(W )+| = |A+| (35)

(and, even more precisely, τ(W )+ = A+)
iii. By definition of τ(W ),

|τ(W )−| =
∑

f(x̄)∈{f(x̄)|∃y:W (f(x̄))=y}

(|range(f(x̄))| − 1) (36)

iv. For each positive ASP literal f(x̄, y2) in A and for each y1 in range(f)
such that y1 6= y2, there is rule (32) in τ(Π). Since A satisfies the
rules of τ(W ), in particular, those of the form (32), from (35) and the
construction of τ(W ), it follows that the number of negative literals in
A is bounded below as follows:

|A−| ≥
∑

f(x̄)∈{f(x̄)|∃y:W (f(x̄))=y}

(|range(f(x̄))| − 1) (37)

v. By combining equation (36) and inequality (37), we get

|A−| ≥ |τ(W )−| (38)

vi. From equation (35) and inequality (38) we have

|A| = |A+|+ |A−|
= |τ(W )+|+ |A−|
≥ |τ(W )+|+ |τ(W )−|
= |τ(W )| (39)

that contradicts our original assumption (34) stating that A is a proper
subset τ(W ).
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4) From 1)- 3) it follows that τ(W ) is an answer set of τ(Π).

⇐ Let A be an answer set of τ(Π) and I be an interpretation of Π such that
A = τ(I). We prove that I is a possible world of Π. In 5) we show that I satisfies
the rules of ΠI and in 6) we show the minimality of I.

5) We prove that I satisfies the rules of ΠI . Let r be a rule of ΠI such that I
satisfies the body of r. From lemma 1 and the definitions of reduct in P-log and
ASP it follows that the rule τ(r) belongs to τ(Π)A, and moreover, A satisfies
the body of τ(r). Since A is an answer set of τ(Π), A satisfies the head of r.
By definitions of τ(r) and τ(I) and lemma 1, this means that I satisfies the
head of r and, therefore r itself.

6) We prove that I is minimal, that is, there does not exist an interpretation I ′

such that I ′ satisfies the rules of ΠI and I ′ ( I. We prove by contradiction.
Suppose such I ′ exists. In a) we show that τ(I ′) satisfies the rules of τ(Π)A and
in b) we show that τ(I ′) is a proper subset of A, thus, obtaining a contradiction
to the fact that A is an answer set of τ(Π).
(a) We prove that τ(I ′) satisfies the rules of τ(Π)A. Let r be a rule of τ(Π)A

such that τ(I ′) satisfies the body of r. We show that τ(I ′) satisfies the head
of r. From lemma 1 and the definition of τ and the definition of reducts in
ASP and P-log it follows that ΠI contains a rule r′ such that r = τ(r′).
From 1 we have that I ′ satisfies the body of r′. Since I ′ satisfies the rules
of ΠI , I ′ satisfies the head of r′. Therefore, from lemma 1 it follows that
τ(I ′) satisfies the head of r = τ(r′), and, therefore, the rule r itself.

(b) We prove that τ(I ′) is a proper subset of A = τ(I). By definition of I ′,

I ′ ( I (40)

Thus, by definition of τ ,

τ(I ′)+ is a proper subset of τ(I)+ (41)

From (41) it follows immediately

|τ(I ′)+| < |τ(I)+| (42)

By definition of τ(I) and τ(I ′), we have

τ(I)− =
⋃

f(x̄)=y∈I

{¬f(x̄) = y1)|y1 ∈ range(f(x̄)) ∧ y1 6= y} (43)

τ(I ′)− =
⋃

f(x̄)=y∈I′
{¬f(x̄) = y1)|y1 ∈ range(f(x̄)) ∧ y1 6= y} (44)

From (40), (43) and (44) it follows that

τ(I ′)− ⊆ τ(I)− (45)

From (41) and (45) and the fact that τ(I) = τ(I)+ ∪ τ(I)− and τ(I ′) =
τ(I ′)+ ∪ τ(I ′)− we get

τ(I ′) is a proper subset of τ(I) (46)
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Proposition 1 Let Π be a P-log program and W1,W2 be two possible worlds of
Π. It is not true that W1 (W2.

Proof We prove by contradiction. Let W1 and W2 be two possible world of a
program Π such that

W1 (W2 (47)

By Lemma 2,

τ(W1) and τ(W2) are answer sets of τ(Π). (48)

By definition of τ ,

τ(W1) = W1 ∪
⋃

f(x̄)=y∈W1

{f(x̄) 6= y1|y1 ∈ range(f(x̄)) ∧ y1 6= y} (49)

τ(W2) = W2 ∪
⋃

f(x̄)=y∈W2

{f(x̄) 6= y1|y1 ∈ range(f(x̄)) ∧ y1 6= y} (50)

From (47), (49) and (50) it follows that

τ(W1) ( τ(W2) (51)

(51) and (48) contradict the theorem about minimality of answer sets of ASP
programs (see Lemma 1 in [19]).

B.2 Splitting Set Theorem For P-log

In this section we present the P-log version of the original Splitting Set Theo-
rem from [29]. The adoption requires change in the definition of splitting set (see
Definition 21). Other definitions follow [29] and are presented for completeness.

Let Π be a program with signature Σ, and X and U be sets of literals of Σ.
As in [29], we will define the bottom and the top of a program Π with respect to
X and U , denoted by bU (Π) and eU (Π \ bU (P ), X) correspondingly.

For a rule r of the form

l← l1, . . . , lk, not lk+1, . . . , not lm (52)

where l1, . . . , lm are literals, we will introduce notations:

pos(r) = {l1, . . . , lk}

neg(r) = {ll+1, . . . , lm}

head(r) = l

lit(r) = head(r) ∪ pos(r) ∪ neg(r)

Definition 18 (Bottom w.r.t. U)
The bottom of Π w.r.t U , denoted by bU (Π), is a program such that:

1. bU (Π) = {r | r ∈ Π and lit(r) ⊆ U}
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2. the signature of bU (Π) consists of all attribute terms of Σ which form literals
from U

2

We next define Top. For rule r such that pos(r)∩U is satisfied by X and every
literal from (neg(r)∩U) is not satisfied by X, we define RU (r) to be the rule such
that:

head(RU (r)) = head(r), pos(RU (r)) = pos(r) \ U, neg(RU (r)) = neg(r) \ U

Definition 19 (Top w.r.t. X and U)
The top of Π w.r.t X and U , denoted by eU (Π,X), is a program such that:

1. the rules of eU (Π,X) are

{RU (r) | r ∈ Π and pos(r) ∩ U is satisfied by X and every e-literal

from {not l | l ∈ neg(r) ∩ U} is not satisfied by X}

2. the signature of eU (Π,X) consists of all attribute terms of Σ which do not
form a literal in U .

2

We borrow the definition of a solution to Π w.r.t U :

Definition 20 (Solution to Π w.r.t U)
Let Π be a P-log program. A solution to Π w.r.t U is a pair 〈X,Y 〉 of sets of
literals such that:

1. X is possible world of bU (Π)
2. Y is a possible world of eU (Π \ bU (Π), X)
3. X ∪ Y is consistent

2

We will next define a splitting set for P-log programs:

Definition 21 (Splitting set)
A splitting set for a P-log program Π is any set U of literals of Π’s signature such
that,

1. for every rule r of Π if head(r) ∈ U , then pos(r) ∪ neg(r) ⊆ U ,
2. if a literal formed by attribute term f(x̄) belongs to U , then all the literals of
Σ formed by f(x̄) belong to U .

2

Finally, we state the splitting set theorem for P-log:

Theorem 3 [Splitting Set Theorem]
Let U be a splitting set for a program Π. A set A of literals is a possible world of
Π if and only if A = X ∪ Y for some solution 〈X,Y 〉 to Π with respect to U .

2
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Note that the condition 2 from Definition 21, absent from the original defini-
tion of splitting set, is necessary for the correctness of the theorem. For instance,
consider the program:

#s: {1,2}.

p: #boolean.

f: #s.

p:- f != 1.

f = 2.

If condition 2 is not used, U = {p, f 6= 1} would be a splitting set of Π.
However, the theorem then wouldn’t hold for U . The program has only one possible
world {f = 2}. However, there does not exists a solution 〈X,Y 〉 with respect to
U , such that A = X ∪ U , because, the program bU (Π), which contains only one
rule

p:- not f != 1.

has exactly one possible world {p}, and, therefore, X ∪ Y must contain p for any
solution 〈X,Y 〉 of Π with respect to U .

Proof (Proof for theorem 3)
In 1 we show that τ(U) is a splitting set (as defined in [29]) for the ASP pro-
gram τ(Π). In 2 we show τ(bU (Π)) = bτ(U)(τ(Π)). In 3 we show eτ(U)(τ(Π) \
bτ(U)(τ(Π)), X ′) = τ(eU (Π \bU (Π), X)). In 4 we use the results from 1-3 to prove
that if A a possible world of Π, then A = X ∪ Y for some solution 〈X,Y 〉 to Π
with respect to U . In 5 we use the results from 1-3 to prove that if A = X ∪ Y for
some solution 〈X,Y 〉 to Π with respect to U , then A is a possible world of Π.

1. We show that τ(U) is a splitting set (as defined in [29]) for the program τ(Π).
Let r be a rule of τ(Π) such that:

the head of r is included into τ(U) (53)

We need to show that all the literals occurring in the body of r are included
into τ(U). We consider two possible cases:
(a) there exists r′ of Π such that r = τ(r′). In this case, by construction of

τ(r′) and clause 1 of Definition 21 we have that every literal occurring in
pos(r) ∪ neg(r) is included into U . Thus, by definition of τ(U) and from
r = τ(r′), every literal from the body of r is included into τ(U).

(b) r is of the form ¬f(x, y1)← f(x, y) where y1 6= y. In this case, by construc-
tion of τ(U) from (53) we have that f(x) 6= y1 ∈ U . Therefore, by clause
2) of definition 21 we have that f(x) = y ∈ U . By definition of τ(f(x) = y)
and τ(U) we have that f(x, y) ∈ τ(U). Therefore, every literal in the body
of r belongs to τ(U).

2. We prove:

τ(bU (Π)) = bτ(U)(τ(Π)) (54)

We prove (54) in two directions:

τ(bU (Π)) ⊆ bτ(U)(τ(Π)) (55)
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bτ(U)(τ(Π)) ⊆ τ(bU (Π)) (56)

We start from (55). Suppose r is a a rule such that

r ∈ τ(bU (Π)) (57)

There are two possible cases:
– r is a translation of a rule of bU (Π). In this case, since bU (Π) ⊆ Π, r is a

translation of a rule in Π. Therefore,

r belongs to τ(Π) (58)

Also, since every literal occurring in every rule in bU (Π) is from U , and r
is a translation of a rule in bU (Π), we have that:

every literal occurring in r is from τ(U) (59)

From (59) and (58) we have

r ∈ bτ(U)(τ(Π)) (60)

Therefore, (55) holds.
– r is of the form ¬f(x̄, y1) ← f(x̄, y2) In this case, by definition of τ from

(57) we have f(x̄) = y2 and f(x̄) = y1 are atoms of bU (Π), which means U
contains literals l1 and l2 formed by f(x̄) = y1 and f(x̄) = y2 respectively.
Since U is a splitting set, by condition 2 we have that U contains atoms
f(x̄) = y1 and f(x̄) = y2. Therefore, τ(U) contains literals ¬f(x̄, y1) and
f(x̄, y2), r ∈ bτ(U)(τ(Π)), and (55) holds.

