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Abstract: Human nails have recently become a sample of interest for toxicological purposes.
Multiple studies have proven the ability to detect various analytes within the keratin matrix
of the nail. The analyte of interest in this study is fentanyl, a highly dangerous and abused
drug in recent decades. In this proof-of-concept study, ATR–FTIR was combined with
machine learning methods, which are effective in detecting and differentiating fentanyl in
samples, to explore whether nail samples are distinguishable from individuals who have
used fentanyl and those who have not. PLS-DA and SVM-DA prediction models were
created for this study and had an overall accuracy rate of 84.8% and 81.4%, respectively.
Notably, when classification was considered at the donor level—i.e., determining whether
the donor of the nail sample was using fentanyl—all donors were correctly classified.
These results show that ATR–FTIR spectroscopy in combination with machine learning can
effectively differentiate donors who have used fentanyl and those who have not and that
human nails are a viable sample matrix for toxicology.
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1. Introduction
Human nails have recently come forward in the world of toxicology as an alternative

matrix to hair and bodily fluids [1–6]. These matrices can maintain foreign substances
and respective metabolites within their structure that may indicate prior illicit substance
use or abuse. When substances such as alcohol or illicit drugs enter the body, they are
absorbed into the bloodstream, distributed, and deposited throughout the body, with the
potential for biotransformation. Blood flow to the nail bed leads to the deposition of these
substances in the nails as they grow, making nails a valuable resource for detecting past
substance use [4]. Although the keratinized structure of the nail is mainly used for nail bed
protection, the pores found within the structure trap substances within the nail matrix that
cannot be easily removed by daily hygienic routines [1–3,5,7]. These substances can remain
within the keratin matrix for approximately 3–8 months, but some may remain for up to
a year [1–3,5,7]. When compared to other matrices, the period that substances remain in
the keratin structure is just one of the many advantages that nails have. Other advantages
include noninvasive collection and storage procedures [7,8]. Nails grow continuously
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and are not affected by growth cycles or color bias via melanin, unlike hair [5]. This is
what makes nail sample collection, storage, and preparation efficient, as there is very little
that will impact the collection or analysis procedures. Additionally, the deposition of
substances into the nail can alter the chemical composition, but it does not disrupt the
overall integrity of the keratin matrix, providing distinguishability between the natural
composition of the nail and the target analyte [8,9]. These advantages are what recently
caused an interest in researching nails as a matrix for toxicological tests. The results of this
type of research will make nails a useful and appealing tool for toxicology, forensic science,
and medical practices.

There are two main methods by which a foreign substance is incorporated into the
nail [4]. As mentioned before, substances may be absorbed into the bloodstream and
internally deposited into the nail through blood vessels in the nail bed [4]. Alternatively,
nails can be externally contaminated through sweat or direct contact with a substance [4].
Although some research has been conducted on external deposition, such as with explosive
residue, previous research has generally focused on internal deposition through the use
of gas or liquid chromatography with mass spectrometry to analyze nails for alcohol,
drugs, and other substances in subjects of all ages [10–12]. Kintz, Gheddar, and Raul tested
for and quantified multiple anabolic steroids in human nails [7]. Engelhart and Jenkins
published a study in which they tested postmortem nail clippings of suspected drug users
for opiates [2]. Shu et al. detected numerous drugs in nail samples over three years [5].
In addition to these studies, nails have also been used as a sample matrix for substances
such as nicotine and sedatives [10,12,13]. Although gas and liquid chromatography have
been the main avenues for nail analysis, spectroscopic methods, such as FTIR and Raman
spectroscopy, have proven to be appealing due to non-rigorous sample preparation, ease of
use, and non-destructive nature [6]. FTIR and Raman spectroscopy have been utilized to
analyze and distinguish human nail clippings containing substances such as chlorine and
alcohol. These methods have also been applied to predict biological information, such as
the sex of the donor [6,9,14].

The analyte of interest in this study is fentanyl, a synthetic opioid [15]. In recent
decades, there has been an alarming rise in overdose cases involving fentanyl and its
analogues or fentanyl-related substances (FRS) [15–17]. First created in 1960 as a potent
analgesic drug, fentanyl is now illicitly manufactured, distributed, and combined with
or sold as other illicit substances [15,18]. In more recent years, fentanyl analogues, which
have varying potency, emerged as alternatives to the original substance [16]. The potency
and toxicity of fentanyl and FRS present a danger to not only drug users but also drug
manufacturers, drug dealers, first responders, medical personnel, law enforcement, and
the public.

