Spatial Analysis and Modeling (GIST 4302/5302)

Guofeng Cao Department of Geosciences Texas Tech University

Outline of This Week

- Last week, we learned:
 - spatial point pattern analysis (PPA)
 - focus on location distribution of 'events'
- This week, we will learn:
 - spatial autocorrelation
 - global measures of spatial autocorrelation
 - local measure of spatial autocorrelation

Spatial Autocorrelation

- Tobler's first law of geography
- Spatial auto/cross correlation

If like values tend to cluster together, then the field exhibits high **positive spatial autocorrelation**

If there is no apparent relationship between attribute value and location then there is **zero spatial autocorrelation** If like values tend to be located away from each other, then there is **negative spatial autocorrelation**

Spatial Autocorrelation

- Spatial autocorrelationship is everywhere
 - Spatial point pattern
 - K, F, G functions
 - Kernel functions
 - Areal/lattice (this topic)
 - Geostatistical data (next topic)

Spatial Autocorrelation of Areal Data

Positive spatial autocorrelation

- high values surrounded by nearby high values
- intermediate values surrounded by nearby intermediate values
- low values surrounded by
 - nearby low values

ž

2002 population

density

Negative spatial autocorrelation

- high values

2

surrounded by nearby low values

Grocery store density

- intermediate values surrounded by nearby intermediate values
- low values surrounded by

Spatial Weight Matrix

- Core concept in statistical analysis of areal data
- Two steps involved:
 - define which relationships between observations are to be given a nonzero weight, i.e., define spatial neighbors
 - assign weights to the neighbors
- Making the neighbors and weights is not easy as it seems to be

- Which states are near Texas?

Spatial Neighbors

- Contiguity-based neighbors
 - Zone *i* and *j* are neighbors if zone *i* is contiguity or adjacent to zone *j*
 - But what constitutes contiguity?

• Distance-based neighbors

- Zone i and j are neighbors if the distance between them are less than the threshold distance
- But what distance do we use?

Contiguity-based Spatial Neighbors

- Sharing a border or boundary
 - Rook: sharing a border
 - Queen: sharing a border or a point

Which use?

Example

Fig. 9.3. (a) Queen-style census tract contiguities, Syracuse; (b) Rook-style contiguity differences shown as thicker lines

Source: Bivand and Pebesma and Gomez-Rubio

Higher-Order Contiguity

Distance-based Neighbors

- How to measure distance between polygons?
- Distance metrics
 - 2D Cartesian distance (projected data)
 - 3D spherical distance/great-circle distance (lat/long data)
 - Haversine formula

```
Haversine a = sin^2(\Delta \varphi/2) + cos(\varphi_1).cos(\varphi_2).sin^2(\Delta \lambda/2)
formula: c = 2.atan2(\sqrt{a}, \sqrt{(1-a)})
d = R.c
```

where φ is latitude, λ is longitude, R is earth's radius (mean radius = 6,371km)

Distance-based Neighbors

• k-nearest neighbors

Fig. 9.5. (a) k = 1 neighbours; (b) k = 2 neighbours; (c) k = 4 neighbours

Source: Bivand and Pebesma and Gomez-Rubio

Distance-based Neighbors

• thresh-hold distance (buffer)

Fig. 9.6. (a) Neighbours within 1,158 m; (b) neighbours within 1,545 m; (c) neighbours within 2,317 m

Source: Bivand and Pebesma and Gomez-Rubio

Neighbor/Connectivity Histogram

Source: Bivand and Pebesma and Gomez-Rubio

Side Note: Box-plot

- Help indicate the degree of dispersion and skewness and identify outliers
 - Non-parametric
 - 25%, 50%, 75% percentiles
 - end of the hinge could mean
 - differently depending on implementation
 - Points outside the range are usually taken as outliers

Spatial Weight Matrix

- Spatial weights can be seen as a list of weights indexed by a list of neighbors
- If zone j is not a neighbor of zone i, weights
 Wij will set to zero
 - The weight matrix can be
 - illustrated as an image
 - Sparse matrix

