CHAIR’S MESSAGE

Dear Alumni and Friends,

It is my distinct honor and privilege to address you in my capacity as the Chair of the Texas Tech Electrical and Computer Engineering (ECE) department. Last year I served as Interim Dean of the Whitacre College of Engineering and am honored to be back as of August 1st, 2023. I am filled with a profound sense of pride and optimism for this academic year.

The ECE department has 25 tenured faculty/tenure track faculty and ten instructors, all with a passion for improving education for future electrical and computer engineers. We are home to 652 undergraduate students and 144 graduate students who have the opportunity to obtain B.S. degrees in Computer and Electrical Engineering, and Electrical Engineering M.S. and Ph.D. degrees, focusing on design, development, and research. We’ve added some new spaces to our department and are particularly grateful to Evelyn Davies for the new undergraduate lab.

This edition delves into our student and faculty accomplishments in research and features current news from the Texas Tech ECE Department.

Stephen Bayne, Ph.D.
Professor and ECE Chair
Texas Tech University (TTU) professor Dr. Ravi Joshi recently received several federal awards in the area of radiofrequency (RF) bioeffects. One of them is $436k from ICWERX for Numerical Modeling for RF Bioeffects, while the others for $449k are from the Office of Naval Research (ONR) for Multiscale, Multiphysics Study of Thermal and Nonthermal Directed Energy Biological Effects.

Developments in the fields of electrical stimulation technology and directed energy (DE) have made a set of versatile and powerful tools available for altering and manipulating the bio-responses of both excitable and non-excitable cells on command. It may also be possible to spatially modulate the electrical intensities to make use of constructive and destructive interference to produce strong electrical inputs and intensities at specific tissue targets, while mitigating signals at other locations. Furthermore, as has now been shown, the use of high-frequency bursts (the so-called MHz compression) can elicit bio-responses at substantially lower field strengths. For example, MHz compression has been shown to excite neurons at 2-3 times lower electric charge thresholds than conventional pulses. This would be particularly beneficial for electrostimulation (ES) therapies and to reduce the hardware requirements to generate the electrical signals. However, the mechanisms underlying these processes are not clear, meriting hypothesis-based investigations and model-based simulations. As part of these projects, appropriate multi-physics simulations for RF/DE bioeffects are to be carried out.

The ICWERX effort includes Drs. B. Ghosh, A. Idesman and D. Le at TTU. The ONR research is a collaboration with Purdue University. Dr. Joshi is active in the field of bioelectricity, and his interests lie in the use of pulsed power and/or ultrashort electrical stimulation for electromanipulation of biosystems. This includes the potential for tumor treatment (e.g., electrochemotherapy) and cardiac applications (ablation for managing arrhythmia). He has co-authored a book recently (Ultrashort Electric Pulse Effects in Biology and Medicine, Springer, New York, 2021), is a Fellow of the IEEE, IOP, IETE, and IET, and has over 10,000 scientific citations.
In an achievement that underscores his dedication and expertise, Dr. Jacob Stephens has been selected as one of the recipients of the highly prestigious 2023 Air Force Office of Scientific Research (AFOSR) Young Investigator Program (YIP) awards. Dr. Stephens’ research interest is in High Power Microwave and Millimeter Wave Sources and Associated Technologies, Compact, Solid-State and Large-Scale Pulsed Power Systems and Applications, Low-Temperature Plasmas and HV Breakdown. This distinction recognizes his outstanding contributions to the world of scientific research and his potential to make a profound impact on the field. Congratulations Dr. Stephens!

From left to right: Braden Baird, Michael Mounho (Students), Dr. Jacob Stephens
DR. LIE RECEIVES PRESTIGIOUS TTU BARNIE E. RUSHING JR. FACULTY DISTINGUISHED RESEARCH AWARD FOR 2023

Dr. Lie received the TTU Barnie E. Rushing Jr. Faculty Distinguished Research Award for 2023 at the TTU International Culture Center. Dr. Lie represented the Whitacre College of Engineering (WCOE) as the only recipient from WCOE this year. The Barnie E. Rushing Jr. Distinguished Award is one of the highest research awards from Texas Tech University. Linda Swindling, JD, Vice-President of the Texas Tech Parents Association (TTPA), who hosted the award event, and the President of Texas Tech, Dr. Schovanec, were in attendance.

