|
/

(30

28

Lo

Using Computers in Qualitative Research

THOMAS 1J.

RICHARDS

LYN RICHARDS

MOST qualitative researchers now work with com-
puters, but relatively few use software designed
for qualitative analysis. This is not because they
see no need for help in handling rich, complex, or
messy data. Rather, computers offer no instant
solutions to the problems faced by qualitative
researchers, because the data they handle are par-
ticularly resistant to tidy processing methods and
the methods they use are very unlike the tech-
niques computers easily support. The past decade
has produced a plethora of software packages that
seem as though they should help, but these are
packages designed for executives, librarians, and
banks. There is now a much smaller group of
programs designed for particular approaches to
qualitative research, but they are less accessible
and less professionally presented. Thus the re-
searcher is offered a bewildering range of ways
of handling textual data on computers, and many
of these are quite different from the methods
found in qualitative texts. The computer method
can have dramatic implications for the research
process and outcomes, from unacceptable restric-
tions on analysis to unexpected opening out of
possibilities.

Our purposes in this chapter are to look at
methodological features of qualitative data analy-
sis (QDA) to consider how, and how much, and
how well, it can be computerized; to give an
overview of general-purpose packages that can be
used in QDA, and some types of special-purpose

QDA packages; to discuss how they can be used
and how well they work; to provide some pointers
to future software developments; and to stimulate
methodological debate on computational QDA.
We have written elsewhere of our concerns about
the impacts of computing techniques on method
and the real dangers of software constraining and
distorting research (Richards & Richards, 1991a,
1991b), and of our experiences as researchers
making the transition to computers (Richards &
Richards, in press). The first remains a back-
ground theme in this chapter.

Most reports on software options are accounts
of particular programs, usually by their develop-
ers and/or marketers. We ourselves are, inter alia,
developers. (NUDeIST, the software we devel-
oped in our research, is now marketed by a com-
pany at our university.) Like literary critics who
are also novelists, we have a methodological po-
sition and a commitment to its products. The
reader, thus informed, can evaluate our arguments.

Both as researchers and as software designers,
we started from the research processes involved
in relating data and theory in qualitative data
analysis and the different ways software might
support or distort them. This chapter starts there.
We then describe and critique a series of types of
software in terms of purposes and design, exam-
ining the implications of the method supported by
each. Thus we offer a methodological map, and,
like all maps, it selects the features to be presented.

445

446 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

Our goal is to emphasize the new frontiers, rather
than to offer a list of product descriptions.

Product descriptions are readily available from

developers (to counter our standpoint): For a spe-
cial journal issue on this topic, see the November
1991 issue of Qualitative Sociology; for confer-
ence paners. see Fieldine and T ea 711001 N1
COtidaUu LU W Whuse Coilecuons (ulcxuaing oul'sj
are arguments for particular software approaches.
For penetrating comparative reviews by a nonde-
veloper and nonmarketer, see Miles and Huber-
man (1994, Appendix A) and, for more depth,
Weitzman and Miles (1994). For earlier partial
surveys, compare Tesch (1990) with Pfaffenber-
ger (1988) on sociological approaches, and both
with Bailey (1982), Hockey (1980), and Miall
(1990) on related software for humanities.

Here instead we offer the researcher a compara-
tive account of software architectures and of the
directions of developments. We encourage read-
ers to evaluate software packages in terms of what
they propose to do (Did you want to do that?) and
what new techniques might or might not enhance
analysis or restrict method. Having chosen a soft-
ware approach, the best way to get up-to-date
information on software is to send for current
product descriptions and demonstration disks and
read the survey literature. A list of addresses for
the developers of the programs discussed here is
included in the appendix to this chapter.

Theory and Data

Working “up” from data is often presented as
what qualitative research is especially about. It is
done in many ways: building new understandings
from “thick descriptions”; reflecting on and explor-
ing data records; discovering patterns and construct-
ing and exploring impressions, summaries, pen por-
traits. All such efforts have theoretical results. They
produce new ideas and new concepts, which are
sometimes linked and presented more formally as
new theories. Most approaches to qualitative re-
search also work “down” from theory. They incor-
porate, explore, and build on prior theoretical input,
on hunches or ideas or sometimes formal hypothe-
ses. Many also stress the testing of theory derived
from the project’s data.

Computers easily offer assistance in the man-
agement of complex data. They also, with more
difficulty, can be used in the discovery and man-
agement of unrecognized ideas and concepts, and
the construction and exploration of explanatory
links between the data and emergent ideas, to
make fabrics of argument and understanding around
them.

Managing Data

Ideas are produced in qualitative research in
heterogeneous ways, many of which are not given
the august title of “theorizing.” It is not our pur-
pose to survey the range of those methods; rather,
weeimelonnts that thare Jen mmes o0 Pel ot
methods are supported by software. As other chap-
ters in this volume indicate, different researchers
have different methods (and terms) for the explo-
ration and understanding of rich data; production
of “thick descriptions” (Geertz, 1973, p. 26); dis-
covery and uses of patterns; construction of new
concepts and testing of old; linking of these into
theoretical frameworks, explanations, and mod-
els; and validating of impressions and conclu-
sions. Nor are these unchanging. Theory testing
is emphasized increasingly even in recent writ-
ings in the “grounded theory” tradition (Glaser &
Strauss, 1967; see also Strauss & Corbin, 1990),
which is often, in our view mistakenly, presented
as the dominant approach to theorizing in quali-
tative research. ,

All these processes involve the recognition of
categories in the data, generation of ideas about
them, and exploration of meanings in the data.
Because the categories and meanings are found in
the text or data records, this process demands data
management methods that support insight and
discovery, encourage recognition and develop-
ment of categories, and store them and their links
with data. Ease of access to data is important to
support recognition of the surprising and unex-
pected, construction of coherent stories, and ex-
ploration of sought patterns, as well as construc-
tion and testing of hypotheses (Bogdan & Taylor,
1975). But those methods also must not get in the
way, by distorting rich records, diluting “thick
descriptions,” or demanding routines that destroy
insight.

When these theorizing processes were done
using manual data-handling methods, researchers
often (though by no means always) managed their
data by coding for retrieval. The code-and-re-
trieve process consists of labeling passages of the
data according to what they are about or other
content of interest in them (coding or indexing),
then providing 2 way of collecting identically
labeled passages (retrieving). Collecting photo-
copied segments into labeled hang files and writ-
ing text references onto labeled index cards are
two obvious noncomputational code-and-retrieve
techniques. The technique of annotating passages
in page margins is code only.

Before computers, many researchers did not
code segments of text. Rather, they felt through,
explored, read and reread, “worked and reworked
the particulars of ethnographic inquiry” (Kirk &
Miller, 1986, p. 32). This required a simpler and

Usir.

mor
sear
data
the :
nart
rive

den
edg
For
met
cor
sub
Ag
imj
put

ret

suj
rec
an¢
sec

lar
be
tai

ov
da

pe
SE
of
ti¢
o1
ti

—_—— o~ DO

Using Computers in Qualitative Research

more complex form of data management, as re-
searchers compared and systematically builtupon
data records, keeping growing memo records about
the accruing evidence and their exploration of its
narrative and convincing body. Theory was ar-
rived at and tested not through the retrieval of text
dence analysis, including consideration of know}-
edge about the site or story that is not in the text.
For an eloquent account of why code-and-retrieve
methods can fail the ethnographer, and of how
computing technology rather than the research
subject can determine ethnographic method, see
Agar (1991)—an autobiography that is the more
important because Agar himself is a user of com-
puters and “select-and-sort” techniques.

Many researchers still do not use the code-and-
retrieve method. Possibly fewer would use the
method now if the software they bought did not
support it. But it is certainly the most widely
recommended technique for management of rich
and complex records. (For different approaches,
see, e.g., Hammersley & Atkinson, 1983; Lofland
& Lofland, 1984; Lincoln & Guba, 1985; Miles
& Huberman, 1984.) However, despite its popu-
larity, the code-and-retrieve method has rarely
been examined as a method. The literature con-
tains many lucid descriptions of how data records
were handled, but reveals little serious debate
over what that method of data handling does to
data or how it contributes to analysis.

This taken-for-granted method was easily sup-
ported by computers and became the basis of most
specialist QDA software. Computers, moreover,
offered the possibility of addressing its limita-
tions and adapting the code-and-retrieve mode of
organization to assist with other theorizing activi-
ties. The method was thus subjected to debate in
the new context of computing. An odd result of
these developments was that the code-and-retrieve
method for the first time was treated as in some
way atheoretical, merely “descriptive-analytical”
(Tesch, 1990). The creation of this dichotomy
both underestimates the method and skews cri-
tiques of software based on it. One of our argu-
ments below is that all of the specialized software
we describe is so based. All of these software
packages canbe used just for coding and retrieval.
‘And far from merely supporting description, tech-
niques of coding for retrieval strongly support
some ways of making ideas, and of constructing
and testing theories.

First, the generation of categories, even the
simplest descriptors, whether arrived at prior to
data reading or by discovery of recurrent topics
(Bogdan & Taylor, 1975) or in vivo categories in
text (Strauss, 1987), is a contribution to theory.
Decisions are being made about what is a category
of significance to the study, what questions are
being asked, what concepts developed, what ideas

4417

explored, and whether these categories should be
altered, redefined, or deleted during analysis. Sec-
ond, decisions about what text segments are rele-
vant to a category are never merely clerical decisions;
they always involve some theoretical considera-
tion. Third, the viewing of segments from many
- pmente nn one tonic or selected topics always
OLICIS @ HEW Wily DI SCChilg Ui 4 i3 tiie ry -
claim of the method to support analysis, and re-
searchers using it clearly engage in the building
up of theories. Moreover, the method supports
pursuit of patterns by comparison of text seg-
ments on that topic from different sources (€.8.,
Did the young women have different ideas about
domestic duties from women of other age groups?).
Such questions may be crucial for locating pat-
terns and are sometimes formally portrayed by
presentation of data in qualitative matrices (Miles
& Huberman, 1984).

