
Personal Perspective on the Development of
Logic Programming Based KR Languages

Michael Gelfond

Texas Tech University

August 8, 2010

Michael Gelfond Lexington

The Starting Point

In the early 80s I became interested in declarative programming,
knowledge representation, and non-monotonic logics.

My early attempts to understand non-monotonicity lead to
establishing a close relationship between Autoepistemic Logic
and the programming language Prolog, and to the discovery of
Stable Model Semantics of logic programs with negation as
failure.

Gelfond, On Stratified Autoepistemic Theories (1987)

Gelfond and Lifschitz, The Stable Model Semantics for
Normal Logic Programs (1988)

Michael Gelfond Lexington

Normal Logic Programs with Stable Model Semantics

A normal logic program Π consists of a signature σ and a
collection of rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an

where a’s are atoms of σ.

Π defines a collection of stable models — sets of beliefs to be
held by a rational reasoner associated with Π.

Michael Gelfond Lexington

Stable Model Semantics (continued)

Informally, stable models are collections of ground atoms which:

• Satisfy the rules of Π.

• Adhere to the the rationality principle which says: Believe
nothing you are not forced to believe.

Program
a← not b

has one stable model, {a}. The agent associated with the
program believes a to be true and b to be false.

Program
a← not a

has no stable model.

Mathematical definition of stable models captures this intuition.

Michael Gelfond Lexington

Well-Founded Semantics

At about the same time, Well-Founded Semantics was
introduced by Van Gelder, Ross, and Schlipf.

Under this semantics any normal logic program has a unique,
three-valued intended model, e.g.

a← not a

has the model in which a is undefined.

Michael Gelfond Lexington

Discussion: Which is the Right Semantics?

Immediately after this introduction, discussion began about the
relative merits of both semantics from the KR stand point.

Differences of opinion were caused not only by personal
intuitions and tastes, but also by different views on

• the purpose of KR languages, and

• the proper methodology for KR research.

These differences, however, were often hidden in the
background and very rarely articulated.

Michael Gelfond Lexington

The Purpose of this Talk

Since this and other similar discussions continue today, I
thought that it may be useful to talk about my views on the
goals and the methodology of KR-language research.

We do not necessarily need to reach consensus on the subject,
but I believe that asking and answering these questions is
essential for every researcher.

We need to discuss them more often outside of the anonymous
reviewing process.

I’ll start with recalling the discussion which started around
1988, and my reaction to it.

Michael Gelfond Lexington

Proposed Criteria for Language Evaluation

(1) Connectives of a formal language should have a reasonably
clear intuitive meaning.

(2) The corresponding mathematics should be simple and
elegant.

(3) The language should suggest systematic and elaboration
tolerant representations of a broad class of phenomena of
natural language. This includes basic categories such as belief,
knowledge, causality, etc.

(4) A large number of interesting computational problems
should be reducible to reasoning about theories formulated in
this language.

Michael Gelfond Lexington

Proposed Criteria for Language Evaluation (continued)

(5) Reasoning in the language should be efficient.

(6) Entailment relation, |=, of the language should satisfy some
natural properties, e.g. if T |= F and T |= G then T ∪ {F} |= G.

(7) Every program written in the language should be, in some
sense, consistent.

(8) New language should extend the first-order classical logic.

Michael Gelfond Lexington

The Purpose of KR Languages (Personal Perspective)

To decide which of the criteria are important I needed to better
articulate why I want to represent knowledge. Here is a short
answer:

• To better understand basic commonsense notions we use to
think about the world: beliefs, knowledge, defaults, causality,
intentions, probability, etc.

• To design and implement knowledge intensive software
systems.

Michael Gelfond Lexington

Applying the Criteria (Personal History)

I found the first four criteria crucial for a good language. The
next four I discovered to be substantially less important and
sometimes even harmful.

So I gave normal logic programs under Stable Model Semantics
the following grades with respect to the criteria:

B – clarity of intuition

A – mathematical elegance

C- – expressiveness

I – adequacy for solving computational problems

On criteria (5)–(8) the language failed.

