Spatial Analysis and Modeling (GIST 4302/5302)

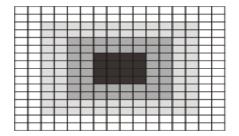
Guofeng Cao
Department of Geosciences
Texas Tech University

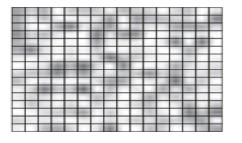
Outline of This Week

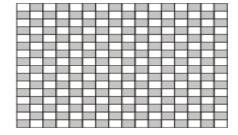
- Last week, we learned:
 - spatial point pattern analysis (PPA)
 - focus on location distribution of 'events'
- This week, we will learn:
 - spatial autocorrelation
 - global measures of spatial autocorrelation
 - local measure of spatial autocorrelation

Spatial Autocorrelation

- Tobler's first law of geography
- Spatial auto/cross correlation







If like values tend to cluster together, then the field exhibits high positive spatial autocorrelation

If there is no apparent relationship between attribute value and location then there is zero spatial autocorrelation

If like values tend to be located away from each other, then there is negative spatial autocorrelation

Spatial Autocorrelation

- Spatial autocorrelationship is everywhere
 - Spatial point pattern
 - K, F, G functions
 - Kernel functions
 - Areal/lattice (this topic)
 - Geostatistical data (next topic)

Spatial Autocorrelation of Areal Data

Positive spatial autocorrelation

- high values
 surrounded by nearby high values
- intermediate values surrounded by nearby intermediate values
- low values surrounded by nearby low values

nearby low values

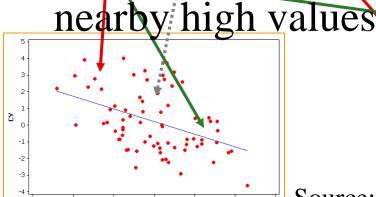
Source: Ron Briggs of UT Dallas

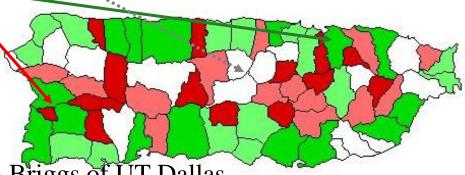
2002 population

density

Negative spatial autocorrelation

- high valuessurrounded by nearby low values
- intermediate values surrounded by nearby intermediate values
- low values surrounded by





competition for space

Grocery store density

Source: Ron Briggs of UT Dallas

Spatial Weight Matrix

- Core concept in statistical analysis of areal data
- Two steps involved:
 - define which relationships between observations are to be given a nonzero weight, i.e., define spatial neighbors
 - assign weights to the neighbors

• Making the neighbors and weights is not easy as

it seems to be

– Which states are near Texas?

Spatial Neighbors

Contiguity-based neighbors

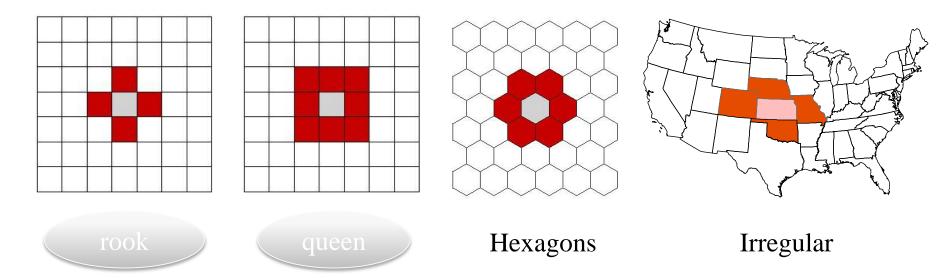
- Zone i and j are neighbors if zone i is contiguity or adjacent to zone j
- But what constitutes contiguity?

Distance-based neighbors

- Zone i and j are neighbors if the distance between them are less than the threshold distance
- But what distance do we use?

Contiguity-based Spatial Neighbors

- Sharing a border or boundary
 - Rook: sharing a border
 - Queen: sharing a border or a point



Which use?

Example

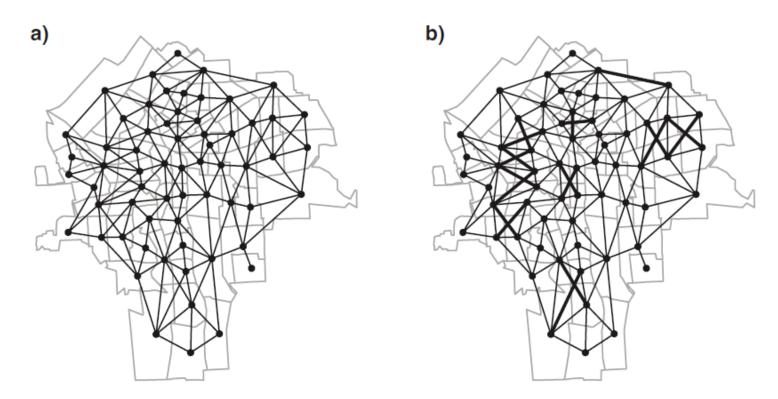
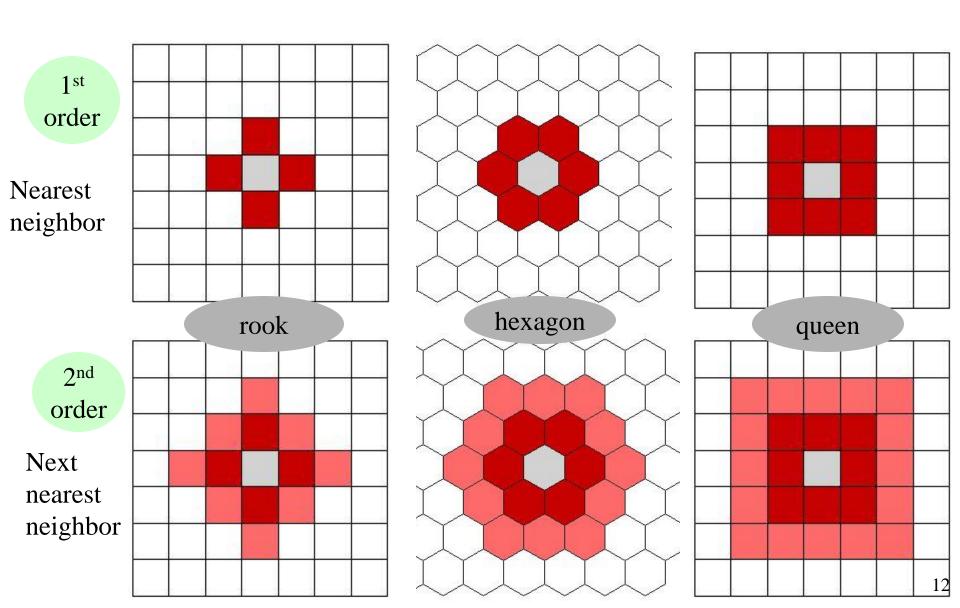


