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Abstract

Epistemic Specifications allow for the correct representation
of incomplete information in the presence of multiple belief
sets by expanding Answer Set Programming with modal op-
erators K and M . The meaning of M in the existing work
does not correspond well to the principle of justifiedness ac-
cepted by the community. It is, however, challenging to char-
acterize the justfiedness of each belief, due to the complex-
ity introduced by M . We address this issue by identifying
a belief set with a program which uniquely decides the be-
lief set. This idea leads to a novel definition of the semantics
of Epistemic Specifications which assures that each belief in
any belief set is well justified. We also show that conformant
planning problems can be naturally represented by Epistemic
Specification under our semantics.

Introduction
Answer Set Programming (ASP) is currently a dominant
logic based representation paradigm in the knowledge repre-
sentation community and has found numerous applications
(Gelfond and Kahl 2014; Erdem, Lee, and Lierler 2012).
Epistemic Specifications (Gelfond 1994) extend ASP by al-
lowing introspective reasoning, i.e., reasoning with multiple
belief sets, through the use of modal operators K and M .
There are many potential applications of Epistemic Speci-
fications including conformant planning, autonomous robot
control and policy management (Kahl et al. 2015).

Since Gelfond first proposed a language of Epis-
temic Specifications (Gelfond 1994), several alternative ap-
proaches have been developed in recent years (del Cerro,
Herzig, and Su 2015; Gelfond 2011; Kahl 2014; Kahl
et al. 2015; Truszczynski 2011; Wang and Zhang 2005;
Shen and Eiter 2016). One persistent challenge driving these
works is how to address circular justification, which is gen-
erally thought of as an undesirable property, associated with
theM operator. Consider a simple program Π1 consisting of
one rule:
p←Mp.

which is read as “if it is possible for an agent to believe p, the
agent should believe p.” All existing semantics allow {{p}}
to be a world view of Π1. In this world view, there is a strong
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sense of circular justification for p. To support existing se-
mantics, a third party provides the following example:

flies(X)← bird(X),Mflies(X).

With a set of facts on bird, the program concludes that all
birds fly, which is taken as natural and intended. However, a
similar program

flies(X)← horse(X),Mflies(X),

with a set of facts on horse, will conclude, by existing se-
mantics, that all horses fly, which does not seem to be natural
or intended. This example is certainly not to show that the
existing approach is wrong, but we feel that much work is
needed to have a better understanding of M operator.

The aim of this paper is to develop an intuitive under-
standing ofM operator and a semantics to get rid of circular
justification in a stronger sense. Under this new semantics,
the world view of Π1 is {{}}. (Gelfond 2011; Kahl 2014;
del Cerro, Herzig, and Su 2015; Shen and Eiter 2016) have
addressed circular justification to various extent but all in
a weaker sense than ours since they all accept {{p}} as a
world view for Π1.

We follow the rationality principle (Gelfond and Kahl
2014) which says that a rational agent should believe only
what he is forced to believe, and we understand Mp, i.e., p
is possible, as that belief in p is forced in some belief set of
the rational agent. To formalize this intuition in the context
of Epistemic Specifications, the classical techniques, such
as reduct based or fixpoint based, in defining ASP semantics
do not lend themselves immediately to it. We resort to a new
reduct approach to capture our intended semantics.

We illustrate our ideas by considering a program Π2:

r1 : p←Mq, not q,
r2 : q ←Mp, not p.

Let W = {A1, A2} where A1 = {p} and A2 = {q}. Ex-
isting approaches accept W as a world view. It seems that p
is forced (by rule r1) in A1 due to q in A2, and vice versa.
For us, the belief p and q in different belief sets form a cir-
cular justification.