We next show (56). Suppose r is a a rule such that

r ∈ bτ(U)(τ(Π)) (61)

There are two possible cases:
– r is a translation of some rule r′ of Π. In this case, from (61) we have that

all literals from r are from τ(U). Therefore, lit(r′) ⊆ U , r′ ∈ bU (Π) and
r ∈ τ(bU (Π)). Therefore, (56) holds.

– r is of the form ¬f(x̄, y1) ← f(x̄, y2). By construction of bτ(U)(τ(Π)) we
have that:

¬f(x̄, y1) ∈ τ(U) (62)

f(x̄, y2) ∈ τ(U) (63)

and
r ∈ τ(Π) (64)

From (62) and (63) we have:

all the literals of Σ formed by f(x̄) belong to U (65)

From (65) we have that

f(x̄) belongs to the signature of bU (Π) (66)

Therefore, by definition of τ(Π), we have r ∈ τ(bU (Π). Therefore, (56)
holds.
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From (55) and (56) we have (54).
3. We show that for every possible world X of bU (Π):

eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) = τ(eU (Π \ bU (Π), X)) (67)

We prove (67) in two directions:

eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) ⊆ τ(eU (Π \ bU (Π), X)) (68)

τ(eU (Π \ bU (Π), X)) ⊆ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (69)

We start from (68). Let r be a rule s.t.

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (70)

By construction of eτ(U)(τ(Π)\bτ(U)(τ(Π)), τ(X)) we have that r = Rτ(U)(r
′),

where

r′ ∈ τ(Π) (71)

r′ 6∈ bτ(U)(τ(Π)) (72)

pos(r′) ∩ τ(U) ⊆ τ(X) (73)

neg(r′) ∩ τ(U) ∩ τ(X) = ∅ (74)

From (72) we have:

r′ contains a literal which is not from τ(U) (75)

There are only two possibilities:

– r′ = τ(r′′) for some rule r′′ from Π. From (73) and (c) by lemma 1 we
have:

pos(r′′) ∩ U is satisfied by X (76)

From (74) and (c) by lemma 1 we have:

every literal in {not l | l ∈ neg(r′′) ∩ U} is not satisfied by X (77)

From (75) we have:

lit(r′′) contains a literal which is not in U (78)

Therefore,
r′′ 6∈ bU (Π) (79)

From (76),(77) and (79) we have:

RU (r′′) ∈ eU (Π \ bU (Π), X) (80)
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Therefore,

τ(RU (r′′)) ∈ τ(eU (Π \ bU (Π), X)) (81)

Since r′ = τ(r′′), by construction of R and by Lemma 1 we have:

τ(RU (r′′)) = Rτ(U)(r
′) (82)

From (81) and (82) we have:

Rτ(U)(r
′) ∈ τ(eU (Π \ bU (Π), X)) (83)

Therefore, since r = Rτ(U)(r
′), we have:

r ∈ τ(eU (Π \ bU (Π), X)) (84)

Therefore, in this case, (68) holds.
– r′ is of the form

¬f(x̄, y1)← f(x̄, y2)

where y1 6= y2 and

f(x̄) is an attribute term of Σ (85)

From (75) by clause 2 of the definition of the splitting set we have:

no literal formed by f(x̄) belongs to U (86)

From (85) and (86) by Definition 19 we have:

f(x̄) belongs to the signature of eU (Π \ bU (Π), X) (87)

From (86) we have:

Rτ(U)(r
′) = r′ = r (88)

From (87) we have:

r′ ∈ τ(eU (Π \ bU (Π), X)) (89)

From (89) and (88) we have:

r ∈ τ(eU (Π \ bU (Π), X)) (90)

Therefore, in this case, (68) holds.

We next prove (69).
Let r be a rule s.t.

r ∈ τ(eU (Π \ bU (Π), X)) (91)

There are only two possibilities:
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– r = τ(r′) for some r′ ∈ eU (Π \ bU (Π), X). By construction of eU (Π \
bU (Π), X), we have that there is r′′ such that:

r′′ ∈ Π (92)

r′ = RU (r′′) (93)

and:
r′′ 6∈ bU (Π) (94)

pos(r′′) ∩ U is satisfied by X (95)

every literal from neg(r′′) ∩ U is not satisfied by X (96)

From (94) we have:

lit(r′′) contains a literal not from U (97)

From (97), clause 2 of the splitting set definition and the construction of τ
we have:

lit(τ(r′′)) contains a literal not from τ(U) (98)

Therefore,

τ(r′′) 6∈ bτ(U)(τ(Π)) (99)

From (95) and Lemma 1 we have:

pos(τ(r′′)) ∩ τ(U) is satisfied by τ(X) (100)

From (96) and Lemma 1 we have:

every literal from neg(τ(r′′)) ∩ τ(U) is not satisfied by τ(X) (101)

From (92) we have:

τ(r′′) ∈ τ(Π) (102)

From (99), (100), (101) and (102) we have:

Rτ(U)(τ(r′′)) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (103)

By construction of R and by Lemma 1 we have:

τ(RU (r′′)) = Rτ(U)(τ(r′′)) (104)

From (103) and (104) we have:

τ(RU (r′′)) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (105)

From (93) and (105) we have:

τ(r′) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (106)
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From the fact that r = τ(r′) and (106) we have:

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (107)

Therefore, in this case, (69) holds.
– r is of the form

¬f(x̄, y1)← f(x̄, y2)

for some y1 6= y2.
From (91) by construction of τ(eU (Π \ bU (Π), X)) we have:

f(x̄) = y1 and f(x̄) = y2 are atoms of the signature of eU (Π \ bU (Π), X)
(108)

Therefore, by clause 2 of Definition 19, we have:

f(x̄) = y1 and f(x̄) = y2 are atoms of Σ (109)

and

no literals of U are formed by f(x̄) (110)

Therefore,

τ(U) contains no literals of the forms f(x̄, y) or ¬f(x̄, y) (111)

Since neg(r) = {}, we have:

every literal in {not l | l ∈ neg(r) ∩ τ(U)} is not satisfied by τ(X) (112)

From (111) we have pos(r) ∩ τ(U) = ∅, therefore:

every literal in pos(r) ∩ τ(U) is satisfied by τ(X) (113)

From (109) we have:

r ∈ τ(Π) (114)

From (111) we have:

r 6∈ bτ(U)(τ(Π)) (115)

From (114), (115), (113), (112) we have:

Rτ(U)(r) ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (116)

From (111) we have:

Rτ(U)(r) = r (117)

From (117) and (116) we have:

r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (118)

Therefore, in this case, (69) holds.
From (68) and (69) we have (67).
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4. → we show that if A a possible world of Π, then A = X ∪ Y for some solution
〈X,Y 〉 to Π with respect to U .
Let A be a possible world of Π. By lemma 2 we have that τ(A) is an answer
set of τ(Π). By splitting set theorem from [29] we have that τ(A) = X ′∪Y ′ for
some solution 〈X ′, Y ′〉 to τ(Π) with respect to τ(U). Let Σ be the signature
of Π. We will construct two sets of atoms of Σ, X and Y , such that
– X ′ = τ(X)
– Y ′ = τ(Y )
– 〈X,Y 〉 is a solution to Π with respect to U
– X ∪ Y = A.

In (a) we construct X. In (b) we construct Y . In (c) we show X ′ = τ(X). In
(d) we show Y ′ = τ(Y ). In (e) we show 〈X,Y 〉 is a solution to Π with respect
to U . In (f) we show X ∪ Y = A.
(a) We construct X. First, from construction of τ(Π) if follows that

if f(x̄, y) occurs as an atom in τ(Π) then f(x̄) = y is an atom of Σ
(119)

Since X ′ is an answer set of the program bτ(U)(τ(Π)), it can only contain
literals which occur in the head of the rules of the program bτ(U)(τ(Π)),
and, by definition of bτ(U)(τ(Π)),

all literals in X ′ occur in τ(Π) (120)

Let X be the set defined as follows:

X = {f(x̄) = y | f(x̄, y) ∈ X ′} (121)

From (119) and (120) we have that X is a set of atoms of Σ.
(b) We construct Y . Using arguments similar to the ones in (a), we can show

that if f(x, y) ∈ Y ′, then f(x) = y is an atom for Σ. Then the set Y ,
defined as follows

Y = {f(x̄) = y | f(x̄, y) ∈ Y ′}, (122)

is a set of atoms of Σ.
(c) We show that X ′ = τ(X). Since X ′ is an answer set of the program

bτ(U)(τ(Π)), X ′ is consistent. Therefore, it is sufficient to show that for
every atom f(x̄) = y such that

f(x̄) = y ∈ X (123)

in X,

{¬f(x̄, y1) | y1 6= y} ⊆ X ′ (124)

By construction of τ(Π), for every literal f(x̄) 6= y1 where y1 6= y, τ(Π)
contains a rule r: ¬f(x̄, y1)← f(x̄, y)

We prove that

r belongs to bτ(U)(τ(Π)) (125)

Since X ′ is an answer set of bτ(U)τ(Π), and X ′ contains f(x̄, y), f(x̄, y) ∈
τ(U) . By definition of τ(U), τ(U) should also include ¬f(x̄, y1). Thus,
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τ(U) contains both τ(f(x̄) = y) and τ(f(x̄) 6= y1) and, by construction of
bτ(U)(τ(Π)), we have (125)

Since X ′ is an answer set of bτ(U)τ(Π), from (125) we have:

X ′ satisfies r (126)

From (123) and (121) we have that X ′ satisfies the body of r. Therefore,
from (126) we have X ′ also satisfies the head of r, which is ¬f(x̄, y1).
Therefore, (124) holds.

(d) We show that Y ′ = τ(Y ). Since Y ′ is an answer set of eτ(U)(τ(Π) \
bτ(U)(τ(Π)), X ′), Y ′ is consistent. Therefore, it is is sufficient to show that
for every atom f(x̄) = y such that

f(x̄) = y ∈ Y (127)

we have
{¬f(x̄, y1) | y1 6= y} ⊆ Y ′ (128)

By construction of τ(Π), for every literal f(x̄) 6= y1 of Σ where y1 6= y,
there is a rule r

¬f(x̄, y1)← f(x̄, y)

such that
r ∈ τ(Π) (129)

We prove that
r ∈ eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′) (130)

From the results on page 5 of [29], we have:

Y ′ ∩ τ(U) = ∅ (131)

From (131), (127) and (122) we have:

f(x̄, y) 6∈ τ(U) (132)

From (132) by construction of bτ(U)(τ(Π)) we have:

r 6∈ bτ(U)(τ(Π)) (133)

From (133) and (129) we have:

r ∈ τ(Π) \ bτ(U)(τ(Π)) (134)

From (134) and (132) by definition of top we have (130).