The increasing prominence of these substances and their fatal effects on society have
made them a prominent target for research, primarily focusing on detection methods.
Current detection methods for fentanyl typically include gas or liquid chromatography–
mass spectrometry (GC/LC–MS), colorimetric analysis, or lateral flow assays [15,19]. The
most common detection method for research and casework is LC–MS, as urine and blood
are the typical biological samples utilized for toxicological purposes. Rab, Flanagan, and
Hudson published a study on fentanyl and FRS detection using liquid chromatography
and high-resolution mass spectrometry in which they focused on post-mortem cases [15].
As with nail analysis, the main issue with current methodologies is that it may require
extensive sample preparation. Attenuated total reflectance–Fourier transform infrared
(ATR–FTIR) spectroscopy has the advantages of being nondestructive, noninvasive, and
a relatively simplistic instrumental procedure, and it requires very little, if any, sample
preparation. FTIR consists of measuring the amount of infrared light absorbed by a sample.
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The resulting spectra provide valuable insight into the molecular structure of the sample
being analyzed. Various peaks that may appear on the spectrum can be assigned to specific
chemical functional groups. The spectra obtained from FTIR may be analyzed using any
number of machine learning techniques [14,20–22].

Additionally, FTIR has been applied practically. Particularly, several sources have
discussed in detail how FTIR can be a rapid form of drug screening. Specifically, numerous
sources discuss fentanyl detection within a mixture of substances [23–26]. Ramsay et al.
combined a portable ATR–FTIR spectrometer (Agilent 4500a, Agilent Technologies, Santa
Clara, CA, USA) with PLS methodology to build a model to predict fentanyl content within
drug mixtures [25]. While this research focuses solely on fentanyl detection rather than
quantification, this methodology can be applied to samples such as those implemented
in this study. Prior research has evaluated the efficacy of FTIR spectroscopy to detect
fentanyl within samples and found high specificity rates of around 90% [23,26]. This shows
that FTIR is not only capable of detecting fentanyl within samples but also is ideal for
differentiating samples that do not contain fentanyl.

The purpose of this research was to utilize ATR–FTIR spectroscopy together with PLS-
DA and SVM-DA machine learning techniques to determine if nail clippings containing
fentanyl can be differentiated from those without. This study serves as a proof-of-concept,
building upon previous work in which an identical methodology was applied with the
target analyte of alcohol and, in another study, to predict sex from fingernail samples with a
high degree of accuracy [9,14]. In this paper, it is shown that ATR–FTIR used with machine
learning can differentiate and correctly classify control and fentanyl-containing nail samples
with a high degree of sensitivity, specificity, and overall accuracy. By combining ATR–FTIR
with PLS-DA and SVM-DA, we successfully identified complex patterns within the spectral
data. This enables robust and reliable detection of substances, even in complex matrices,
making it a powerful tool for analysis.

2. Materials and Methods
Sample Collection and Preparation: Nail clippings were collected from 79 volunteers

of various ages, sex, and ethnicities (63 regular donors and 16 fentanyl donors). The
eligibility criteria for volunteer donors included healthy nails with no signs of skin or
nail disease. Nail samples containing fentanyl were collected from patients at the Centre
for Pain Management, Department of Anesthesiology and Intensive Care at St. Anne’s
University Hospital in Brno, Czech Republic. All selected donors from this location were
on medication for fentanyl citrate for an extended period and had their medical histories
reviewed prior to sample collection. The literature and established testing protocols for var-
ious analytical laboratory techniques confirm that fentanyl deposits in nails when ingested,
regardless of whether the source is illicit or prescribed medication [27]. Samples consisted
of 1–5 nail clippings from each donor. For our study, we collected nail clippings from
different fingers of each participant to ensure a comprehensive representation of potential
substance accumulation in the nails. The samples were stored in a plastic Ziploc bag along
with a label containing relevant information, such as patient ID number, sample collection
date, biographical information, history of drug and alcohol use, chronic diseases, and med-
ications. Each nail clipping was rinsed with ≥99.5% acetone prior to collecting spectra to
remove any exterior surface contaminants. This study and sample collection were approved
by the Institutional Review Board of Texas Tech University under No. IRB2022-211.

