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Outline of This Week  

• Last week, we learned: 
– spatial point pattern analysis (PPA) 
– focus on location distribution of ‘events’ 

• This week, we will learn: 
– spatial autocorrelation 
– global measures of spatial autocorrelation 
– local measure of spatial autocorrelation 



Spatial Autocorrelation 
• Tobler’s first law of geography 
• Spatial auto/cross correlation 
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If there is no apparent 
relationship between 
attribute value and 
location then there is 
zero spatial 
autocorrelation 

If like values tend 
to be located 
away from each 
other, then there 
is negative 
spatial 
autocorrelation 

If like values  
tend to cluster 
together,  
then the field 
exhibits  
high positive 
spatial  
autocorrelation 



Spatial Autocorrelation 

• Spatial autocorrelationship is everywhere 
– Spatial point pattern  

• K, F, G functions 
• Kernel functions 

– Areal/lattice (this topic) 
– Geostatistical data (next topic) 
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Spatial Autocorrelation of Areal 
Data 
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2002 population 
density 

Positive spatial autocorrelation 
 - high values 
      surrounded by nearby high values 
 - intermediate values surrounded 
      by nearby intermediate values 
 - low values surrounded by 
      nearby low values 

6 Source: Ron Briggs of UT Dallas 



Negative spatial autocorrelation 
 - high values 
      surrounded by nearby low values 
 - intermediate values surrounded 
      by nearby intermediate values 
 - low values surrounded by 
      nearby high values 

competition for space 

Grocery store density 

7 Source: Ron Briggs of UT Dallas 



Spatial Weight Matrix  
• Core concept in statistical analysis of areal data 
• Two steps involved: 

– define which relationships between observations are to 
be given a nonzero weight, i.e., define spatial 
neighbors 

– assign weights to the neighbors 
• Making the neighbors and weights is not easy as 

it seems to be 
– Which states are near Texas? 
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Spatial Neighbors 
• Contiguity-based neighbors 

– Zone i and j are neighbors if zone i is contiguity or 
adjacent to zone j 

– But what constitutes contiguity?  
• Distance-based neighbors 

– Zone i and j are neighbors if the distance between them 
are less than the threshold distance 

– But what distance do we use? 



Contiguity-based Spatial Neighbors  
• Sharing a border or boundary 

– Rook: sharing a border 
– Queen: sharing a border or a point 
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rook queen Hexagons Irregular 

Which use? 



Example 
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Source: Bivand and Pebesma and Gomez-Rubio 



Higher-Order Contiguity 

hexagon rook queen 

1st 

order 

2nd 

order 
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Next 
nearest 
neighbor 

Nearest 
neighbor 



Distance-based Neighbors 
• How to measure distance between 

polygons? 
• Distance metrics 

– 2D Cartesian distance (projected data) 
– 3D spherical distance/great-circle distance  

(lat/long data)  
• Haversine formula 
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Distance-based Neighbors 

• k-nearest neighbors 
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Source: Bivand and Pebesma and Gomez-Rubio 



Distance-based Neighbors 

• thresh-hold distance (buffer) 
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Source: Bivand and Pebesma and Gomez-Rubio 



Neighbor/Connectivity 
Histogram 
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Source: Bivand and Pebesma and Gomez-Rubio 



Side Note: Box-plot 

• Help indicate the degree of dispersion and 
skewness and identify outliers 
– Non-parametric 
– 25%, 50%, 75% percentiles 
– end of the hinge could mean 
 differently depending on implementation 
– Points outside the range are usually 
taken as outliers 
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Spatial Weight Matrix 
• Spatial weights can be seen as a list of 

weights indexed by a list of neighbors 
• If zone j is not a neighbor of zone i, weights 

Wij will set to zero 
– The weight matrix can be  
illustrated as an image 
– Sparse matrix 
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A Simple Example for Rook case 
• Matrix contains a: 

– 1 if share a border 
– 0 if do not share a border 
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A B 