So it is misleading to label the code-and-re-
trieve method as not theory building. But the
challenge remains to adapt it to ways of record-
ing, linking, exploring, testing, and building cu-
mulatively on the insights derived from data. To
draw on a distinction first made by Turner (1981),
theory emergence in qualitative research is inter-
linked with processes of theory construction. 1deas,
concepts, and categories discovered in the data
are woven by researchers into fabrics of theory.
These processes offer greater challenges to soft-
ware designers.

Theory Construction

Theory construction in qualitative research (the
exploration and linking of theoretical and other
organizing and explanatory concepts and state-
ments) is creative, not merely mechanical. The
data-handling tasks associated are thus highly
complex. And theory testing is usually part of
theory construction, nota subsequent stage. Con-
cepts are captured; links are explored, created,
and tested; ideas are documented and systemati-
cally reworked, in textual memos, models, and
diagrams expressing the specification, explica-
tion, exploration, and elaboration of theories. How
can computers support this?

The code-and-retrieve method, we have argued,
supports theory emergence. It also expresses theo-
res that can be represented by codes and then
tested by looking for codes in text and studying
the relationships of codes. Computer-based code-
and-retrieve will do this better, because comput-
ers are good at working with structure, not con-
tent. In a code-and-retrieve system, we express or
define content by coding the text.

Suppose, for example, you have a hypothesis
that people of a certain type and in a certain
situation will behave in a certain way, and you

448 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

have comprehensive interviews with individuals
that check in each case for the types and condi-
tions and the behavior, and the interview tran-
scripts are coded for these. An example is “Young
mothers who are reluctant to return to work ex-
plain it in terms of a woman’s duty to stay at

Foavme ™ Thon g eimele oty 40 o F -

the interview lexts can be used to confirm the
theory’s correctness (check if there are any inter-
views coded for all the types and conditions but
not for the behavior) and completeness—*“Only
young mothers . . . ”—(check if there are any in-
terviews coded for the behavior but not for all the
types and conditions).! Note that what we are
doing here is successfully using co-occurrences
of codes within interview documents as evidence
for features of theories: Textual structure as de-
lineated by code-and-retrieve methods can be re-
lated to theoretical content (including informa-
tion about the world). If this were not so, we
would not use code-and-retrieve methods.

But this is not always so. Most social science
theories find their support in the content of the
data, not the structure of textual records. Man-
agement of records by use of code-and-retrieve in
such cases offers help, but that help is limited to
retrieving all passages coded with something rele-
vant to the theory in question, so that the re-
searcher can reflect on them all together.

This is not an insignificant contribution. The
ability to retrieve all the text about a certain topic
or topics strongly supports the development of
new insights. The computer can do this quickly
and efficiently. Sophisticated programs offer a
wide range of ways of selecting retrievals accord-
ing to co-occurrence or non-co-occurrence of codes
in text, allowing the researcher to “fracture” the
data (Strauss, 1987) and see it anew. But this
contribution to the researcher’s ability to access
data should not obscure an important distinction:
that between the textual level of work, which is
where code-and-retrieve methods operate, where
we code for talk-about-return-to-work and talk-
about-mothering, and the conceptual level of work,
where theories about people and the world are
expressed, where evidence and argument are brought
to bear, and where returning to work and mother-
ing are explored.

The code-and-retrieve method we have described
applies only to text. That which is coded and
retrieved is the document. Literally, one codes talk-
about-mothering (the text passages), not mother-
ing (the concept). But no researcher stops there.
What one would also like to do with software is
to support directly conceptual-level work, not just
textual-level work—that is, to have software that
could directly represent the concept of equality
and how it gets related to the concept of parenting.

So the dichotomy that matters is not descrip-
tive-analytic versus theoretical: All data manage-

ment methods involve theorizing. Rather, in as-
sessing what computers contribute we need to
distinguish textual-level operations from concep-
tual-level operations. Whereas code-and-retrieve
as we have described it is a textual-level opera-
tion, one’s codings and retrievals are guided by
theory, and (inevitably) put theoretical blinkers
on one’s access to the text. Textual-level opera-
tions are theoretically relevant, but they do not
construct or operate on theories.

Finding ways of supporting theoretical-level
operations in qualitative research offers a major
challenge to software designers. Consider, for
example, how we work when developing theory
from the text. We often get going by finding little
things that relate in some meaningful way—per-
haps, if our interest is in stress, that certain topics
get discussed in anxious ways (and that is some-
thing that good coding and retrieval can find for
us). So then we start looking for components in
those topics that might cause anxiety, often by
studying the text, finding or guessing the compo-
nents and coding for them, recalling situational
facts not in the text, and looking for suggestive
co-occurrences of codes. We might on a hunch
start looking at text passages on people’s personal
security and how they arrange it (research on
background theory here, and Iots of coding again),
to see if there is some possible connection be-
tween components occurring in the anxiety topics
and security arrangements. If we find one, the
theory is still thin, so we embark on a search for
others, and thereby look for a pattern. The result
of this is a little group of chunked-together coded
text, ideas and hypotheses that, provided they can
be kept and accessed as a chunk, can become an
ingredient in further more abstracted or wide-
ranging explorations. This chunk is said to be of
larger “grain size” than its component codings,
and it may in turn become an ingredient of a later
theorizing of larger grain size still that is built out
of existing chunks. (Big fleas are made out of
smaller fleas.)

And so the web—of code, explore, relate, study
the text—grows, resulting in little explorations,
little tests, little ideas hardly worth calling theo-
ries but that need to be hung onto as wholes, to be
further data for further study. Together they link
together with other theories and make the story,
the understanding of the text. The strength of this
growing interpretation lies to a considerable ex-
tent in the fine grain size and tight interknitted-
ness of all these steps; and the job of qualitative
data handling (and software) is to help in the
development of such growing interpretations.

This network of concepts, evidence, relations
of concepts, coordinations of data, of hierarchies
of grain size where the theory/data/explanation
chunks of one grain size are the data for the work

S it

Using Comy

of the next
model of pe:
lief systems
a person (e.
structs an €
The proc:
PO ot matn s
theories, h
tion (as wit
tual codes).
tom, guide
larger-scale
pirical glea
the larger-¢
in many wa
it not so, t!
unempirica
And if one
will show u
of trying tc
from the s
Here is wh
amenable ¢
exceptions
more mear
patterns to
We will
tions betw:
strapping.
port for thi
on softwar
be basic tc
want to hc
concepts, «
so on that
accessible
have been
of whichy
system th:
justtheda
in some s¢
tion systel
And be«
we have ¢
theories be
the analys’
explanatic
more data
The very
become
analysis (!
as data.
theory/da:
so they c¢
at the ne
known as
the syste:
tem, bect
qualitativ

Using Computers in Qualitative Research

of the next grain size up, is a good fractal-like
model of people’s explanatory belief systems (be-
lief systems are explanation systems). This is how
a nerson (e ¢ | a sorial scientist) reflectively con-
SiaUd din vapadital.vlly o Sl y, 2l Qi LUk Gt

The process is not all bottom-up, however. The
researcher uses at each stage expectations, prior
theories, hunches, experience, and a good educa-
tion (as with the theoretical determination of tex-
tual codes). The network builds up from the bot-
tom, guided by a vision of the structure of a
larger-scale network into which these small em-
pirical gleanings must fit. When one gets there,
the larger-scale structure is likely to be different
in many ways from the early ghostly vision; were
it not so, the constructed theory would be quite
unempirical, quite unconditioned by one’s data.
And if one’s prior ideas are wildly out, then that
will show up in the increasingly procrustean strains
of trying to build the anticipated larger structures
from the small, heavily data-conditioned ones.
Here is where one’s critics will show one a more
amenable approach to interpreting the data, fewer
exceptions requiring fewer ad hoc justifications,
more meaningful relationships binding cases and
patterns together, more elegance.

We will call this description of building rela-
tions between data and theory data-theory boot-
strapping. Providing direct conceptual-level sup-
port for this process puts some interesting demands
on software design. Coding for retrieval seems to
be basic to such procedures, but researchers also
want to hold their growing nets or hierarchies of
concepts, evidence links, groupings of ideas, and
so on that make up the explanatory structure in an
accessible way that will help them see where they
have been and give access to the fine grains out
of which we build the larger grains. The software
system that would help with this would hold not
just the data and tools for manipulating it, but also
in some sense the growing analysis and explana-
tion system.

And because, in that recursive fractal-like way
we have described, the partial results and little
theories become part of the data for the next move in
the analysis, that software would treat the analysis/
explanation material added to the database as
more data alongside the original textual material.
The very analytic structures, the explanations,
become more data. Indeed, the very processes of
analysis (the computations) should be fed back in
as data. That is, we want to save as data the
theory/data/explanation chunks of one grain size
so they can be explored as data for explanations
at the next level up. Methodologically, this is
known as system closure: Results obtained about
the system, analytic technigues used on the sys-
tem, become part of the system. A hallmark of
qualitative social science research (but not of

449

physics) is that the data being researched in a
project are closed over its own techniques and
results. System closure is the software feature
needed to sunport directly the conceptual process

[U S VR TUT R PRUTSL 1S LRI TH UNCUSV I

not sufficient—system closure will not necessar-
ily give you a leg up on direct conceptual-level
software operations.)

Qualitative researchers also need to jump from
one code to a conceptually related one (to explore
theory) or to a factually related one (to explore
patterns in the world the research is about). So the
database should maintain and exploit theoretical
links between concepts, and the real-world facts
about and links among people, places, actions, and
50 on, not just explore fextual links between codes
representing those concepts, people, and so on. If,
for example, we store that John is married to Mary,
that John is a blue-collar worker, and that John has
been out of work (note that these are facts that might
not be expressed in the text at all), we should then
be able to ask for all the remarks of women married
to out-of-work blue-collar people on some coded
topic and automatically get Mary’s remarks.