ATR–FTIR Spectroscopy: Spectra were collected using a Nicolet iS20 (Thermo Sci-
entific, Waltham, MA, USA) spectrometer equipped with a Smart iTX diamond ATR
accessory in tandem with OMNIC software (version 9.12.1019). A total of 15 spectra of
32 scans per spectra were collected for each sample. Each spectrum was taken in a range
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of 400–4000 cm−1 with a resolution of 4. We have excluded spectral regions between
1801 cm−1 and 2599 cm−1 from our analysis to reduce any potential interference caused by
the diamond attenuated total reflection (ATR) crystal. To account for the heterogeneous
nature of the keratin matrix, each spectrum was taken from a different area of the nail
clipping. By sampling spectra from the left, middle, and right regions of the nail on both the
dorsal (top) and ventral (underside) surfaces, we ensured that the potential variability in
composition and structure within the nail was adequately represented in our analysis. The
diamond accessory was cleaned with ≥99.5% acetone and allowed to dry between samples,
and a background spectrum was taken prior to new sample spectral analyses. Force was
applied to each sample to ensure sufficient contact with the diamond accessory. ATR–FTIR
spectroscopy integrates with machine learning algorithms by treating each wavenumber in
the spectral data as a unique feature, resulting in a dataset where the number of features
matches the number of wavenumbers measured. Prior to the modeling, the spectral data
underwent several preprocessing steps to improve interpretability. These steps involved
transforming transmission values to absorbance using the formula log(1/T), applying a
second-order derivative transformation with a second polynomial, normalizing by the total
area, and performing mean centering. The modeling was conducted using MathWorks
MATLAB R2024b (version 24.2.0.2712019, Natick, MA, USA) in conjunction with the PLS
Toolbox 9.5 from Eigenvectors Research Inc. (Manson, WA, USA).

PLS-DA: Partial least squares (PLS) is a versatile linear regression method that can be
effectively adapted for classification tasks. When used with a dummy response variable,
the technique becomes known as partial least squares discriminant analysis (PLS-DA) [28].
In PLS-DA, the primary difference is the addition of a thresholding step to the predicted
y-values to assign class labels, such as distinguishing between “Fentanyl” and “Control”
samples. The PLS algorithm reduces the data’s dimensionality by transforming the original
predictors, such as a full FTIR spectrum, into a smaller set of latent variables (LVs) or com-
ponents. These LVs are selected to maximize the covariance between the response variable
(class assignment) and new linear combinations of the original predictors while minimizing
the influence of irrelevant variables [22]. An important step in PLS-DA is determining the
optimal number of LVs, ensuring that the model captures only the variability relevant to
predictions without incorporating noise [29]. This is typically achieved by constructing
several PLS models with different numbers of LVs and using cross-validation to identify
the model that minimizes classification error. The number of LVs that resulted in the lowest
classification error rate during cross-validation was chosen for the final PLS-DA model [14].

PLS-DA effectively handles high-dimensional datasets and provides a robust classifi-
cation performance based on linear relationships between the predictors and the response
variable. Due to the complexity of biological data, it was hypothesized that SVM, a
non-linear approach to data prediction, could optimally capture patterns potentially left
unrecognized by PLS linear predictions. To ensure robust performance for both the PLS-DA
and SVM-DA models, the dataset was split into two subsets: a training set (975 spectra)
and a test set (210 spectra), with the latter held strictly for external validation. The training
dataset was used to tune hyperparameters through a cross-validation process, specifically
employing a ten-fold Venetian blind scheme, optimizing the model’s performance before
testing it on the held-out test set. This method involves splitting the training data into ten
equally sized subsets or “folds”. During each iteration of the cross-validation process, one
of these ten subsets was temporarily set aside as the validation set, while the remaining
nine subsets were used to build a preliminary model.

This model was then used to predict the class labels for the excluded validation set,
such as “Fentanyl” or “Control”, and the classification error rate was recorded. This process
was repeated ten times, each time excluding a different subset as the validation set until



Sensors 2025, 25, 227 5 of 14

all subsets had been used once for validation. Then, the average PLS-DA classification
error was calculated. This process was repeated across various models with an increasing
number of LVs to identify the optimal number that minimized the classification error. After
determining the ideal number of LVs for the PLS-DA model, the specific number of LVs
was applied to build the final model using the entire training dataset. This final model was
subsequently applied to the test set, which was kept separate from the model-building and
cross-validation stages to assess the predictive accuracy of unseen data.