To address circular justification, for each belief set A of
a world view W , we construct an ASP program from A, W
and the Epistemic Specification to justify the beliefs of A.
For example, first consider A1 and W = {A1, A2}. All
atoms in Π2, without M before them, can be understood



in terms of A1 while atoms prefixed by M can be under-
stood in terms of W . Hence, we add a subscript of 1 to all
atoms without M before them to denote that they are used
to specify A1. As for Mq in rule r1, it is understood as a
q in some belief set of W , and it can only be the q of A2.
r1 is understood as (note q2 below refers to q in A2) r′1:
p1 ← q2, not q1. Note we don’t remove Mq in this under-
standing because q2 may in turn depend on beliefs inA1. By
replacing Mq by q2, circular justification can be taken care
of by the resulting regular logic program(s). Since q 6∈ A1,
we can remove not q1 as in classical ASP reduct (remember
that q1 denotes that the satisfaction of q depends on A1). As
a result, we obtain, from r′1 and A1, the rule r11: p1 ← q2.
For r2, Mp in its body can be only understood, by W , as
p ∈ A1. However, since p ∈ A1, not p1 is not satisfied by
A1. Hence, the rule is useless to justify any beliefs of A1.
So, r11 is the only rule justifying A1 (wrt W ). We use Π21

to denote the rule.
In the same manner, when considering A2 and W , we ob-

tain the program Π22 with one rule r22: q2 ← p1.
Since Π21 refers to an atom in Π22 which in turn refers to

an atom in Π21, we may not use Π21 itself to justify A1. In-
stead, we should use Π21 ∪Π22 to justify A1 and A2. There
is a clear circular justification in Π21 ∪ Π22, which is auto-
matically eliminated by the answer set of Π21∪Π22.A1 and
A2 are not justified by Π21 ∪Π22. So, W is not an intended
world view. In fact, {{}} is the only collection that can be
justified in terms of the approach above.

The main contributions of this paper are of twofold:

• With the help of a new reduct technique, we propose
a new formal semantics for Epistemic Specifications.
The semantics prevents circular justifications in a sense
stronger than the existing approaches.

• We also present a natural and elaboration tolerant rep-
resentation of a class of conformant planning problems,
which provides new insights for the representation of
planning problems with epistemic reasoning capacity.

The rest of this paper is organized as follows. Section 2
introduces necessary notions and basic definitions that will
be used throughout the paper. Section 3 proposes a new
reduct for disjunctive programs which is essential for defin-
ing the new semantics of epistemic specifications. Section
4 presents the definition of justified views and explains how
this new semantics overcomes the difficulties of circular jus-
tification that previous approaches suffer from. Then section
5 provides a revision on justified view definition by taking
maximality into account, which eventually avoids some un-
intuitive results. Section 6 demonstrates a natural and elabo-
ration tolerant representation of a class of conformant plan-
ning problems using our new semantics. Finally, section 7
concludes this paper with some remarks.

Preliminaries
We consider a language L of traditional propositional an-
swer set programs expanded with two modal operators
named K and M . Atoms and literals are defined as usual,
while we also call them objective atoms or literals. For a

given objective atom (literal) l, Kl and Ml are called sub-
jective atoms (literals). Intuitively, we may read Kl as “l is
known to be true”, and Ml is read as “l may be believed
to be true”. We also allow classical negation ¬ to appear in
front of a subjective literal, such as ¬Kl and ¬Ml. Then we
simply call Kl, Ml, ¬Kl and ¬Ml extended subjective lit-
erals. For simplicity, in the following we may also use αl to
denote an extended subjective literal, where α is K, M , ¬K
or ¬M .

A belief set is a set of objective literals. A view is defined
to be a collection of belief sets. The satisfaction of an ex-
tended subjective literal is then defined based on a view. Let
W = {A1, · · · , Ak} be a view. We define the satisfaction of
an extended subjective literal in W as follows:
• W |= Kl iff ∀Ai ∈W , l ∈ Ai;
• W |= Ml iff ∃Ai ∈W , l ∈ Ai;
• W |= ¬Kl iff W 6|= Kl;
• W |= ¬Ml iff W 6|= Ml.

Now we specify an Epistemic Specification (ES) program
to be a finite set of rules of the form:

l1 ∨ · · · ∨ lk ← lk+1, · · · , lm, not lm+1, · · · , not ln, (1)

where l1, · · · , lk and lm+1, · · · , ln are objective literals, and
l1, · · · , lm are either objective literals or extended subjective
literals. Here we also call “not l” a weak negated literal.

Let A be a belief set and l an objective literal. We say
that l is satisfied in A, denoted as A |= l, if l ∈ A; while
not l is satisfied in A, denoted as A |= not l, if l 6∈ A. A
disjunction of literals l1 ∨ · · · ∨ lk is satisfied in A, denoted
as A |= l1 ∨ · · · ∨ lk, if for some li (1 ≤ i ≤ k), li ∈ A.