Fig. 9.3. (a) Queen-style census tract contiguities, Syracuse; (b) Rook-style contiguity differences shown as thicker lines

Higher-Order Contiguity



Distance-based Neighbors

- How to measure distance between polygons?
- Distance metrics
 - 2D Cartesian distance (projected data)
 - 3D spherical distance/great-circle distance (lat/long data)
 - Haversine formula

```
Haversine a = \sin^2(\Delta \phi/2) + \cos(\phi_1).\cos(\phi_2).\sin^2(\Delta \lambda/2)
formula: c = 2.a \tan 2(\sqrt{a}, \sqrt{(1-a)})
d = R.c
```

Distance-based Neighbors

k-nearest neighbors

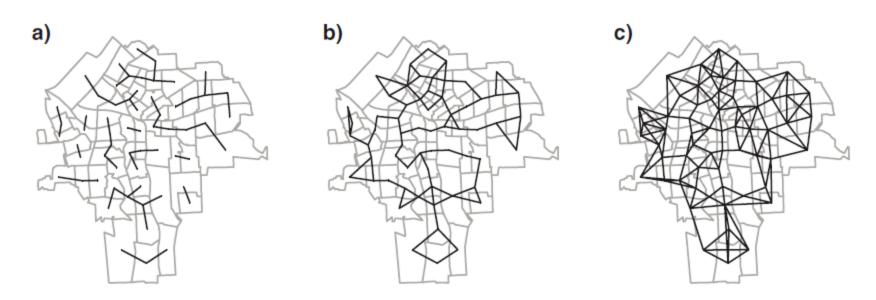


Fig. 9.5. (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

Distance-based Neighbors

• thresh-hold distance (buffer)

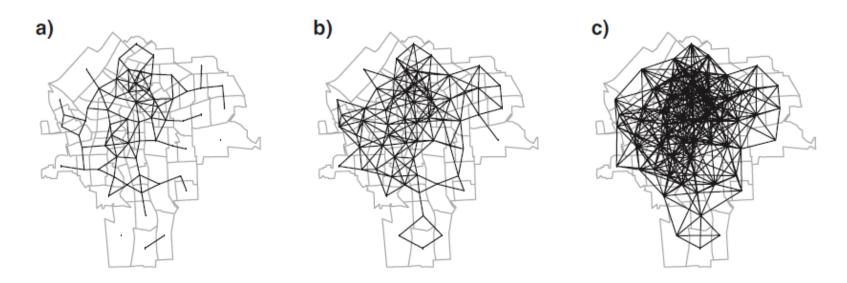
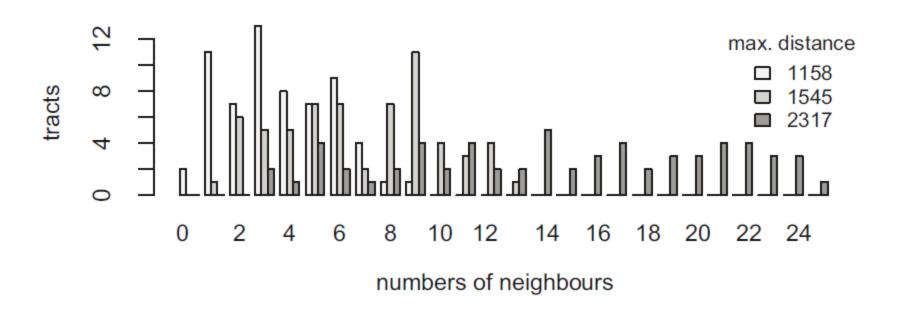


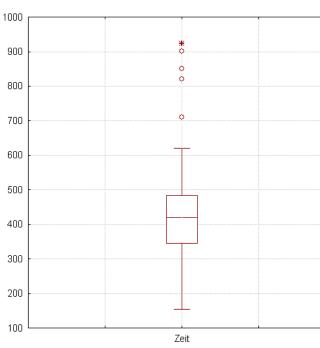
Fig. 9.6. (a) Neighbours within 1,158 m; (b) neighbours within 1,545 m; (c) neighbours within 2,317 m

Neighbor/Connectivity Histogram



Side Note: Box-plot

- Help indicate the degree of dispersion and skewness and identify outliers
 - Non-parametric
 - 25%, 50%, 75% percentiles
 - end of the hinge could mean
 differently depending on implementation
 - Points outside the range are usually taken as outliers



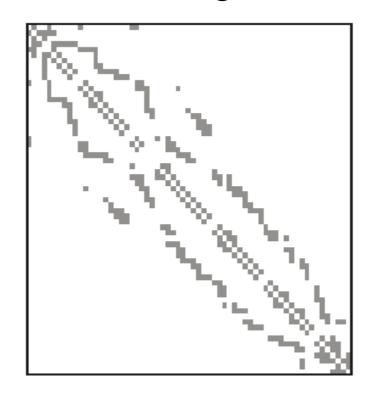
Spatial Weight Matrix

• Spatial weights can be seen as a list of weights indexed by a list of neighbors