C D 

A B C D 
A 0 1 1 0 
B 1 0 0 1 
C 1 0 0 1 
D 0 1 1 0 

4 areal units 4x4 matrix 

W  =  

Common border 
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Name Fips Ncount N1 N2 N3 N4 N5 N6 N7 N8
Alabama 1 4 28 13 12 47
Arizona 4 5 35 8 49 6 32
Arkansas 5 6 22 28 48 47 40 29
California 6 3 4 32 41
Colorado 8 7 35 4 20 40 31 49 56
Connecticut 9 3 44 36 25
Delaware 10 3 24 42 34
District of Columbia 11 2 51 24
Florida 12 2 13 1
Georgia 13 5 12 45 37 1 47
Idaho 16 6 32 41 56 49 30 53
Illinois 17 5 29 21 18 55 19
Indiana 18 4 26 21 17 39
Iowa 19 6 29 31 17 55 27 46
Kansas 20 4 40 29 31 8
Kentucky 21 7 47 29 18 39 54 51 17
Louisiana 22 3 28 48 5
Maine 23 1 33
Maryland 24 5 51 10 54 42 11
Massachusetts 25 5 44 9 36 50 33
Michigan 26 3 18 39 55
Minnesota 27 4 19 55 46 38
Mississippi 28 4 22 5 1 47
Missouri 29 8 5 40 17 21 47 20 19 31
Montana 30 4 16 56 38 46
Nebraska 31 6 29 20 8 19 56 46
Nevada 32 5 6 4 49 16 41
New Hampshire 33 3 25 23 50
New Jersey 34 3 10 36 42
New Mexico 35 5 48 40 8 4 49
New York 36 5 34 9 42 50 25
North Carolina 37 4 45 13 47 51
North Dakota 38 3 46 27 30
Ohio 39 5 26 21 54 42 18
Oklahoma 40 6 5 35 48 29 20 8
Oregon 41 4 6 32 16 53
Pennsylvania 42 6 24 54 10 39 36 34
Rhode Island 44 2 25 9
South Carolina 45 2 13 37
South Dakota 46 6 56 27 19 31 38 30
Tennessee 47 8 5 28 1 37 13 51 21 29
Texas 48 4 22 5 35 40
Utah 49 6 4 8 35 56 32 16
Vermont 50 3 36 25 33
Virginia 51 6 47 37 24 54 11 21
Washington 53 2 41 16
West Virginia 54 5 51 21 24 39 42
Wisconsin 55 4 26 17 19 27
Wyoming 56 6 49 16 31 8 46 30

Sparse Contiguity Matrix for US States -- obtained from Anselin's web site (see powerpoint for link)



Style of Spatial Weight Matrix 

• Row  
– a weight of unity for each neighbor relationship 

• Row standardization 
– Symmetry not guaranteed 
– can be interpreted as allowing the calculation of 

average values across neighbors 
• General spatial weights based on distances 
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A B C 

D E F 

Row vs. Row standardization  

  A B C D E F 
Row 
Sum 

A 0 1 0 1 0 0 2 
B 1 0 1 0 1 0 3 
C 0 1 0 0 0 1 2 
D 1 0 0 0 1 0 2 
E 0 1 0 1 0 1 3 
F 0 0 1 0 1 0 2 

Total number of neighbors 
--some have more than others 

  A B C D E F 
Row 
Sum 

A 0.0 0.5 0.0 0.5 0.0 0.0 1 
B 0.3 0.0 0.3 0.0 0.3 0.0 1 
C 0.0 0.5 0.0 0.0 0.0 0.5 1 
D 0.5 0.0 0.0 0.0 0.5 0.0 1 
E 0.0 0.3 0.0 0.3 0.0 0.3 1 
F 0.0 0.0 0.5 0.0 0.5 0.0 1 

Row standardized 
--usually use this 

Divide each 
number by the 
row sum 
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General Spatial Weights Based on 
Distance  