Now let r be a rule of the form (1) and W a view. We
say that r is satisfied in W , denoted by W |= r, if for each
extended subjective literal l and each objective literal l′ in
{lk+1, · · · , lm}, W |= l, A |= l′ for all A ∈ W , and for
each l′′ ∈ {lm+1, · · · , ln}, A |= not l′′ for all A ∈ W ,
then A |= l1 ∨ · · · ∨ lk for all A ∈ W . Sometimes, we
use “head(r) ← body(r)” to represent r’s form (1). Also,
if r’s body is empty, we simply represent (1) as “head(r)”,
while when “head(r)” is empty, we call “← body(r)” a con-
straint.

An ES program Π is called positive if for each rule r in Π,
r does not contain any weak negated literals. Also, if Π does
not contain any extended subjective literals, Π is reduced to
a traditional disjunctive extended logic program, or simply
called a disjunctive program.

Given a disjunctive program Π and a belief set A, we say
that a rule r in Π is satified in A if A |= body(r) implies
A |= head(r). Π is satisfied in A, or A is a model of Π,
if each rule in Π is satisfied in A. The reduct of Π wrt A,
denoted by ΠA, is the program obtained from Π by first re-
moving rules whose body contains not l such that l ∈ A and
then removing all weak negated literals. A is an answer set
of Π if A is a minimal model of ΠA.

Disjunction Reduct
Our ideas illustrated in section 1 might not work when the
program constructed for a belief set A from a view W has



more than one answer set. The disjunction in the head of
a rule may result in multiple answer sets of a program. To
overcome this, here we introduce the disjunction reduct of a
disjunctive program with respect to a belief set. This reduct
ensures a unique answer set so that the reduct can be taken
as the support/justification of the belief set when its answer
set coincides with the belief set.

Definition 1 (Disjunction reduct) The disjunction reduct
of a positive disjunctive program Π wrt a belief set A, de-
noted by ΠA,∨, is a program resulting from Π by removing
all literals not in A from the head of all the rules of Π.

Example 1 Consider program Π3 = {p ∨ q}. Given A1 =

{p} andA2 = {q}, then we have ΠA1,∨
3 = {q} and ΠA2,∨

3 =
{p} respectively. �

The intuition behind the disjunction reduct is quite clear:
if a literal occurring in the head of a rule is not contained in
the underlying belief set, then this literal is not derivable wrt
this belief set, and hence does not affect other literals in the
head. So we simply remove it from the head. The follow-
ing result, whose proof is in the supplement, shows a close
connection between the disjunction reduct and the classical
semantics of disjunctive programs.

Proposition 1 A is an answer of a positive disjunctive pro-
gram Π iff A satisfies all rules of Π and A is the answer set
of the disjunction reduct of Π wrt A.

Justified Views
In this section, we give a precise definition on justified views
for ES programs. Firstly, as illustrated in the introduction
section, we need to define a reading/interpretation on all ex-
tended subjective literals occurring in an ES program against
every belief set in the given view, and such interpretation
provides a key step in defining a justified view.

Definition 2 (Modal operator interpretation) Consider
an ES program Π and a collection W of belief sets
{A1, ..., An}. Let ELΠ be the set of all occurrences of
extended subjective literals in Π, and OLΠ = {li, not li | l
is an objective literal occurring in Π and i ∈ 1..n}. A modal
operator interpretation for Π wrt view W is a mapping ρ
from ELΠ × 1..n to OLΠ, defined as follows:

∀i ρ(Kl, i) = li, if W |= Kl; (2)

∀i ρ(Ml, i) = lj , if W |= Ml and l ∈ Aj ; (3)
∀i ρ(¬Kl, i) = not lj , if W |= ¬Kl and l 6∈ Aj ; (4)

∀i ρ(¬Ml, i) = not li, if W |= ¬Ml. (5)

Let us take a closer look at Definition 2. Basically, map-
ping ρ provides an interpretation on an extended subjective
literal against some particular belief set in the given view.
For instance, if subjective literal Kl is satisfied in view W ,
then for every belief set Ai ∈ W (1 ≤ i ≤ n), l must be
in Ai. In this case, we interpret Kl as li, indicating that the
objective literal l is in belief set Ai. This interpretation is
specified by (2). On the other hand, suppose the subjective
literal Ml is satisfied in W . Then according to the seman-
tics, there exists some Aj such that l ∈ Aj , for which we

view as a supporting evidence for Ml being satisfied in W
and assign ρ(Ml, i) = lj , as depicted in (3). The negative
subjective literals such as ¬Kl and ¬Ml are specified by
(4) and (5), respectively, based on similar explanations.