A Simple Example for Rook case

- Matrix contains a:
 - 1 if share a border
 - 0 if do not share a border

1	Washington	승규 사람이는 것은 것을 다 문을 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다
5	Orogon	
5	California	
2	California	
4	Arizona	
5	Nevada	
6	Idaho	11 1 111
7	Montana	
8	Wyoming	
ğ	utah	
10	New Mexico	
11	Tayac	
11	oklahoma	
12	OKTANOMA	
13	Colorado	
14	Kansas	
15	Nebraska	
16	South Dakota	11 1 111
17	North Dakota	1 1 1
18	Minnesota	11 1 1
19	Towa	11 1 1 11
20	Missouri	
20	Ankancac	
21	Arkansas	
22	Louisiana	
23	Міззізгррі	
24	Tennessee	
25	Kentucky	
26	Illinois	11 1 1 1
27	Wisconsin	11 1 1
28	Michigan	
29	Indiana	
20	Ohio	
21	Wast Vinginia	
21	west virginia	
32	Florida	
33	Alabama	
34	Georgia	
35	South Carolina	
36	North Carolina	1 11 1
37	Virginia	
38	Maryland	1 111
39	Delaware	
40	District of Columbia	
41	New Jersey	
41	Rew Jersey	
42	Pennsylvania	
43	New YORK	
44	Connecticut	
45	Rhode Island	
46	Massachussets	
47	New Hampshire	1.11
48	Vermont	1 11
49	Maine	

Sparse Contiguity Matrix for US States obtained from Anselin's web site (see powerpoint for link)												
Name	Fips	Ncount	N1	N2	N3	N4	N5	N6	N7	N8		
Alabama	1	4	28	13	12	47						
Arizona	4	5	35	8	49	6	32					
Arkansas	5	6	22	28	48	47	40	29				
California	6	3	4	32	41							
Colorado	8	7	35	4	20	40	31	49	56			
Connecticut	9	3	44	36	25							
Delaware	10	3	24	42	34							
District of Columbia	11	2	51	24								
Florida	12	2	13	1								
Georgia	13	5	12	45	37	1	47					
Idaho	16	6	32	41	56	49	30	53				
Illinois	17	5	29	21	18	55	19					
Indiana	18	4	26	21	17	39						
lowa	19	6	29	31	17	55	27	46				
Kansas	20	4	40	29	31	8						
Kentucky	21	7	47	29	18	39	54	51	17			
Louisiana	22	3	28	48	5							
Maine	23	1	33									
Maryland	24	5	51	10	54	42	11					
Massachusetts	25	5	44	9	36	50	33					
Michigan	26	3	18	39	55							
Minnesota	27	4	19	55	46	38						
Mississippi	28	4	22	5	1	47						
Missouri	29	8	5	40	17	21	47	20	19	31		
Montana	30	4	16	56	38	46						
Nebraska	31	6	29	20	8	19	56	46				
Nevada	32	5	6	4	49	16	41					
New Hampshire	33	3	25	23	50							
New Jersey	34	3	10	36	42							
New Mexico	35	5	48	40	8	4	49					
New York	36	5	34	9	42	50	25					
North Carolina	37	4	45	13	47	51						
North Dakota	38	3	46	27	30							
Ohio	39	5	26	21	54	42	18					
Oklahoma	40	6	5	35	48	29	20	8				
Oregon	41	4	6	32	16	53						
Pennsylvania	42	6	24	54	10	39	36	34				
Rhode Island	44	2	25	9								
South Carolina	45	2	13	37								
South Dakota	46	6	56	27	19	31	38	30				
Tennessee	47	8	5	28	1	37	13	51	21	29		
Texas	48	4	22	5	35	40						
Utah	49	6	4	8	35	56	32	16				
Vermont	50	3	36	25	33							
Virginia	51	6	47	37	24	54	11	21				
Washington	53	2	41	16								
West Virginia	54	5	51	21	24	39	42					
Wisconsin	55	4	26	17	19	27						
Wyoming	56	6	49	16	31	8	46	30				

Style of Spatial Weight Matrix

- Row
 - a weight of unity for each neighbor relationship
- Row standardization
 - Symmetry not guaranteed
 - can be interpreted as allowing the calculation of average values across neighbors
- General spatial weights based on distances

Row vs. Row standardization

General Spatial Weights Based on Distance

- Decay functions of distance
 - Most common choice is the inverse (reciprocal) of the distance between locations i and j ($w_{ij} = 1/d_{ij}$)
 - Other functions also used
 - inverse of <u>squared</u> distance $(w_{ij} = 1/d_{ij}^2)$, or
 - negative exponential $(w_{ij} = e^{-d} \quad or \quad w_{ij} = e^{-d^2})$