 • Decay functions of distance 
– Most common choice is  the inverse (reciprocal) of the distance 

between locations i and j (wij = 1/dij) 
– Other functions also used 

• inverse of squared distance (wij =1/dij
2), or  

• negative exponential  (wij = e-d   or    wij = e-d2) 
 
 



Example 
• Compare three different weight matrix in 

images 
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Measure of Spatial 
Autocorrelation 
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Global Measures and Local Measures 
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• Global Measures 
– A single value which applies to the entire data set 

• The same pattern or process occurs over the entire 
geographic area 

• An average for the entire area 

• Local Measures 
– A  value calculated for each observation unit  

• Different patterns or processes may occur in different 
parts of the region  

• A unique number for each location  

• Global measures usually can be decomposed 
into a combination of local measures 

 
 



Global Measures and Local Measures 
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• Global Measures 
– Join Count 
– Moran’s I, Getis-Ord’s G  

• Local Measures 
– Local Moran’s I , Getis-Ord’s G  
 



29 

Join (or Joint or Joins) Count Statistic 

– 60 for Rook Case 
– 110 for Queen Case 
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Join Count:  Test Statistic 
Test Statistic given by:   Z=  Observed -  Expected 
                                                        SD of Expected 

Expected given by: Standard Deviation of Expected  (standard error) given by: 

Where: k is the total number of joins (neighbors) 
 pB   is the expected proportion Black, if random 
 pW  is the expected proportion  White 
 m    is calculated from k according to: 
 

Expected  =  random pattern generated by tossing a coin in each cell. 
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Actual
Jbb 60
Jgg 21
Jbg 28
Total 109

Gore/Bush Presidential Election 2000  
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Join Count Statistic for Gore/Bush 2000 by State 

 
 
 
 
 
 
 
 
 
 
 
 

Actual Expected Stan Dev Z-score
Jbb 60 27.125 8.667 3.7930
Jgg 21 27.375 8.704 -0.7325
Jbg 28 54.500 5.220 -5.0763
Total 109 109.000

• The expected number of joins is calculated based on the proportion of votes each 
received   in the election  (for Bush = 109*.499*.499=27.125) 

• There are far more Bush/Bush joins (actual = 60) than would be expected (27) 
• Positive autocorrelation 

• There are far fewer Bush/Gore joins (actual = 28) than would be expected (54) 
• Positive autocorrelation 

• No strong clustering evidence for Gore (actual = 21 slightly less than 27.375) 
 

 

candidates probability
Bush 0.49885
Gore 0.50115



Moran’s  I 
• The most common measure of Spatial Autocorrelation 
• Use for points or polygons  

– Join Count statistic only for polygons 
• Use for a continuous variable  (any value) 

– Join Count statistic only for binary variable (1,0) 
 

                           

33 
Patrick Alfred Pierce Moran (1917-1988) 



Formula for Moran’s  I 

• Where: 
    N       is the number of observations (points or polygons) 

          is the mean of the variable 
Xi         is the variable value at a particular location 
Xj      is the variable value at another location 
Wij     is a weight indexing location of i relative to j  
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Moran’s I 
• Expectation of Moran’s I under no spatial 

autocorrelation 
 

• Variance of Moran’s is complex and exact 
equation is given at textbook d&G&L 

• [-1, 1] 
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(I) 1/ (N 1)E = − −



Moran’s  I  and Correlation Coefficient  
 

• Correlation Coefficient [-1, 1] 
– Relationship between two different variables 

• Moran’s I [-1, 1] 
– Spatial autocorrelation and often involves one (spatially indexed) 

variable only 
– Correlation between observations of a spatial variable at location 

X  and “spatial lag” of X formed by averaging all the observation 
at neighbors of X 
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Note the similarity of the 
numerator (top) to the measures 
of spatial association discussed 
earlier if we view Yi as being the 
Xi for the neighboring polygon 
 
(see next slide) 