It should be noted that we do not provide a modal opera-
tor interpretation for an extended subjective literal αl if it is
not satisfied in W . This is because a rule containing an un-
satisfied extended subjective literal will be simply removed
during the process of generating a modal reduct, as will be
shown later.
Example 2 Consider program Π4 as follows:
p←Mq, not q,
q ←Mp, not p,
← not p, not q.

Let A1 = {p}, A2 = {q} and W = {A1, A2}. The only
modal operator interpretation wrt W is ρ(Mp, i) = p1 and
ρ(Mq, i) = q2 for all i ∈ 1..2. �

Definition 3 (Modal reduct) Consider an ES program Π, a
collection W of belief sets {A1, ..., An}, and a modal oper-
ator interpretation ρ with respect to W and belief set Ai.
The modal reduct of Π based on W , Ai and ρ, denoted as
ΠW,Ai,ρ, is the program obtained from Π by the following
three steps:

(1) renaming each literal l not occurring in any subjective
literal in Π by li;

(2) removing rules whose body contains αl such that W 6|=
αl, and finally,

(3) replacing every occurrence of extended subjective literal
αl in the remaining program by ρ(αl, i).
Intuitively, by generating the modal reduct, we reduce the

ES program Π to a disjunctive logic program ΠW,Ai,ρ, in
which all objective literals in Π not occurring in any subjec-
tive literals are labelled with subscript i indicating that they
are explicitly associated with belief set Ai. Furthermore, all
rules containing not satisfied extended subjective literals in
W will be removed, and all other satisfied extended subjec-
tive literals in W are then replaced by their corresponding
objective or weak negated objective literals with proper jus-
tifications under ρ. The following example illustrates more
details about this transformation.
Example 3 [Example 2 continued] Still consider program
Π4 as in Example 2. We consider a collection W =
{A1, A2} of belief sets, where A1 = {p}, A2 = {q}. Then
it is easy to see that ρ(Mq, i) = q2 and ρ(Mp, i) = p1 (i =
1, 2) is a modal operator interpretation. Then we have the
following two modal reducts: ΠW,A1,ρ

4 = { p1 ← q2, not q1.
q1 ← p1, not p1. ← not p1, not q1}, and ΠW,A2,ρ

4 = {
p2 ← q2, not q2. q2 ← p1, not p2.← not p2, not q2}. �

Now we are in a position to present the key definition -
justified view.
Definition 4 (Justified view) Consider an ES program Π
and a collection W of belief sets {A1, ..., An}. Let B =
{li | l ∈ Ai, i ∈ 1..n}. A full reduct of Π with re-
spect to W , Ai and a modal operator interpretation ρ, de-
noted by ΠW,Aiρ,not,∨, is the program obtained by apply-
ing modal reduct based on W , Ai and ρ, Gelfond-Lifschitz



reduct and disjunction reduct with respect to B in sequence

to Π: ((ΠW,Aiρ)
B

)
B,∨

. W is a justified view of Π if there
exists a modal operator interpretation ρ such that B is the
answer set of the program

⋃n
i=1 ΠW,Ai,ρ,not,∨.

Example 4 [Example 3 continued] Let us consider program
Π4 in Example 2 once again. As in Example 3, let W =
{A1, A2}, where A1 = {p}, A2 = {q}, and ρ(Mq, i) = q2

and ρ(Mp, i) = p1 (i = 1, 2). Then we have ΠW,A1,ρ
4 and

ΠW,A2,ρ
4 as showed in Example 3.
Let B1 = {p1} and B2 = {q2} and B = B1 ∪ B2.