Since Y ′ is an answer set of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′), from (130) we
have:

Y ′ satisfies r (135)

From (127) and (122) we have that Y ′ satisfies the body of r. Therefore,
from (135) we have Y ′ also satisfies the head of the rule, which is ¬f(x̄, y1).
Therefore, (128) holds.

(e) We show that 〈X,Y 〉 is a solution to Π with respect to U . We prove the
clauses 1-3 of Definition 20 in i - iii respectively.



P-log: Refinement and a New Coherency Condition 61

i. We show that X is a possible world of bU (Π). By construction,

X ′ is an answer set of bτ(U)(τ(Π)) (136)

From (c), the fact that X ′ is an answer set of bτ(U)(τ(Π)), 54 by lemma
2 we have that X is a possible world of bU (Π).

ii. We show that Y is a possible world of eU (Π \ bU (Π), X).
Recall that:

Y ′ is an answer set of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), X ′) (137)

From (137), (d), and (67) by Lemma 2 we have that Y is a possible
world of eU (Π \ bU (Π), X).

iii. We prove X∪Y is consistent. Recall that τ(A) = X ′∪Y ′ for a possible
world A of Π. From (c) and (d) we have that X ∪ Y consists of all
positive literals which are members of X ′ ∪ Y ′, which is precisely A.
Since A is a possible world, A is consistent, as well as X ∪ Y .

(f) In 2.e).iii we have already shown that A = X ∪ Y .
By theorem 2 and the fact that if Y contains an atom f(x, y), it also contains
atoms f(x, y1) for every y1 6= y, there exists Y ′ such that Y = τ(Y ′) and Y ′

is a possible world of eU (Π \ bU (P ), X).
5. ← we show that if A = X ∪ Y for some solution 〈X,Y 〉 to Π with respect to
U , then A is a possible world of Π.
By 1, τ(U) is a splitting set of τ(Π). We prove that 〈τ(X), τ(Y )〉 is a solu-
tion to τ(Π) with respect to τ(U). In (a) we show that τ(X) is a possible
world of bτ(U)(τ(Π). In (b) we show τ(Y ) is a possible world of eτ(U)(τ(Π) \
bτ(U)(τ(Π)), X ′). In (c) we show τ(X) ∪ τ(Y ) is consistent.

(a) We show that

τ(X) is a possible world of bτ(U)(τ(Π)) (138)

Since 〈X,Y 〉 is a solution of Π w.r.t. U , we have

X is a possible world of bU (Π) (139)

Therefore by Lemma 2 we have:

τ(X) is a possible world of τ(bU (Π)) (140)

From (54) and (140) we have (138)
(b) We show that

τ(Y ) is a possible world of eτ(U)(τ(Π) \ bτ(U)(τ(Π)), τ(X)) (141)

Since 〈X,Y 〉 is a solution of Π w.r.t. U , we have:

Y is a possible world of eU (τ(Π) \ bU (τ(Π)), X) (142)

Therefore by Lemma 2 we have:

τ(Y ) is a possible world of τ(eU (τ(Π) \ bU (τ(Π)), X)) (143)

From (67) and (143) we have (141)
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(c) Since 〈X,Y 〉 is a solution of Π w.r.t. U , X ∪ Y is consistent. Therefore, by
construction, τ(X) ∪ τ(Y ) is consistent (it consists of atoms from X and
Y and all negative literals of the form f = y for every atom f = y1 where
y 6= y1).

The original paper also contains an analogy of the following claim that we will
use in the proof of Theorem 1.

Lemma 3 Let U be a splitting set for a program Π. If A is a possible world of
Π such that A = X ∪ Y for some solution 〈X,Y 〉 to Π with respect to U , then
Y ∩ U = ∅.

2

Proof Since Y is a possible world of eU (Π \ bU (Π), X), and, by clause 2 of Defi-
nition 19, the signature of eU (Π \ bU (Π), X) does not contain literals from U , Y
does not contain literals from U . Therefore, Y ∩ U = ∅.

B.3 Proof of Theorem 1

In this section we will prove the theorem:
Theorem 1.
Every program from B is coherent.

2

The outline of the proof is the same as that of Theorem 1 from [8], which
says that a program from a different class introduced there is coherent. First,
[8] introduces the notion of a tableau representing a program and shows that
programs considered there can be represented by such tableaux. The second part
of the proof consists of the theorem which states that every program which can
be represented by a tableau is coherent. The definition of a tableaux and the
corresponding theorem about coherency in our proof is very close to that in [8].
The only changes are those related to our refinement of the semantics of the original
P-log. However, proof of the first part requires a substantial amount of work and
new insights, introduced in lemmas 6 - 25 below.

Definition 22 (Unitary Tree)
Let T be a tree in which every arc is labeled with a real number in [0,1]. We say
T is unitary if the labels of the arcs leaving each node add up to 1.

2

Figure 1 gives an example of a unitary tree.

Definition 23 (pT (n))
Let T be a tree with labeled nodes and n be a node of T . By pT (n) we denote
the set of labels of nodes lying on the path from the root of T to n, including the
label of n and the label of the root.

2

Example 12 Consider the tree T from Figure 1. If n is the node labeled (13), then
pT (n) = {1, 3, 8, 13}.

2



P-log: Refinement and a New Coherency Condition 63

Fig. 1: Unitary tree T

Definition 24 (Path value)
Let T be a tree in which every arc is labeled with a number in [0,1]. The path
value of a node n of T , denoted by pvT (n), is defined as the product of the labels
of the arcs in the path to n from the root. (Note that the path value of the root
of T is 1.)

2

When the tree T is obvious from the context we will simply write pv(n).

Example 13 Consider the tree T from Figure 1. If n is the node labeled with 8,
then pv(n) = 0.3× 0.3 = 0.09.

2

Lemma 4 [Property of Unitary Trees]
Let T be a unitary tree and n be a node of T . Then the sum of the path values of
all the leaf nodes descended from n (including n if n is a leaf) is the path value of
n.

2

The proof of Lemma 4 can be found in [8].

Definition 25 (A set of literals compatible with an e-literal)
A set S of literals of Π is Π-compatible with an e-literal l of Π if there exists a
possible world of Π satisfying S ∪ {l}. Otherwise S is Π-incompatible with l. S is
Π-compatible with a set B of e-literals of Σ if there exists a possible world of Π
satisfying S ∪B; otherwise S is Π-incompatible with B. 2
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Definition 26 (A set of literals guaranteeing an e-literal)
A set S of literals is said to Π-guarantee an e-literal l if S and l are Π-compatible
and every possible world of Π satisfying S also satisfies l; S Π-guarantees a set B
of e-literals if S Π-guarantees every member of B. 2

Definition 27 (Ready to branch)
Let T be a tree whose nodes are labeled with atoms of Σ and r be a rule of Π of
the form

random(rn, a(t̄) : {X : p(X)})← K.

where K can be empty. A node n of T is ready to branch on a(t) via r relative to
Π if

1. pT (n) contains no literal of the form a(t) = y for any y,
2. pT (n) Π-guarantees K,
3. for every pr-atom of the form pr(rn, a(t) = y | B) = v in Π, either pT (n)
Π-guarantees B or is Π-incompatible with B, and

4. for every y ∈ range(a), pT (n) either Π-guarantees p(y) or is Π-incompatible
with p(y) and moreover there is at least one y ∈ range(a) such that pT (n)
Π-guarantees p(y).

If Π is obvious from the context we may simply say that n is ready to branch on
a(t) via r.

2

Proposition 2 Suppose n is ready to branch on a(t) via some rule r of Π, and
a(t) = y is Π-compatible with pT (n); and let W1 and W2 be possible worlds of
Π-compatible with pT (n). Then P (W1, a(t) = y) = P (W2, a(t) = y).

2

Proof Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is
Π-compatible with pT (n); and let W1 and W2 be possible worlds of Π compatible
with pT (n).

Case 1: Suppose a(t) = y has an assigned probability in W1. Then there is a
pr-atom pr(rn, a(t) = y | B) = v of Π such that W1 satisfies B. Since W1 also
satisfies pT (n), B is Π-compatible with pT (n). It follows from the definition of
ready-to-branch that pT (n) Π-guarantees B. Since W2 satisfies pT (n) it must also
satisfy B and so P (W2, a(t) = y) = v.

Case 2: Suppose a(t) = y does not have an assigned probability in W1. Case 1
shows that the assigned probabilities for values of a(t) in W1 and W2 are precisely
the same; so a(t) = y has a default probability in both worlds. We need only show
that the possible values of a(t) are the same in W1 and W2. Suppose then that
for some z, a(t) = z is possible in W1. Then W1 satisfies p(z). Hence since W1

satisfies pT (n), we have that pT (n) is Π-compatible with p(z). By definition of
ready-to-branch, it follows that pT (n) Π-guarantees p(z). Now since W2 satisfies
pT (n) it must also satisfy p(z) and hence a(t) = z is possible in W2. The other
direction is the same.

Suppose n is ready to branch on a(t) via some rule r of Π, and a(t) = y is
Π-compatible with pT (n), and W is a possible world of Π compatible pT (n). We
may refer to the P (W,a(t) = y) as v(n, a(t), y). Though the latter notation does
not mention W , it is well defined by proposition 2.
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For examples of ready-to-branch attributes, see [8] (e.g, Example 32 on page
58).

Definition 28 (Expanding a node)
In case n is ready to branch on a(t) via some rule of Π, the Π-expansion of T
at n by a(t) is a tree obtained from T as follows: for each y such that pT (n) is
Π-compatible with a(t) = y, add an arc leaving n, labeled with v(n, a(t), y), and
terminating in a node labeled with a(t) = y. We say that n branches on a(t).

2

Definition 29 (Expansions of a tree)
A zero-step Π-expansion of T is T . A one-step Π-expansion of T is an expansion
of T at one of its leaves by some attribute term a(t). For n > 1, an n-step Π-
expansion of T is a one-step Π-expansion of an (n− 1)-step Π-expansion of T . A
Π-expansion of T is an n-step Π-expansion of T for some non-negative integer n.

2

Example 14 Consider the program Π7:

a,b: #boolean.

random(a).

random(b) :- a.

along with the following trees:

true

Fig. 2: T1

true

a ¬a

Fig. 3: T2

true

a

b ¬b

¬a

Fig. 4: T3
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In all the figures, true denotes an atom which is true in any interpretation of
Σ (1 = 1 is an example of such an atom). We can say that each of the trees T1 -
T3 is a 0-step Π7-expansion of itself, that T2 is a 1-step Π7-expansion of T1, and
that T3 is a 1-step Π7-expansion of T2 and a 2-step Π7-expansion of T1.

2

Definition 30 (Seed)
A seed is a tree with a single node labeled true.

2

Definition 31 (Tableau)
A tableau of Π is a Π-expansion of a seed which is maximal with respect to the
subtree relation.

2

For instance, a tree T3 of Figure 4 is a tableau of Π7.

Definition 32 (Node representing a possible world)
Suppose T is a tableau of Π. A possible world W of Π is represented by a leaf
node n of T if W is the set of atoms Π-guaranteed by pT (n).

2

For instance, a node b of T3 represents the possible world of Π7 containing atoms
a and b.