Source: Ron Briggs of UT Dallas 
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Source: Ron Briggs of UT Dallas 
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Statistical Significance Tests for Moran’s I 

• Based on the normal frequency distribution with  
 
 

 
  

 
• Statistical significance test 

– Monte Carlo test, as we did for spatial pattern analysis 
– Permutation test  

• Non-parametric 
• Data-driven, no assumption of the data 
• Implemented in GeoDa 

 
 

Where:   I is the calculated value for Moran’s I  
                 from the sample   
 E(I) is the expected value if random  

 S is the standard error    
)(

)(
IerrorS
IEIZ −

=
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Moran Scatter Plots 
We can draw a scatter diagram between these two variables (in 

standardized form):  X   and   lag-X (or W_X) 

The slope of this regression line is 
Moran’s I 



Moran Scatter Plots 
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Low/High 
negative SA 

High/High 
positive SA 

Low/Low 
positive SA 

High/Low 
negative SA 



Moran Scatterplot: Example 
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Moran’s I for rate-based data 
• Moran’s I is often calculated for rates, such as crime 

rates (e.g. number of crimes per 1,000 population) or 
infant mortality rates (e.g. number of deaths per 1,000 
births) 

• An adjustment should be made,  especially if the 
denominator in the rate (population or number of births) 
varies greatly (as it usually does) 

• Adjustment is know as the EB adjustment: 
– see Assuncao-Reis Empirical Bayes Standardization  

Statistics in Medicine, 1999 
• GeoDA software includes an option for this adjustment 



Hot Spots and Cold Spots 
• What is a hot spot? 

– A place where high values  
    cluster together 

• What is a cold spot? 
– A place where low values  
    cluster together 
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• Moran’s I and Geary’s C cannot distinguish them  
• They only indicate clustering 
• Cannot tell if these are hot spots, cold spots, or both 
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Getis-Ord General/Global  G-Statistic 
• The G statistic distinguishes between hot spots and cold spots. It 

identifies spatial concentrations. 
– G is relatively large if high values cluster together  
– G is relatively low if low values cluster together  

• The  General G statistic is interpreted relative to its expected value 
– The value for which there is no spatial association 
– G   >  (larger than) expected value    potential “hot spots” 
– G   <  (smaller than) expected value  potential “cold spots” 

• A  Z  test statistic is used to test if the difference is statistically 
significant 

• Calculation of G based on a neighborhood distance within which 
cluster is expected to occur 

Getis, A. and Ord, J.K. (1992) The analysis of spatial association by use of 
distance statistics  Geographical Analysis,  24(3) 189-206 



Comments on General G 
• General G  will not show negative spatial autocorrelation 
• Should only be calculated for ratio scale data  

– data with a “natural” zero such as crime rates, birth rates 
• Although it was defined using a contiguity (0,1) weights 

matrix, any type of spatial weights matrix can be used 
– ArcGIS  gives multiple options 

• There are two global versions:  G  and G* 
– G does not include the value of  Xi  itself, only “neighborhood” 

values  
– G* includes Xi  as well as “neighborhood” values 

• Significance test on General G and G* follows the 
similar procedure as used for Moran’s I 
 46 



Local Measures of 
Spatial Autocorrelation 

47 



Local Indicators of Spatial Association (LISA)  
• Local versions of  Moran’s I, Geary’s C, and the Getis-

Ord G statistic  
• Moran’s I is most commonly used, and the local version 

is often called Anselin’s LISA, or just LISA  

48 

See:  
Luc Anselin 1995 Local Indicators of Spatial 
Association-LISA Geographical Analysis 27: 93-115 



Local Indicators of Spatial Association (LISA)  
 
 