From Definition 4, we then have (ΠW,A1,ρ
4 )

B
= { p1 ← q2},

and (ΠW,A2,ρ
4 )

B
= { q2 ← p1}. Since the heads of the

rules do not have disjunctions, the programs above keep the
same after disjunction reduct. Therefore, ΠW,A1,ρ,not,∨

4 =

{p1 ← q2}, denoted by Π41, and ΠW,A2,ρ,not,∨
4 = {q2 ←

p1}, denoted by Π42.We can see thatB is not an answer set
of program Π41 ∪Π42. So W is not justified.

Now we consider W ′ = {A′1}, where A′1 = {}. Since
W ′ 6|= Mp and W ′ 6|= Mq, no modal interpretation is
needed. So the only full reduct is: {←}, which, clearly, has
no answer set. This follows that W ′ is not justified either.
In fact, it is not difficult to show that Π4 does not have any
justified view. �

Without getting into details, we can also show that pro-
gram Π2, which is illustrated in the introduction section
and the same as Π4 except not including the constraint
“← not p, not q”, has a unique justified view {{}}, accord-
ing to our previous definitions.

Example 5 Consider the program Π5:

p ∨ q,
q ∨ s,
a← ¬Mp,
b← ¬Ms,
c← not a,
d← not b.

Let W1 = {{p, s, c, d}, {q, c, d}} and W2 = {{q, a, b}}.
Since W1 6|= ¬Mp and W1 6|= ¬Ms, there is “no” modal
operator interpretation for extended subjective literals in Π4

under W1; while ρ(¬Mp, 1)) = not p1 and ρ(¬Ms, 1)) =
not s1 provide modal operator interpretations under W2.
We also have B = {p1, s1, c1, d1, q2, c2, d2} and B′ =
{q1, a1, b1} based on W1 and W2, respectively.

For the case of W1, we obtain two full reducts, denoted
by Π51 and Π52 respectively, as follows: Π51 = { p1. s1.
c1. d1}, and Π52 = { q2. c2. d2}. Clearly, the answer set
of Π51 ∪ Π52 = B = {p1, s1, c1, d1, q2, c2, d2}. So W1 is
a justified view of Π5. On the other hand, for the case of
W2, there is one full reduct: {q1. a1. b1} whose answer set
is B′ = {q1, a1, b1}. So W2 is also a justified view of Π5.

In fact, we can further show that W1 and W2 are the only
two justified views of program Π5. �

World views: Integrating Justifiedness and
maximality

As we have shown in the last section, justified views provide
a sound basis for defining the semantics of ES programs.
Now the question is: may we use the justified view as the
final semantics for ES programs? Let us first consider a sim-
ple program Π6 consisting of a single rule:

p ∨ q.

It is not hard to see that Π6 has three justified views: {{p}},
{{q}} and {{p}, {q}}. Obviously only the last one should
be a rational model for Π6.

What the justified view lacks is the maximality that we
should capture for reasoning about incomplete information.
In this section, we integrate such maximality into our jus-
tified views and therefore to provide a semantic foundation
for ES programs.

Definition 5 (Maximal view) Let Π be an ES program and
W = {A1, · · · , An}, where A1, · · · , An are belief sets. A
disjunctive program ΠW is called the general modal reduct
of Π with respect toW , denoted by ΠW , if it is obtained from
Π by performing the transformation for every rule r ∈ Π:

(1) for every Kl occurring in r, replacing it by l if W |= Kl,
otherwise removing r from Π;

(2) for every Ml occurring in r, removing it from r’s body if
W |= Ml, otherwise removing r from Π;

(3) for every ¬Kl occurring in r, removing it from r’s body
if W |= ¬Kl, otherwise removing r from Π;

(4) for every ¬Ml occurring in r, replacing it by not l if
W |= ¬Ml, otherwise removing r from Π.

We call W a maximal view if W is the collection of all an-
swer sets of ΠW .

It is worth mentioning the difference between the modal
reduct defined in Definition 3 and the general modal reduct
defined above. In the former transformation, an extended
subjective literal αl is either replaced by its modal operator
interpretation explicitly associating to its belief set justifica-
tion, or causes an elimination of the rule if it is not satisfied
in the underlying view.