The Barnie E. Rushing, Jr. Distinguished Research Award recognizes excellence in research, scholarship, and creative activity. Two awards are given: one for the STEM (science, technology, engineering, and math) disciplines and one for the social science, humanities, and creative arts disciplines. Finalists for this award are selected through a three-phase process. During the first phase, initial nominations are made by the Colleges. In the second phase, nominees are evaluated by a committee comprised of the Associate Deans of Research. They are evaluated on quality of scholarship, publications or creative works, and reference letters. Finally, two nominees from each award category are submitted to the Texas Tech Parents Association to make the final award decision. The recipients of this award each receive an honorarium of $3,000 and are recognized at both the Parents Association’s Annual Faculty & Student Breakfast Reception and the Faculty Honors Convocation hosted by the Provost’s Office.

Nominees who are not chosen as recipients of the Barnie E. Rushing, Jr. Faculty Distinguished Research awards are considered for the Outstanding Researcher award. Recipients of the Outstanding Researcher award receive a $1,500 honorarium and are recognized at the Faculty Honors Convocation.
DR. DONALD LIE'S RESEARCH GROUP WINS BEST PAPER AWARD AT ICCE-TW 2023

The 2023 IEEE International Conference on Consumer Electronics – Taiwan (ICCE-TW) was held from July 17-19 at Howard Beach Resort Kenting. Dr. Donald Lie of the TTU WCOE presented his group's work in the Best Paper Award Competition Session as one of the eight finalists, among which includes a paper from UC Berkeley, and a paper from Hokkaido University, Japan.

Out of 400+ papers submitted (over 75 submissions from Japan alone), Prof. Lie’s group paper titled “Examples of Linearity Improvement for Millimeter-Wave 5G Power Amplifiers Using Wideband Digital Predistortion (DPD)” was awarded as the sole first-place winner of the Best Paper Award, during the ICCE-TW ’23 award banquet on July 18, 2023.

This is the 10th ICCE-TW conference, with this year's focus on “Generative AI, Trusted Edge Mesh and B5G/6G Innovation in Consumer Electronics” and the vision to set ICCE-TW as a milestone in the Consumer Electronic field and become a historic and dominant conference year after year with support from the IEEE Consumer Technology Society. Prof. Lie would like to offer his sincerest congratulations to the hard-working students and researchers in his team, including the first author and Ph.D. student Gokul Somasundaram; former Ph.D. student Dr. Jill Mayeda (at Tokyo Tech now); Ph.D. student Clint Sweeney; former Ph.D. student and current CEO, Founder & President of NoiseFigure Research (NFR) Inc., Dr. Jerry Lopez. Prof. Lie would also like to thank the ECE Dept. and WCOE at TTU for the great support they have offered.
CLINT SWEENEY, BEST PAPER AWARD & NXP FOUNDATION GRADUATE FELLOWSHIP

Clint Sweeney is a third-year Ph.D. student working in Dr. Donald Lie’s Radio Frequency Integrated Circuit (RFIC) lab here in TTU’s ECE department, and over the last year, his research in mm-Wave RFIC design has won recognition for their lab through best paper awards. He was awarded a best paper award for his research at a conference last spring, and his colleagues, Gokul Somasundaram and Liang-Wei Ouyang, were also each awarded with a best paper award at conferences over the spring and summer. Their group is focused on performing accurate and detailed work, and they are all very dedicated to learning and to their research. They mainly work on the design of high-frequency amplifiers for 5G communications but are interested in expanding their research to include more front-end modules of transceiver systems. Sweeney’s strong work ethic and discipline are recognized by his receipt of the NXP Fellowship this year. Congratulations to Clint Sweeney for this incredible accomplishment.

AARON CARMAN, NXP FOUNDATION GRADUATE FELLOWSHIP & SAE ENGINEERING SCHOLARSHIP

In a great achievement for himself and the ECE department, Aaron Carman has been awarded the NXP Foundation Graduate Fellowship and the Society of Automotive Engineers (SAE) Doctoral Engineering Scholarship. The NXP Foundation Graduate Fellowship recognizes promising young minds in the STEM field, and the SAE Doctoral Engineering Scholarship provides financial support for students pursuing a Master’s or Doctorate in engineering with the intent of pursuing a career in teaching engineering at the university level. Congratulations to Aaron Carman on receiving these prestigious scholarships. We are immensely proud of his accomplishments and wish him all the best in his future endeavors.
HELENE DENG, TECH INTRAPRNEURSHIP PROGRAM

Helene Deng is a junior majoring in electrical engineering (EE) with a minor in mathematics at Texas Tech University (TTU). Helene was one of the students recently selected to represent the Tech Intrapreneurship Program (TIP) from TTU at the inaugural S-STEM Scholars Meeting in Washington, D.C., held between September 14-16, 2023. This event was organized by the American Association for the Advancement of Science (AAAS) and funded by the National Science Foundation (NSF).