• If zone j is not a neighbor of zone i, weights

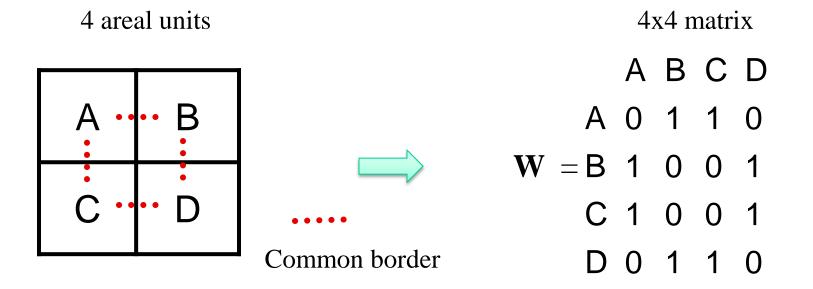
Wij will set to zero

- The weight matrix can be illustrated as an image
- Sparse matrix



A Simple Example for Rook case

- Matrix contains a:
 - 1 if share a border
 - 0 if do not share a border



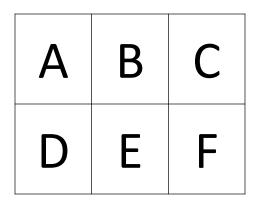
1 Washington	
2 Oregon	1 1 11
3 California	
4 Arizona	1 1 11 1
5 Nevada	111 1 1
6 Idaho	11 1 111
7 Montana	
8 Wyoming	
9 Utah	
	1 1 111
10 New Mexico	1 11 11 11
11 Texas	
12 Oklahoma	
13 Colorado	1 111 1 11
14 Kansas	11 1 1
15 Nebraska	1 11 1 11
16 South Dakota	11 1 111
17 North Dakota	1 11 1
18 Minnesota	
19 Iowa	11 1 1 11
20 Missouri	1 11 1 1 111
21 Arkansas	11 1 111
22 Louisiana	1 1 1
23 Mississippi	11 1
24 Tennessee	11 1 11 11 11
25 Kentucky	1 1 1 111 1
26 Illinois	11 11 1
	11 11
27 Wisconsin	111
28 Michigan	11 1 1
29 Indiana	1 11 1
30 Ohio	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
31 West Virginia	
32 Florida	
33 Alabama	11 11
34 Georgia 35 South Carolina	1 11 11
35 South Carolina	
36 North Carolina	1 11 1
37 Virginia	11 1 1 1 1
38 Maryland	1 1111
39 Delaware	
40 District of Columbia	
41 New Jersey	
42 Pennsylvania	11 11 1 1
43 New York	11 1 1 1
44 Connecticut	
45 Rhode Island	
	111111
46 Massachussets	111
47 New Hampshire	1 11
48 Vermont	
49 Maine	

Name	Fips	Matrix for U	N1	N2	N3	N4	N5	N6	N7	N8
							INO	IAO	IN7	INO
Alabama	1	4	28	13	12	47				
Arizona	4	5	35	8	49	6	32			
Arkansas	5	6	22	28	48	47	40	29		
California	6	3	4	32	41					
Colorado	8	7	35	4	20	40	31	49	56	
Connecticut	9	3	44	36	25					
Delaware	10	3	24	42	34					
District of Columbia	11	2	51	24						
Florida	12	2	13	1						
Georgia	13	5	12	45	37	1	47			
Idaho	16	6	32	41	56	49	30	53		
Illinois	17	5	29	21	18	55	19			
Indiana	18	4	26	21	17	39				
lowa	19	6	29	31	17	55	27	46		
Kansas	20	4	40	29	31	8				
Kentucky	21	7	47	29	18	39	54	51	17	
Louisiana	22	3	28	48	5					
Maine	23	1	33							
Maryland	24	5	51	10	54	42	11			
Massachusetts	25	5	44	9	36	50	33			
Michigan	26	3	18	39	55					
Minnesota	27	4	19	55	46	38				
Mississippi	28	4	22	5	1	47				
Missouri	29	8	5	40	17	21	47	20	19	31
Montana	30	4	16	56	38	46				
Nebraska	31	6	29	20	8	19	56	46		
Nevada	32	5	6	4	49	16	41			
New Hampshire	33	3	25	23	50	10				
New Jersey	34	3	10	36	42					
New Mexico	35	5	48	40	8	4	49			
New York	36	5	34	9	42	50	25			
North Carolina	37	4	45	13	47	51				
North Dakota	38	3	46	27	30	31				
Ohio	39	5	26	21	54	42	10			
Onio Oklahoma	40	6		35	48	42 29	18 20	0		
			5				∠∪	8		
Oregon	41	4	6	32	16	53	20	2.4		
Pennsylvania	42	6	24	54	10	39	36	34		
Rhode Island	44	2	25	9						
South Carolina	45	2	13	37	4.5	0.1		0.0		
South Dakota	46	6	56	27	19	31	38	30		
Tennessee	47	8	5	28	1	37	13	51	21	29
Texas	48	4	22	5	35	40				
Utah	49	6	4	8	35	56	32	16		
Vermont	50	3	36	25	33					
Virginia	51	6	47	37	24	54	11	21		
Washington	53	2	41	16						
West Virginia	54	5	51	21	24	39	42			
Wisconsin	55	4	26	17	19	27				
Wyoming	56	6	49	16	31	8	46	30		

Style of Spatial Weight Matrix

- Row
 - a weight of unity for each neighbor relationship
- Row standardization
 - Symmetry not guaranteed
 - can be interpreted as allowing the calculation of average values across neighbors
- General spatial weights based on distances

Row vs. Row standardization



Divide each number by the **row sum**

Total number of neighbors
--some have more than others

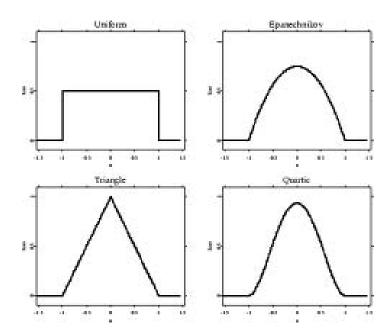
							Row
	Α	В	С	D	Ε	F	Sum
Α	0	1	0	1	0	0	2
В	1	0	1	0	1	0	3
C	0	1	0	0	0	1	2
D	1	0	0	0	1	0	2
Ε	0	1	0	1	0	1	3
F	0	0	1	0	1	0	2

Row standardized --usually use this

	A	В	С	D	E	F	Row Sum
Α	0.0	0.5	0.0	0.5	0.0	0.0	1
В	0.3	0.0	0.3	0.0	0.3	0.0	1
С	0.0	0.5	0.0	0.0	0.0	0.5	1
D	0.5	0.0	0.0	0.0	0.5	0.0	1
E	0.0	0.3	0.0	0.3	0.0	0.3	1
F	0.0	0.0	0.5	0.0	0.5	0.0	1