The procedures of theory construction described
here require above all a very flexible, very easy-
to-modify database, that will shift, reorganize,
undo, and backtrack to earlier states. This is be-
cause the process of constructing an understanding
is tentative, involving the exploration and testing
of hunches at all grain size levels, hanging onto
them if they look good for now, throwing them
away when they no longer fit, while maintaining
the rest of the growing structure.

Can computers assist with, even improve on,
the ways we construct and test theory? Can they
go further, and support the explicit formulation of
theory? What of the explicit finding and record-
ing of knowledge about the situation being stud-
ied, the putting of data to theory?

Current Situation
in Qualitative Software

In the following sections we explore the archi-
tecture and purposes of available software. We
start with types aimed at a broad class of users,
but that can offer advantages not available in
specialist packages. This provides a basis for un-
derstanding why special-purpose packages arose
and what they try to do. We then deal with those,
considering first software that adapts the traditional
code-and-retrieve method, and then approaches
that combine that method with new ways of con-
structing the links among theories, knowledge,
and text, testing them and modeling them.

[—

450 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

General-Purpose Software Packages

Word Processors

Apart from the obvious and familiar advan-
topoes (such ag ahility to incnect an entire dnen.
Mchi, COndle alld CXpPLoie selected exuacts il a
new document, print it out, line number it, edit it),
the modern word processor (WP) offers some
features unmatched in most specialist QDA soft-
ware. If the data are textual (e.g., interviews) and
in WP document form, these features include the
following:

The ability to handle multiple documents
on-screen in separate windows at the same
time, which facilitates comparing themati-
cally similar passages in different documents
and copying segments of one document to
another.

The ability to handle formatted files (using
the WP program’s own format conventions)
so that tables, diagrams, and the like can be
included. Most special-purpose QDA pack-
ages work only with text-only ASCII files.
The ability to include static pictures, charts,
tables, and so on as illustrations or as edit-
able models of the emerging ideas and dia-
grams of the theories. These need not be
computer generated, but can be documents
of any sort read into a disk file by use of a
scanner, and may be in color.

The ability to include video and audio data,
accessible via icons in the WP text.

Generally good text-search facilities, which
in some WP programs support the use of
patterns in text search.
® A publish-and-subscribe facility, in which a
passage from one document is marked as
available for inclusion in others (published).
When included in another (subscribed to) it
is not copied; rather, it is as if the published
portion of the first document is visible di-
rectly in the second document. In this way,
if the published passage is edited at any fu-
ture time in the first document, those changes
show up in the subscribing document.
e A linking or hypertext facility by which the
user can select the subscribed passage and so
open a new window into the publishing docu-
ment at the published text, for inspection and
editing. An elegant application of linking,
for QDA purposes, is to mark passages in a
(publishing) document with keywords or icons,

and link the keywords through to the sub-
scribing documents. Selecting the keywords
in the subscribing documents will then open
a window into the publishing document at
the position of the keyword, so the user can
L e ey Wi pabadg e sU Ly b Wy e Ut
related passages, in the same or different
documents, can get linked together and the
user can jump from one to the other.

¢ An annotation facility, in which an icon is
inserted in the text and clicking on it opens
a text window in which one can read and
write memos. The annotations can optionally
be printed with the WP file at the point they
annotate.

These relatively recent features, such as pub-
lish/subscribe, linking, incorporation of video/
audio data, and annotations, powerfully extend
the more traditional WP features such as text
search. For the qualitative analyst they provide
imaginative ways of linking data, combining dif-
ferent media appropriately, and relating commen-
tary and theoretical memos.

The main problem with WPs is what they do
not do, or support badly. They do not automate
the grouping of similarly coded passages—one
must copy and paste, or link, them oneself (or at
best write a macro). They become very clumsy if
one tries to use them to handle large numbers of
codes or many references from codes to text.
They will not provide text searches for co-occur-
rences of codes (more on these in later sections).
And they will not provide clerical and manage-
ment tools (e.g., What codes have I used? What
do they mean?). In WP programs, clerical data
must be stored separately to prevent it getting lost
in the data documents, whereas good special-pur-
pose QDA software will hold and retrieve clerical
data where and when wanted, to facilitate data-
base exploration.

Nevertheless, smaller projects in particular may
welcome the modern word processor as a flexible
and full-featured tool for document exploration
and the construction of analysis documents that
relate themselves neatly to source documents and
other media, which can be only a mouse click
away. And specialist software packages too often
lag way behind in these features.

Text Search Packages

Text search, long ignored by qualitative re-
searchers, offers much more than useful tools for
linguistic or protocol analysis. It can find themes
in the text, gain instant access to occurrences of

Using Cor

anewly di:
Jocate topi
The pri
much the
ties founc
gteim fen
repoit €a
it in cont
position i
support se
(and, or, .
of text, st
one to ex;
will repo
matches
to expre:
syntaxar’
called g
which is
types of
most prc
Text s
needtot
special 1
plied ke
statistic:
word co
Text
most qu
want, a1
(a syste
tool foi
rather
express
words ¢
is esser
faster t.
porting
ened if
In ad
as GOf
cordan:
have b
ies, th:
provid
line of
oceur ('
gramiy
on the
tremel:
1982,

Relc

Rel:
(RDB
social
projec

Using Computers in Qualitative Research

a newly discovered theme in text already coded, and
locate topic markers such as question numbers.

The principles of most text search tools are
much the same, and extend the text search facili-
ties found in WPs. The simplest will search for a
S fgannanen nf characters) in files of text and
report €Al 11U Tl duiiine Waijy, Slewve e s gy .
it in context and outputting its character or line
position in the file. A more sophisticated type will
support search for Boolean co-occurrences of strings
(and, or, and not searches) within some stated unit
of text, such as a line or paragraph, or even allow
one to express complex patterns in the search, and
will report and save every string in the text that
matches the pattern. The common grammar used
to express patterns is called regular expression
syntax and is embodied in the famous Unix utility
called grep (global regular expression printer),
which is usually available as freeware for other
types of computers, and is more powerful than
most proprietary text search packages.

Text search packages search files (they do not
need to be open in a window) and sometimes have
special facilities for fast searching for user-sup-
plied keywords in documents and then providing
statistically useful results of various sorts on key-
word co-occurrences and correlations.

Text search alone is not a sufficient tool for
most qualitative researchers, because they also
want, among other things, to store finds at a code
(a system closure feature). But it is a necessary
tool for gaining direct access to data records,
rather than accessing them only through codes
expressing the researcher’s interpretation. When
words of the text matter, or codes fail, text search
is essential, and the computer searches text much
faster than one can code it. Hence software sup-
porting other QDA methods is greatly strength-
ened if it includes text search facilities.

In addition to general text search packages such
as GOfer™ and ZyINDEX™, a number of con-
cordance and similar content-analysis programs
have been developed, primarily for literary stud-
ies, that will carry out word frequency counts,
provide listings of chosen words embedded in a
line of context and with a references to where they
occur (KWIC—keyword in context—indexes), spot
grammatical styles, and usually provide statistics
on their finds. Some of these packages are ex-
tremely sophisticated (for further details, see Bailey,
1982; Hockey, 1980; Miall, 1990).

Relational Database Management Systems

Relational database management systems
(RDBMSs) can undoubtedly be very useful in a
social science project, for both management of
project information and analysis of research data.

451

However, their powers are often misunderstood
and misapplied in the QDA context.

Suppose you have a card file of your interview-
ees, each card containing name, address, gender,
birth date, and date of interview. These cards can
be easily replaced in an RDBMS by a two-dimen-

for name, address, and so on. The rows are calied
records, corresponding to each card in the origi-
nal stack. The columns are called fields. You
define the fields for each table, then create as
many records with those fields as you need. Typi-
cally, fields can be defined as numeric (holding a
number), Boolean (holding true or false), charac-
ter (holding a few words of text, such as a name),
date, and memos (holding your notes on the re-
cord). You have to specify how many characters
each character field occupies (except memos, which
is usually set to some upper limit, such as 800
characters). Whether or not a field is filled in for
a given record, it will still occupy that number of
characters in disk storage (except for memos,
which can grow up to the limit).

The power of database systems comes from
tools to sort records on any numeric, Boolean, or
text field, or combinations thereof, and to filter
records, extracting certain ones with desired val-
ues in various fields. If you think of other fields
you want after you have created your database, it
is usually easy to add them in. Some RDBMSs
also specialize in handling text rather than fixed-
size numeric or character fields; these can be of
advantage for QDA purposes. Facilities are often
provided for text search on text or character fields,
but note that text sectors of these fields cannot be
coded for retrieval of the coded segments.

In your interview project, having created the
database table described above to manage bio-
graphical data about interviewees, you could then
create further ones to handle data about what they
said in the interviews. If the interview comprises
a number of questions, with free text answers to
each guestion, a common procedure is to create a
database table for each question, one record per
interviewee, with a field for the interviewee’s
name, another containing the entire text of his or
her response, and further ones labeled with topic
codes containing the portions of the response
germane to each topic code.

These database systems are called relational
because the researcher can relate one such table
to another. All he or she needs is to have a field
in common. Any of the tables above can be related
if they all have the interviewee name field in
common. Similarly, tables with a topic field in
common can be related through the common topic
field, allowing the easy extraction of what an
interviewee, or selected interviewees, said on that
topic in answer to different questions. The result
is that the researcher can use tables jointly to

452 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

extract interesting data, One could, for example,
list all married female interviewees who have a
certain attitude toward alcoholism. This enables
numerical and comparative studies—What frac-
tion of all married female interviewees are they?
R e R AL AL AR

atutudes?

So how useful are these systems to a qualitative
researcher? They work best for discrete struc-
tured data, rather than for long, unstructured tex-
tual data requiring close study of content and
data-theory bootstrapping. The attempt to create
fields corresponding to topic codes, and putting
text in those fields, is extremely expensive of
storage. Moreover, if one uses many codes, more
code fields per record tend to be empty, leading
to sparsely filled tables that are hard to work with.
RDBMSs work well for such purposes as analyz-
ing the results of structured questionnaires that
get discrete data as answers—names, places, and
so on—or for analyzing social systems that can
be described in discrete terms (participants, ob-
jects, transactions between, and so on). After all,
RDBMSs have grown up to handle the discrete
data of businesses—employee data, inventory,
sales transactions, and the like—for purposes of
analysis of business trends.