Well-Founded Semantics had worse grades on (1) and (2) but
fared much better on (5)–(8).

Michael Gelfond Lexington

Improving Expressiveness: New Connectives

To improve expressiveness, the language of normal logic
programs was extended to include two new connectives:

• classical (strong, explicit) negation

“¬a” — a is false.
(as opposed to “ not a” — belief in the truth of a is not
justified.)

• epistemic disjunction.

“a or b” — the reasoner must believe a or must believe b.
(Hence “a or ¬a” is not a tautology.)

Michael Gelfond Lexington

Answer Set Prolog (Gelfond and Lifschitz)

A program of ASP consists of a signature σ and a collection of
rules of the form:

l0 or . . . or li ← li+1, . . . , lm, not lm+1, . . . , not ln

where l’s are literals of σ, (i.e. l = p or l = ¬p).

The intuition and mathematical definition is very close to that
of stable models.

But a set of beliefs (called an answer set) is now a set of literals!

Michael Gelfond Lexington

Answer Set Prolog (continued)

Program
a← not b

has the answer set {a}.

The agent associated with the program believes that a is true
but is undecided about the truth value of b. (No closed world
assumption!)

The answer set of the program

a← not b ¬b← not b

is {a,¬b}. The agent believes that a is true and b is false.

Michael Gelfond Lexington

Methodology

So what research methodology to use to evaluate our language?

• Initial Modeling of Basic Concept:

Emphasis on faithfulness to the intuition and mathematical
accuracy and elegance of the model.

• Evaluation of the model by its use in designing small
experimental systems capable of performing intelligent tasks.

The emphasis here is on the ability of the model to guide our
design, generalizability of solutions, and discovery of new
phenomena or a new perspective on the old one.

• Evaluation of the language by its use in design and
implementation of midsize practical intelligent software systems.

Emphasis on efficiency, correctness, and degree of elaboration
tolerance.

Michael Gelfond Lexington

What has been Achieved? (Personal Perspective)

• It became clear rather early that

ASP preserves the degree of clarity of intuition and
mathematical elegance of the original language.

• But much time and effort was required to show that:

(1) ASP is much more expressive than the language of normal
logic programs.

(2) ASP is adequate for solving a large number of interesting
computational problems.

• No improvement has been made in criteria (5) – (8).

Michael Gelfond Lexington

Expressiveness

Ways were found to use ASP to represent:

• Rational Beliefs.

• Defaults and their exceptions.

• Causal effects of actions.

I believe that these results can serve as examples of substantial
advances in KR. The next few slides elaborate on this.

Michael Gelfond Lexington

Defaults

The default

“normally elements of class C satisfy property P”

can be expressed as

p(X) ← c(X),

not ab(d(X)),

not ¬p(X).

where d(X) is the default’s name.

Michael Gelfond Lexington

Exceptions to Defaults

c1 ⊂ c is a strong exception to default d(X):

¬p(X)← c1(X).

ab(d(X))← not ¬c1(X).

c2 ⊂ c is a weak exception to default d(X):

ab(d(X))← not ¬c2(X).

If information about membership in class C is complete, the
representation can be simplified.

Michael Gelfond Lexington

Defaults and Reasoning by Cases

Program
c1(a) or c2(a).

p1(X) ← c1(X),

not ¬p1(X).

p2(X) ← c2(X),

not ¬p2(X).

q(X) ← p1(X).

q(X) ← p2(X).

entails q(a).

It is not clear how to model this type of reasoning in either LP
under well-founded semantics or in Reiter’s default logic.

Michael Gelfond Lexington

Expressiveness: Effects of Actions

ASP is capable of elegantly expressing direct and indirect effects
of actions, and addressing the frame and ramification problems.

For instance, the sentence

a causes f

can be written as

holds(f, I+ 1)← occurs(a, I).

The frame problem can be solved by the Inertia Axiom:

holds(F, I+ 1)← holds(F, I), not ¬holds(F, I+ 1).