Identical steps were followed for the SVM-DA model-building process, using training,
test splitting, and Venetian blind cross-validation procedures to fine-tune the model’s
hyperparameters (cost and gamma hyperparameters). This approach ensured that the PLS-
DA and SVM-DA models were rigorously validated and allowed for a fair comparison of
their performance in terms of predictive accuracy and generalizability to new, unseen data.

SVM-DA: It has been shown that machine learning methods, particularly those capable
of modeling nonlinear relationships between variables, such as support vector machine
(SVM), can provide higher classification accuracy. In our study, we first used PLS-DA, a
standard technique for linear classification, to model the relationship between spectral data
and class labels. While effective for high-dimensional datasets, PLS-DA assumes linear
relationships, which may not fully capture the complexity of biological data. Hence, we
extended our approach further and implemented the support vector machine discriminant
analysis (SVM-DA) model, capable of modeling nonlinear relationships, to observe whether
this will improve the accuracy of classification. Accordingly, SVM-DA was run to give
more emphasis to the non-linear interactions in the data that may not have been captured
by the linear approach of PLS-DA. The SVM-DA model input features were the scores
from the LVs obtained from the PLS-DA model to allow for the dimensionality reduction
provided by PLS-DA while using the non-linear classification capabilities of SVM. The LVs
effectively captured variance in this data, serving as the features.

As a supervised learning technique, especially suitable for classification purposes,
SVM-DA can easily classify two classes in diagnostic studies. First proposed by Vapnik
in 1995, the SVM-DA technique has been extensively applied to many scientific fields,
such as bioinformatics, with successful solutions to various diagnostic problems [30–33].
The SVM-DA methodology searches for an optimum set of support vectors that define a
hyperplane in the feature space. These vectors are identified during the training process,
and the model then fits the data using a kernel function of choice selected by the user.
The kernel modifies the behavior of the SVM-DA model to optimize the hyperplane’s
position, ensuring maximum separation (or margin) between the classes. In this work, an
RBF kernel was implemented and optimized through a Venetian blind cross-validation
process combined with a systematic grid search over the model hyperparameters (cost and
gamma hyperparameters).

A regular grid search was conducted to find the best parameters for the model by using
Venetian blind cross-validation with ten splits. This method assisted in model performance
evaluation across different subsets of the data and generalization of the model because
the systematic grid search is performed over different parameter combinations across
subsets. The cost parameter controls the trade-off between the low error on the training
data and model simplicity to prevent possible overfitting or underfitting. Similarly, the
gamma parameter, which defines the range of influence for a single training example, was
optimized in such a way that the model would be able to learn from general underlying
patterns within the data without being too sensitive to noise [34].

Model Evaluation: In our analysis, sensitivity, specificity, and overall accuracy were
calculated at all stages of model building, including calibration, cross-validation, and ex-
ternal validation. An independent test dataset, set aside at the beginning of the statistical



Sensors 2025, 25, 227 6 of 14

analysis, was used for external validation to determine the performance of both the PLS-DA
and SVM-DA models. This enabled an independent assessment of model generalization.
Further, receiver operating characteristic (ROC) curves were plotted to compare the results
of cross-validation and external validation for both approaches to provide the discrimina-
tive capabilities for both models. The ROC analysis presents the possibility of exploring the
trade-offs between sensitivity and specificity through various threshold settings, providing
information about the area under the curve (AUC) for each model. The AUC measures
how well a model can distinguish between classes. An AUC of 0.5 suggests the model
performs no better than random guessing, while a model with an AUC close to 1.0 gives
a high performance in classification. It evaluates the ability of the model to separate the
classes at different threshold values. By comparing these results from cross-validation and
external validation, the generalizability was assessed for both the PLS-DA and SVM-DA
models. While cross-validation estimates the performance on subsets of the training data,
with the main objective of model parameter tuning, external validation tests the model on
completely unseen data to provide a more realistic estimate of predictive accuracy. This
helps ensure the model is not overfitting and will perform well on independent datasets.
Ideally, the results obtained from cross-validation and external validation will not be no-
tably different, since large differences could reflect overfitting or poor generalization. The
consistency of these results will provide evidence of a robust model.