The general modal reduct, on the other hand, is to maxi-
mally retain the objective literal information during the pro-
cess of eliminating extended subjective literals. For instance,
consider condition (4) in Definition 5, if W |= ¬Ml, it im-
plies that for each A ∈ W , l 6∈ A, in this case, instead of
removing it from r’s body, which is equivalently to replace
it by T, we replace ¬Ml by not l to keep objective literal
information in the resulting rule. Note that for condition (3),
we indeed remove ¬Kl from r’s body if W |= ¬Kl. This
is because in this case although we know that there exists
some belief set not containing objective literal l, we do not
know exactly which belief set. So conservatively, we simply
assume ¬Kl to be true.

Based on Definition 5, it is simple to check that
{{p}, {q}} is the unique maximal view of Π6. It is also easy
to see that not all maximal views are justified. For instance,
for program Π1 = {p ← Mp} mentioned in Introduction,



both {{}} and {{p}} are maximal, but only the first one is
justified.

Definition 6 (World view) Let Π be an ES program andW
a collection of belief sets. W is a world view of Π iff W is a
justified and maximal view of Π.

Example 6 Consider Program Π7:

p ∨ q,
q ∨ r,
p←Mp,
s← p, q,
s←Ms,
← p, not s.

Let W1 = {{p, q, s}, {p, r, s}} and W2 = {{q}}. It can be
showed that both W1 and W2 are maximal.

From Definitions 2 and 3, we can also obtain the two
modal reducts wrt to {p, q, s} and {p, r, s} as follows:
{p1∨q1. q1. p1 ← p2. s1 ← p1, q1. s1 ← s1.← p1, not s1},
and {p2. r2. p2 ← p2. s2 ← p2, q2. s2 ← s1.← p2, not s2}.
We can verify that W1 is justified according to Definition 4.
Similarly, we can also verify that W2 is justified. Therefore,
W1 and W2 are two world views of Π7. �

An Application in Conformant Planning
In this section, we illustrate an application of our ES pro-
grams for conformant planning. Our definition of confor-
mant planning is based on the action language AL (Turner
1997; Baral and Gelfond 2000) and the work in (Tu et al.
2011).

Space limitation does not allow us to include definitions
of AL statements (causal laws, executibility conditions and
state constraints), fluents, actions, states and transition dia-
gram here. These definitions can be found in (Gelfond and
Kahl 2014). A system description is a set of AL statements.
It is used to specify a transition diagram of a dynamic do-
main. Given a system descriptionD, we use T (D) to denote
the transition diagram specified byD. We use Π(D,σ, {a}),
where D is a system description, σ a state and a a set of
actions, to denote the ASP program Π(D) ∪ {holds(l, 0) :
l ∈ σ} ∪ {occurs(ai, 0) : ai ∈ a} where Π(D) is an ASP
program obtained from D as in (Gelfond and Kahl 2014).
Actions of a are said to be prohibited in a state σ of a tran-
sition diagram T (D) defined by a system description D if
D contains an executibility condition for actions a0 ⊆ a
whose body is satisfied by σ; otherwise, actions in a are said
to be executable in σ. A sequence of actions a0, . . . , an−1

is executable in a state σ if the sequence is empty or a0 is
executable in σ and the sequence a1, . . . , an−1 is executable
in σ′ for every 〈σ, a0, σ

′〉 ∈ T (D).
A system description D is consistent if for any state σ1

and an action a executable in σ1, there exists at least one
state σ2 such that 〈σ1, a, σ2〉 ∈ T (D). A system description
is deterministic if for any state σ1 and action a, there is at
most one state σ2 such that 〈σ1, a, σ2〉 is a transition defined
by T (D). A system description D is stable if for any state
σ, Π(D,σ, {}) has a unique answer set A and σ = {l :
holds(l, 1) ∈ A}. Intuitively, a system description is stable

if no matter what state the system is in, the system keeps in
the same state when no action occurs.

A conformant planning problem is a triple 〈D,Σ, g〉
which consists of a system description D of an action lan-
guage AL, a collection of the possible initial states Σ, and
a goal g where g is a set of fluent literals. A sequence
α = 〈a0, . . . , an−1〉 of actions is called a solution to P
if α is executable in every state of Σ and for any path
σ0, a0, . . . , an−1, σn of T (D) where σ0 ∈ Σ, g is true in
σn, i.e., g ⊆ σn. A solution α of a conformant planning
problem P is simple if no proper prefix of α is a solution of
P .

