Lesson Learned from a Fire during Distillation: Choose the Appropriate Condenser

Yilun Ding and Hongyan Feng*

Cite This: ACS Chem. Health Saf. 2023, 30, 49−53

ABSTRACT: A fire broke out during the distillation of carbon disulfide (CS₂). The increasing pressure inside the three-necked flask pushed a stopper open, and the emitted CS₂ subsequently ignited. Fortunately, the fire was put out soon, and no one was injured. In this work, we describe the direct and underlying causes of the incident as well as the subsequent safety conversation about the incident in our massive open online course (MOOC), Safety in the Chemical Laboratory. While the students identified many contributing causes of the incident, none questioned the risk assessment of the experimental setup. Therefore, we provide fundamental information to aid both our students and other researchers in their selection of the most appropriate condenser for their redistillation or reflux conditions.

KEYWORDS: condenser, distillation, CS₂, fire, chemical safety

Distillation is a time-honored technique,¹ widely used in the chemistry laboratory to separate mixtures. Additionally, reagent/solvent purification is another distillation application considering that water or other impurities are contained within commercial reagents. For example, commercial carbon disulfide (CS₂) often contains sulfur compounds,² so it usually needs to be purified through distillation before use. Nonetheless, several accidents have been reported during distillation and purification, and some have had serious consequences.³,⁴

Here, we report a fire during the distillation of carbon disulfide and a subsequent accident analysis. We also used the accident as part of an online discussion in our massive open online course (MOOC), “Safety in the Chemical Laboratory”,⁵ to identify the type of information that students need to conduct an effective risk assessment. In response, we underline the importance of a reliable equipment evaluation before experimentation, especially the choice of the condenser used for distillation or reflux.

THE FIRE

To remove the residual sulfur compounds in CS₂, a first-year Chemistry graduate student was redistilling CS₂ in a self-made oil bath setup, which included a transformer, a temperature controller, a heating tube, a stainless-steel basin containing heat transfer oil, and a magnetic stirrer. At 9:50 am, he assembled the device as shown in Figure 1a (without the heating components). In this case, a three-necked flask was used to facilitate the addition of liquid CS₂ during the experiment. After adding commercial CS₂ to the flask, the student turned on the cooling water and the stirrer. The oil bath was then heated and maintained at around 70 °C. At 10:05 am, the solvent still head had collected a sufficient amount of liquid. Subsequently, the student released the liquid from the solvent still head for further use and added about 250 mL of new commercial cold CS₂ to the three-necked flask (1000 mL) directly from the flask's left neck, filling the flask half full. Considering that no abnormality was observed in the device at that time, the student left the lab.

At around 10:30 am, another student in the lab discovered that the distillation device was on fire with one stopper popped (Figure 1b). Fortunately, the fire was put out by a dry powder fire extinguisher, and no secondary damage occurred (Figure 2).

ACCIDENT INVESTIGATION

According to its Safety Data Sheet (SDS), CS₂ is a highly flammable liquid and vapor, and the flashpoint is only −30 °C.⁶ Hence, we believe that the fire ignited when a spark from the transformer made contact with CS₂ vapor after the stopper dislodged.

Received: June 21, 2022
Revised: January 19, 2023
Published: February 20, 2023
Through investigation, the following factors were also considered:

1. The boiling point of CS₂ is only 46 °C, and the temperature of the oil bath was 70 °C. The relatively high temperature difference would lead to an excessive evaporation rate, which might have increased local pressure in the flask. It is worth noting that the heating temperature normally depends on the reflux ring in the condenser, which should only be from one-third of the way to halfway up the condenser.

2. A Graham condenser was used here. The narrow cross-section of the inside spiral and the relatively high vapor rate can result in flooding; i.e., the condensed liquid fills up part of the inside spiral and is pushed up by the continuous vapor. In doing so, the resulting flood would increase the pressure in the flask until the weakest pressure point is exceeded, which in this case was a stopper.

3. The student was unaware that the fume hood was not turned on during the experiment. It is unknown if the vapor accumulation contributed to this incident or if the initial release of vapor resulted in the fire, but fume hood ventilation can reduce the potential for flammable vapors to accumulate.

4. The transformer used here is not explosion-proof, which could easily lead to a fire in the presence of flammable CS₂ vapor.

5. The student left the laboratory to prepare for another experiment, leaving the highly flammable liquid in a working oil bath unattended. Best practices recommend that distillation setups be continuously monitored.

6. Adding fresh undistilled CS₂ with a heating system on is another inherent risk, which might release the hot flammable vapor. Although the fire was not caused by this, such an operation should be avoided.

DISCUSSION

For a further investigation of the origin of this accident and potential mitigations to reduce the impact of a fire, the above reasons will be discussed in reverse order individually or together.

Absence of the Experimenter. Remaining in the lab can enable experimenters to detect an overpressure in a timely manner, to stop heating, and to address a fire immediately. Notably, further analysis would be limited to technical/physical reasons.

Transformer. Devices that might generate sparks should be explosion-proof to avoid fire when flammable vapors might be present.

Fume Hood. In addition to the flammability hazard, CS₂ is neurotoxic, so turning on the fume hood also mitigates a potential toxic exposure risk.

Heating and Condensation. According to previous experiments, with the oil bath at 70 °C, around 200 mL of CS₂ was collected per hour. This rate equals approximately one to two drops per second.

The Graham condenser used here offers much more cooling area than the Liebig or Allihn condenser, which means that the vapor would be cooled and condense well. Notably, though, the condensate (CS₂) may not be able to flow downward against the high evaporation rate and the inside spiral’s narrow cross-section. This situation is similar to the flooding in a distillation column at a chemical production facility. This indicates that the mismatch of the heating temperature and the Graham condenser is the main reason for this accident.