Like many general-purpose tools, however, they
can be ingeniously extended. One such extension
is a powerful technique for the construction of
comprehensive relational databases known as the
entity-relationship approach (ERA) (Chen, 1976).
This approach comes into its own when the sub-
ject of the research project can be characterized
as a system whose operation is to be studied, such
as a classroom situation, a workplace, or a house-
hold. The user draws up a network diagram in
which the nodes (the “knots” in the network that
the lines join) are the various entities under study,
such as the personnel and departments and func-
tions in the company, the means of communica-
tion used in the company. Any relations among
these entities are drawn as labeled lines (arcs)
linking the nodes, for example, “reports to,” “com-
municates with,” “uses.”

In this way the network diagram will specify and
relate the major activities and entities in the system,
such as the people involved, their tools, their goals
within the system, their choices among tools, their
actions. If the qualitative data about each of these
features (nodes and arcs in the net) tend to be dis-
crete rather than narrative (e.g., for an activity: type
of activity, date and time of its occurrence, tools
used, participants, its goals), then a whole database
table can be set up for that node, whose records hold
data about each item of that type that is observed in
the study. Observation of the system (studying
classroom activities, observing the shuffling of in-
formation around the office, and so on) then pro-
vides the data that go into the records.

The links in the network diagram show how to
relate the database tables in the linked nodes to
each other (the relational aspect of an RDBMS),
and then the very powerful browsing features of
a good RDBMS package can be applied to study
under study. Winer and Carriere (1991) provide
a very instructive and lucid account of a highly
innovative system using RDBMSs in this way.

Where data are often discrete and the subject of
study can be thought of as a system, the ERA
diagrams provide a powerful discipline for creat-
ing semantically clear and precise network dia-
grams describing the system. No meaningless ar-
rows or confused categories here. Then, using the
ERA to create a relational database for the data
provides a powerful data analysis system for the
researcher. But a word of warning: You will want
on your research team a computer scientist trained
in data modeling (construction of ERA diagrams
that can be turned neatly into an RDBMS system);
the task of system analysis necessary to set up the
database system is a skilled professional process.
A better idea might be to start teaching data mod-
eling in sociological methods courses—that might
help to critique the current often meaningless use
of diagrams in sociological literature, and to de-
velop powerful skills in representing social sys-
tems and modeling theories.

HyperCard® and Hypermedia

The popular Apple® product HyperCard is a
nonrelational database management system with
an appealing user interface. A table of records is
represented as a “stack” of file cards, only the top
one of which (i.e., one record) is visible at a time.
One can easily design the visual appearance of
card stacks using HyperCard’s simple drawing
and design facilities. Typically, this is done by
designing “fields” to hold the desired data on each
card. “Buttons” can be added to the cards that,
when selected by mouse click, carry out some
predefined actions, such as displaying the next
card in the stack. A simple and rather weak pro-
gramming language allows “stackware authors”
(don’t call them programmers) to program the
behavior of cards, especially button actions.

This simple software metaphor lends itself to
some clever applications for QDA. You can tell
the products by their Hyper-names, but don’t as-
sume they all do the same thing. Hyperqual is a
simple code-and-retrieve program (Tesch, 1990).
A sophisticated Scottish newcomer, HyperSoft,
ingeniously addresses modeling tasks. HyperRE-
SEARCH, discussed below, takes a specific ap-
proach to hypothesis testing. These all have in
common the restriction of displaying only one
record at a time, and none can act as a relational

Using Com;

database, b
perCard of ;
data fields.
HyperCa
can add scr:
Luil Sdppor.
the advant:
code paper
Moreover,
phrases anc
to other car
can provid
linking sim
from one tc
with text,
media, we
permedia f
to link fiel
about it, 0
or to link
evidence n
packages,
support th
taken seric
tion (and ¢
work using
see Halasz
eral surve:
see Conkl’

Conclu:

Softwai
for certai
researcher
ods. Howe
is essenti:
might exy
general-pt
research s
as the foll

e publi
main
that ¢
ment

e patte
code

e the v
quali
on it
data

e hype
ing”
diret

audi

Using Computers in Qualitative Research

database, because there is no simple way in Hy-
perCard of relationally linking stacks by common
data fields.

can add scrolling text fields to cards. These fields
can support text code-and-retrieve facilities, with
the advantage of “one-step” coding (no need to
code paper records and then input coding data).
Moreover, by positioning buttons over words or
phrases and programming the button action to go
to other cards with the same words or phrases, one
can provide a sort of hypertext facility—a way of
linking similar text passages so that one can move
from one to the other. (Where the links are not just
with text, but, for example, with audio and video
media, we call this facility hypermedia.) The hy-
permedia facilities of HyperCard can be exploited
to link field data text to the researcher’s memos
about it, or to records of associated factual data,
or to link the passages of the research report to
evidence material relevant to each passage. Other
packages, such as StorySpace™, are designed to
support these facilities directly, and should be
taken seriously as tools for imaginative explora-
tion (and creation) of text. For an example of such
work using another such package, NoteCards™,
see Halasz, Moran, and Trigg (1987). For a gen-
eral survey of hypertext principles and software,
see Conklin (1987).

Conclusion

Software not designed for QDA can be useful
for certain purposes, but it can also constrain
researchers who need flexibility and muitiple meth-
ods. However, a study of how these systems work
is essential if researchers are to know what they
might expect of specialist software. From these
general-purpose approaches, specialist qualitative
research software should now gain such features
as the following:

e publish-and-subscribe facility as a way of
maintaining segmentation (coding) of text
that changes; for example, as one adds com-
mentary directly into the field notes

o pattern-based text search, plus the ability to
code the finds automatically

» the way RDBMS packages organize discrete
qualitative data; sort, filter, and make reports
on it; and can be used to find patterns in the
data

« hypermedia features that support “comment-
ing” on segmented text and other media data
directly, associating database material and
audio/video playback with text, and storing

453

memos linked to text, then moving easily
among memos, data, and text

Special-Purpose Soiiware for QLA

The 1980s delivered a collection of QDA soft-
ware tools designed to address the peculiar needs
of QDA work. Recent software systems build on
the techniques developed by the pioneer programs,
and incorporate both their ability to do the tasks
of coding for retrieval and, we would argue, the
disadvantages of that method. We distinguish five
types of specialist software, each identified by its
information representation and processing meth-
ods. The first, code-and-retrieve, is a form of
information processing that is incorporated in each
of the other four. All of the later types provide
other ways of storing and accessing knowledge
and constructing, exploring, and testing data and
theory. In each case we describe one (sometimes
the only) software example.

Code-and-Retrieve Software

This type of software was the first development
for QDA, created by social scientists attempting
to replicate the code-and-retrieve techniques that
they had used manually. It has been around long
enough for studies by or of its users to appear
(e.g., Tallerico, 1991), and the range and opera-
tion of packages then available has been fully
described by Tesch (1990).

Code-and-retrieve packages, all in different ways,
allow one to enter (and change) coding of speci-
fied text segments of documents into a database,
then collect and display all text segments marked
by the same code. Some have enhancements that
improve considerably on manual methods. The
first available and best-known example of this
type of software is the Ethnograph (Seidel &
Clark, 1984). In its forthcoming version 4, the
Ethnograph will do the following:

e retrieve on presence or absence of two (or
more) codes; that is, report and optionally
display all text portions indexed by all of the
nominated codes, or by one but not the sec-
ond—doing so-called Boolean searches us-
ing logical and and relative not or searches
for sequences or proximity of codes

o support the collection of documents into sets,
called catalogues; retrieval operations can
then be restricted to a chosen catalogue

¢ do text search
e store memos

|

454 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

e display the occurrences of codes in files or
specified text portions

e display subheaders to identify speakers or
context
¢ display statistics about the number of retrievals
* hold factual information about each document
Sy Mp iy WG WIS WuCUitiliL
(called face-sheet variables) or to individuals
(in a speaker shee:, recording religion, gender,
age group, and so on) (These codes can be
used in multicode retrieval. Note that a face-
sheet variable, though conveniently indexing
a whole document, is actually coding a fact,
and so operates at the conceptual level as
well as the textual level, Imaginatively used
in retrievals, this provides a powerful way of

relating conceptual-level operations to textual-
level ones.)

The method thus offers much assistance in man-
aging data, and also, as we argued above, in building
and using theoretical categories. But it also has
major problems, and software developments have
sought to address these. First, the method “decon-
textualizes” (Seidel’s term, used in Tesch, 1990,
p. 115). Stripping the segment out of context is
necessary and desirable if it is to be “recontextu-
alized” in the new category context. But the con-
text of data is essential to any “holistic” interpreta-
tion. Second, the method always threatens with
rigidity. All code-and-retrieve software permits in-
troduction and deletion of codes at any time, but this
leaves problems in constructing new categories after
the coding of many records without those catego-
ries; for example, how to return to the passages
previously missed? And third, this method tends to
impose on qualitative research a chronology more
like that of survey research: sequential stages of data
collection, data coding, then data analysis. Analysis

is postponed if researchers find difficulty in keeping
the ideas and insights emerging while clerically
coding (and computers will do much more coding,
so the task can become more dominating).
Developers of software supporting code-and-
retrieve usually and rightly deplore these effects,
particularly the last, and attribute them, particu-
larly the last, to bad habits in the user rather than
the software. Each of these problems is accessible
to computer solution, but, like most manual Sys-
tems, software systems do not easily support the
integration of the process of coding (often per-
ceived as dreary and clerical) with the (tentative,
exciting) processes of discovery and surprise, or
recording of new ideas and exploration of links
between emerging categories. Developers make
no claim that code-and-retrieve software supports
anything like the entire qualitative research pro-