General Spatial Weights Based on Distance

- Decay functions of distance
 - Most common choice is the inverse (reciprocal) of the distance between locations i and j ($w_{ij} = 1/d_{ij}$)
 - Other functions also used
 - inverse of squared distance $(w_{ij} = 1/d_{ij}^2)$, or
 - negative exponential $(w_{ij} = e^{-d} \ or \ w_{ij} = e^{-d^2})$



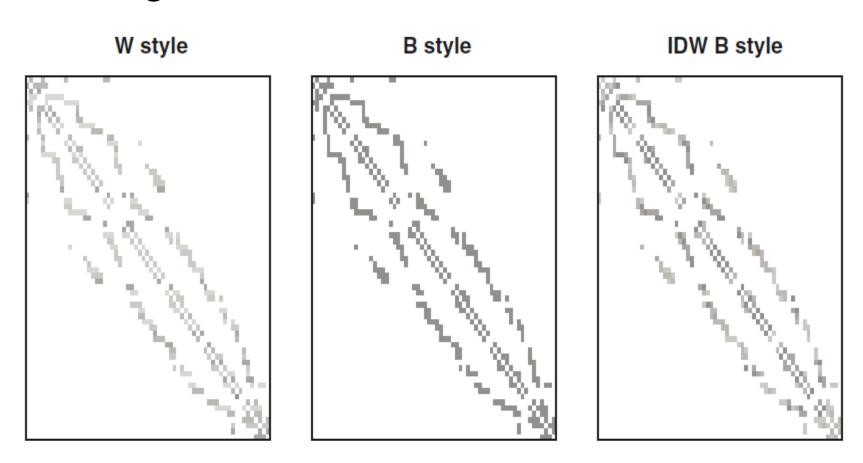
Due to the Federal government shutdown, NOAA.gov and most associated web sites are unavailable.

Only web sites necessary to protect lives and property will be maintained.

See <u>Weather.gov</u> for critical weather information or contact <u>USA.gov</u> for more information about the shutdown.

Example

• Compare three different weight matrix in images



Measure of Spatial Autocorrelation

Global Measures and Local Measures

Global Measures

- A single value which applies to the entire data set
 - The same pattern or process occurs over the entire geographic area
 - An average for the entire area

Local Measures

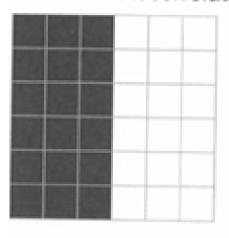
- A value calculated for <u>each</u> observation unit
 - Different patterns or processes may occur in different parts of the region
 - A unique number for each location
- Global measures usually can be decomposed into a combination of local measures

Global Measures and Local Measures

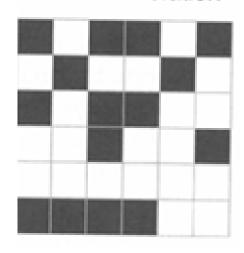
- Global Measures
 - Join Count
 - Moran's I, Geary's C, Getis-Ord's G
- Local Measures
 - Local Moran's I, Geary's C, Getis-Ord's G

Join (or Joint or Joins) Count Statistic

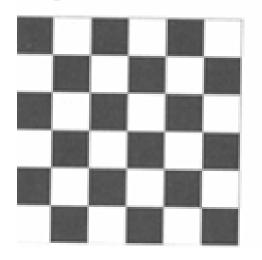
Positive autocorrelation



No autocorrelation



Negative autocorrelation



$$J_{BB} = 27$$
 $J_{BB} = 47$
 $J_{WW} = 27$ $J_{WW} = 47$
 $J_{BW} = 6$ $J_{BW} = 16$

$$J_{BB} = 6$$

$$J_{\text{BB}} = 6$$
 $J_{\text{BB}} = 14$

$$J_{\text{WW}} = 19 \qquad \qquad J_{\text{WW}} = 40$$

$$J_{BW} = 35$$

$$J_{BW} = 56$$

$$J_{BB} = 0$$

$$J_{BB} = 25$$

$$J_{WW} = 0$$

$$J_{WW} = 25$$

$$J_{BW} = 60$$

$$J_{BW} = 60$$

- 60 for Rook Case
- 110 for Queen Case

Join Count: Test Statistic

Test Statistic given by: Z= Observed - Expected SD of Expected

Expected = random pattern generated by tossing a coin in each cell. Standard Deviation of Expected (standard error) given by:

Expected given by:

$$\begin{split} E(J_{\text{BB}}) &= k p_{\text{B}}^2 \\ E(J_{\text{WW}}) &= k p_{\text{W}}^2 \\ E(J_{\text{WW}}) &= k p_{\text{W}}^2 \\ E(J_{\text{BW}}) &= 2 k p_{\text{B}} p_{\text{W}} \\ \end{split} \qquad \begin{split} E(s_{\text{BB}}) &= \sqrt{k p_{\text{B}}^2 + 2 m p_{\text{B}}^3 - (k + 2 m) p_{\text{B}}^4} \\ E(s_{\text{WW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^4} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2 - (k + 2 m) p_{\text{W}}^2} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{BW}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^2}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^3 - (k + 2 m) p_{\text{W}}^3}} \\ E(s_{\text{W}}) &= \sqrt{k p_{\text{W}}^2 + 2 m p_{\text{W}}^3 - (k + 2 m) p_{\text{W$$

Where: k is the total number of joins (neighbors)