To confirm this, we experimented using a simplified equipment setup (Figure 3a), heated by a commercial oil bath. At 55 °C, the reflux of condensate in the Graham condenser was normal. When the oil bath reached 60 °C, the reflux became more active. As shown in Figure 3b and Video S1, flooding started. The red arrow shows one of the places where the condensate filled the inside spiral. Predictably, if the oil bath temperature reaches 70 °C, the flooding will be much more dangerous. Meanwhile, we tested the Allihn condenser, and the flooding did not occur even at 70 °C with the reflux ring between one-third of the way to halfway up the condenser.

![Figure 1. (a) CS₂ redistillation device. (b) Schematic diagram of the fire. The heating device, the stirrer, and the holder are omitted here.](image1)

![Figure 2. Accident scene after the fire was put out. The note at the front of the fume hood means “Please pull down the fume hood window.”](image2)
The discussion had been browsed 1954 times, and there were 871 valid replies (they were classified into items I–VII). Figure 4a shows the general categories of reasons mentioned and indicates unintelligible discussions in “Other” (i.e., the discussions had nothing to do with CS₂ and the devices), as well as some other rare reasons, such as “the loose stopper”.

Figure 4b gives the main reasons raised from the students. Among them, 42.4% of the students thought that the operator did not abide by the laboratory rules, and the absence of the operator was the trigger of the accident (item I). Furthermore, 19.6% attributed the accident to the physicochemical properties of CS₂ (i.e., the low boiling point and flashing point of CS₂ or similar observations), and their analyses stopped here (item II).

On this basis, 15.3% and 14.2% of the students believed that the accident could have been prevented by operating with the fume hood working (item III) or at a lower oil bath temperature (items IV and VII), respectively. Furthermore, only 2.5% mentioned that the narrow cross-section for steam or the incorrect condenser for this experiment led to the accident (item VI).

From the students’ discussion, it can be seen that most reasons provided do not reference the best opportunity to identify and mitigate hazards—during the initial risk assessment where potential ignition sources and overpressure should be identified. Hence, the following section will focus on evaluating and selecting distillation setups, especially the condenser choice.

II. CHOOSE THE SUITABLE CONDENSER

For redistillation or reflux, there are many condensers in the lab, such as the Liebig condenser, the Allihn condenser, the Graham condenser, and the Dimroth condenser (return spiral condenser) (Figure 5). The function of a condenser can be divided into two parts, heat transfer (condensation) and mass transfer (reflux). As the heat transfer rate is strongly dependent on the cooling area, an adequate cooling area must be selected. For the four condensers in Figure 5, the Liebig condenser offers the smallest cooling area, followed by the Allihn condenser, the Graham condenser, and the Dimroth condenser, which provides the largest cooling area. As a result, many operators choose the Graham condenser because of its...
more extensive cooling area. However, mass transfer should also be carefully considered.

For mass transfer in condensers, flooding is a noticeable concern. At high vapor rates, the condensate may not be able to flow down against the rising steam, leading to a liquid ejection from the top or other orifice of the condenser. Notably, such a situation is hazardous. Dalin measured the flood points of different condensers in terms of the wattage input to a kettle. The results showed that the Graham condenser gave the lowest applied wattage, 126 W, when the flood began in the coil, even lower than that of the Liebig condenser. On the contrary, the Dimroth condenser might only flood at the lower joint, which means that the flood point is much higher. The flood points of the four condensers go from the lowest to the highest in the following order: Graham condenser < Liebig condenser < Allihn condenser < Dimroth condenser.

Considering the ability of both heat and mass transfer, we suggest the following condenser choices in distillation or reflux. The Liebig condenser is used only when the vapor rate is relatively low or used diagonally downward for distillation. The Allihn and Dimroth condensers are more favored in reflux or redistillation, and the Dimroth condenser could offer better condensation efficiency. It is worth mentioning that the Allihn condenser should only be used vertically to avoid the condensation being trapped in the bulbs. As for the Graham condenser, it is not recommended to be used for reflux or distillation, especially when the flow directions of the vapor and condensate are opposite. It can only be suitable for the lightest loads, such as the recovery of vapor from permanent gas.

CONCLUSION

In summary, we report a fire accident during the redistillation of CS₂. According to our simplified experiment, the mismatch of evaporation rate and Graham condenser resulted in flooding in the condenser, which increased the local pressure and popped the stopper. The emitted CS₂ vapor was ignited by the transformer’s electric spark. After discussing with our students in an MOOC, we found that most students (>97%) did not raise the choice of condenser as a potential cause. Hence, we compared the four most common condensers and offer some suggestions on the application range of different condensers. For reflux and redistillation, the Dimroth condenser and the Allihn condenser are more suitable than the Graham condenser. The Graham condenser is recommended to be used only under light loads. Experimenters should evaluate the equipment before the experiment.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chas.2c00053.

Video S1: Flooding in the Graham condenser at 60 °C (MP4)

Video S2: Reflux in the Allihn condenser at 70 °C (MP4)

AUTHOR INFORMATION

Corresponding Author

Hongyan Feng — Chemistry Experiment Teaching Center, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China; orcid.org/0000-0002-1799-9960; Email: fenghy@ustc.edu.cn

Author

Yilun Ding — Chemistry Experiment Teaching Center, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China; State Key Laboratory of Catalysis, National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.chas.2c00053

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the Provincial Teaching Research Project (2020jyxm2290) and (2022jyjxggyj002) of Anhui.

REFERENCES