Definition 33 (Tree representing a program)
If every possible world of Π is represented by exactly one leaf node of T , and every
leaf node of T represents exactly one possible world of Π, then we say T represents
Π. 2

It is easy to check that the tree T3 represents Π7.

Definition 34 (Probabilistic soundness)
Suppose Π is a P-log program and T is a tableau representing Π, such that R is
a mapping from the possible worlds of Π to the leaf nodes of T which represent
them. If for every possible world W of Π we have

pvT (R(W )) = µ(W )

i.e. the path value in T of R(W ) is equal to the normalized measure of W , then
we say that the representation of Π by T is probabilistically sound. 2

The following lemma gives conditions sufficient for the coherency of P-log pro-
grams. It will later be shown that all unitary, dynamically causally ordered pro-
grams satisfy the hypothesis of this theorem, establishing Theorem 1.

Lemma 5 (Coherency Condition)
Let Π be a program, and Π ′ be a program obtained from Π by removing activity
records. If there exists a unitary tableau T representing Π ′, and this representation
is probabilistically sound, then PΠ′ is defined, and for every pair of rules

random(r, a(t) : {X : p(X)})← K. (144)
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and

pr(r, a(t) = y | B) = v. (145)

of Π ′ such that PΠ′(B ∪K) > 0 we have

PΠ′∪o(B)∪o(K)(a(t) = y) = v

Hence Π is coherent.
2

Proof Since there exists a unitary tableau representing Π ′, by lemma 4 and Def-
inition 34 we have that there exists at least one possible world with a non-zero
measure. Therefore, PΠ′ is defined.

For any set S of literals, let lgar(S) (pronounced “L-gar” for “leaves guaran-
teeing”) be the set of leaves n of T such that pT (n) Π ′-guarantees S.

Let µ denote the normalized measure on possible worlds induced by Π ′.
Let Ω be the set of possible worlds of Π ′ ∪ o(B)∪ o(K). Since PΠ′(B ∪K) > 0

we have

PΠ′∪o(B)∪o(K)(a(t) = y) =

∑
{W : W∈Ω ∧ a(t)=y ∈ W} µ(W )∑

{W : W∈Ω} µ(W )
(146)

Now, let

α =
∑

n∈lgar(B∪K∪{a(t)=y)}

pv(n)

β =
∑

n∈lgar(B∪K)

pv(n)

Since T is a probabilistically sound representation of Π ′, the right-hand side of
(146) can be written as α/β. So we will be done if we can show that α/β = v.

We first claim

Every n ∈ lgar(B ∪K) has a unique ancestor ga(n) which branches on a(t)

via rule (144).
(147)

If existence failed for some leaf n then n would be ready to branch on a(t) which
contradicts maximality of the tree. Uniqueness follows from Condition 1 of Defi-
nition 27.

Next, we claim the following:

For every n ∈ lgar(B ∪K), pT (ga(n)) Π ′-guarantees B ∪K. (148)

Let n ∈ lgar(B ∪ K). Since ga(n) branches on a(t), ga(n) must be ready to
branch on a(t) via a rule of Π ′. So by clause 3 of Definition 27, ga(n) either
Π ′-guarantees B or is Π ′-incompatible with B. But pT (ga(n)) ⊂ pT (n), and
pT (n) Π ′-guarantees B, so pT (ga(n)) cannot be Π ′-incompatible with B. Hence
pT (ga(n)) Π ′-guarantees B. It also follows from clause 2 of Definition 27 that
pT (ga(n)) Π ′-guarantees K.
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From (148), it follows easily that

If n ∈ lgar(B ∪K), every leaf descended from of ga(n) belongs to lgar(B ∪K).
(149)

Let

A = {ga(n) : n ∈ lgar(B ∪K)}

In light of (147) and (149), we have

lgar(B ∪K) is precisely the set of leaves descended from nodes in A. (150)

Therefore,

β =
∑

n is a leaf descended from some a∈A

pv(n)

Moreover, by construction of T , no leaf may have more than one ancestor in A,
and hence

β =
∑
a∈A

∑
n is a leaf descended from a

pv(n)

Now, by Lemma 4 on unitary trees, since T is unitary,

β =
∑
a∈A

pv(a)

This way of writing β will help us complete the proof. Now for α. Recall the
definition of α:

α =
∑

n∈lgar(B∪K∪{a(t)=y})

pv(n)

Denote the index set of this sum by lgar(B,K, y). Let

Ay = {n : parent(n) ∈ A, the label of n is a(t) = y}

Since lgar(B,K, y) is a subset of lgar(B ∪K), (150) implies that lgar(B,K, y) is
precisely the set of nodes descended from nodes in Ay. Hence

α =
∑

n′ is a leaf descended from some n∈Ay

pv(n′)

Again, no leaf may descend from more than one node of Ay, and so by the lemma
on unitary trees,

α =
∑
n∈Ay

∑
n′ is a leaf descended from n

pv(n′) =
∑
n∈Ay

pv(n) (151)

Finally, we claim that every node n in A has a unique child in Ay, which we
will label ychild(n). The existence and uniqueness follow from (148), along with
Condition 3 of Section 3, and the fact that every node in A branches on a(t) via
rule 144. Thus from (151) we obtain

α =
∑
n∈A

pv(ychild(n))
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Note that if n ∈ A, the arc from n to ychild(n) is labeled with v. Now we have:

PΠ′∪obs(B)∪obs(K)(a(t) = y)

= α/β

=
∑
n∈A

pv(ychild(n))/
∑
n∈A

pv(n)

=
∑
n∈A

pv(n) ∗ v/
∑
n∈A

pv(n)

= v.

Lemma 6 [Tableau for programs from B]
Suppose Π is a program from B and U is the set of activity records in Π; then there
exists a tableau T of Π \ U which represents Π \ U such that the representation
of Π \ U by T is probabilistically sound.

2

Proof Let α = a1 . . . , , ak be a probabilistic leveling of Π s.t. Π is dynamically
causally ordered via α and Π0, . . . , Πk be the dynamic structure of Π \U induced
by α. Let W0 be the possible world of Π0.

Consider a sequence T0, . . . , Tk of trees where T0 is a tree with one node, n0,
labeled by true, and Ti is obtained from Ti−1 by expanding every leaf of Ti−1

which is ready to branch on ai(ti) via any rule relative to Πi by this term. Let
T = Tk. We will show that Tm is a tableau of Π which represents Π and the
representation is probabilistically sound.

Our proof will unfold as a sequence of lemmas: Let Σi be the signature of
Πi for every i ∈ {0..k}, and Li be the set of all e-literals that can be formed by
attribute terms from the signature of Πi.

Lemma 7 Let Π be a P-log program with signature Σ, A be a set of attribute
terms of Σ, L be the set of all e-literals of Σ formed by attribute terms from A.
Suppose there exists a set of atoms WL ⊆ L such that every possible world W of
Π, WL ⊆W and (W \WL)∩L = ∅. Let R ⊆ Π be a subset of rules of Π such that
for every r ∈ R, the body of r contains an e-literal from L which is not satisfied
by WL. We have:

ΩΠ = ΩΠ\R (152)

2

Proof In 1 we will prove ΩΠ ⊆ ΩΠ\R. In 2 we will prove ΩΠ\R ⊆ ΩΠ . (152)
follows immediately from 1 and 2.

1. We prove
ΩΠ ⊆ ΩΠ\R (153)

Let W ∈ ΩΠ be a possible world of Π. We will show

W ∈ ΩΠ\R (154)

Consider the reduct Π ′ = (Π \ R)W . To show (154), in 1.1 we will show W
satisfies the rules of (Π \R)W . In 1.2 we will prove W is minimal such set.



70 Evgenii Balai et al.

1.1 We show W satisfies the rules of (Π \ R)W . Since W ∈ ΩΠ , W satisfies
ΠW . Since (Π \R)W ⊆ ΠW , W satisfied the rules of (Π \R)W .

1.2 For the sake of contradiction, suppose there exists W ′ ( W such that W ′

satisfies (Π \R)W . We will show that

W ′ satisfies ΠW (155)

W ′ satisfies the subset (Π \R)W of ΠW . Now suppose r ∈ RW . Let r∗ be
the rule of Π which produced r in ΠW . By construction of R, the body of
r∗ contains an e-literal l formed by an attribute term from A not satisfied
by WL. Since WL ⊆ W and (W \ WL) ∩ L = ∅, L is the set of all e-
literals formed by attribute terms from A, the body of r∗ contains l which
is not satisfied by W . l cannot have default negation (or else, the rule r
shouldn’t belong to the reduct RW ). Therefore, l belongs to the body of r.
Since W ′ (W , and all the literals in the body of r do not contain default
negation, l is not satisfied by W ′. Therefore, W ′ satisfies r.

2. We prove

ΩΠ\R ⊆ ΩΠ (156)

Let W ∈ ΩΠ\R be a possible world of Π \R. We will show

W ∈ ΩΠ (157)

Consider the reduct Π ′ = (Π)W . To show (157), in 2.1 we will show W satisfies
the rules of (Π)W . In 2.2 we will prove W is minimal such set.
2.1 Since W ∈ ΩΠ\R, it satisfies the rules of (Π \R)W . The further reasoning

is similar to 1.2.
2.2 For the sake of contradiction suppose there exists W ′ ( W which satisfies

(Π)W . Since (Π \ R)W ⊆ (Π)W , W ′ also satisfies (Π \ R)W , which is a
contradiction to the fact that W is a possible world of (Π \R).

Lemma 8 Let Π be a program with signature Σ such that the base of Π has a
unique possible world. We have Ωred(Π) = ΩΠ . 2

Proof Let L′0 be the set of literals of Σ each of which does not depend on an a
random attribute term of Π. L′0 is a splitting set of Π. therefore, by splitting set
theorem, for every possible world W of Π we have W ′0 ⊆W and (W \W ′0)∩L′0 = ∅.
By construction of red(Π), Π = red(Π) ∪ R, where the body of every rule in R
contains a e-literal from L′0 not satisfied by W ′0. Then the lemma follows trivially
from lemma 7.

Lemma 9 Let 0 ≤ i ≤ k be an integer. Ωred(Πi) = ΩΠi
. 2

Proof Since bL′0(Πi) = bL′0(Π), bL′0(Πi) is the base of Π which has a unique
possible world W ′0. Then the lemma follows immediately from Lemma 8.

Lemma 10 Let 0 ≤ i ≤ k be an integer. Let Wi be a possible world of Πi. We
have:

1. W0 ⊆Wi

2. (Wi \W0) ∩ L0 = ∅
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Proof Let L′0 be the set of literals from Π’s base signature, and W ′0 be the answer
set of Π’s base. By Lemma 9

Ωred(Πi) = ΩΠi
(158)

Therefore, Wi ∈ Ωred(Π). The lemma follows from the fact that L0 is a splitting
set of red(Πi), and red(Π0) = bL0

(red(Πi)), and Lemma 9.

Lemma 11 Consider integers n,m such that 0 ≤ n ≤ m ≤ k. If Wm is a possible
world of Πm, then there exists a unique possible world Wn of Πn such that Wn ⊆
Wm, and (Wm \Wn) ∩ Ln = ∅.

2

Proof In the first part of the proof we show the existence of Wn. We start from
two special cases.