cess, but minimally that it speeds up and extends
the common clerical business of document cod-
ing, and makes the clerical business of retrieval
guaranteed complete relative to the coding (un-
like flicking through pages of transcript looking
for marginal annotations). It is probably this per-
cention of code-and-retriave enftiars shor b
Lo bl uSWR G view that 1t has no tneory-finding,
theory-building, or theory-testing ramifications,
Software is certainly responding to these chal-
lenges. “Decontextualized” text collected at a code
was always easy to chase back to the original context
via information about the location of segments; but
software using multiple window interfaces will al-
low the original documents to be viewed alongside
the grouped retrievals. Limits on the number of
codes available and/or the number of times a given
rich passage can be coded are being extended or
even removed. Considerable effort has gone into
making the codes and their contents flexible, so data
segments can be easily recoded and inconsistencies
in coding discovered, and codes viewed, redefined,
amalgamated, deleted, and duplicated safely. Re-
trieval styles are now more flexible and include
exploration of context by sequencing or proximity
of codes in the text. Questioning is no longer limited
to the intersection of codes at particular text seg-
ments. (In document co-occurrence is often more
important, to find documents coded somewhere
with specified codes, though the segments coded do
not intersect.) Storing knowledge about the situ-
ations or people or behaviors studied is often sup-
ported, even if that knowledge does not refer to
whole documents. And recent software assists re-
searchers, as filing cabinets never did, in managing
codes and in the storage of ideas abous codes and
data, in memos, related both to the codes and to the
data, as well as in checking reliability and consis-
tency of coding and coders. Some systems combin-
ing code-and-retrieve with text search allow auto-
matic indexing of text finds, and a few offer
pattern-based text search, essential if the text does
not conveniently always offer exactly the characters
sought.

Coding for retrieval is one procedure incorpo-
rated, increasingly with extra facilities, in virtu-
ally all sophisticated QDA software, because it is
one very major type of software support that most
forms of QDA need, and that general-purpose
software cannot provide easily if at all. But the
method retains the limitation we stressed in the
early sections, that the code-and-retrieve method
directs analysis to occurrence or not of specified
codes at selected portions of text.

Rule-Based Theory-Building Systems

One direction has been to seek ways of more
explicitly specifying, developing, and, especially,

Using Co

testing th
ware, thi:
duction-r
HyperRE:
Card can
Dupuis, ¢
[
Macintos
pictures
documen
the desirn:
technoloj
search w
Boolean :
of codes
where co
one to re
coding o
system ¢
It does
A produc
condition
action A
formis “
code it a
its data iy
and tries
studied.
across d
(called ti
referenci
Once the
can be us
the user
Altern
ward,” t
overallh
conclusi
This pro
whose cc
tabase. k
one to fi
the right
clusion ¢
holds, ev
the exam
et al.,, 1¢
mother h
self-imay
pearance
daughter’
Then if t
research.
rules, su
daughter
relations
riencing
negative
(C1). In
backwar

“5‘.3’?%,‘,',{1;

Using Computers in Qualitative Research

testing theory. In commercial expert system soft-
ware, this is often done using the idea of a pro-
o L L Ae puareals oFf thic genre ic
HyperRESEARCH, d W01 Lk siiw Walab i) g
Card can do if you really work at it (Hesse-Biber,
Dupuis, & Kinder, 1991). In its fundamentals this
is a code-and-retrieve system, but it exploits the
Macintosh™ computer and HyperCard to include
pictures and audio- and videotapes among the
documents it can index. It also contains many of
the desirable enhancements to code-and-retrieve
technology we nominated above. It will do text
search with “autocoding” of the finds. It will do
Boolean searches for in-document co-occurrences
of codes, not just for places in the documents
where codes intersect. But, significantly, itallows
one to retain retrievals in the system. Like auto-
coding of text search finds, this is a significant
system closure feature.
It does this through the use of production rules.
A production rule is an if-then rule of the form “If
conditions C1 to Cp hold for some data, then perform
action A on the data.” In HyperRESEARCH, the
form is “If a case is coded as C1 . . . and Cy, then
code it also as A.” (HyperRESEARCH looks at
its data in terms of cases, rather than documents,
and tries to find theories that explain all the cases
studied. Textual data for the cases could be split
across different documents.) The new code A
(called the goal) is then added to the database,
referencing the cases coded with all of Cy to Cn.
Once the conclusion code A is in the database, it
can be used as a condition for another rule, which
the user can then begin constructing.
Alternatively, one can build up rule sets “back-
ward,” beginning with a rule expressing one’s
overall hypothesis, then trying to find rules whose
conclusions are the conditions of the hypothesis.
This process is repeated until one arrives at rules
whose conditions are all codes in the textual da-
tabase. Running the rules forward then enables
one to find cases where, by virtue of having all
the right initial conditions in their text, the con-
clusion of the ultimate (initial) hypothesis also
holds, even though it is not coded in the text. In
the example given by the developers (Hesse-Biber
et al., 1991), the overall hypothesis is that if a
mother has a negative influence on her daughter’s
self-image (C1) and the daughter dislikes her ap-
pearance (C2), then the mother has damaged the
daughter’s self-image (A, the goal of the research).
Then if this Ci and C2 are not codes used in the
research, they may be defined as goals of further
rules, such as, if the mother is critical of the
daughter’s body image and the mother-daughter
relationship is strained, and the daughter is expe-
riencing weight loss, then add that the mother has
negatively influenced the daughter’s self-image
(C1). In this way one creates “chains” of rules
backward from the goal until one is using only

455

conditions that are already codes in the case docu-
ments. At that stage the rule set can be “run” to
find how many of the cases end up with the goal

This sounds rather like a knowledge-based ex-
pert system in artificial intelligence, in that it
contains qualitative production rules. But taking
the rules together, it amounts to a search for the
cases that have coded somewhere in them all the
conditions of all the rules that are actual indexing
codes (i.e., in-case co-occurrences). If (continu-
ing the example of the previous paragraph) the
initial codes in the documents used in the rule set
are K to Km, we are doing an in-case co-occur-
rence search for these codes, nothing more. Cases
where the search succeeds are treated as confirm-
ing the final hypothesis “If C1 and Ca, then A,”
and those where it fails as (presumably) discon-
firming it.

But be careful of the methodology here! The
disconfirming instances of a hypothesis “If C1 to
Cq hold, then A holds” are cases where all the
conditions hold and the goal, A, does not hold.
Cases where not all the conditions hold are not
disconfirming instances at all. Typically, C1to Ca
are a mixture of theoretical statements and spe-
cific conditions that hold for a given case, and A
is an observable feature of the case. In other
words, it must be possible to evaluate whether the
goal holds in a case independent of whether the
conditions all hold. But given that there is no
independent coding of cases for A (rather, A is
added whenever C1 to Cn hold), we can never find
a case in which Cp to Cq hold but A does not—the
hypothesis is a tautology. What we can find is
cases where not all of Ci to Ca hold, but that
proves nothing about the hypothesis. In fact, what
the running of the whole rule set boils down to is
simply looking for cases where the original codes
Kj to Km occur!

What, then, is the value of production-rule sys-
tems for QDA? These rules are certainly an intui-
tive way of articulating at least some sorts of
theory. They do provide a way of bridging the gap
between textual-level analysis and the representation
and analysis of facts and theories to which we
have drawn attention. Starting at the textual level,
the production rules allow the definition of in-
creasingly abstract and theoretical concepts in
terms initially of the textual codings (K1 to Km in
the above example) and ultimately whole theories
as the later production rules. This conforms closely
to the model of data-theory bootstrapping, and
provides an elegant way of relating textual-level
and conceptual-level operations. But for the pro-
cess to be of any value in theory testing, as distinct
from theory construction, the cases must inde-
pendently be coded with all the rule goals, and the
rules run as a search procedure for cases where all
conditions of a rule hold but the goal does not.

456 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

A methodological difficulty with this is that
production rules are supposed to bridge the textual/
conceptual divide by making their goals (A’s) be
more theoretical concepts defined in terms of less
theoretical existing ones (the C’s). Now we are
saying the A’s must be observable features al-
ready coded into the text.

Su e iy dead i al guTHEGE §S DOL SO Much
critical of HyperRESEARCH, which provides pow-
erful additions to code-and-retrieve and the incor-
poration of production rules, as it is of thoughtless
ways of employing the production-rule facility. In
qualitative research, such misuses could contra-
dict the central goals of building up understanding
from data by forever returning to it. This is not
easily achieved by getting a machine to insert new
codes when it finds others, without care to see if
the insertion of the new code is justified by the
text. There are also dangers of building, in any
software, an edifice of sophisticated reasoning on
textual-structure coding. A weak link will always
be the adequacy of the coding process, and this
caution applies to all the following sections.

Logic-Based Systems

Discussion of production-rule systems leads
naturally to logic-based systems. These use if-
then rules for their representation of hypotheses,
as the production-rule systems do, but the type of
rule and the way it works is very different and
more sophisticated. The rules are those of clausal
Jorm logic, a computationally useful way of ex-
pressing and computing with the standard calcu-
lus of formal logic (Richards, 1989). A useful
fragment of clausal form logic lends itself well to
computer implementation, both to represent data
in a way that is an alternative to RDBMSs and to
compute with those data using logical deduction.
This computational paradigm is known as logic
programming and is realized in the computer lan-
guage Prolog (Clocksin & Mellish, 1984). The
best-known examples of its employment for QDA
purposes are in AQUAD for IBM-PC computers
(Huber & Garcia, 1991) and QUALOG for main-
frames (Shelly & Sibert, 1985), on which AQUAD
was based. AQUAD is not only written in Prolog,
but makes Prolog available to users to express
hypotheses and compute with them, QUALOG
uses a different logic programming language, Lo-
gLISP. We will discuss only AQUAD here as our
exemplar of this genre.