• The statistic is calculated for each areal unit in the data 
• For each polygon, the index is calculated based on neighboring 

polygons with which it shares a border 
• A measure is available for each polygon, these can be mapped 

to indicate how spatial autocorrelation varies over the study 
region 

• Each index has an associated test statistic, we can also map 
which of the polygons has a statistically significant relationship 
with its neighbors, and show type of relationship 
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Example:  
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Calculating Anselin’s LISA 
• The local Moran statistic for areal unit i is: 
                           
 
where zi is the original variable xi in 
           “standardized form” 
           or it can be in “deviation form”   
and  wij    is the spatial weight  
The summation       is across each row i  of the 

spatial weights matrix.  
An example follows   
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1 

5 
4 

3 

6 7 
2 

Contiguity Matrix 1 2 3 4 5 6 7 
Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai Sum Neighbors Illiteracy 

Anhui 1 0 1 1 1 1 1 0 5 6 5 4 3 2 14.49 
Zhejiang 2 1 0 1 1 0 0 1 4 7 4 3 1 9.36 
Jiangxi 3 1 1 0 0 0 1 0 3 6 2 1 6.49 
Jiangsu 4 1 1 0 0 0 0 1 3 7 2 1 8.05 
Henan 5 1 0 0 0 0 1 0 2 6 1 7.36 
Hubei 6 1 0 1 0 1 0 0 3 1 3 5 7.69 
Shanghai 7 0 1 0 1 0 0 0 2 2 4 3.97 

Source: Ron Briggs of UT Dallas 
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Contiguity Matrix 1 2 3 4 5 6 7 
Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai Sum 

Anhui 1 0 1 1 1 1 1 0 5 
Zhejiang 2 1 0 1 1 0 0 1 4 
Jiangxi 3 1 1 0 0 0 1 0 3 
Jiangsu 4 1 1 0 0 0 0 1 3 
Henan 5 1 0 0 0 0 1 0 2 
Hubei 6 1 0 1 0 1 0 0 3 
Shanghai 7 0 1 0 1 0 0 0 2 

Row Standardized Spatial Weights Matrix 
Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai Sum 

Anhui 1 0.00 0.20 0.20 0.20 0.20 0.20 0.00 1 
Zhejiang 2 0.25 0.00 0.25 0.25 0.00 0.00 0.25 1 
Jiangxi 3 0.33 0.33 0.00 0.00 0.00 0.33 0.00 1 
Jiangsu 4 0.33 0.33 0.00 0.00 0.00 0.00 0.33 1 
Henan 5 0.50 0.00 0.00 0.00 0.00 0.50 0.00 1 
Hubei 6 0.33 0.00 0.33 0.00 0.33 0.00 0.00 1 
Shanghai 7 0.00 0.50 0.00 0.50 0.00 0.00 0.00 1 

Contiguity Matrix and  
Row Standardized Spatial Weights  Matrix 

1/3 

Source: Ron Briggs of UT Dallas 



Calculating standardized (z) scores 
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x

i
i SD

xxz −
=Deviations from Mean and z scores.  

X X-Xmean X-Mean2 z 

Anhui 14.49          6.29         39.55           2.101  
Zhejiang 9.36          1.16           1.34           0.387  
Jiangxi 6.49         (1.71)          2.93          (0.572) 
Jiangsu 8.05         (0.15)          0.02          (0.051) 
Henan 7.36         (0.84)          0.71          (0.281) 
Hubei 7.69         (0.51)          0.26          (0.171) 
Shanghai 3.97         (4.23)        17.90          (1.414) 

Mean and Standard Deviation 
Sum              57.41           0.00         62.71  
Mean           57.41 /    7   =      8.20 
Variance              62.71   /   7   =           8.96  
SD         √ 8.96    =          2.99  

Source: Ron Briggs of UT Dallas 



Row Standardized Spatial Weights 
Matrix 

Code Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai 

Anhui 1 0.00 0.20 0.20 0.20 0.20 0.20 0.00 
Zhejiang 2 0.25 0.00 0.25 0.25 0.00 0.00 0.25 
Jiangxi 3 0.33 0.33 0.00 0.00 0.00 0.33 0.00 
Jiangsu 4 0.33 0.33 0.00 0.00 0.00 0.00 0.33 
Henan 5 0.50 0.00 0.00 0.00 0.00 0.50 0.00 
Hubei 6 0.33 0.00 0.33 0.00 0.33 0.00 0.00 
Shanghai 7 0.00 0.50 0.00 0.50 0.00 0.00 0.00 