3. Results
Visual Examination of Spectra: The bottom graph of Figure 1 shows the mean ATR–

FTIR spectra of fingernails from the two groups of volunteers. It is observed that these
spectra exhibit peaks at similar positions with only minor differences in their intensities.
Since the basic composition of human nails does not vary, slight differences due to fentanyl
consumption are noticeable between the groups. However, the average spectra show very
small differences, and the high standard deviation is larger than the differences indicated by
the difference spectra (Figure 1, top). Because of this, simply relying on visual comparisons
would not be very effective. Therefore, advanced multivariate statistical techniques were
employed for more reliable differentiation. The spectral profile of human nails shows
characteristic vibrational frequencies corresponding to various biomolecular components,
thus offering valuable insights into the characteristics of human nails. Major regions within
the nail spectra are dominated by signals corresponding to nucleic acids in the region
of 1000–1250 cm−1, lipids at 2800–3000 cm−1, and carbohydrates at 800–1000 cm−1. The
detailed peak assignments for molecular vibrations in human nails are reported in the
literature and, most specifically, in our previous study [14].

Although the spectral profiles show some similarities, the difference spectrum
(Figure 1, top) obtained by comparing the mean spectra of the “Fentanyl” and “Con-
trol” groups highlights prominent peaks. These variations could be partially attributed
to the ATR–FTIR spectral bands identified in our earlier research associated with changes
in Amide I (1620 cm−1) and Amide II (1525 cm−1) [20]. The Amide I band is generally
one of the most prominent features in protein spectra, with variations in this region often
linked to changes in the protein’s backbone structure [35]. A significant difference also
noted occurred in the Amide II band, which is a highly complex region where identifying
structural changes can be challenging. Significant variations in intensity were also noted in
the band identified in the spectrum at 1044 cm−1 assigned to S–O bonds of the cysteic acid
unit [36].
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masked or overlapped by the inherent signals of lipids in the nail matrix. The overlapping 
spectral features emphasize the need for advanced analytical methods, such as machine 
learning algorithms, which can be trained on labeled samples to identify specific patterns 
associated with fentanyl. ML algorithms can enhance the detection of subtle differences, 
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trix components. 

PLS-DA Classification: To identify fentanyl donors based on spectral signatures ra-
ther than individual peak intensities, the PLS-DA method was adopted to develop a ro-
bust model. This method searches for regular patterns across labeled spectra to enable the 
system to learn features and make predictions on unknown data. The “Control” class con-
tained 63 donors, while the “Fentanyl” class had 16 donors. The total amount of labeled 
spectra used for the training in the PLS-DA model was 975. In PLS-DA, there are two 
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Figure 1. Top: Difference spectrum of “Control” and “Fentanyl” mean spectra, highlighting small
differences between the groups. The standard deviation (SD) spectra for each group are also shown
to highlight the variability in the spectral data. The SD spectra for the “Control” group (shown as a
blue line) and the “Fentanyl” group (shown as a red line) are plotted in both positive and negative
directions around the difference spectra. This visual representation offers a clearer understanding
of the range of spectral variability in each group and helps to clarify the extent of the differences
observed between the two classes. Bottom: Raw mean spectra of “Control” and “Fentanyl” groups.

Compared to the FTIR spectra measured in our previous studies, the difference spec-
trum exhibited distinct peaks, particularly at wavenumbers 2952 cm−1, 2919 cm−1, and
2848 cm−1. These peaks were identified in our earlier studies as well but are also character-
istic of fentanyl spectra as described in the literature [37]. Notably, these peaks correspond
to lipids in human nail composition but overlap with those identified in fentanyl [21]. Thus,
fentanyl can only introduce subtle changes in the FTIR spectrum. These changes might be
masked or overlapped by the inherent signals of lipids in the nail matrix. The overlapping
spectral features emphasize the need for advanced analytical methods, such as machine
learning algorithms, which can be trained on labeled samples to identify specific patterns
associated with fentanyl. ML algorithms can enhance the detection of subtle differences,
even in the presence of complex matrices. This approach not only improves classification
accuracy but also provides a more robust framework for interpreting the spectral data,
thus aiding in the differentiation of fentanyl from non-specific changes related to nail
matrix components.