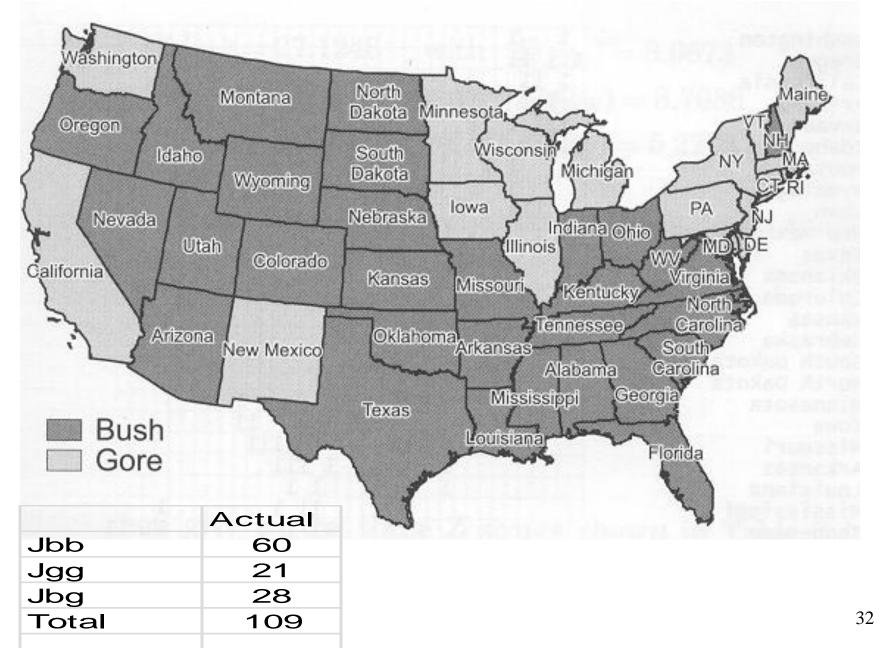
is the expected proportion Black, if random

p_W is the expected proportion White

is calculated from k according to: \mathbf{m}

$$m = \frac{1}{2} \sum_{i=1}^{n} k_i (k_i - 1)$$

Gore/Bush Presidential Election 2000



Join Count Statistic for Gore/Bush 2000 by State

candidates	probability
Bush	0.49885
Gore	0.50115

	Actual	Expected	Stan Dev	Z-score
Jbb	60	27.125	8.667	3.7930
Jgg	21	27.375	8.704	-0.7325
Jbg	28	54.500	5.220	-5.0763
Total	109	109.000		

- The expected number of joins is calculated based on the proportion of votes each received in the election (for Bush = 109*.499*.499=27.125)
- There are far $\underline{\text{more}}$ Bush/Bush joins (actual = 60) than would be expected (27)
 - Positive autocorrelation
- There are far $\underline{\text{fewer}}$ Bush/Gore joins (actual = 28) than would be expected (54)
 - Positive autocorrelation
- No strong clustering evidence for Gore (actual = 21 slightly less than 27.375)

Moran's I

- The most common measure of Spatial Autocorrelation
- Use for points or polygons
 - Join Count statistic only for polygons
- Use for a continuous variable (any value)
 - Join Count statistic only for binary variable (1,0)

Patrick Alfred Pierce Moran (1917-1988)

Formula for Moran's I

$$I = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - \overline{x})(x_j - \overline{x})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}) \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Where:

 $\frac{N}{\overline{X}}$ is the number of observations (points or polygons) is the mean of the variable X_i is the variable value at a particular location X_j is the variable value at another location W_{ii} is a weight indexing location of i relative to j

Moran's I

Expectation of Moran's I under no spatial autocorrelation

$$E(I) = -1/(N-1)$$

- Variance of Moran's is complex and exact equation is given at textbook d&G&L
- [-1, 1]

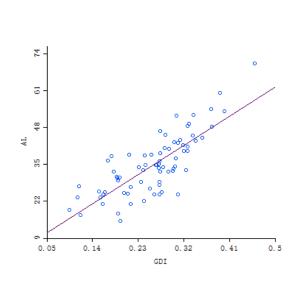
Moran's I and Correlation Coefficient

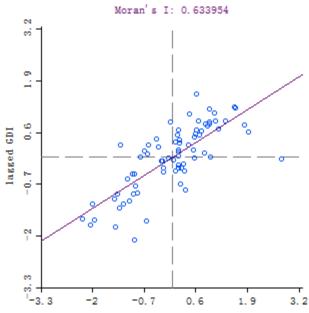
Correlation Coefficient [-1, 1]

Relationship between <u>two</u> different variables

Moran's I [-1, 1]

- Spatial autocorrelation and often involves <u>one</u> (spatially indexed) variable only
- Correlation between observations of a spatial variable at location
 X and "spatial lag" of X formed by averaging all the observation
 at neighbors of X





$$\frac{\displaystyle\sum_{i=1}^{n}1(y_{i}-\overline{y})(x_{i}-\overline{x})/n}{\sqrt{\displaystyle\sum_{i=1}^{n}(y_{i}-\overline{y})^{2}}\sqrt{\displaystyle\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}}$$

Correlation Coefficient

Note the similarity of the numerator (top) to the measures of spatial association discussed earlier if we view Yi as being the Xi for the neighboring polygon

(see next slide)

$$\frac{N\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(x_{i}-\overline{x})(x_{j}-\overline{x})}{(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij})\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}$$

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(x_i - \overline{x})(x_j - \overline{x}) / \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}} \sqrt{$$

$$\frac{\sum_{i=1}^{n} 1(y_i - \overline{y})(x_i - \overline{x})/n}{\sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2} \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

Correlation Coefficient

Spatial weights

Yi is the Xi for the neighboring polygon

$$\frac{N\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(x_{i}-\overline{x})(x_{j}-\overline{x})}{(\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij})\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}$$

Moran's I

$$\frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_{i} - \overline{x})(x_{j} - \overline{x}) / \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}}{\sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}{n}}} \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n}}} \sqrt{\frac{\sum_{i=1}^{n} (x_{$$

Statistical Significance Tests for Moran's I

• Based on the normal frequency distribution with

$$Z = \frac{I - E(I)}{S_{error(I)}}$$

Where: I is the calculated value for Moran's I from the sample

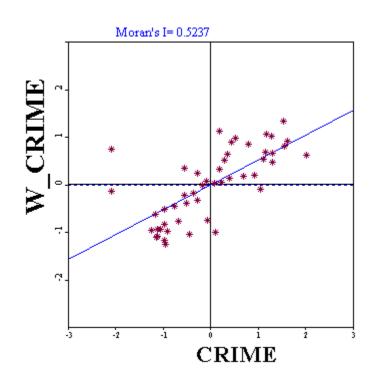
E(I) is the expected value if random

S is the standard error

- Statistical significance test
 - Monte Carlo test, as we did for spatial pattern analysis
 - Permutation test
 - Non-parametric
 - Data-driven, no assumption of the data
 - Implemented in GeoDa