– Case 1. n = m. The claim clearly holds, we can have Wn = Wm.
– Case 2. n = 0. That is, we prove that if Wm is a possible world of the program
Πm, then there exists a unique possible world W0 of the program Π0 such that
(Wm \W0) ∩ L0 = ∅.
From the definition of a dynamically causally ordered program,Π0 has a unique
possible world W0. Therefore, from Lemma (10) every possible world Am of
the program Πm can be written as W0 ∪ Y , for some Y such that Y ∩L0 = ∅.

The proof is by double induction on n,m.

1. (Base case n = m = 0) The case follows immediately from Case 1.
2. (Inductive Hypothesis) Let h and j be two integers in the range {0..k} such

that h ≥ j > 0. Let d and g be a pair of integers such that

d ≤ j,

g ≤ h,

d ≤ g

and
d+ g < h+ j.

For every possible world Wd of the program Πd there exists a possible world
Wg of the program Πg such that Wd = Wg ∪ Ug, where Ug ∩ Lg = ∅

3. (Inductive Step) We prove that for every possible world Wh of the program Πh
there exists a possible world Wj of the program Πj such that Wh = Wj ∪ Uj
where Uj ∩ Lj = ∅. Let Wj be the set Wh|Lj

we prove that Wj is a possible

world of Πj . In a) we show that Wj satisfies the rules of Π
Wj

j and in b) we
show that Wj is minimal.

(a) We show that Wj satisfies the rules of Π
Wj

j . Let r be a rule of Π
Wj

j such
that the body of r is satisfied by Wj . We prove that the head of r is
satisfied by Wj . Let r′ be the rule of Πj from which r was obtained during

the computation of Π
Wj

j . Since Wh \Wj does not contain literals from Lj ,
and the rules of the program Πj is a subset of the rules of the program
Πh, r′ belongs to the rules of Πh, and the reduct ΠWh will contain the
rule r. Since Wj ⊂Wh, Wh satisfies the body of r. Therefore, Since Wh is
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a possible world of Πh, the head of r is included into Wh. Since r belongs

to Π
Wj

j , its head must belong to Lj . Since Wj = Wh|Lj
, the head of r also

belongs to Wj . This means that Wj satisfies the head of r.
(b) We show that Wj is minimal. That is, there does not exist an interpretation

W ′j of Πj such that
W ′j (Wj (159)

and W ′j satisfies the rules of Π
Wj

j . We prove by contradiction. Suppose such

an interpretation exists. Let’s define Uj and W ′h as follows:

Uj = Wh \Wj (160)

W ′h = W ′j ∪ Uj (161)

From (160) we have:
Uj ∩Wj = ∅ (162)

From (162) and (159) we have:

Uj ∩W ′j = ∅ (163)

From (159) - (163) we have:

W ′h (Wh (164)

We show that W ′h satisfies the rules of ΠWh

h , thus, obtaining a contradiction

to the fact that Wh is a possible world of Πh. Let r be a rule of ΠWh

h such
that W ′h satisfies the body of r. We prove that W ′h satisfies the head of r.
Let r′ be the rule of Πh from which r was obtained during the computation
of ΠWh

h . We consider two possible cases.

i. r′ is a rule of Πj . In this case r must belong to Π
Wj

j . Since W ′j satisfies

the rules of Π
Wj

j , and it satisfies the body of r, it must satisfy the head
of r.

ii. r′ is not a rule of Πj . We show that Wh satisfies the body of r′. First,
since r belongs to the reduct ΠWh

h , {not l | l ∈ neg(r)}must be satisfied
by Wh. Since W ′h satisfies the body of r, which is precisely pos(r), and
W ′h (Wh, Wh satisfies pos(r) too. This means

Wh satisfies the body of r′ (165)

Let us denote the head of r′ by l0. Since Wh is a possible world of Πh,
from (165) we have

Wh satisfies l0 (166)

We consider two cases:
A. l0 is a member of Lj . We first prove that l0 must be of one of the

forms random(rn, aq, p) or aq = y for some random attribute term
aq, where q ≤ j. We prove by contradiction. Suppose l0 is either
formed by a random attribute term ar, where r > j, or it is formed
by a non-random attribute term random(rn, ar, p), where r > j,
or it is formed by a non-random attribute term b whose attribute
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is not random. The first two cases are clearly impossible, because
Lj contains only attribute terms a0, . . . , aj and random(rn, as, p)
for 0 ≤ s ≤ r, and l0 belongs to Lj . Consider the latter case, where
l0 is formed by non-random attribute term b whose attribute is not
random. We show that, in this case, the level of attribute term b in
Π must exceed j, thus, obtaining a contradiction to the fact that
l0 is a member of Lj .

– We show by contradiction that the rule r′ belongs to red(Π).
Suppose that r′ does not belong to red(Π). This implies that
there is an extended literal el in the body of r′ formed by an
atom in the signature of Π0 such that W0 does not satisfy el. By
case #2, we get that the possible world Wh can be written as
W0 ∪ U ′, where U ′ ∩ L0 = ∅. Therefore, Wh does not satisfy the
literal el, which contradicts 165.

– We show that the level of body(r′) in Π must exceed j. Suppose
the level of body(r′) does not exceed j. In this case, if both b and
body(r′) have level ≤ j, the rule r′ must belong to Πj , which
contradicts our previous assumption. Thus, since r′ belongs to
red(Π), b must have a level > j.

Thus, we are left with the two cases when

l0 is either formed by aq or is of the form random(rn, aq, p)
(167)

for random attribute term aq ∈ {a1 . . . , aj}. By inductive hypoth-
esis, there exists a possible world Wq−1 of the program Πq−1 such
that

Wh = Wq−1 ∪ Uq−1, (168)

and
Uq−1 ∩ Lq−1 = ∅ (169)

Since r′ does not belong to Πj ,

r′ contains at least one literal which does not belong to Lj .
(170)

Since q ≤ j,
Lq ⊆ Lj . (171)

From (170) and (171) it follows that

r′ contains at least one literal which does not belong to Lq
(172)

Since the head of r′ is formed by aq, from (172) it follows that

the body of r′ contains a literal which does not belong to Lq
(173)

From (173) it follows that

Wq−1 does not satisfy the body of r′. (174)

Therefore, by clause 1 of Definition 7 from (174) it follows that we
have only of the two cases:
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– Wq−1 falsifies the body of r′

which means that the body of r′ contains an extended literal elq−1

from the signature of Πq−1 such that Wq−1 does not satisfy it.
From (168) and (169) it follows that Wh does not satisfy elq−1,
and, therefore, it does not satisfy the body(r′). Therefore, we have
a contradiction to (165).

– r′ is a general axiom, which is, given that it’s head is either
random(rn, aq, p) or aq, must be of the form:

aq = y ← random(rn, aq, p), not aq = y1, . . . , not aq = yk (175)

In this case, the level of all attribute terms in r′ is q ≤ j, and,
therefore, the rule r′ must belong to Πj . Contradiction to the
main assumption in ii.

B. l0 is not a member of Lj . In this case, since, by (166), Wh satisfies
l0 and Wh = Wj ∪ Uj , and all the literals in Wj belong to Lj , l0
belongs to Uj . Since W ′h = W ′j ∪ Uj , W ′h satisfies l0.

In the second part of the proof we show the uniqueness of Wj . Suppose there exist
two different possible worlds W 1

j and W 2
j of Πj such that

Wh = W 1
j ∪ U1

j (176)

Wh = W 2
j ∪ U2

j (177)

U1
j ∩ Lj = ∅ (178)

U2
j ∩ Lj = ∅ (179)

Since Lj contains all the literals that can be constructed from the signature of Πj ,
from equations (176) and (178) it follows that

W 1
j = Wh|Lj

(180)

Similarly, from equations (177) and (179) it follows that

W 2
j = Wh|Lj

(181)

From equations (180) and (181) it follows that W 1
j = W 2

j . This contradicts our

original assumption that W 1
j and W 2

j are two different possible world of Πj .

Lemma 12 Let Π be a program with a possible world W . The program Π ∪W
has a unique possible world W .

Proof Since W is a possible world of Π, W satisfies ΠW . Therefore, W satisfies
(Π∪W )W = ΠW ∪WW = ΠW ∪W . W is minimal, because, every possible world
of ΠW ∪W must include W .

W is the only possible world of Π ∪W , because every possible world of Π ∪W
must include W , and, by Proposition 1, no possible world which includes W and
is different from W can exist.
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Lemma 13 Let i ∈ {0..k− 1} be an integer and V be a possible world of Πi. Let
Π ′ be a program from the set {Πi+1 ∪V ∪{← not ai+1 = y}, Πi+1 ∪V ∪{ai+1 =
y}, Πi+1 ∪V }. For every possible world W of Π ′, W0 ⊆W and W \W0 ∩L0 = ∅.

2

Proof Let L′0 be the set of literals from the base S of Π ′, and W ′0 be the answer
set of S. We first show

Ωred(Π′) = ΩΠ′ (182)

Since bL′0(Π ′i) = botL′0(Πi) ∪ W ′0, bL′0(Π ′i) has a unique possible world W ′0.
Therefore, by splitting set theorem, for every possible world W of Π ′i we have
W ′0 ⊆ W and (W \W ′0) ∩ L′0 = ∅. By construction of red(Π ′i), Π = red(Π ′i) ∪ R,
where the body of every rule in R contains a e-literal from L′0 not satisfied by W ′0.
(182) follows immediately from lemma 7.

Clearly, L0 is a splitting set of red(Π ′i), and bL0
(red(Π ′i)) = red(Π0) ∪W0,

and Lemma 9. By lemma (9), W0 is a possible world of red(Π0). By Lemma 12,
W0 is a possible world of red(Π0) ∪W0. Therefore, by splitting set theorem, for
every possible W of red(Π ′i) we have W0 ⊆ W and W \W0 ∩ L0. Therefore, by
(182), the lemma holds.

Lemma 14 Let i ∈ {0..k− 1} be an integer and V be a possible world of Πi. Let
Π ′ be a program from the set {Πi+1 ∪V ∪{← not ai+1 = y}, Πi+1 ∪V ∪{ai+1 =
y}, Πi+1 ∪ V }. For every possible world W of Π ′, W \ V does not contain literals
from Li.

2

Proof We define X as follows:

X = (W \ V )|Li
(183)

We show:
W \X satisfies the rules of ΠW

i+1 (184)

Let r be a rule of ΠW
i+1. We consider 2 cases:

1. Suppose the head of r is not a literal of X. If the body of r is satisfied by W \X,
it is also satisfied by W , thus, since W satisfies the rules of ΠW

i+1, it contains
the head of r. Since the head of r does not belong to X, W \X satisfies head
of r.

2. Suppose the head of r is formed by a literal from X. We need to show that, if
the body of r is satisfied by W \X, the head of r is also satisfied by W \X.
We consider two cases:
(a) the head of r is of the form aj = y, or of the form random(rn, aj , p), for a

random attribute term aj , where j ≤ i. By Lemma 11, there must exists a
possible world Vj−1 of Πj−1 such that

Vj−1 ⊆ V (185)

and
(V \ Vj−1) ∩ Lj−1 = ∅ (186)

Let r′ be the rule of Πi+1 from which r was obtained during the compu-
tation of the reduct ΠW

i+1 By definition of dynamically causally ordered
program, there are three cases:
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i.