Helene Deng

TIP is a competitive scholarship program funded by the NSF and Texas Instruments (TI), which provides students with valuable mentorship, development seminars, and entrepreneurship programs.

In high school, Helene’s interest in EE was kindled when she became a research apprentice in the United States Army Educational Outreach Program (USAEO) at the TTU Electrical and Computer Engineering (ECE) Department. This experience deepened her interest in the subject and affirmed her career path.

Currently, she is a team coordinator for TTU ECE’s Get Excited About Robotics (GEAR) and the vice president of the TTU Student Branch of the Institute of Electrical and Electronics Engineers (IEEE). She also works as a student assistant in the TTU ECE Main Office.

Helene is looking forward to an EE internship with Burns & McDonnell in Summer 2024, which will help her gain valuable experience toward becoming an electrical engineer. In her free time, she enjoys baking, traveling, DIY-ing, and spending time with friends and family.
EMILY SCHROCK, SWE DISTINGUISHED NEW ENGINEER AWARD

Emily Schrock is a principal member of the technical staff at Sandia National Laboratories and serves as a principal investigator for multiple projects on compact pulsed power systems for directed energy applications. She has performed research and development in a laboratory and successfully conducted remote testing of laboratory systems in the field. For her contributions to national security, she has been nominated for five individual and team employee recognition awards and has received three Sandia performance awards. Through her projects and collaborations, Emily has become internationally recognized as a subject matter expert in compact pulsed power and directed energy. She has a history of leading through the Institute for Electrical and Electronics Engineers’ (IEEE) pulsed power committees and conferences, and through the Directed Energy Professional Society’s (DEPS) conferences. She is currently serving as the Vice Chair for the Pulsed Power Science and Technology (PPST) technical committee. She is passionate about advancing the next generation of engineers and serving her local community through community outreach, the creation and fruition of a nursing support group at Sandia, and serving as the treasurer for the local SWE-CNM professional chapter.
MEET OUR NEOLEST FACULTY MEMBERS

As another academic year begins, we are delighted to extend a warm and enthusiastic welcome to our newest additions to the faculty team. The Electrical and Computer Engineering department boasts 25 tenured faculty and 10 instructors.

TAEWOO KIM, Ph.D.

Dr. Taewoo Kim has just joined the Electrical and Computer Engineering Department at Texas Tech University (TTU) as an assistant professor. He majored in electrical engineering and computer science and then earned a Ph.D. degree at Gwangju Institute of Science and Technology in South Korea in August 2008. After, he worked as a postdoctoral research associate at the Massachusetts Institute of Technology (MIT) for three years. Next, he worked at SEMATECH, INC, where he oversaw III-V CMOS development, including non-planar FinFET, TFET, and vertical nanowire MOSFETs for future high-speed and logic applications.

Later, he worked at Samsung Austin Semiconductor, where he was the 14-nm FEOL module leader in the process integration group. Following that, he was employed at the University of Ulsan as an associate professor. His accomplishments with author/co-author include five outstanding academic research awards/honors, more than 100 international presentations, 100 international publications, and one book chapter. His research interests include “State-of-the-art” III-V/Nitride Transistor development, “Heterogeneous” Integration, and Cryogenic device physics for Quantum Computing Applications.
HIEU P. NGUYEN, Ph.D.

Dr. Hieu P. Nguyen has just joined the Electrical and Computer Engineering Department at Texas Tech University (TTU) as an associate professor. Previously, he was with the New Jersey Institute of Technology (NJIT), where he was an assistant professor, then associate professor of electrical engineering, and the director of the molecular beam epitaxy facility. He received his Ph.D. degree in electrical engineering from McGill University, Canada in 2012. He is a recipient of the 2020 US National Science Foundation CAREER award and the 2019 Saul K. Fenster Innovation in Engineering Education Ward for his creativity and innovation in teaching.