Like nearly all QDA systems, AQUAD sup-
ports code-and-retrieve. However, it provides a
sophisticated set of retrieval patterns, called hy-
pothesis structures, used in linkage analysis. Al-
though some of these retrieval patterns are Boolean,
such as looking for one code or another in a text,
many are more interesting, such as searching for

positive and negative cases of one code occurring
within a certain distance of another in the text.
The output of such searches is typically numerical
tables showing cases where the searched-for link-
age did hold and, for instance, the textual distance
between the codes. This is why the linkage analy-

. o A : Toes sl il Juoe Lanl
retrievals of text. The flavor of linkage analysis
is not “Show me all text of codes A and B within
textual distance d,” but “To what extent do codes
A and B occur within textual distance d—is it a
significant association?” This is a very powerful
feature that helps link qualitative and quantitative
analysis in one research project.

Where the 12 provided hypothesis patterns are
insufficient, the user can access the Prolog lan-
guage and program the hypothesis structure he or
she wishes to use, as a Prolog procedure, then run
it to get the desired retrieval. This facility is
challenging for nonprogrammers, and even for
programmers unfamiliar with Prolog, as is plain
from the user manual examples (at least to one of
us, TIR, who has been teaching Prolog for more
than a decade). This is where the logic-based
nature of AQUAD shows up—hypotheses simply
are statements of clausal form logic embedded in
Prolog procedures, along with control structures,
print control statements, string search commands,
and the other paraphernalia of a program; and
these are what the user must write to extend the
power and expressiveness of AQUAD.

Two other built-in features of AQUAD should
be mentioned for their general utility in QDA
work. The first is the support of qualitative matri-
ces. The user nominates two sets of related codes,
such as a range of emotions and a range of per-
sonal data on the interviewees (e.g., age group),
as columns and rows. Each cell in the resulting
table contains the text segments indexed by both
the column and row codes for the cell, that is, the
result of a Boolean intersection or AND retrieval,
Inspection of the resulting matrix is a powerful
heuristic in QDA.

The second feature is the configuration analy-
sis. This derives from a powerful technique in for-
mal logic, the Quine-McClusky algorithm (McDer-
mott, 1985), which was introduced to QDA by
Ragin (1987). Suppose you guess that the pres-
ence or absence of conditions Cy to C, may be
causally relevant to the occurrence of outcome A.
Then, where C; to Cp and A are codes that can be
found in a case (e.g., interview) in AQUAD, you
can use configuration analysis to see which of the
C’s really are relevant to the occurrence or pre-
vention of A, whether by their presence or ab-
sence, and what those combinations of the C’s
are. As a simple example, hypothesize that when-
ever Cy, Ca, and C3 occur in a case, so does A.
And suppose your data show this is perfectly
correct, but also show that whenever C; and C2

Using Computers .

occur but C3 does
presence of Cp ar
occurrence of A. ¢
all such cases aut
fully this method
trieve ahilitr ¢ oh
tency ol nypotness
elegant example o
hance precomputa
the C’s and the A
of the linkage struc
or constructible in
Configuration a
of induction techr
gence to find nece:
outcomes or, equiy
of if-then rules pre
induction techniqt
tion in computati
ceived, because (a
use manually; (b)
reliability in findir
of codes; (c) they a
on presence/absenc
Popperian falsific:
counterinstances (r:
fication of accepta:
in statistical analy:
way of making textt
ods highly relevan
So how does lo
tional QDA? We
niques deserve m
gramming, on the
expressive, is at |
complexity that m
learn it. Moreover
to express textual
code following th:
and not the concept
entities (person Ci
protocol C3 is a fu
lishing social rela’
doubtedly one (?f |
coming decade is
hypotheses based ¢
lation and not the te
formal logic to d9)
able in a way that 1s '
QDA software. In ¢
networks we will sf«

*

An Index-Bas

We turn now'
ing a desig“
hybrid softw
This system
features in o

Using Computers in Qualitative Research

occur but C3 does not, A still occurs. Then in the
presence of Cy and Ca, C3 is irrelevant to the
occurrence of A. Configuration analysis detects
all such cases automatically. Note how power-
o0 ahi prathad pveande the onrcv prda me
LI VE dLIULY W COCCK HIC COITECLIEHS ditd Cunsis-
tency of hypotheses, discussed earlier. This is an
elegant example of how computerization can en-
hance precomputational techniques. In AQUAD,
the C’s and the A can be not just codes, but any
of the linkage structures expressible in the system
or constructible in Prolog by the user.

Configuration analysis is one of several types
of induction techniques used in artificial intelli-
gence to find necessary or sufficient conditions of
outcomes or, equivalently, to find the simplest set
of if-then rules predicting a given outcome. These
induction techniques deserve far more exploita-
tion in computational QDA than they have re-
ceived, because (a) they are almost impossible to
use manually; (b) they are of great power and
reliability in finding and simplifying associations
of codes; (c) they are qualitative in nature, relying
on presence/absence of codes, Occam’s razor, and
Popperian falsification of hypotheses by single
counterinstances (rather than the relativistic quanti-
fication of acceptability of hypotheses that occurs
in statistical analyses); and (d) they are a powerful
way of making textual-level code-and-retrieve meth-
ods highly relevant to theorizing.

So how does logic fare as a tool in computa-
tional QDA? We have said that induction tech-
niques deserve much development. Logic pro-
gramming, on the other hand, although highly
expressive, is at least currently a tool of such
complexity that many users will be unwilling to
learn it. Moreover, it is used entirely, at present,
to express textual relations between codes (this
code following that one in the text, and so on),
and not the conceptual relations between the coded
entities (person C1 knows person C», the greeting
protocol C3 is a functional component of estab-
lishing social relationship C4, and so on). Un-
doubtedly one of the research directions of the
coming decade is the idea of writing and testing
hypotheses based on codes at the conceptual-re-
lation and not the textual-relation level, and using
formal logic to do it, and making the logic avail-
able in a way that is habitable by the average user of
QDA software. In the section below on conceptual
networks we will see one partial approach to this.

An Index-Based Approach

We turn now with some trepidation to describ-
ing a design approach used in our own rather
hybrid software system, NUDeIST™ version 3.0.
This system combines and relates many of the
features in other specialized designs described

457

here. Like them, it is based on a code-and-retrieve
facility and endeavors to go beyond simply re-
trieving text according to how it was coded. It can
be thought of as havmg two major components for
e ey v o f e B T N I S LTI aalt
118, a docwment sysiem, hoids textual-levei data
about documents, which may be on-line disk files
or off-line documents such as books or anything
else that can be sequentially segmented for coding
(videotapes are supported directly via a link to the
CVideo™ system). These documents may be in-
dexed by typing in codes or by text search and
autoindexing. On-line documents can be edited at
any time, even after indexing. Use of multiple
windows allows views into many documents or
their indexing at once. Retrievals can be done by
a wide range of Boolean, context, proximity, and
sequencing searches, and grouped into qualitative
matrices. Results of retrievals can be stored as
index codes, as can the results of text searches,
which can be regular expression pattern based.
AllNUDeIST operations can be executed in batch
mode if desired, to automate repetitive work. Thus
far NUDeIST is a code-and-retrieve system, and
many users, we find, use it only in this way.

But the codes and references are kept in an index
system designed also to allow the user to create and
manipulate concepts and store and explore emerg-
ing ideas. The nodes of the index system, where
indexing is kept, are optionally organized into hier-
archies, or trees, to represent the organization of
concepts into categories and subcategories, a taxon-
omy of concepts and index codes. Trees, of which
there may be any number, are visually represented
on the screen. The user can select a node, explore or
change it, or move it elsewhere in the tree system.
The trees and the nodes in them can represent any-
thing the user wishes, such as people, objects, emo-
tions, or ideas. They can store factual data (about
cases, data types, settings, and so on), if nodes
represent values of variables. Links between ideas,
such as causes, talked about, married, can be repre-
sented in further nodes or in the node linkages in the
trees. In this way the nodes in the index system can
be treated as both textual level (coding documents)
and conceptual level (recording things about the
world and storing theory). This duality is made
possible by the tree structure, which can represent
conceptual relations, hence permitting nodes to be
treated as concepts, not just as index codes into text.
This is aided by being able to give nodes definitions
and textual memos that the user can write and edit.
(Documents can have memos too.) Document and
node memos can also be treated as data documents
and indexed like any other documents, so the index
searching tools can be applied to them like any other
documents, to explore the interrelationships of ideas
being created.

Thus the index system approach builds on and
extends the code-and-retrieve technique, empha-

458 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

sizing system closure. The user can explore the
document and index systems and the relations
between the two provided by the coding of docu-
ments. As theoretical-level structures change, the
user can alter the index system without losing the
references to documents supporting analysis at
the textual level (groupings of text references hy

NUDeIST adds to the node memo a log of what
was done. Thus each node has a documented
history, helping the user in auditing the research
process as well as aiding interpretation of the
index system as a structure of theoretical-level
concepts and assertions. Where the index trees are
used taxonomically, higher nodes automatically
represent meaningful groupings of the textual data
indexed at lower-level nodes, thus assembling
and retrieving textual references for the generic
concepts out of references for more specific ones.
Techniques exploiting the tree structuring of the
index system allow theory testing as well as the
representation of facts and hypotheses.

As its authors, we find it easy and necessary to
criticize NUDeIST: Criticisms feed back as fu-
ture design features. First, NUDeIST appears,
compared with the other systems described here,
as a rather awkward hybrid, containing features
of code-and-retrieve, ways of handling produc-
tion-rule and other types of conceptual-level rea-
soning, conceptual representations alternative to
conceptual network systems, and database stor-
age facilities, all interacting through interlocking
tools. NUDeIST was designed originally for pro-
vision of a range of software tools, from which
users could choose according to their theoretical
and methodological needs. We have learned that
merely providing such varied tools can be confus-
ing; tool sets must be integrated and easily acces-
sible if they are to be used skillfully by the very
wide range of researchers seeking QDA software.

Second, the system removes so many constraints,
of size and variety of records and indexes, that a
sort of methodological anomie can result. We
have learned too that novice researchers, who
may find their own rich and messy records to be
alarming in their diversity, may be further alarmed
by software that seems designed to celebrate di-
versity. User reports make it clear that the full
implications of system closure are not easily grasped
early. And, perhaps most important, the software
offers many ways for a researcher never to finish
a study. Novices too are often stalled by anxiety

about creating a perfect index system up front, not
trusting the promise that they can create and re-
create the index system as they develop theories
and discover patterns.