Vj−1 satisfies the body of r′ (187)

and

all the literals occurring in r′ are in Lj−1 (188)

Since j ≤ i, Lj−1 ⊆ Li, we have

r′ belongs to Πi (189)

From (185), (186), (187) and (188) we have that V satisfies the body
of r′.
Since V is a possible world of Πi from (189) we have V contains the
head of r′ (and r, since the heads of r and r′ are the same). Since
V ⊆ (W \X), (W \X) also contains the head of r

ii. Vj−1 falsifies the body of r′. Because (V \Vj−1)∩Lj−1 = ∅, V falsifies
the body of r′. That is, there exists an e-literal l belonging to the body
of r′ such that l ∈ Lj−1 and V does not satisfy l. Because ((W \X) \
V ) ∩ Li = ∅, and Lj−1 ⊆ Li, we have that ((W \X) \ V ) ∩ Lj−1 = ∅.
Therefore, since V falsifies body(r′), W \X falsifies body(r′). If l does
not contain default negation, this contradicts our original assumption
that the body of r is satisfied by W \X. Suppose now l = not l′, where
l′ ∈ Lj−1. Since V does not satisfy l, V satisfies l′. Since V ⊆ W
(in all 3 cases) , W satisfies l′. Therefore, W does not satisfy l. This
contradicts the fact that r from the reduct ΠW

i+1 is obtained from r′.
iii. r′ is a general axiom of the form

aj = y ← random(rn, aj , p), not aj = y1, . . . , not aj = yk

and r is of the form

aj = y ← random(rn, aj , p)

Since W \X satisfies the body of r, and all the literals of Li from W \X
are contained in V , we have

random(rn, aj , p) ∈ V (190)

Since V ⊆ W , random(rn, aj , p) ∈ W . Since r belongs to the reduct
ΠW
i+1, {aj = y1, . . . , aj = yk} ∩W = ∅. Since V ⊆W ,

{aj = y1, . . . , aj = yk} ∩ V = ∅ (191)

Since r′ ∈ Πi (all the literals are clearly in Lj ⊆ Li), and V is a possible
world of Πi, from (190) and (191) we have aj = y ∈ V . Since X does
not contain literals from V , and V ⊆W , aj = y ∈W \X.

(b) the head of r is formed by a non-random attribute term nr, whose attribute
is not random, and whose level in Π is ≤ i. Let r′ be the rule of ΠW

i+1 from
which r was obtained. We consider two cases:
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i. r′ does not belong to red(Π). In this case the body of r′ contains an
e-literal l ∈ L0 such that |a| = 0 and W0 does not satisfy l.
By Lemma 13 we have:

W0 ⊆W (192)

(W \W0) ∩ L0 = ∅ (193)

From (193) we have ((W \ X) \ W0) ∩ L0 = ∅. Therefore, since W0

does not satisfy l and l ∈ L0, W \ X also does not satisfy l, which
contradicts the fact that W \X satisfies the body of r.

ii. r′ belongs to red(Π) The body of r′ must consist of literals in Li
(otherwise, the head of r will not belong to Li, which contradicts the
fact l ∈ X). Since (W \ X) \ V does not contain literals from Li,
and (W \ X) satisfies the body of r, V satisfies the body of r. Since
r belongs to the reduct ΠW

i+1, W satisfies all extended literals of the
body of r′ preceded by default negation. Since V ⊆W , V also satisfies
all extended literals of the body of r′ preceded by default negation.
This means that V satisfies the body of r′. Since all the literals in r′

are members of Li, r
′ must belong to Πi. Since V is a possible world

of Πi, it must satisfy r′, thus, the head of r′, which is the same as the
head of r, must belong to V . Since V ⊆ W \ X, and V satisfies the
head of r, W \X satisfies the head of r.

To conclude the proof, we consider the 3 possible values of Π ′ from the lemma
separately and show X = ∅:

1. Suppose W is the possible world of Πi+1∪V . We need to show that X = ∅. For
the sake of contradiction suppose X 6= ∅. We have previously shown that W \X
satisfies the rules of ΠW

i+1. Since V ⊆ W \ X, W \ X satisfies V . Therefore,
W \X satisfies the rules of ΠW

i+1 ∪ VW , which contradicts the fact that W is
a possible world of Πi+1 ∪ V .

2. Suppose W is the possible world of Πi+1∪V ∪{← not ai+1 = y}. We show that
X = ∅. For the sake of contradiction suppose X 6= ∅. We previously showed
that W \X satisfies the rules of ΠW

i+1. Since V ⊆W \X, W \X satisfies V . Since
W is a possible world of Πi+1 ∪ V ∪ {← not ai+1 = y}, W contains ai+1 = y.
Therefore, (Πi+1 ∪ V ∪ {← not ai+1 = y})W = (Πi+1 ∪ V )W .Therefore,
(W \X) (W satisfies all the rules of (Πi+1∪V ∪{← not ai+1 = y})W , which
contradicts the fact thatW is a possible world of (Πi+1∪V ∪{← not ai+1 = y}).

3. Suppose W is the possible world of Πi+1 ∪ V ∪ {ai+1 = y}. We show that
X = ∅. For the sake of contradiction suppose X 6= ∅. We previously showed
that W \X satisfies the rules of ΠW

i+1. Since V ⊆W \X, W \X satisfies V . Since
W is a possible world of Πi+1 ∪ V ∪ {ai+1 = y}, W satisfies ai+1 = y. Since
ai+1 ∈ Li+1 \ Li, and X consists of literals from Li, W \X satisfies ai+1 = y.
Therefore, W \X satisfies (Πi+1 ∪ V ∪ {ai+1 = y})W , which contradicts the
fact that W is a possible world of (Πi+1 ∪ V ∪ {ai+1 = y}) .

Lemma 15 Let i be an integer in the range {0..k− 1} and V be a possible world
of Πi.

1. if V falsifies the bodies of all random selection rules with ai+1 in the head,
then every possible world of V ∪Πi+1 is a possible world of Πi+1.
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2. if there is a random selection rule of the form

random(rn, ai+1, p)← B (194)

s.t V satisfies B, and p(y) ∈ V , then every possible world of Πi+1 ∪ V ∪ {←
not ai+1 = y}, is a possible world of Πi+1.

2

Proof Let Πext denote the program Πi+1 ∪ V in case 1 and and the program
Πi+1 ∪ V ∪ {← not ai+1 = y} in case 2. Let W be a possible world of Πext. We
show that W is a possible world of Πi+1. We first show that W satisfies the rules
of ΠW

i+1, and then we show that W is minimal.

1. We show that W satisfies the rules of ΠW
i+1. Let r be a rule of ΠW

i+1 such that
W satisfies the body of r. We need to show that W satisfies the head of r.
Since W is a possible world of Πext, it satisfies the rules of ΠW

ext, which include
the rules in ΠW

i+1.
2. We show that W is minimal. That is, there does not exist an interpretation
W ′ such that W ′ satisfies the rules of ΠW

i+1 and W ′ (W . We prove by contra-
diction. Suppose such W ′ exists. We show that W ′ satisfies the rules of ΠW

ext,
obtaining a contradiction to the fact that W is a possible world of Πext. By
definition, W ′ satisfies the rules of ΠW

i+1. Therefore, since, in the second case
of the Lemma {← not ai+1 = y}W = ∅, we just need to show that

W ′ satisfies VW (195)

Since V is a collection of facts, we just need to show that V ⊂ W ′. We prove
by contradiction.
Suppose there is an atom a = y of Π such that

a = y ∈ V (196)

and

a = y 6∈W ′ (197)

Let us define V ′ to be:

V ′ = W ′|Li
(198)

From (197) and (198) we have:

a = y 6∈ V ′ (199)

By lemma 14 we have

W \ V does not contain literals from Li (200)

Therefore, since V is a possible world of Πi, we have:

V = W |Li
(201)
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Since W ′ (W , from (201) and (198) we have:

V ′ ⊆ V (202)

From (202), (196) and (199) we have:

V ′ ( V (203)

We next show

V ′ satisfies the rules of ΠV (204)

From (200) we have:
ΠV
i ⊆ ΠW

i+1 (205)

Let r be a member of ΠV
i such that V ′ satisfies the body of r. We show that

V ′ satisfies the head of r. From (198) we have that the body of r is satisfied
by W ′.
Since W ′ satisfies the rules of ΠW

i+1, from (205) W ′ satisfies the head of r. Since
r is a member of ΠV

i , head(r) ∈ Li. Therefore, from (198), V ′ satisfies head(r).
Therefore, (204) holds, and, considering (202), we have a contradiction.

Lemma 16 For every i ∈ {0, . . . , k} and every leaf node n of Ti program Πi has
a unique possible world W satisfying pTi

(n). 2

Proof We use induction on i. The case where i = 0 follows from Condition 2 (a)
of Definition 7 of dynamically causally ordered program. Assume that the lemma
holds for i− 1 and consider a leaf node n of Ti. By construction of T , there exists
a leaf node m of Ti−1 which is either the parent of n or equal to n. By inductive
hypothesis there is a unique possible world V of Πi−1 containing pTi−1

(m)\{true}.

(i) First we will show that every possible world W of Πi containing pTi−1
(m) also

contains V . By lemma 11, set V ′ = W |Li−1
is a possible world of Πi−1. Obviously,

pTi−1
(m) \ {true} ⊆ V ′. By inductive hypothesis, V ′ = V , and hence V ⊆W .

Now let us consider two cases.

(ii) For every random selection r rule of Π of the form

random(rn, ai, p)← K (206)

V falsifies K. We will show that in this case m is not ready to branch on ai w.r.t
Πi. It is sufficient to show that for every random selection rule of the form (206),
V is not Πi-compatible with K. Since V falsifies K, there exists an e-literal l ∈ K
such that:

V does not satisfy l (207)

l ∈ Li (208)

Let us show by contradiction. Suppose there exists a possible world W of Πi such
that

W satisfies V ∪K (209)
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By Lemma 11 we have:

(W \ V ) ∩ Li = ∅ (210)

From (207) , (208) and (210) we have:

W does not satisfy l (211)

Therefore, since l ∈ K, we have a contradiction to (209). Therefore, m is not ready
to branch on ai w.r.t Πi, and, by construction of Ti, m = n. By condition 2.b.III
of Definition 7, we have V ∪Πi−1 has exactly one possible world, W . By lemma
15, W is a possible world of Πi. Obviously, W contains V and hence pTi−1

(m).
Since n = m this implies that W contains pTi

(n).
Uniqueness follows immediately from (i) and Condition 2.b.iii of Definition 7.

(iii) There is a random selection rule r of the form (206) s.t.

V satisfies K (212)

We will show that m is ready to branch on ai via rule r relative to Π.
Condition (1) of the definition of “ready to branch” (Definition 27) follows

immediately from construction of Ti−1.
To prove Condition (2) we need to show that pTi−1

(m) Πi-guarantees K. Since
r is active in V , by Condition 2.b.II of Definition 7 we have that there exists y0

such that p(y0) ∈ V and V ∪ Πi+1 has a possible world containing a = y0, say,
W0.