He is the author/coauthor of more than 100 journal articles and 100 conference presentations. His current research interests include: (1) epitaxial growth, fabrication, and characterization of nanoscale nitride semiconductors; (2) nanostructured photonics including light-emitting diodes (LEDs), laser diodes, waveguides, and photodetectors; (3) light-emitters for flexible electronics, displays, and AR/VR applications; (4) surface/air/water disinfection; (5) nanostructured single photon sources for quantum photonics; (6) solar cells and solar fuel cells; and (7) III-nitride and oxide based memory devices and field-effect transistors (FETs), and high-electron-mobility transistors (HEMTs).
KAI WU, Ph.D.
Dr. Kai Wu joined the Department of Electrical and Computer Engineering at Texas Tech University as an assistant professor in 2022. He obtained his bachelor’s degree in electrical engineering in 2013 from Northwestern Polytechnical University. And his Ph.D. degree in electrical engineering at the University of Minnesota in 2017. From 2017 to 2020, he served as a postdoctoral fellow at the University of Minnesota, followed by a role as a Researcher 5 from 2020 to 2022. His research focuses on various areas, including machine learning-assisted healthcare, spintronics, magnetic biosensors, magnetic nanomaterials, and medical imaging. He is the Associate Editor of the IEEE Sensors Journal, an IEEE senior member, and an ACS member.

HICHAM CHAOUI, Ph.D.
Dr. Hicham Chaoui is currently an associate professor at Texas Tech University. He is a recipient of the Best Thesis Award, the Governor General of Canada Gold Medal Award, the Carleton’s Research Excellence Award, the Early Researcher Award from the Ministry of Colleges and Universities, and the Top Editor Recognition from IEEE Vehicular Technology Society.

His career has spanned both academia and industry in the field of intelligent control and renewable energies. His research interests include adaptive and nonlinear control theory, intelligent control, robotics, mechatronics, autonomous systems, electric motor drives, and energy storage and management. His scholarly work has resulted in around 200 journal and conference publications. Dr. Chaoui is a senior member of IEEE and an Associate Editor of IEEE Transactions on Power Electronics, IEEE Transactions on Vehicular Technology, IEEE Transactions on Automation Science and Engineering, and several other journals. He is the General Co-Chair of the IEEE Vehicular Power and Propulsion Conference (VPPC) to be held on October 2024 in Washington, DC.
MEET OUR NEWEST STAFF MEMBERS

The Texas Tech Electrical and Computer Engineering Department is pleased to welcome our new staff members.

JENNY ERMANN
ACADEMIC ADMINISTRATIVE COORDINATOR

Jenny Erdmann is a Lubbock native, returning to her hometown after 15 years on the East Coast. She has been working with both undergraduate and graduate students throughout her career. Jenny earned a master’s degree in library science from Indiana University. Prior to arriving at Texas Tech, she worked for nine years providing research assistance and information literacy instruction to students of all levels as a research librarian at UNC Greensboro, Virginia Wesleyan University, and High Point University. During that time, she also taught as a writing and research skills instructor for the First-Year Writing program at High Point University.

Jenny enjoys problem-solving and working directly with students, making the Academic Administrative Coordinator for the Electrical Engineering graduate program an excellent fit. Her goals this year involve improving program data collection, raising greater awareness for the department’s Accelerated bachelor’s to master’s program, and finding new ways of communicating and celebrating graduate student accomplishments.

When not in the office, Jenny chases her 4-year-old son, James, keeps up with music practice, and enjoys spending time with her Lubbock relatives. It has been a long way home, but she is thrilled to finally be a Red Raider.
ANDREW VANDERPOOL
CHIEF ADVISOR - COMPUTER ENGINEERING

Andrew Vanderpool was born and raised in Lubbock, Texas, and has a 5-generation family tradition here at Texas Tech. He graduated from the College of Human Sciences with a bachelor of science in human development and family studies, and he graduated from the TTUHSC with a master of science in healthcare administration.

Andrew has been working at Texas Tech since 2010 in Academic Advising in various colleges and departments but now calls the Whitacre College of Engineering and the Electrical & Computer Engineering department home. He also teaches student development courses, including RaiderReady Program’s freshman seminar and a program for Academic Retention seminar to further connect with WCOE and ECE students. Andrew has two crazy mini-Australian Shepherds, and a niece and nephew, which keep him busy. He’s an avid TTU sports fan and hopes one day we can be good at football and basketball at the same time!