Given a conformant planning problem P = 〈D,Σ, g〉, let
m be the maximal number of steps allowed. We construct
the following ES program, denoted by τm(P ), whose world
views contain solutions of the problem.

1. Rules for the dynamic domain. For each statement of
D, translate it to ES rule(s), as defined in (Gelfond and
Kahl 2014), except the statements of executability condi-
tion which are translated as follows: for each executability
condition

impossible a if l1, . . . , ln,

it is translated into

prohibited(a, S)← holds(l1, S), . . . , holds(ln, S)

where prohibited is a new predicate, prohibited(a, S)
denotes action a is prohibited at step S and holds(l, S)
denotes that fluent l holds at step S. Finally include the
rules for inertia axioms over non defined fluents.

2. Rules for the initial situation and goal.
(a) relation goal(S) is defined by the rule

goal(S)← holds(g, S).

(b) The initial situation is defined by the collection of dis-
junctions of the form:

h1 ∨ . . . ∨ hk.
where each h is a literal of the form holds(f, 0) or
¬holds(f, 0) where f is a fluent, and the awareness ax-
iom

holds(F, 0) ∨ ¬holds(F, 0).

3. Rules for conformant planning:
(a) Action generation. At any step, an action, if not prohib-

ited in some belief set and the goal is not achieved in
every belief set, may or may not occur.
occurs(A,S) ∨ ¬occurs(A,S)←

¬M prohibited(A,S),¬K goal(S).

(b) At any step, only one action is allowed.

¬occurs(A2, S)← occurs(A1, S), A1 6= A2.

(c) At any step, if an action occurs in a belief set, it occurs
in every belief set, i.e., the same action occurs in every
belief set.

occurs(A,S)←M occurs(A,S), S<m.
(d) Add the constraint that at some step, the goal is

achieved in every belief set.

success← K goal(S).

← not success.



To find a conformant plan, we need to find a sequence of
actions such that no matter what the initial state is, the ac-
tions always achieve the goal. Intuitively, there is a one-one
correspondence between the belief sets of a world view of
the ES program above and the initial states. The step 3(a)
applies the classical ASP method to generate actions, with
a condition that action a is not prohibited by any belief set
(i.e., ¬M prohibited(a, S)). The step 3(c) says that if an
action occurs in one belief set of a world view, it should
also occur in all the other belief sets of the world view. This
rule naturally guarantees one sequence of actions is shared
by all belief sets. The first rule of the step 3(d) says that if
the goal is achieved in every belief set (i.e., from every pos-
sible initial state) at the same step, then we have success.
These rules are natural extensions of the classical ASP rules
for planning problems by straightforwardly adding the new
requirement needed by conformant planning, demonstrat-
ing the elaboration tolerance capacity of our semantics. Our
work is inspired by Kahl et al (2015)’s representation of this
problem. The main difference is that their representation is
not as elaboration tolerant (from planning problems to con-
formant planning problems) as ours. For example, in their
work, the classical action generation rule is replaced by a
new rule using M operator, and several involved rules are
invented to assure the goal is achieved in the last step in ev-
ery belief set.

The condition and correctness of our model of conformant
planning problems is assured by the following result.

Proposition 2 Given a conformant planning problem P =
〈D,Σ, g〉 where D is consistent, deterministic and stable,
A sequence α = 〈a0, ..., aj〉, where j < n, of actions is a
simple solution of P iff there is a world view W of τn(P)
such that occurs(ak, k) (k ∈ 0..j) belongs to its belief sets.

Proof sketch. The proof is rather long and tedious and we
only give a sketch here. Let Π be obtained from τn(P) by
removing rules 3(d) in the definition of τn. We use Πi (i ∈
0..n) to denote the rules of Π whose head literals have step i
as their parameter. For each Πi, we further divide it into Πi

f :
all rules defining holds, i.e., rules of the form step 1 (except
those for executability conditions), 2(b) in the definition of
τn; and Πi

gp: all rules defining goal and prohibited, i.e.,
rules for executability conditions and rules in step 2(a); Πi

o:
all rules defining occurs, i.e., rules of form 3(a)-(c).
We now prove the necessary condition⇒.