PLS-DA Classification: To identify fentanyl donors based on spectral signatures rather
than individual peak intensities, the PLS-DA method was adopted to develop a robust
model. This method searches for regular patterns across labeled spectra to enable the
system to learn features and make predictions on unknown data. The “Control” class
contained 63 donors, while the “Fentanyl” class had 16 donors. The total amount of
labeled spectra used for the training in the PLS-DA model was 975. In PLS-DA, there are
two important ways to ensure the model performance is sufficient: the selection of the
number of optimal LVs and the setting of the classification threshold. The optimal number
of LVs was determined using the method of cross-validation with 10-fold Venetian blind
cross-validation. Eight LVs were selected for further analysis.
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The calibration set resulted in a sensitivity of 93.9%, specificity of 91.9%, and an overall
accuracy of 92.3%. The classification threshold was developed based on the distribution
of calibration-sample predictions; spectra that fell above that classification threshold were
predicted as “Control”, and those falling below the threshold were predicted as “Fentanyl”.
The threshold is optimized for metrics such as sensitivity and specificity under the as-
sumption that the predicted values for each class are approximately normally distributed,
ensuring that the model generalizes effectively on new data. During cross-validation, the
results turned out slightly lower: sensitivity of 88.9%, specificity of 89.3%, and accuracy of
89.2%. However, these results reflected a very robust performance by the model and showed
high sensitivity and specificity to discriminate between the two donor groups, showing its
potential applicability in the identification of fentanyl use through spectral analysis.

After training the PLS-DA model with eight LVs to differentiate between “Control”
and “Fentanyl” nail specimens, the model predicted spectra from an independent test set
that had not been introduced during model training. This approach provided an unbiased
evaluation of the final PLS-DA model. In Figure 2, there are the discriminant scores for each
nail spectrum predicted during calibration (the left side up to Sample 975) as well as during
external validation (the right side). Figure 2 also displays the prediction scores for each
spectrum alongside the classification threshold (indicated by the red dashed line). Spectra
above this threshold are classified as “Control”, while those below the line are classified
as “Fentanyl”. The external validation results showed a sensitivity of 82.6%, specificity of
91.7%, and overall accuracy of 84.8% based on spectral level, confirming the model’s robust
performance on new data. The PLS-DA model achieved 100% accuracy in distinguishing
between the two groups at the donor level using the standard 50% threshold, meaning
every donor was correctly classified with no errors.
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Figure 2. PLS-DA model results for all training and test spectra using 8 LVs. All spectra above the
discrimination threshold are predicted as “Control”, while those below the threshold are predicted as
“Fentanyl”. Blue data points represent spectra from samples which contained no fentanyl, while red
data points represent spectra from samples which were known to contain fentanyl.

While the PLS-DA model benefits from being easily interpretable and linear, it is inher-
ently limited to modeling linear relationships between variables [38]. Since biological data
often display non-linear characteristics, more sophisticated non-linear machine learning
techniques could potentially offer better performance in these cases. However, PLS-DA
remains a robust method for linear discrimination, particularly when dimensionality re-
duction and model interpretability are key objectives.

SVM-DA Classification: The classification problem was solved by the support vector
machine model, which used a radial basis function kernel, or RBF, with optimal parameters:
cost equals 3.1623 and gamma equals 0.031623. The model was trained using 210 support
vectors, which indicates its strength in the representation of the data for sufficient classifica-
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tion. The SVM-DA model effectively turns its raw output into probabilities, which then
direct the classification decision for each spectrum. The SVM-DA model has calculated a
probability for both classes (“Control” and “Fentanyl”) and picked the one with the higher
probability as the final prediction of that spectrum. Once the predictions for each spectrum
were obtained, true labels, sensitivity, specificity, and accuracy were evaluated to determine
the performance of the SVM-DA classifier. The performances of the SVM-DA classification
model for three stages were assessed: calibration, cross-validation, and external validation.
Each step provides key information about the model’s ability to discriminate between
control and fentanyl spectra. During model calibration, the sensitivity was 97.6%, and the
specificity was 81.7%. The overall accuracy during calibration was 94.7%, demonstrating
that the model effectively recognizes both classes.

During cross-validation, the sensitivity for the control class decreased slightly to 94.7%,
and the specificity decreased to 77.8%. The accuracy in this phase was 91.6%, indicating
the model’s continued reliability when validated on various subsets of data. The model
sensitivity during external validation was 81.3% for the control class, while the specificity
was 81.7%. During this stage, the overall accuracy was 81.4%, hence showing a small drop
in performance during calibration and cross-validation. This means that, while the model
still predicts the most probable class for each spectrum fairly well, there are challenges
in consistently achieving high accuracy. The results of the SVM-DA model are shown in
Figure 3. At the donor level, the SVM-DA model achieved 100% accuracy in distinguishing
between the two groups.
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Figure 3. SVM-DA results of all training and test spectra. All spectra above the threshold are predicted
as “Control”, while those below the threshold are predicted as “Fentanyl”. Blue data points represent
spectra from samples which contained no fentanyl, while red data points represent spectra from
samples which were known to contain fentanyl.