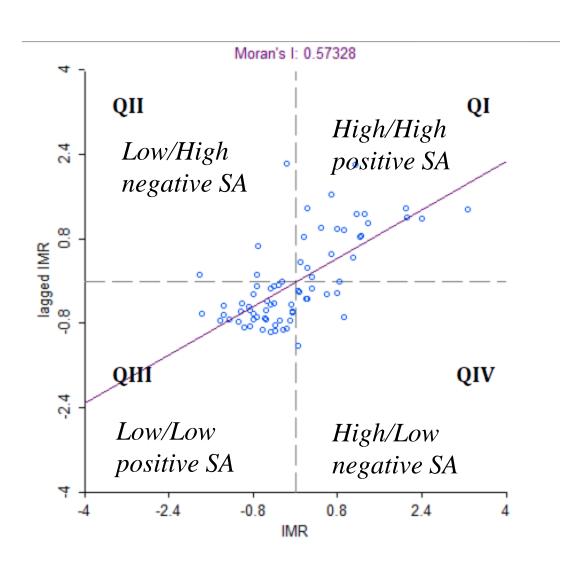
Moran Scatter Plots

We can draw a scatter diagram between these two variables (in standardized form): **X** and **lag-X** (or W_X)

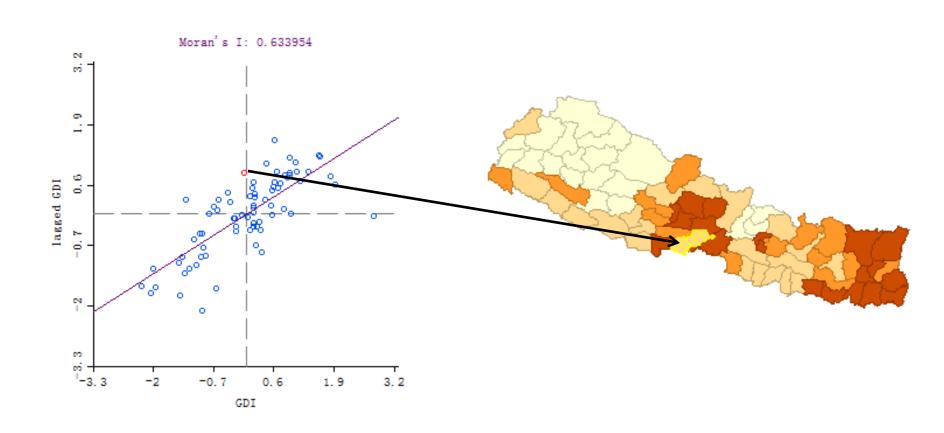


The <u>slope</u> of this *regression line* is Moran's I

Moran Scatter Plots



Moran Scatterplot: Example



Moran's I for rate-based data

- Moran's I is often calculated for rates, such as crime rates (e.g. number of crimes per 1,000 population) or infant mortality rates (e.g. number of deaths per 1,000 births)
- An adjustment should be made, especially if the denominator in the rate (population or number of births) varies greatly (as it usually does)
- Adjustment is know as the *EB adjust*ment:
 - see Assuncao-Reis Empirical Bayes Standardization
 Statistics in Medicine, 1999
- GeoDA software includes an option for this adjustment

Geary's C

- <u>Calculation</u> is similar to Moran's I,
 - For Moran, the cross-product is based on the deviations from the mean for the two location values
 - For Geary, the cross-product uses the actual values themselves at each location
 - Covariance vs. variogram

$$C = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (x_i - x_j)^2}{2(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}) \sum_{i=1}^{n} (x_i - \overline{x})^2}$$

Geary's C vs. Moran's I

- <u>Interpretation</u> is very different, essentially the opposite! Geary's C varies on a scale from 0 to 2
 - 0 indicates perfect <u>positive</u> autocorrelation/clustered
 - 1 indicates no autocorrelation/random
 - 2 indicates perfect <u>negative</u> autocorrelation/dispersed
- Can convert to a -/+1 scale by: calculating $C^* = 1 C$
- Morain's I is more often used

Statistical Significance Tests for Geary's C

- Similar to Moran
- Again, based on the normal frequency distribution with

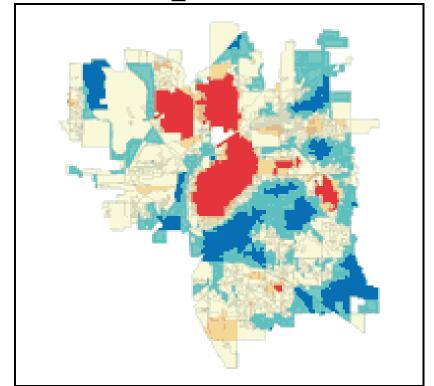
$$Z = \frac{C - E(C)}{S_{error(I)}}$$
 Where: C is the calculated value for Geary's C from the sample E(C) is the expected value if no autocorrelation

S is the standard error

however, E(C) = 1

Hot Spots and Cold Spots

- What is a *hot spot*?
 - A place where <u>high</u> values
 cluster together
- What is a *cold spot*?
 - A place where <u>low</u> values
 cluster together



- Moran's I and Geary's C cannot distinguish them
 - They only indicate <u>clustering</u>
 - Cannot tell if these are hot spots, cold spots, or both

Getis-Ord General/Global G-Statistic

- The G statistic distinguishes between hot spots and cold spots. It identifies *spatial concentrations*.
 - G is relatively <u>large</u> if <u>high</u> values cluster together
 - G is relatively <u>low</u> if <u>low</u> values cluster together
- The General G statistic is interpreted relative to its expected value
 - The value for which there is no spatial association
 - G > (larger than) expected value → potential "hot spots"
 - G < (smaller than) expected value → potential "cold spots"
- A Z test statistic is used to test if the difference is statistically significant
- Calculation of G based on a *neighborhood distance* within which cluster is expected to occur

Getis, A. and Ord, J.K. (1992) *The analysis of spatial association by use of distance statistics* Geographical Analysis, 24(3) 189-206

Formulae of General G

The General G statistic of overall spatial association is given as:

$$G = \frac{\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}w_{i,j}x_{i}x_{j}}{\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}x_{i}x_{j}}, \ \forall j \neq i \tag{1}$$

where x_i and x_j are attribute values for features i and j, and $w_{i,j}$ is the spatial weight between feature i and j. n is the number of features in the dataset and $\forall j \neq i$ indicates that features i and j cannot be the same feature.