From 212, by Lemma 14, W0 satisfies K. Since V contains pTi−1
(m), W0 also

contains pTi−1
(m). Therefore,

V is Πi-compatible with K (213)

Now consider a possible world W of Πi which contains pTi−1
(m). By (i) we have

that V ⊆W . Since V satisfies K so does W (by lemma 11, (W \ V ) ∩ Li−1 = ∅).
Condition (2) of the definition of ready to branch is satisfied.

To prove condition (3) consider pr(rn, ai = y | B) = v from Πi such that B
is Πi-compatible with pTi−1

(m). Πi-compatibility implies that there is a possible
world W0 of Πi which contains both, pTi−1

(m) and B. By (i) we have that V ⊆W0.
By Lemma 11 we have that (W \V )∩Li−1 = ∅. From condition 2 of Definition 7 it
follows that either V satisfies B or V falsifies B. If V falsifies B, then W0 does not
satisfy B. Hence, V satisfies B. Since for every possible world W ′ of Πi containing
pTi−1

(m) we have that W ′ contains V and, by Lemma 11 (W \ V )∩Li−1 = ∅, we
have that W ′ satisfies B which proves condition (3) of the definition.

To prove Condition (4) we consider y0 ∈ range(ai) such that p(y0) ∈ V (The
existence of such y0 is proven at the beginning of (iii)). We show that pTi−1

(m)
Πi-guarantees p(y0). Condition (2) of Definition 7 guarantees that Πi has possible
world, say W , containing V . By construction, p(y0) ∈ V and hence p(y0) and
pTi−1

(m) are Πi compatible. From (i) we have that pTi−1
(m) Πi-guarantees p(y0).

Similar argument shows that if pTi−1
(m) is Πi-compatible with p(y) then p(y) is

also Πi-guaranteed by pTi−1
(m).

We can now conclude that m is ready to branch on ai via rule r relative to
Πi+1. This implies that a leaf node n of Ti is obtained from m by expanding it by
an atom ai = y.
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By Condition 2.b.II of Definition 7, program V ∪ Πi ∪ {← not ai = y0} has
exactly one possible world, W . By lemma 15 we have that W is a possible world
of Πi. Clearly W contains pTi

(n). Uniqueness follows immediately from (i) and
Condition 2.b.II of Definition 7.

Lemma 17 For all i ∈ {0..k}, every possible world of Πi satisfies pTi
(n) for some

unique leaf node n of Ti. 2

Proof We use induction on i. The case where i = 0 is immediate. Assume that
the lemma holds for i− 1, and consider a possible world W of Πi. By Lemma 11,
Πi−1 has a possible world V such that:

V ⊆W (214)

(W \ V ) ∩ Li−1 = ∅ (215)

By the inductive hypothesis there is a unique leaf node m of Ti−1 such that V
contains pTi−1

(m). Consider two cases.

(a) For every random selection rule

random(rn, ai, p)← K (216)

K is falsified by V . In part ii of the proof of Lemma 16 we have shown that in
this case m is not ready to branch on ai. This means that m is a leaf of Ti and
pTi−1

(m) = pTi
(m). Let n = m. Since V ⊆ W we have that pTi

(n) ⊆ W . To
show uniqueness suppose n′ is a leaf node of Ti such that pTi

(n′) ⊆ W , and n′

is not equal to n. By construction of Ti there is some j and some y1 6= y2 such
that aj = y1 ∈ pTi

(n′) and aj = y2 ∈ pTi
(n). Since W is an interpretation, it is

impossible.

(b) There is a random selection rule r of the form

random(rn, ai : {X : p(X)})← K (217)

such that
V satisfies K (218)

and, therefore
every literal from K is in Li−1 (219)

From (218), (219), (214) and (215) we have:

W satisfies K (220)

From clause 2 of Definition 7 and the fact that ai ∈ Li we have:

r ∈ Πi (221)

Since W is a possible world of Πi, it must satisfy r together with general axioms
from Πi:

ai = y1 | . . . | ai = ym ← random(rn, ai, p)

← ai = Y, not p(Y ), random(rn, ai, p)
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Therefore, since W satisfies the body of r, there exists y ∈ range(a) such that

ai = y ∈W (222)

and

p(y) ∈W (223)

From 218, by clause 2.b.II of Definition 7 we must have p(y) ∈ Li−1. From (223)
and (215) we have:

p(y) ∈ V (224)

Repeating the argument from part (iii) of the proof of Lemma 16 we can show
that m is ready to branch on ai via r relative to Πi. Since pTi−1

(m) ⊆ V ⊆ W ,
pTi−1

(m) is Πi-compatible with p(y). Thus, there is a leaf node n of Ti which is a
son of m labeled with ai = y. It is easy to see that W contains pTk

(n). The proof
of uniqueness is similar to that used in (a).

Lemma 18 Let i, j be integers s.t. 0 < i ≤ j ≤ k. For every leaf node n of Ti−1,
every set B of extended literals of Li, and we have pTi−1

(n) is Πi-compatible with
B iff pTi−1

(n) is Πj-compatible with B.
2

Proof →
Suppose that pTi−1

(n) is Πi-compatible with B. This means that there is a possible
world V of Πi which satisfies pTi−1

(n) and B. By Lemma 17, there exists a unique
leaf node n′ of Ti such that pTi

(n′) \ {true} ⊆ V . Consider a leaf node m of Tj
belonging to a path containing node n′ of Ti. By Lemma 16, Πj has a unique
possible world W containing pTj

(m). By Lemma 11 W = V ′ ∪ U where V ′ is a
possible world of Πi and U ∩ Li = ∅. This implies that V ′ contains pTi

(n′), and
hence, by Lemma 16 V ′ = V . Since V satisfies B and U ∩Li = ∅ we have that W
also satisfies B. Since pTi−1

(n) ⊆ V ⊆W , we have pTi−1
(n) is Πj-compatible with

B.

←
Let W be a possible world of Πj satisfying pTi−1

(n) and B. By Lemma 11, we have
that W = V ∪ U where V is a possible world of Πi and U ∩ Li = ∅. Since B and
pTi−1

(n) belong to the language of Li we have that B and pTi−1
(n) are satisfied

by V and hence pTi−1
(n) is Πi-compatible with B.

Lemma 19 Let i, j be integers such that 0 < i ≤ j ≤ k. For every leaf node n of
Ti−1, every set B of extended literals of Li, we have pTi−1

(n) Πi-guarantees B iff
pTi−1

(n) Πj-guarantees B. 2

Proof →
Let us assume that pTi−1

(n) Πi-guarantees B. This implies that pTi−1
(n) is Πi-

compatible with B, and hence, by Lemma 18 pTi−1
(n) is Πj-compatible with B.

Now let W be a possible world of Πj satisfying pTi
(n). By Lemma 11 W = V ∪U

where V is a possible world of Πi and U ∩ Li = ∅. This implies that V satisfies
pTi−1

(n). Since pTi−1
(n) Πi-guarantees B we also have that V satisfies B. Finally,

since U ∩ Li = ∅ we can conclude that W satisfies B.
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←
Suppose now that pTi−1

(n) Πj-guarantees B. This implies that pTi−1
(n) is Πi-

compatible with B. Now let V be a possible world of Πi containing pTi−1
(n). By

Lemma 17, there exists a unique leaf node n′ of Ti such that

V satisfies pTi
(n′) (225)

To show that V satisfies B let us consider a leaf node m of a path of Tj
containing n′. By Lemma 16 Πj has a unique possible world W satisfying pTj

(m).
By construction,

W satisfies pTi
(n′) (226)

By Lemma 11, W = V ′∪U where V ′ is a possible world of Πi and U ∩Li = ∅.
Since pTi

(n′) is in Li, we have:

V ′ satisfies pTi
(n′) (227)

From (225) and (227) we by Lemma 16 we have:

V = V ′ (228)

Since pTi−1
(n) \ {true} ⊆ V = V ′ ⊆ W , we have W satisfies pTi−1

(n). Therefore,
since pTi−1

(n) Πj-guarantees B, W satisfies B. Since B belongs to the language
of Li it is satisfied by V ′. Therefore, from V ′ = V we have that V satisfies B and
we conclude pTi−1

(n) Πi-guarantees B.

Lemma 20 Let i, j be integers such that 0 < i ≤ j ≤ k. Every leaf node n of
Ti−1, n is ready to branch on term ai relative to Πi iff n is ready to branch on ai
relative to Πj . 2

Proof →
Suppose n is ready to branch on ai via rule r

random(rn, ai, p)← K (229)

relative to Πi. We show that n is ready to branch on ai via r relative to Πj . We
prove the conditions 1-4 of the definition:

1. Condition 1 follows immediately from the fact that n is ready to branch on ai
relative to Πi.

2. We prove condition 2:

pTi−1
(n) Πj-guarantees K (230)

By Lemma 16, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (231)

We prove that
Wi−1 satisfies K (232)

We prove by contradiction. Suppose 232 doesn’t hold. By condition 2.b.I of
Definition 7 we have Wi−1 falsifies K. That is, there is a literal l ∈ Li−1 ∩K
such that Wi−1 does not satisfy l. Then, by conditions 2.b.ii and 2.b.iii of
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Definition 7 and Lemma 15 we have that Πi has a possible world Wi containing
Wi−1. By Lemma 11, Wi \Wi−1 ∩Li−1 = ∅. Therefore, Wi does not satisfy l,
and, therefore, K. This, given that pTi−1

(n)\{true} ⊆Wi−1 ⊆Wi contradicts
the fact n is ready to branch on ai via r relative to Πi. Therefore, (232) holds.
Therefore, the literals occurring in the body of r are from Li−1, and by lemma
(19) we conclude (230).