In general, these results reflect that the SVM-DA model has a robust classification capa-
bility regarding control and fentanyl spectra across all stages. High sensitivity and specificity,
accuracy of calibration, cross-validation, and independently performed external validation
confirm the model’s efficiency in distinguishing between the two classes effectively.

Receiver Operating Characteristic (ROC) Analysis: To further explore and compare the
performance of the PLS-DA and SVM-DA models, ROC curve analysis was conducted. ROC
curves are a standard technique for comparing the diagnostic performance of classification
models where the sensitivity or true positive rate is plotted against specificity or true
negative rate to evaluate different classification thresholds. The area under the curve
(AUC) represents the overall accuracy of the model in distinguishing between classes.
For the present study, AUCs were calculated using the trapezoidal method of integration;
the 95% confidence interval (CI) was calculated using the method described by De Long



Sensors 2025, 25, 227 10 of 14

et al. [39]. ROC curves were created using the cross-validation and external validation
probability estimates.

The ROC curve for the PLS-DA model (Figure 4, left) has an AUC value of 0.98 with
a 95% CI between 0.97 and 0.99, respective to cross-validation. This represents excellent
discriminatory ability between Controls and Fentanyl cases in the training data. In the
external validation set, the PLS-DA model has an AUC value of 0.94, with a 95% CI between
0.92 and 0.97, showing high performance on the test dataset but a slight decrease when
compared to the cross-validation results.
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On the contrary, the AUC for the SVM-DA model’s cross-validation (Figure 4, right)
was 0.97, with a 95% CI between 0.96 and 0.99. This is slightly lower than the PLS-DA
model’s AUC but still shows high performance. The SVM-DA model has an AUC of 0.89,
with a 95% CI of 0.84 to 0.94 for the external validation set, which is lower compared to
the PLS-DA model. The SVM-DA model, though still having excellent performance in the
training data, shows reduced performance during external validation data compared to
the PLS-DA.

In general, the PLS-DA model has better performance in external validation compared
to the SVM-DA model, while the latter had an overall sufficient calibration performance.
This may indicate the sensitivity of SVM-DA models to hyperparameters and possible
overfitting that affects the generalization capability of new data.

4. Discussion
When using ML to analyze FTIR spectra of nails to identify fentanyl users, it is im-

portant to recognize that both fentanyl and its metabolite, norfentanyl, will contribute to
the spectral data. In nails, it is possible to identify fentanyl and norfentanyl due to the
direct deposition of the drug into the keratin matrix [27]. Distinguishing fentanyl from its
metabolites within nails can be challenging because the metabolites might have similar or
overlapping FTIR peaks as the parent compound. Exact identification often depends on
the specific chemical changes occurring during metabolism and the resolution of the FTIR
technique. Additionally, fentanyl use can cause broader biochemical changes in the overall
structure of the nail, which may affect the intensity and pattern of peaks in the spectra,
further supporting differentiation between the fentanyl group and the control. In practice,
while peaks might overlap, advanced analytical methods or additional complementary
techniques can help differentiate between fentanyl and its metabolites. However, distin-
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guishing between fentanyl and its metabolites may be more relevant in specific forensic
investigations, where knowing the exact drug exposure timeline or understanding the
nature of a person’s drug use is important. Our focus is on identifying patterns of fentanyl
use in general without differentiating between fentanyl and its metabolites.

In this study, PLS-DA and SVM-DA techniques were applied to FTIR spectra of
nail samples and showed successful differentiation between samples containing fentanyl,
metabolites, and other changes in the nail matrix caused by long-term use and those that
did not contain the target analytes. The PLS-DA model was able to classify samples with an
overall accuracy of approximately 84.8%, while the SVM-DA model was able to classify sam-
ples with an overall accuracy of approximately 81.4% during external validation. Although
the PLS-DA model classified newly introduced samples more accurately, the SVM-DA
model was better at assessing nonlinear relationships and had a higher calibration accuracy.
This suggests that, while the PLS-DA model may perform better in external validation, the
SVM-DA model’s stronger calibration may offer better sensitivity to underlying patterns in
the training data, which could be important for complex datasets later in research. These
models may be fine-tuned further to possibly achieve an even higher accuracy. Thus, the
current results demonstrate that ATR–FTIR combined with machine learning may be used
for noninvasive and rapid fentanyl screening to indicate prolonged use. This also supports
human nails as a new ideal matrix for toxicological and forensic purposes. This research
lays the foundation for new research into the development of novel methods for fentanyl
detection utilizing nail clippings.