The z_G -score for the statistic is computed as:

$$z_G = \frac{G - E[G]}{\sqrt{V[G]}} \tag{2}$$

where:

$$E[G] = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i,j}}{n(n-1)}, \ \forall j \neq i$$
 (3)

$$V[G] = E[G^2] - E[G]^2$$
(4)

Comments on General G

- General G will <u>not</u> show <u>negative</u> spatial autocorrelation
- Should <u>only</u> be calculated for <u>ratio scale</u> data
 - data with a "natural" zero such as crime rates, birth rates
- Although it was defined using a contiguity (0,1) weights matrix, any type of spatial weights matrix can be used
 - ArcGIS gives multiple options
- There are two global versions: G and G*
 - G does <u>not</u> include the value of X_i itself, only "neighborhood" values
 - G* includes X_i as well as "neighborhood" values
- Significance test on General G and G* follows the similar procedure as used for Moran's I

Local Measures of Spatial Autocorrelation

Local Indicators of Spatial Association (LISA)

- Local versions of Moran's I, Geary's C, and the Getis-Ord G statistic
- Moran's I is most commonly used, and the local version is often called Anselin's LISA, or just LISA

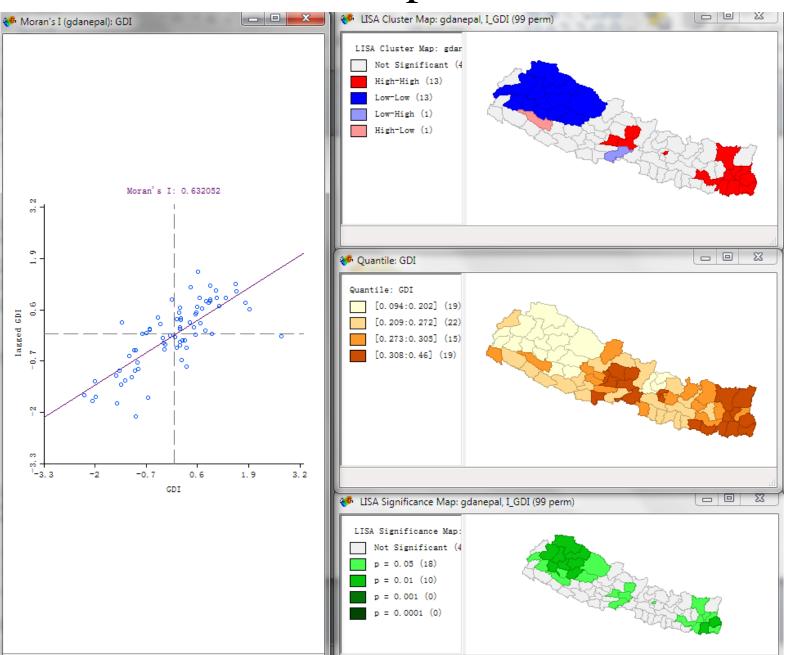
See:

Luc Anselin 1995 Local Indicators of Spatial Association-LISA Geographical Analysis 27: 93-115

Local Indicators of Spatial Association (LISA)

- The statistic is calculated for **each** areal unit in the data
- For each polygon, the index is calculated <u>based on neighboring</u> <u>polygons with which it shares a border</u>
- A measure is available for <u>each</u> polygon, these can be mapped to indicate how <u>spatial autocorrelation varies</u> over the study region
- Each index has an associated test statistic, we can also map which of the polygons has a <u>statistically significant relationship</u> with its neighbors, and show <u>type</u> of relationship

Example:



Calculating Anselin's LISA

• The local Moran statistic for areal unit i is:

$$I_i = z_i \sum_j w_{ij} z_j$$

where z_i is the original variable x_i in "standardized form"

$$z_i = \frac{x_i - x}{SD_x}$$

or it can be in "deviation form"

$$x_i - \overline{x}$$

and w_{ij} is the spatial weight

The summation \sum_{j}^{j} is across each <u>row</u> i of the spatial weights matrix.

An example follows

Contiguit	y Matrix	1	2	3	4	5	6	7			
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum	Neighbors	Illiteracy
Anhui	1 [0	1	1	1	1	1	0	5	65432	14.49
Zhejiang	2	1	0	1	1	0	0	1	4	7431	9.36
Jiangxi	3	1	1	0	0	0	1	0	3	621	6.49
Jiangsu	4	1	1	0	0	0	0	1	3	7 2 1	8.05
Henan	5	1	0	0	0	0	1	0	2	6 1	7.36
Hubei	6	1	0	1	0	1	0	0	3	135	7.69
Shanghai	7	0	1	0	1	0	0	0	2	2 4	3.97



3.970000

3.970001 - 6.490000

6.490001 - 8.050000

8.050001 - 9.360000

9.360001 - 14.490000

Henan <mark>Jiang</mark>su Anhui Shanghai Hubei Zhejiang Jiangxi

Contiguity Matrix and Row Standardized Spatial Weights Matrix

Contiguity	Matrix	1	2	3	4	5	6	7	
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum
Anhui	1	0	1	1	1	1	1	0	5
Zhejiang	2	1	0	1	1	0	0	1	4
Jiangxi	3	1	1	0	0	0	1	0	3
Jiangsu	4	1	1	0	0	0	0	1	3
Henan	5	1	0	0	0	0	1	0	2
Hubei	6	1	0	1	0	1	0	0	3
Shanghai	7	0	1	0	1	0	0	0	₂ (1
Daw Stand	doudinod (Cretial Weigh	to Metrix						
Row Stant	Code	Spatial Weigh Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00	1
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25	1
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00	1
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33	1
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00	1
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00	1
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00	1