For each path p = (σ0, a0, . . . , aj , σj+1), where σ0 is
an initial state of P , of T (D), we define a function s
which maps p to a set of literals as follows. For a state
σ, we use h(σ, i) to denote {holds(l, i) : l ∈ σ}. Let
GP (i) (i ∈ 0..j + 1) be the set of literals such that
h(σi, i) ∪ GP (i) be the answer set of h(σi, i) ∪ Πi

gp. Let
notO(ai, i) = {¬occurs(a, i) : a 6= ai}. Intuitively,
GP (i) contains all literals with predicates of goal and
prohibited derived from the state σi. Then s(p) is defined as
(∪i∈0..j(h(σi, i)∪GP (i)∪{occurs(ai, i)}∪notO(ai, i)))∪
(∪i∈j+1..n(h(σj+1, i) ∪ {goal(i) : goal(j + 1) ∈ GP (j +
1)} ∪ {prohibited(a, i) : prohibited(a, j + 1) ∈ GP (j +
1)}.

Let W1 = {s(p) : p = (σ0, a0, . . . , aj , σj+1), where σ0

is an initial state of P , is a path of T (D)}.
We can show that W1 is maximal and justified, and thus

W1 is a world view of Π. By the construction of W1,
occurs(ak, k)(k ∈ 0..j) belongs to each of its belief set.
We next prove the sufficient condition⇐.

Assume W is a world view of τn(P). We can show that
the occurs atoms of the belief sets of W coincide. Let
W1 = {A − {success} : A ∈ W}. By Lemma 1, W1

is a world view of Π and there is some step s such that
W |= K goal(s). Let s be the smallest step such that
W |= K goal(s). We can show that there is an action ai oc-
curs at each step i for i ∈ 0..s − 1 in each belief set of W1.
We can show that a0, . . . , as−1 is executable at any initial
state σ0. We can also show for any path σ0, a0, . . . , as−1, σs,
where σ0 is an initial state, of T (D), goal is achieved in σs.
Hence, a0, . . . , as−1 is a solution of P . Since s is the short-
est step such that W1 |= K goal(s), no proper prefix of
a0, . . . , as−1 is a solution of P . Hence, a0, . . . , as−1 is a
simple solution of P . �

Lemma 1 used above, whose proof is in the supplement,
shows that a program with those two rules in step 3(d) has a
world view if and only if there exists s such that the goal is
achieved at step s in every belief set of the world view.
Lemma 1 Consider a program P , where success does
not occur, and rules success ← K goal(S) and ←
not success. Let P ′ = P ∪ {success ← K goal(S). ←
not success}. W1 is a world view of P ′ iff W2 = {S −
{success} : S ∈ W1} is a world view of P and there is
some s such that W1 |= K goal(s).

Concluding Remarks
We develop a semantics for Epistemic Specifications using
the idea of identifying each belief set with a program, and
demonstrate the representation power of Epistemic Specifi-
cations on a class of conformant planning problems.

The semantics of Gelfond (2011) and Kahl et al. (2015)
are based on new definitions of program reduct. Del Cerro
et al. (2015) employ here-and-there logic to define epistemic
equilibrium models and autoepistemic equilibrium models
for an epistemic specification. Shen and Eiter (2016) pro-
pose a new semantics based on a so-called maximal guess
of epistemic negation to minimize knowledge with respect
to a world view. All these works eliminate circular justifi-
cation to different extent. However, all of them allow {{p}}
to be a world view for program {p ← Mp}, while its only
world view is {{}} by our semantics.

It can be verified that our semantics for Epistemic Speci-
fications coincides with ASP’s for programs without modal
operators. It is an interesting future work to study conditions
when the different semantics coincide with each other. Our
work will be continued in several directions: allowing nested
and arbitrary modal formulas in a rule (del Cerro, Herzig,
and Su 2015; Wang and Zhang 2005); studying the compu-
tational properties and identifying program classes with de-
sirable complexity in practical applications; and developing
a practical planner based on Epistemic Specifications under
our semantics.
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