A possible limitation of our study is the exclusive use of fentanyl citrate in recruited
donors for the fentanyl group, while numerous fentanyl analogues are also present in illicit
drugs. FRS differ structurally from fentanyl citrate, potentially leading to variations in
their ATR–FTIR spectra. As a result, the current ML models, trained solely on fentanyl
citrate data, may generalize less effectively to detect other fentanyl derivatives. However, a
previous study conducted by Crepeault et al. [40] suggested that the differences in FTIR
spectra among various FRS are relatively minor. The authors used data collected between
May 2018 and July 2021 at supervised consumption sites in Vancouver and Surrey, BC,
where drug-checking services were provided. This study employed FTIR reference libraries
to identify fentanyl and its analogues in the supplied samples. Although they were able to
reliably detect fentanyl or FRS, differentiating between the analogues and fentanyl itself
was impossible due to the spectral similarities between them. Future studies will focus
on expanding the dataset to include these analogues, enabling the development of a more
robust model that can identify a broader range of fentanyl derivatives commonly encoun-
tered in forensic contexts. Despite this limitation, our findings represent an important
step toward noninvasive detection of fentanyl use, with future enhancements expected to
broaden applicability.

One important consideration in this study is the potential confounding effects of other
medications that some donors were taking during sample collection. Medications other
than fentanyl could alter the biochemical composition of the nails, affecting the ATR–FTIR
spectra and potentially interfering with the detection results of fentanyl and metabolites.
Many drugs that are metabolized and excreted through the body’s various keratinized
tissues (like nails) may be deposited within the keratin matrix, similar to fentanyl. These
deposits could introduce changes in spectral peaks, mainly by alternating the intensity of
existing peaks, potentially overlapping with those indicative of fentanyl use. In this study,
we did not control for or systematically account for the presence of other medications in the
donor population, so there is a risk that some of the differences detected between the control
and fentanyl user groups could be influenced by these other substances. This confound-
ing factor may reduce the specificity of our machine learning model, as the model may
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mistakably learn patterns from unrelated medications rather than from fentanyl-specific
biochemical changes. However, the model’s performance during external validation, which
was rigorously designed, supports the conclusion that the model primarily learned pat-
terns specific to fentanyl use. The model showed excellent performance in distinguishing
fentanyl users from the control group, suggesting that it successfully identified fentanyl-
related biochemical changes in the nail matrix rather than results significantly influenced
by unrelated medications. This strengthens the argument that the proposed approach
is robust and capable of detecting fentanyl-specific signatures even in the presence of
other substances. To exclude the possibility that the model could have been influenced by
medications other than fentanyl, validation studies will be conducted.

5. Conclusions
In conclusion, this proof-of-concept study demonstrates the feasibility of using ATR–

FTIR combined with machine learning techniques to detect fentanyl in human nails, form-
ing a promising basis for noninvasive detection methods. These results, based solely on
spectral data, show that, while the PLS-DA and SVM-DA models achieve external valida-
tion accuracies of 84.8% and 81.4%, respectively, the classification accuracy reaches 100%
when analyzing at the donor level. This distinction highlights the potential of these meth-
ods to effectively differentiate between fentanyl users and control groups when considering
individual donor information. Although the exclusive use of fentanyl citrate presents
limitations regarding the detection of various fentanyl analogues, existing literature [40]
suggests that spectral differences among these compounds are minimal, which may en-
hance the applicability of our findings. Moreover, while the presence of other medications
in the donor population poses a risk of confounding results, our rigorous validation process
indicates that the model effectively captures fentanyl-specific biochemical signatures. This
proof-of-concept study provides the basis for future studies aimed at expanding the dataset
to include a range of fentanyl analogues and improving model robustness for forensic
applications. The exploration of this innovative methodology holds significant promise for
enhancing the detection and understanding of fentanyl use in toxicology.
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