DARA OLAWALE
STUDENT ASSISTANT

Dara Olawale is a junior majoring in civil engineering with a minor in architecture who works as a student assistant in Texas Tech University’s Electrical and Computer Engineering (ECE) Main Office. Dara is an international student born in Nigeria, but she grew up in the island country of the Seychelles. She is a highly involved student, being an active member of the TTU American Society of Civil Engineers, the African Student Organization, and an executive board member of the National Society of Black Engineers.

Dara has a passion for photography, editing, and graphic design. She is an editor for the ECE Newsletter. Outside of work, Dara enjoys reading, drawing, listening to French and African music, and watching a good show!
TRANSFORMATIONS AT TEXAS TECH: UNVEILING THE NEW FACE OF ELECTRICAL AND COMPUTER ENGINEERING SPACES

By Lewis Edwards

Texas Tech University's campus has seen a number of renovations and changes over this past year, so much so that it could be difficult to keep up with.

We're here to keep you updated on these new additions to your beloved University's grounds. On this episode of What's New, we're featuring a classroom and a lab from the Department of Electrical and Computer Engineering.

We'll start with a classroom like no other with Electrical Engineering Raider Room 101. This classroom has had major renovations, including a complete demolition, new seating, finishes, and, my favorite part, the lighting.

The lighting in this room portrays an electrical current similar to human brain function. This classroom definitely stands out.

"The ceiling symbolizes a connection between the electrical signals within our brains and the exchange of knowledge," said Project Manager Jesus Martinez.

Having a major part in this classroom coming to life, Martinez was able to provide some insight as to the inspiration behind the design.

"I sought a pragmatic approach to symbolize the transfer of knowledge from educators to students while simultaneously embodying the spirit of the Electrical Engineering school."

Martinez's daughter is a Texas Tech student and happened to have a class in the very room her father designed, Raider Room 101 (EE101).

She sent some photos to her father accompanied by a text that read, "I think I'm having class in the room that you designed." She described feeling engaged and a part of something more important while being in the classroom.
"It was heartwarming to hear how this design made her feel significant and valued in her learning environment and how, with our designs, we can provide an impact in our student community," said Martinez.

The second classroom we will be discussing is the Evelyn M. Knox Davies Lab class lab 007, also in the Electrical Engineering building. Red Raider alumna Evelyn Davies has a strong connection and philanthropic history with Texas Tech.

This lab used to be a dated robotics lab and has now undergone a complete renovation with changes to seating, lighting, and finishes. The lab also now features a robotic track that will allow students to demonstrate their robotic vehicles and cameras to record.

"Before the renovations, I think the last time the room was touched was in the 1980s," said Design Specialist Maegan Scott. "The space is a lot more open now and way brighter."

This lab’s modern design, equipped with all the bells and whistles, is sure to give students an improved experience to continue their learning journey.
CHIPS ACT: BRINGING SEMICONDUCTORS BACK HOME TO TEXAS, FUELING GROWTH AND INNOVATION

By Payton Reeves

Semiconductors, or as they're more widely known, microchips, are in almost anything these days, from cars to cell phones to aircrafts. Senator Cornyn’s CHIPS Bill is one that’s supposed to bring the manufacturing of those important little pieces back to the U.S. to create jobs, boost the economy, and prevent shortages like the ones not too long ago.

“What this money will do is allow this facility to increase, to grow, to add the manufacturing and the silicon chips that our nation needs and use the incredible workforce of Lubbock to do it,” said Lubbock County Judge Curtis Parrish.

Lubbock already has a name in microchip manufacturing, but many, like Lubbock County Judge, Curtis Parrish and X-Fab President, Lloyd Whetzel, are hoping to expand that footprint with federal funding.

“Today we have roughly a $200 million expansion approved that will bring jobs in excess of 100 to Lubbock, and double the capacity for our silicon carbide production,” said Whetzel. “We believe we are positioned very well in this emerging market that brings value to the semiconductor industry through the energy efficient improvement the silicon carbide has with respect to silicon, today it is a dominant material in our industry.”

Texas Senator, John Cornyn, helped get the CHIPS and Sciences Act passed in Congress last year, and spent the day touring X-Fab’s facilities.
“I know X-Fab has had a tremendous expansion and is planning to apply for additional funding through the CHIPS Act passed last year,” said Cornyn. “This legislation would provide for up to $39 billion in manufacturing centers, roughly $13 billion for increased research and development, as well as workforce development.”