¬holds(F, I+ 1)← ¬holds(F, I), not holds(F, I+ 1).

Michael Gelfond Lexington

Adequacy: Task Reductions

A large number of problems of high complexity, including
planning and diagnostics, has been shown to be reducible to
computing answer sets of logic programs. See, for instance,

• Relating stable models and AI planning domains, V.S.
Subrahmanian and C. Zaniolo, 1995

• Encoding planning problems in non-monotonic logic
programs, Dimopoulos, Koehler and Nebel, 1997

• Diagnostic reasoning with A-Prolog, M. Balduccini and M.
Gelfond, 2002

Michael Gelfond Lexington

Adequacy: Reasoning Systems

Development of

• efficient answer set solvers and

• Datalog and Prolog implementations

made possible a number of industrial applications built on these
reductions.

ASP was shown to be useful for the design of industrial
strength systems.

Michael Gelfond Lexington

What is Next? (Personal History)

• The addition of explicit negation and epistemic disjunction
improved the EXPRESSIVENESS of the language.

• ASP was shown to be ADEQUATE for solving a large
number of computational problems.

DOES ASP NEED EXPANSION?

Michael Gelfond Lexington

What we could not express in ASP

The answer seems to be “yes”. We were not able to find ways to
represent:

• Indirect exceptions to defaults: contradiction is found not
with conclusion of the default but with consequences of this
conclusion.

• Optimizations requirements: shortest plans, minimal
diagnoses, etc.

• Weak constraints: e.g. “Perform action A only if it is
impossible to get your goal without it”.

Michael Gelfond Lexington

CR-Prolog (Balduccini and Gelfond, 2003)

All this can be expressed in CR-Prolog, a language that
expands ASP by consistency-restoring (CR) rules:

l
+← body

and a partial order on the set of these rules.

A CR rule says that if the reasoner associated with the program
believes the body of the rule then he may, if necessary, believe
its head.

This can only be done if there is no way to obtain a consistent
set of beliefs by using only regular rules of the program.

The partial order on sets of CR rules is used to select preferred
possible resolutions of the conflict.

Michael Gelfond Lexington

Indirect Exceptions in CR-Prolog

The Contingency Axiom (CA) for the default

p(X) ← c(X),

not ab(d(X)),

not ¬p(X).

has the form:
¬p(X)

+← c(X).

Let Π1 consist of the two rules above and:

q(X)← p(X). c(x).

Π1 entails q(x) without use of the CA. But

Π2 = Π1 ∪ ¬q(x)

needs the CA to avoid contradiction and entail ¬q(x).
Michael Gelfond Lexington

P-log: Mixing Logical and Probabilistic Reasoning

P-log (Baral, Gelfond, Rushton) is an extension of ASP which
allows combining of logical and probabilistic reasoning.

• P-log probabilities are defined with respect to an explicitly
stated knowledge base.

• In addition to having logical non-monotonicity, P-log is
“probabilistically non-monotonic” – new information can add
new possible worlds and change the original probabilistic model.

• Possible updates include defaults, rules introducing new
terms, observations, and deliberate actions in the sense of Pearl.

Michael Gelfond Lexington

Conclusion

Much was accomplished by work on ASP.

• Foundations:

We better understand the intuition behind such basic notions
as belief, defaults, probability, causality, intentions, etc.

This was done by the development of new mathematical theory
and the methodology of its applications, and by experimental
engineering.

This foundational work helped to put our science on solid
ground.

Michael Gelfond Lexington

Conclusion (continued)

• Building Systems:

We are learning how to use our theories to build transparent,
elaboration tolerant, provably correct, and efficient systems.

Twenty years ago I didn’t believe that such systems would be
possible in my lifetime. I am obviously happy to be proven
wrong.

For me, this work has been, and (I hope) will continue to be,
deeply satisfying. I hope it will be equally satisfying for the new
generations of researchers.

Michael Gelfond Lexington