Calculating standardized (z) scores

Deviations from Mea	n and z scores) <u>.</u>			$x_i - x$
	X	X-Xmean	X-Mean2	$z \sim Z_i$	$=\frac{1}{SD_x}$
Anhui	14.49	6.29	39.55	2.101	<i>3</i> ¢
Zhejiang	9.36	1.16	1.34	0.387	
Jiangxi	6.49	(1.71)	2.93	(0.572)	
Jiangsu	8.05	(0.15)	0.02	(0.051)	
Henan	7.36	(0.84)	0.71	(0.281)	
Hubei	7.69	(0.51)	0.26	(0.171)	
Shanghai	3.97	(4.23)	17.90	(1.414)	
Mean and Standard	Deviation				
Sum	57.41	0.00	62.71		
Mean	57.41	/ 7 =	8.20		
Variance	62.71	/ 7 =	8.96		
SD	√ 8.96	=	2.99		50

Row Standardized Spatial Weights Matrix

Calculating LISA

	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00

W		
* *	1	1
	7	J

Z-Scores for row Province and its potential neighbors

		Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
	Zi							
Anhui	2.101	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Zhejiang	0.387	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Jiangxi	(0.572)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Jiangsu	(0.051)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Henan	(0.281)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Hubei	(0.171)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Shanghai	(1.414)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)

	$I_i = z_i \sum w_{ij} z_j$
	/ j/
, •	

Spatial Weight Matr	ix multiplied by Z-Scor	e Matrix (cell by ce	ell multiplication)
- 1			, ,

		Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	S umWijZj
	Zi								0.000
Anhui	2.101	-	0.077	(0.114)	(0.010)	(0.056)	(0.034)	-	(0.137)
Zhejiang	0.387	0.525	-	(0.143)	(0.013)	-	-	(0.353)	0.016
Jiangxi	(0.572)	0.700	0.129	-	-	-	(0.057)	-	0.772
Jiangsu	(0.051)	0.700	0.129	-	-	-	-	(0.471)	0.358
Henan	(0.281)	1.050	-	-	-	-	(0.085)	-	0.965
Hubei	(0.171)	0.700	-	(0.191)	-	(0.094)	-	-	0.416
Shanghai	(1.414)	_	0.194	-	(0.025)	-	-	-	0.168

Zj 0	LISA	Lisa from GeoDA
7)	-0.289	-0.248
6	0.006	0.005
2	-0.442	-0.379
8	-0.018	-0.016
5	-0.271	-0.233
6	-0.071	-0.061
8	-0.238	-0.204

Local Getis-Ord G and G* Statistics

Local Getis-Ord G

- It is the proportion of all x values in the study area accounted for by the neighbors of location *I*
- G* will include the self value

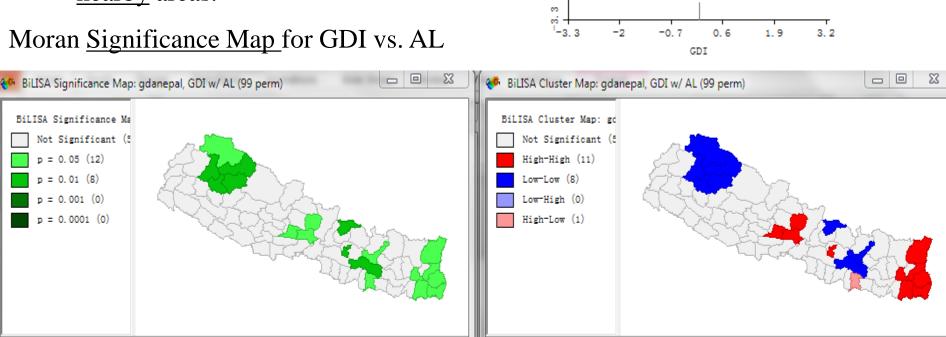
$$G_i(d) = \frac{\sum_{j} w_{ij} x_j}{\sum_{j} x_j}$$

G will be <u>high</u> where <u>high</u> values cluster G will be <u>low</u> where <u>low</u> values cluster Interpreted relative to expected value if randomly distributed.

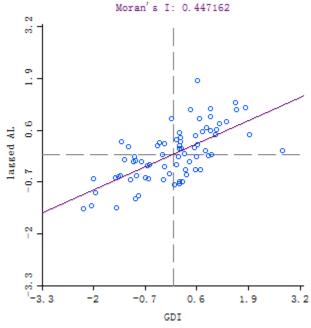
$$E(G_i(d)) = \frac{\sum_{j} w_{ij}(d)}{n-1}$$

Bivariate LISA

- Moran's I is the correlation between X and Lag-X--the <u>same</u> variable but in <u>nearby</u> areas
 - Univariate Moran's I
- Bivariate Moran's I is a correlation between X and a <u>different</u> variable in <u>nearby</u> areas.

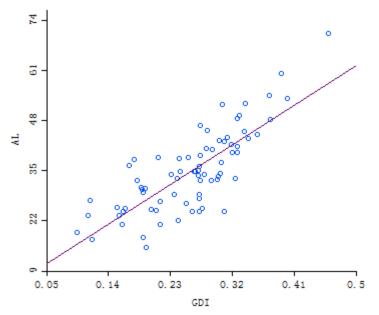


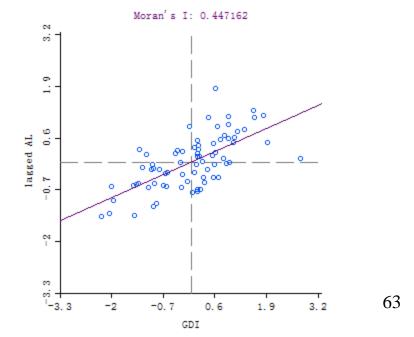
Moran Scatter Plot for GDI vs AL



Bivariate LISA and the Correlation Coefficie

- Correlation Coefficient is the relationship between two <u>different</u> variables in the <u>same</u> area
- Bivariate LISA is a correlation between two <u>different</u> variables in an area and in <u>nearby</u> areas.





Bivariate Moran Scatter Plot



Summary

- Spatial autocorrelation of areal data
- Spatial weight matrix
- Measures of spatial autocorrelation
- Global Measure
 - Moran's I/Geary's C/General G and G*
- Local
 - LISA: Moran's I/Geary's C/General G and G*
 - Bivariate LISA
- Significance test

• End of this topic