Cornyn also said there are national security risks involved with China and Taiwan producing a majority of the world’s semiconductors, among others.

“[A] potential future pandemic, heaven forbid, or a natural disaster would mean immediate recession here in the United States,” said Cornyn. “The economic consequences would be terrible, but the national security vulnerability just seems to be obvious to me and others.”

While some may be surprised to see Texas Tech playing a large part in semiconductor development, the school spends a little more than $3 million a year on research in that field. University President, Dr. Lawrence Schovanec, said with the CHIPS Act—along with more possible state funding—that research will only improve.

“Many people think about Tech’s work in the area of energy and agriculture, but we do have a substantial number of faculty that work in the semiconductor space,” said Schovanec. “They’ve had more than 500 students who’ve interned out here, and so this will capitalize upon that expertise, the prospects of bringing more federal funding.”

Altogether, Cornyn said he’s confident in this push to bring manufacturing home because the Texas way is the best way.

“Texas is truly still the land of opportunity where people can come and work hard and pursue their dream,” said Cornyn. “I think this is a part of that puzzle, so I think the sky’s the limit.”
HOW WE MADE THE MICROLED

By Dr. Hongxing Jiang and Dr. Jingyu Lin

“How we made the microLED” was published in Nature Electronics by Texas Tech Electrical and Computer Engineering professors Hongxing Jiang and Jingyu Lin, inventors of the microLED. A summary of the article is given below.

Micro-light-emitting-diode (microLED) display applications are growing quickly as technology companies begin to use them in a range of products. Key to the development of these applications was the miniaturization of gallium nitride light-emitting diodes.

Hongxing Jiang and Jingyu Lin share the story to the creation of the microLED. In the late 1990s, blue and white light-emitting diode (LED) technology was revolutionizing the lighting and consumer electronics industry. At the time, Jiang and Lin’s team at Kansas State University were investigating size and microcavity effects in gallium nitride (GaN) LEDs. They questioned what might happen if such an LED was reduced to the micrometer scale.

With success, in August 1999, they observed blue-light emission under a microscope from a microLED of only 12μm in diameter. Their results were reported at the 1999 Materials Research Society (MRS) Fall meeting in Boston.

In November 2000, they created a 10 x 10 microdisplay consisting of an array of individually controlled microLEDs. The microdisplay exhibited many features, including self-emissivity, low power consumption, fast operating speed, long lifetime, wide color gamut, and high-resolution brightness and contrast. The results were published in Applied Physics Letters in February 2001.
Initially, Jiang and Lin struggled to find funding, leading to the founding of their own company, III-N Technology (3N). In 2007, they proposed the active driving microdisplay idea to the Night Vision and Electronic Sensors Directorate of the U.S. Army and received funding and approval to proceed.

Near the completion of the project, they delivered several blue and green to the Army, who commented that they had never seen such bright microdisplays. Following their report in Applied Physics Letters in July 2011, microLEDs began to receive serious industry attention.

Working as a husband-and-wife team was a blessing, says the pair. One likes to focus on the big picture, while the other likes to focus on the details. The path from technology invention to commercialization is long, but they offer advice to enjoy every success, even in moments of failure.
Institute of Electrical and Electronics Engineers
Contact: Sahil Shamdasani
sshamdas@ttu.edu

IEEE Nuclear & Plasma Sciences Society
Contact: Luke Boswell
luke.boswell@ttu.edu

IEEE Women in Engineering
Contact: Gracia Jimenez
gracia.jimenez@ttu.edu

IEEE Eta Kappa Nu (HKN)
Contact: Keegan Kelp
keegan.kelp@ttu.edu

National Society of Black Engineers
Contact: Edward Onasanya
edonasan@ttu.edu

Society of Hispanic Professional Engineers
Contact: Ivan Rivera
ivanrive@ttu.edu
Electrical and Computer Engineering
Texas Tech University, 910 Boston Avenue – ECE 224
Lubbock, Texas 79409-3102
(806) 742-3533
department.ece@ttu.edu

Join Us On Twitter @TexasTechECE

Join Us On LinkedIn @Texas Tech Electrical and Computer Engineering Department

Janet McKelvey – Managing Editor
Helene Deng – News Editor and Photographer
Dara Olawale – News Editor and Creator