3. We prove condition 3. Let pr(rn, ai = y | B) = v be a pr-atom from Πj . We
show that

pTi−1
(n) either Πj-guarantees B or is Πj-incompatible with B (233)

Since n is ready to branch on ai via rule r relative to Πi, we have 3 cases:

(a) pr(rn, ai = y | B) = v is a pr-atom from Πi, and B is Πi-guaranteed by
pTi−1

(n). Using the arguments similar to the ones from 2, we can obtain
B ∈ Li−1, and conclude by Lemma 19 that pTi−1

(n) Πj-guarantees B
(b) pr(rn, ai = y | B) = v is a pr-atom from Πi, and B is Πi-incompatible

with pTi−1
(n). That is,

every possible world Wi or Πi satisfying pTi−1
(n) does not satisfy B

(234)
By Lemma 16, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (235)

We prove

Wi−1 falsifies B (236)

For the sake of contradiction, suppose (236) is false. By clause 2.b.I of
Definition 7 we have:

Wi−1 satisfies B (237)

By clauses 2.b.II and 2.b.III of 7 and Lemma 15 we have that Πi has a
possible world Wi containing Wi−1. Since B is in Li, by Lemma 11 we
have

Wi satisfies B (238)

Since pTi−1
(n) \ {true} ⊆ Wi−1 ⊆ Wi, we have a contradiction from (238)

and (234).
Therefore, (236) holds. Now let Wj be a possible world of Πj satisfying
pTi−1

(n). By Lemma 11, there is a possible W ′i−1 of Πi−1 such that W ′i−1 ⊆
Wj and

(W ′i−1 ∩Wj) ∩ Li−1 = ∅ (239)

Since pTi−1
(n) is in Li−1, we have pTi−1

(n) ⊆W ′i−1. Therefore, By Lemma
16

W ′i−1 = Wi−1 (240)

From (240), (236), (239) we have that Wj does not satisfy B. Therefore,
pTi−1

(n) is Πj-incompatible with B
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(c) pr(rn, ai = y | B) = v does not belong to Πi. That is,
B contains an e-literal l

l 6∈ Li (241)

By Lemma 16, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (242)

Since B has l s.t. (241), Wi−1 cannot satisfy B. Therefore by condition
2.b.I of Definition 7,

Wi−1 falsifies B (243)

Similarly to 2, given (243), we can show that every possible world Wj satis-
fying pTi−1

(n) does not satisfyB, which implies pTi−1
(n) isΠj-incompatible

with B

4. We prove condition 4. By Lemma 16, there is a unique possible world Wi−1 of
Πi−1 such that:

Wi−1 satisfies pTi−1
(n) (244)

As in 1, we can show that r is active in Wi−1. Therefore, by condition 2.b.II of
Definition 7, we have that every atom p(y) s.t. y ∈ range(ai) belongs to Li−1.
Therefore, condition 4 immediately follows from the fact n is ready to branch
on ai via rule r relative to Πi and lemmas (18), (19).

←

Now suppose n is ready to branch on ai via rule r

random(rn, ai : {X : p(X)})← K (245)

relative to Πj . We show that n is ready to branch on ai via r relative to Πi. We
prove the conditions 1-4 of the definition:

1. Condition 1 follows immediately from the fact that n is ready to branch on ai
relative to Πi.

2. We prove Condition 2:

pTi−1
(n) Πi-guarantees K (246)

By Lemma 16, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (247)

We prove that
Wi−1 satisfies K (248)

We prove by contradiction. Suppose Wi−1 does not satisfy K. By condition
2.b.I, Wi−1 falsifies K. That is, there is a literal l ∈ Li−1 such that Wi−1 does
not satisfy l. Then, by conditions 2.b.II, 2.b.III of Definition 7 and Lemma
15 we have that Πj has a possible world Wj containing Wi−1. By Lemma
11, Wj \Wi−1 ∩ Li−1 = ∅. Therefore, Wj does not satisfy l, and, therefore,
K. This, given that pTi−1

(n) \ {true} ⊆ Wi−1 ⊆ Wj contradicts the fact n is
ready to branch on ai via r relative to Πj . Therefore, (248) holds. Therefore,
the literals occurring in the body of r are from Li−1, and by Lemma (19) we
conclude (246).
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3. We prove condition 3. Let pr(rn, ai = y | B) = v be a pr-atom from Πi. We
show that

pTi−1
(n) either Πi-guarantees B or is Πi-incompatible with B (249)

Since n is ready to branch on ai via rule r relative to Πj , we have 2 cases:

(a) B is Πj-guaranteed by pTi−1
(n). Using the arguments similar to the ones

from 2, we can obtain B ∈ Li−1, and conclude by Lemma 19 that pTi−1
(n)

Πj-guarantees B
(b) B is Πj-incompatible with pTi−1

(n). That is,

every possible world Wj or Πj satisfying pTi−1
(n) does not satisfy B

(250)
By Lemma 16, there is a unique possible world Wi−1 of Πi−1 such that

Wi−1 satisfies pTi−1
(n) (251)

We prove

Wi−1 falsifies B (252)

For the sake of contradiction, suppose (236) is false. By clause 2.b.I of
definition (7) we have:

Wi−1 satisfies B (253)

By clause 2.b.II of Definition 7 and Lemma 15 we have that Πj has a
possible world Wj containing Wi−1. Since B is in Li, by Lemma 11 we
have

Wj satisfies B (254)

Since pTi−1
(n) \ {true} ⊆ Wi−1 ⊆ Wi, we have a contradiction from (254)

and (250).
Therefore, (252) holds. Now let Wi be a possible world of Πi satisfying
pTi−1

(n). By Lemma 11, there is a possible W ′i−1 of Πi−1 such that W ′i−1 ⊆
Wj and

(W ′i−1 ∩Wi) ∩ Li−1 = ∅ (255)

Since pTi−1
(n) is in Li−1, we have pTi−1

(n) ⊆W ′i−1. Therefore, by Lemma
16

W ′i−1 = Wi−1 (256)

From (256), (252), (239) we have that Wi does not satisfy B. Therefore,
pTi−1

(n) is Πi-incompatible with B

4. As in 1, we can show that the body of r is satisfied by Wi−1. Therefore, by
condition 2.b.II of 7, we have that every atom p(y) s.t. y ∈ range(ai) belongs
to Li−1. Therefore, condition 4 immediately follows from the fact n is ready
to branch on ai via rule r relative to Πj and Lemmas (18), (19).

Lemma 21 T = Tk is a tableau for Π \ U = Πk.
2
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Proof Follows immediately from the construction of the T ’s and Π’s, the definition
of a tableau, and Lemmas 20 and 18. 2

Lemma 22 T = Tk represents Π \ U = Πk.
2

Proof Let W be a possible world of Π. By Lemma 17 W contains pT (n) for some
unique leaf node n of T . By Lemma 16, W is the set of literals Π-guaranteed
by pT (n), and hence W is represented by n. Suppose now that n′ is a node of
T representing W . Then pT (n′) Π-guarantees W which implies that W contains
pTm

(n′). By Lemma 17 this means that n = n′, and hence we proved that every
answer set of Π is represented by exactly one leaf node of T .

Now let n be a leaf node of T . By Lemma 16 Π has a unique possible world
W containing pT (n). It is easy to see that W is the set of literals represented by
n. 2

Lemma 23 Suppose T is a tableau representing Π. If n is a node of T which is
ready to branch on a(t) via r, then all possible worlds of Π compatible with pT (n)
are probabilistically equivalent with respect to r.

2

Proof This is immediate from Conditions (3) and (4) of the definition of ready-to-
branch.

Notation: If n is a node of T which is ready to branch on a(t) via r, the Lemma
23 guarantees that there is a unique scenario for r containing all possible worlds
compatible with pT (n). We will refer to this scenario as the scenario determined
by n.

Lemma 24 T = Tm is unitary
2

Proof We need to show that for every node n of T , the sum of the labels of the
arcs leaving n is 1. Let n be a node and let s be the scenario determined by n.
s satisfies (1) or (2) of the Definition of a unitary rule from [8]. In case (1) is
satisfied, the definition of v(n, a(t), y), along with the construction of the labels of
arcs of T , guarantee that the sum of the labels of the arcs leaving n is 1. In case
(2) is satisfied, the conclusion follows from the same considerations, along with
the definition of PD(W,a(t) = y).

Lemma 25 T = Tm is a probabilistically sound representation of Π \ U .

Proof Let R be a mapping from the possible worlds of Π \ U to the leaf nodes
of T which represent them. We need to show that for every possible world W of
Π \ U we have

vT (R(W )) = µ(W ). (257)

By definition of µ, we have:

µ(W ) =
µ̂(W )∑

Wi∈Ω(Π\U) µ̂(Wi)
(258)
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where

µ̂(W ) =
∏

W (a)=y

P (W,a = y) (259)

where the product is taken over atoms for which P (W,a = y) is defined.

By Lemma 24, T is a unitary tree. Therefore, by Lemma 4 we have that the
sum of path values of it’s leaves is 1. Therefore, it is sufficient to show that for
every possible world W of Π \ U

vT (R(W )) = µ̂(W ). (260)

To prove 260, it is sufficient to show that for every possible world W of Π \U (1)
pT (R(W )) contains an atom a = y if and only if a = y ∈ W and P (W,a = y) is
defined, (2) if n is a node in the path P of T from its root to R(W ) which branches
on a, then the probability assigned to the arc which goes from n to its child in P ,
v(n, a, y) is equal to P (W,a = y).

1) ⇒ We first show that if pT (R(W )) contains an atom a = y, then P (W,a = y)
is defined and W (a) = y.
By definition of P (W,a = y), it is defined if and only if there exists a rule of
Π of the form

random(rn, a, p)← K (261)

such that W satisfies K, truly random(rn, a) and p(y).
By definition of T , if a = y belongs to pT (R(W )), there must exist a node n in
the path from the root of T to R(W ) such that n branches on a via some rule
r of the form (261) of Π. This means that pT (n) Π \U -guarantees K and p(y).
By construction pT (R(W )) contains pT (N), thus, pT (R(W )) Π \U -guarantees
the body of r and p(y). Since R(W ) represents W , W must contain all positive
literals in pT (R(W )). Therefore, W satisfies both K and p(y). From rule 261
it follows that W satisfies random(rn, a, p), and, since Π \U does not contain
activity records, W satisfies truly random(rn, a).
By definition of a tableau representing a program, pT (R(W )) Π \U -guarantees
W . By lemma 17 and minimality of possible worlds, W contains pT (R(W )).
This, W (a) = y.

⇐ We show that if P (W,a = y) is defined, and W (a) = y, then pT (R(W ))
contains an atom a = y. We prove by contradiction. Suppose pT (R(W )) does
not contain an atom a = y. There are two possible cases:
(a) pT (R(W )) contains an atom a = y1, where y1 6= y. By definition of a tree

representing a possible world, pT (R(W )) Π \ U -guarantees W . By lemma
17 and minimality of possible worlds (proposition 1), we have that

W satisfies pT (R(W )) (262)

Therefore, W (a) contains both a = y1 and a = y, which is impossible by
definition of an interpretation.

(b) pT (R(W )) contains no literal of the form a = y1 for any y1. In this case,
using minimality of possible worlds, it is easy to see that R(W ) is ready to
branch on a, which contradicts the definition of a tableau.
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2) We show that if n is a node in the path P of T from its root to R(W ) which
branches on a, then the probability assigned to the arc which goes from n to
its child in P , v(n, a, y), is equal to P (W,a = y). By definition of v(n, a, y) ,
we only need to show that W is Π \ U -compatible with pT (n). Since W is a
possible world of Π \U , it is sufficient to show that W contains pT (n)\{true}.
From 262 we have that W contains pT (R(W )) \ {true}. Since n is a node on
the path P from the root of T to R(W ), pT (R(W )) contains pT (n) \ {true}.
Therefore, W contains pT (n) \ {true}.

Therefore, as shown by Lemmas 22, 25, and 24, T is a unitary probabilistically
sound representation of Π \ U , that concludes the proof of Lemma 6.

We are now ready to prove the main theorem.

Theorem 1
Every program from class B is coherent.

Proof Suppose Π belongs to class B ordered and U be the set of activity records of
Π. Proposition 6 tells us that Π \U is represented by some tableau T . Lemmas 24
and 25 tells us that the tree is unitary and that the representation is probabilisti-
cally sound correspondingly. Thus, by Lemma 5 Π is probabilistically consistent.
Since Π belongs to B, Π is logically consistent. Therefore, by Definition 2, Π is
coherent.
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