Z-Scores for row Province  and its potential neighbors 
Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai 

Zi 
Anhui      2.101              2.101         0.387        (0.572)         (0.051)     (0.281)     (0.171)     (1.414) 
Zhejiang      0.387               2.101         0.387        (0.572)         (0.051)     (0.281)     (0.171)     (1.414) 
Jiangxi     (0.572)              2.101         0.387        (0.572)         (0.051)     (0.281)     (0.171)     (1.414) 
Jiangsu     (0.051)              2.101         0.387        (0.572)        (0.051)     (0.281)     (0.171)     (1.414) 
Henan     (0.281)              2.101         0.387        (0.572)         (0.051)     (0.281)     (0.171)     (1.414) 
Hubei     (0.171)              2.101         0.387        (0.572)         (0.051)     (0.281)     (0.171)     (1.414) 

Shanghai     (1.414)              2.101         0.387        (0.572)         (0.051)     (0.281)     (0.171)     (1.414) 

Spatial Weight Matrix multiplied by Z-Score Matrix (cell by cell multiplication)   
Anhui Zhejiang Jiangxi Jiangsu Henan Hubei Shanghai SumWijZj LISA Lisa from 

Zi      0.000  GeoDA 
Anhui      2.101                    -           0.077        (0.114)         (0.010)     (0.056)     (0.034)           -        (0.137) -0.289 -0.248 
Zhejiang      0.387               0.525              -          (0.143)         (0.013)           -              -        (0.353)      0.016  0.006 0.005 
Jiangxi     (0.572)              0.700         0.129              -                  -              -        (0.057)           -         0.772  -0.442 -0.379 
Jiangsu     (0.051)              0.700         0.129              -                  -              -              -        (0.471)      0.358  -0.018 -0.016 
Henan     (0.281)              1.050              -                -                  -              -        (0.085)           -         0.965  -0.271 -0.233 
Hubei     (0.171)              0.700              -          (0.191)               -        (0.094)           -              -         0.416  -0.071 -0.061 

Shanghai     (1.414)                   -           0.194              -            (0.025)           -              -              -         0.168  -0.238 -0.204 

Calculating LISA 

j
j

ijii zwzI ∑=

wij 

zj 

wijzj 

55 Source: Ron Briggs of UT Dallas 



Local Getis-Ord G and G* Statistics 
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• It is the proportion  of all x values in the study area 

accounted for by the neighbors of location   I 
• G* will include the self value 

G will be high where high values cluster 
G will be low where low values cluster 
Interpreted relative to expected value 
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Bivariate LISA 
• Moran’s I is the correlation between X 

and Lag-X--the same variable  but in 
nearby areas 
– Univariate Moran’s I 

• Bivariate Moran’s I is a correlation 
between X and a different variable in 
nearby areas. 

Moran Scatter Plot for GDI vs AL 

Moran Significance Map for GDI vs. AL 



Bivariate LISA 
and the Correlation Coefficient 

• Correlation Coefficient is the 
relationship between two 
different variables in the same 
area 

• Bivariate LISA is a correlation 
between  two different 
variables in an area and in 
nearby areas. 
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Bivariate Moran Scatter Plot 

 

59 

 

Low/High 
negative SA 

High/High 
positive SA 

Low/Low 
positive SA 

High/Low 
negative SA 



Summary 
• Spatial autocorrelation of areal data 
• Spatial weight matrix 
• Measures of spatial autocorrelation 
• Global Measure 

– Moran’s I/General G and G* 
• Local 

• LISA: Moran’s I/General G and G* 
• Bivariate LISA 

– Significance test 
 60 



• End of this topic 
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