Third, the approach lacks visual display of con-
ceptual-level diagrams and models, such as con-
ceptual networks, that researchers may need in
order to see their emerging theories before they

can confidently continue with theory construc-
tion. They can see and manipulate visual models
of their index systems, but not models of their
emerging theories. They have to g0 to graphics
programs (or even pencil and paper) to do that.

Or, if their theories are of the right type, they can
use concentnal netwaork cosram s oL

Conceptual Network Systems

Concept diagrams, conceptual graphs, seman-
tic nets, and conceptual networks are all (roughly)
different names given to the same idea, of repre-
senting conceptual information in a graphic man-
ner, as opposed to production rules or the sym-
bolic approach of formal logic. They appeal initially
to researchers who have worked pictorially, by
doodling diagrams on blackboards, or more for-
mally in an attempt to give graphic representation
to emerging theory and thereby draw out discov-
ered linkages.

The objects in one’s conceptual system (peo-
ple, groupings of people, properties such as age
or being a vegetarian, places, emotions—essen-
tially anything one might code fora QDA project)
are represented by little boxes on a sheet of paper.
(Put them in alphabetical order and one has one’s
code list.) Now one joins various boxes with
labeled arrows to indicate relationships between
them; for instance, a loves arrow from the John
box to the Mary box to indicate that John loves
Mary, a causes arrow from the anger box to the
violence box, and so on. Technically, the boxes
are called nodes, the arrows joining them are

directed arcs, and the whole resulting network is
a directed graph. The arrows represent relation-
ships and the boxes represent objects, properties,
and concepts. An introduction to semantic nets,
which also discusses their limitations compared
with logic, may be found in Richards (1989, chap. 1);
Sowa (1991) provides a full treatment. Semantic
nets have also been discussed above, as the entity-
relationship approach to designing an RDBMS.

Commonly occurring arcs are isq (“is a”) and
ako (“a kind of”); for example, [Mary]—isa—
[Protestant]——ako—)[Christian]—ako—)[religious
believer]. Others are belongs-to (class member-
ship) and case-of, such as [Mary]—belongs- to—
[20s]—case-of—[age group]. These often have
useful logical properties that can be exploited to
do reasoning about the knowledge in the graph.
Ako for example is transitive, that is, if A ako B,
and B ako C, then A ako C. Thus, above, we infer
[Protestant]—ako——)[religious believer]. Rather
similarly, we can infer [Mary}—isa—[religious
believer].

Semantic nets make for intuitive and logically
rich representation systems that have, like produc-
tion rules and formal logic, been widely exploited

Using Computers in Qualitative Research

in artificial intelligence work. If one wants 1o se¢
all the relationships an object in one’s system has,
for instance, one need only look at its node in the

semantic nets have their limits. One cannotuse an
arc to represent a three-place relation or greater,
such as Reverend A married Miss B to Mr. C,or
person A sold item B to person C for $D. And if
one wishes to represent the fundamental logical
ideas of not, or and all, some, the tricks one needs
to get up to can make the graphs quite unintuitive.

Semantic nets are meant to be used with some
semantic rigor, like any precise language. When
a node is drawn, it is meant to be clear what that
node represents (Is it a concept, the objects falling
under the concept, the common property of those
objects, or the collection of those objects?); when
an arrow is drawn, the relationship the arrow
represents is meant to be clear (What does it
mean? Does it relate the two node categories as a
whole or the objects categorized in the two nodes?),
as is the reason for the sense of the arrow (Why
not double-headed? Why not the other way? Why
have it at all?).

Several researchers have recommended the use
of commercial computer drawing packages for
qualitative model building (e.g., Padilla, 1991),
and many use such diagrams as pictorial props in
their publications. But what computing, and the
literature on conceptual graphs, offers is the chance
to be systematic and rigorous in the construction
of these graphs so that they represent knowledge
that can be searched for, extracted, and reasoned
with.

One systematic and advanced approach to con-
ceptual graphs is ATLAS/ti (Miihr, 1991). Again,
the basis is code-and-retrieve functions in text,
and these are reasonably sophisticated, with inter-
esting ideas, particularly the idea of being able to
group codes into “families.” To code-and-retrieve
is added an admirable memoing facility, and codes
can apply to memos as well as to the original
documentary text—a system closure feature. A
particularly useful retrieval idea is ordering codes
by date of last use, number of references, and the
like. There is a good pattern-based text search
facility, the finds of which can be coded—as in
HyperRESEARCH and NUDeIST, this is another
system closure feature.

Conceptual graphs are supported by an on-
screen “intelligent” editing facility (i.e., the sys-
tem makes the drawing of nodes, arcs, and their
labels trivially easy, and also makes an internal
logical representation of the graph one is draw-
ing—it is not just a picture). Nodes can be codes
(and hence have associated text). Arcs can be
given one of a built-in set of relation names, such
as causes, isa, part-of, contradicts, so that when
such a relation is set up, its built-in logic, such as
transitivity, becomes available for the system’s

459

reasoning about the network. Alternatively, auser
can choose a name of his or her own for an arc
(e.g., supports position) and provide a logic for
P et e AT OAC @ enden
a graph if it becomes too tangled.

These graphs operate at a conceptual level, not
at the textual level. That is, the relationships be-
tween the nodes (codes) relate what the nodes
represent (€.g., [anger]—causes—)[violence]) rather
than the nodes’ textual references (e.g., passages
about violence follow passages about anger). Thus,
like NUDeIST but in a different and more visually
direct way, ATLAS represents theory and factual
knowledge, not relying on its indirect representation
through textual relations that might be held rele-
vant to a conceptual linkage.

What is the value of a conceptual graph repre-
sentation of a project and its information? Networks
are best seen as a tremendous generalization of
the rather primitive information representation
available in a code-and-retrieve system, which
comprises simply an unstructured set of codes
plus support for exploring their textual relations.
Here we have a rich representation system for
using nodes not just as textual codes, but as parts
of graphs modeling systems in the world being
studied, theories, and so on. Allied with ATLAS’s
sophisticated text retrieval system, the graphs sup-
port subtle exploration of text via a visually im-
mediate interface that relates the text to the sys-
tems or theories in the world being studied. In
cases such as evidence analysis, for example,
facts gleaned about the historical situation under
study can be represented directly into the network,
for example, [Macbeth]-—killcd—)[Duncan], and
the study of the text coded at [Macbeth] and
{Duncan] provides evidence for the claim. Stand-
ard semantic network techniques (which the AT-
LAS system will support, although it does not
seem to exploit them) even permit the relations,
such as killing, to be treated as nodes and so have
associated text, which adds to the richness of the
represehtation and subtlety of the exploration.

So, how useful are semantic networks? They
are certainly, in ATLAS, very easy to construct
and rich to explore. They lack the “intelligence”
of production rules or formal logic as being
«runnable” theories whose execution has some
definite useful result, and they (at least in the
ATLAS form) lack the power to represent crucial
logical concepts that a logic system has, such as
expressing generality, negation or absence, and
alternativeness. It is very hard to see, for example,
how configuration analysis, such as in AQUAD,
could be represented, let alone executed, via AT-
LAS semantic nets.

The type of qualitative research project involved
tends to dictate whether a semantic network ap-
proach such as ATLAS will be useful. It would be
much better than code-and-retrieve at data-theory

460

bootstrapping work. Its main value is where the
subject of investigation can be seen as comprising
a number of topics with some major characteristics
of note and relationships to each other (a system).
Then it can be of considerable heuristic value to
draw that un in a scemantic nef and rrep tho cno Wi
BUUCS ditd A1C 14DCLS as Lhe basis 101 Lext segmenia-
tion or other data organization. (See our remarks
above about the types of projects for which the
entity-relationship approach to RDBMSs applies.)

For researchers wishing to organize concepts,
the tree structures of an index system approach
and the semantic net modeling of theories offer
related but different advantages. Trees have the
advantage that their structure is uniform and eas-
ily comprehensible. But that can also be a disad-
vantage, as the real world is often neither uniform
nor comprehensible. Semantic nets directly and
visually offer more forms of concept organiza-
tion. Both methods support the most common
form, the taxonomic tree, in which the children of
any node can be treated as specializations, in
some sense, of their parent concept: a kind of, a
part of, is a, member of a group, case of, and so
on. These are the main types of link used in
semantic nets to convey logical properties of con-
cept relations such as transitivity, and hence to
support reasoning. But semantic nets represent re-
lations between concepts that go beyond a thesau-
ruslike taxonomy. The trees of NUDeIST are more
restricted, but NUDeIST uses index system search
plus the saving of search results as nodes as an
alternative to semantic nets (worse for some things—it
is less visual—and better for others—the system,
not the user, looks for the links, and it is flexible).

As taxonomy structures, both have limitations.
Semantic nets encourage researchers to keep the
number of nodes small: (a) Computer screens
cannot display more than a few tens, (b) the num-
ber of links (and hence the complexity) increases
with the square of the number of nodes, and (c)
big networks just look confusing. ATLAS offers
a number of techniques for managing that sort of
growing complexity, and future research in this
field must concentrate on this issue. Index trees
offer a different limitation for taxonomies, given
that they impose hierarchy. Some concepts can be
treated as specializations of several more general
ones, not just one. Allowing a node to have mul-
tiple parents could handle this, but may prove
confusing. Moreover, although trees offer the user
the ability to structure data and ideas about data,
they do not allow him or her to name links. One
purpose of naming links is to associate logical
properties with the links of a given name, for
example, transitivity for a kind of. In an index
structure approach, links are recorded and ex-
plored not by dragging and naming arrows but by
creating and shifting nodes, a less visual and
immediate process.

METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

Conclusions

Artificial intelligence research has thus con-
tributed to qualitative analysis powerful techniques
Frr v v ot ot ER o . ‘ . + .
cepts, and for constructing and expressing theo-
ries. Many researchers may of course never want
these features, and will use computers for en-
hanced code-and-retrieve for collecting related
passages for their contemplation. One needs in-
deed to avoid the danger that the style of the
software one uses can coerce a project along a
particular direction.

However, coercion is not a function of sophis-
tication—the simpler code-and-retrieve packages
can coerce a project into particular directions just
because of their lack of support of various analy-
ses that can be done on retrieved codes, such as
co-occurrence patterns. And it is very hard to see
how features such as configuration analysis, or
organization of concepts into hierarchies or nets,
or indeed the very provision of conceptual-level
tools, can be other than powerful heuristics for
qualitative researchers—if well used. The secret
is, of course, not to force a feature onto a re-
searcher if it is not appropriate for a particular
task—and to provide flexibility and a “light touch”
in the more powerful features so that they do not
run away with their users.

In terms of research directions, look for devel-
opments in the logic programming approach, to
make its power more accessible to the nonpro-
grammer and to extend its rules to express more
directly conceptual-level structures and knowl-
edge about the world under study. Look for wider
deployment of configuration analysis and ways of
generalizing that technique, and other methods of
supporting inductive searches. The entity-rela-
tionship approach needs cross-breeding with good
solid code-and-retrieve facilities, to provide rela-
tional database systems more attuned to text-based
QDA work. Look too for ways of supporting
project management, in particular (given the ten-
tative, cut-and-try nature of a lot of QDA explo-
ration), support for forking research work at a
point in time into several future paths, pruning the
unpromising ones, backtracking to earlier forks,
and pursuing more alternatives within the prom-
ising paths. The growing bridges between quali-
tative and quantitative research are demanding
software support, so look for innovative research
on how to support that computationally.

Above all, look for ways of developing com-
puter support of conceptual-level work in text-
based research, not just textual-level work. That
is the very hard research, for, as we hope this
chapter makes clear, although software designs
imported from artificial intelligence and database
research are providing the breakthroughs, none of

the
an(
mo
cal
to .

AC

AT

CVv
Th
Hy

Hy

No

NU

St

for
is ¢
[o]o]}
Cco:
[o]o]]
[aJo}
she
0ocC:
(oo}
an

Ag

s

Using Computers in Qualitative Research

them is exactly what QDA needs. The problem
and the excitement is that QDA is probably the
most subtle and intuitive of human epistemologi-

to achieve satisfactory computerization.

Appendix: Software Developers

AQUAD. G. L. Huber, Universitit Tiibingen, Institut
fiir Erziehungswissenschaft I, Miinzgasse 2230,
7400 Tiibingen 1, Germany.

ATLAS/ti. Thomas Miihr, Technische Universitit Ber-
lin, Project Public Health A4, Hardenbergstrasse
4-5, 10623 Berlin, Germany.

CVideo. Knowledge Revolution, 15 Brush Place, San
Francisco, CA 94103, USA.

The Ethnograph. Qualis Research Associates, P.O. Box
2070, Amherst, MA 01004, USA.

HyperCard 2.0. Manufactured by Apple® Corp,, avail-
able from any Apple retail outlet.

HyperRESEARCH. S. Hesse-Biber, Department of So-
ciology, Boston College, Chestnut Hill, Boston,
MA 02167, USA.

NoteCards. Xerox Palo Alto Research Center, 3333
Coyote Hill Road, Palo Alto, CA 94304, USA.

NUDeIST. Qualitative Solutions and Research, Box
171, La Trobe University Post Office, Vic 3083,
Australia. Fax (+61-3) 479-1441.

StorySpace. Central Services, 1703 East Michigan Ave-
nue, Jackson, MI 49202, USA.

Note

1. Formally, if you have an if-then hypothesis of the
form “If C1 and Cz and . . . hold, then A holds,” then it
is shown to be correct if no case is found of all the C’s
occurring without the A occurring; and it is shown to be
complete if in every case where A occurs, all the C’s
occur too. A correct hypothesis shows that A always
occurs under these conditions, whereas a complete one
shows there is no other set of conditions under which A
occurs—both relative to the data, of course. Plainly,
code-and-retrieve methods can easily test correctness
and completeness of if-then statements.

References

Agar, M. (1991). The right brain strikes back. In N. G.
Fielding & R. M. Lee (Eds.), Using computers in
qualitative research (pp. 181-194). Newbury Park,
CA: Sage.

461

Bailey, R. W. (Ed.). (1982). Computing in the humani-
ties. Amsterdam: North-Holland.
Bogdan, R. C., & Taylor, S. J. (1975). Introduction to

A ml.

cal approach 1o tie social sciences. New York:
John Wiley.

Chen, P. (1976). The entity-relationship model: Toward
a unified view of data. ACM Transactions on Da-
tabase Systems, 1, 19-36.

Clocksin, W. F., & Mellish, C. S. (1984). Programming
in Prolog (2nd ed.). Berlin: Springer.

Conklin, J. (1987). Hypertext: An introduction and sur-
vey. IEEE Computer, 20, 17-41.

Fielding, N. G., & Lee, R. M. (Eds.). (1991). Using
computers in qualitative research. Newbury Park,
CA: Sage.

Geertz, C. (1973). The interpretation of cultures: Se-
lected essays. New York: Basic Books.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of
grounded theory: Strategies for qualitative re-
search. Chicago: Aldine.

Halasz, F. G., Moran, T. P, & Trigg, R. H. (1987).
NoteCards in a nutshell. Paper presented at the
ACM Conference on Human Factors in Comput-
ing Systems, Toronto.

Hammersley, M., & Atkinson, P. (1983). Ethnography:
Principles in practice. London: Tavistock.

Hesse-Biber, S., Dupuis, P, & Kinder, T. S. (1991).
HyperRESEARCH: A computer program for the
analysis of qualitative data with an empbhasis on
hypothesis testing and multimedia analysis. Quali-
tative Sociology, 14, 289-306.

Hockey, S. (1980). A guide to computer applications in
the humanities. London: Duckworth.

Huber, G. L., & Garcia, C. M. (1991). Computer assis-
tance for testing hypotheses about qualitative data:
The software package AQUAD 3.0. Qualitative
Sociology, 14, 325-348.

Kirk, J., & Miller, M. L. (1986). Reliability and validity
in qualitative research. Newbury Park, CA: Sage.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic
inquiry. Beverly Hills, CA: Sage.

Lofland, J., & Lofland, L. (1984). Analyzing social
settings (2nd ed.). Belmont, CA: Wadsworth.
McDermott, R. M. (1985). Computer-aided logic de-

sign. Indianapolis: Sams.

Miall, D. S. (Ed.). (1990). Humanities and the com-
puter: New directions. Oxford: Clarendon.

Miles, M. B., & Huberman, A. M. (1984). Qualitative
data analysis: A sourcebook of new methods. Bev-
erly Hills, CA: Sage.

Miles, M. B., & Huberman, A. M. (1994). Qualitative
data analysis: A new sourcebook of methods (2nd
ed.). Newbury Park, CA: Sage.

Miihr, T. (1991). ATLAS/ti: A prototype for the support
of text interpretation. Qualitative Sociology. 14,
349-371.

Padilla, R. (1991). Using computers to develop concept
models of social situations. Qualitative Sociology,
14, 263-274.

462 METHODS OF COLLECTING AND ANALYZING EMPIRICAL MATERIALS

Pfaffenberger, B. (1988). Microcomputer applications
in qualitative research. Beverly Hills, CA: Sage.

Ragin, C. C. (1987). The comparative method: Moving
beyond qualitative and quantitative strategies.
Berkeley: University of California Press.

Richards, L., & Richards, T. J. (1991a). Computing in
qualitative analysis: A healthy development? Quali-
Chiie L sl e SEST il Ay e Lol

Richards, L., & Richards, T. J. (1991b). The transfor-
mation of qualitative method: Computational para-
digms and research processes. In N. G. Fielding &
R. M. Lee (Eds.), Using computers in qualitative
research (pp. 38-53). Newbury Park, CA: Sage.

Richards, L., & Richards, T. J. (in press). From filing
cabinet to computer. In R. W. Burgess & A. Bry-
man (Eds.), Analyzing qualitative data. London:
Routledge.

Richards, T. J. (1989). Clausal form logic: The elements
of computer reasoning systems. London: Addison-
Wesley.

Seidel, J. V., & Clark, J. A. (1984). The Ethnograph: A
computer program for the analysis of qualitative
data. Qualitative Sociology, 7, 110-125.

Shelly, A., & Sibert, G. (1985). The QUALOG users’
manual. Syracuse, NY: Syracuse University, School
of Computer and Information Science.

Sowa, J. F. (Ed.). (1991). Principles of semantic net-
works: Explorations in the representation of knowl-
edge. San Mateo, CA: Morgan Kaufmann.

Strauss. A. L. (1987). Qualitative analvsis for soricl
Sciendiaiy, ivew 1urk: Lanoiidge University ricss.

Strauss, A. L., & Corbin, J. (1990). Basics of qualitative
research: Grounded theory procedures and tech-
niques. Newbury Park, CA: Sage.

Tallerico, M. (1991). Applications of qualitative analy-
sis software: A view from the field. Qualitative
Sociology, 14, 275-28S5.

Tesch, R (1990). Qualitative research: Analysis types
and software tools. London: Falmer.

Turner, B. A. (1981). Some practical aspects of qualita-
tive data analysis. Quality and Quantity, 15, 225-
247.

Weitzman, E., & Miles, M. B. (1994). Computer pro-
grams for qualitative data analysis. Newbury Park,
CA: Sage.

Winer, L. R., & Carritre, M. (1991). A qualitative
information system for data management. Quali-
tative Sociology, 14, 245-262.

SR AL

DOCUM
to social
vary, anc
also vari
fields wi
topic of
tionship:
analysis.
texts (w)
research
In the
studied |
terials tl
of theirl
the begi
have bee
Kluckho
can emp
and Flor
relied v
docume
tion to t!
Howeve
establis!
and oth
positivi:
nal wor
entific «
of valid
and cor
method