Example

• Compare three different weight matrix in images

Measure of Spatial Autocorrelation

Global Measures and Local Measures

- Global Measures
 - A single value which applies to the entire data set
 - The same pattern or process occurs over the entire geographic area
 - An average for the entire area
- Local Measures
 - A value calculated for <u>each</u> observation unit
 - Different patterns or processes may occur in different parts of the region
 - A unique number for each location
- Global measures usually can be decomposed into a combination of local measures

Global Measures and Local Measures

- Global Measures
 - Join Count
 - Moran's I, Getis-Ord's G
- Local Measures
 - Local Moran's I, Getis-Ord's G

Join (or Joint or Joins) Count Statistic

Positive autocorrelation

No autocorrelation

Negative autocorrelation

Rook's case	Queen's case
$J_{\sf BB} = 27$	$J_{BB} = 47$
$J_{\rm WW} = 27$	$J_{WW} = 47$
J _{BW} = 6	J _{BW} = 16

$J_{BB} = 6$	$J_{BB} = 14$	$J_{BB} = 0$	$J_{\rm BB} = 25$
$J_{\rm WW} = 19$	$J_{WW} = 40$	$J_{WW} = 0$	$J_{WW} = 25$
$J_{\rm BW} = 35$	$J_{\rm BW} = 56$	$J_{\rm BW} = 60$	$J_{BW} = 60$

60 for Rook Case110 for Queen Case

Join Count: Test Statistic

Test Statistic given by: Z= Observed - Expected SD of Expected

Expected = random pattern generated by tossing a coin in each cell.Expected given by:Standard Deviation of Expected (standard error) given by:

 $E(J_{BB}) = kp_B^2$ $E(J_{WW}) = kp_W^2$ $E(J_{BW}) = 2kp_Bp_W$

$$\begin{split} E(s_{\rm BB}) &= \sqrt{kp_{\rm B}^2 + 2mp_{\rm B}^3 - (k+2m)p_{\rm B}^4} \\ E(s_{\rm WW}) &= \sqrt{kp_{\rm W}^2 + 2mp_{\rm W}^3 - (k+2m)p_{\rm W}^4} \\ E(s_{\rm BW}) &= \sqrt{2(k+m)p_{\rm B}p_{\rm W} - 4(k+2m)p_{\rm B}^2 p_{\rm W}^2} \end{split}$$

Where: k is the total number of joins (neighbors) p_B is the expected proportion Black, if random p_W is the expected proportion White m is calculated from k according to: $m = \frac{1}{2} \sum_{i=1}^{n} k_i (k_i - 1)$

Gore/Bush Presidential Election 2000

Join Count Statistic for Gore/Bush 2000 by State

o o nalida to o	probobility (Actual	Expected	Stan Dev	Z-score
candidates	probability	Jbb	60	27.125	8.667	3.7930
Bush	0.49885	Jgg	21	27.375	8.704	-0.7325
Gore	0.50115	Jbg	28	54.500	5.220	-5.0763
0016		Total	109	109.000		

- The expected number of joins is calculated based on the proportion of votes each received in the election (for Bush = 109*.499*.499=27.125)
- There are far <u>more</u> Bush/Bush joins (actual = 60) than would be expected (27)
 - Positive autocorrelation
- There are far <u>fewer</u> Bush/Gore joins (actual = 28) than would be expected (54)
 - Positive autocorrelation
- No strong clustering evidence for Gore (actual = 21 slightly less than 27.375)

Moran's I

- The most common measure of Spatial Autocorrelation
- Use for points <u>or</u> polygons
 - Join Count statistic only for polygons
- Use for a continuous variable (any value)
 - Join Count statistic only for binary variable (1,0)

Patrick Alfred Pierce Moran (1917-1988)

Formula for Moran's I

$$I = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (X_i - \overline{X}) (X_j - \overline{X})}{(\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij}) \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

• Where:

 $\begin{array}{ll} N & \text{is the number of observations (points or polygons)} \\ \overline{\mathbf{X}} & \text{is the mean of the variable} \\ X_i & \text{is the variable value at a particular location} \\ X_j & \text{is the variable value at another location} \\ W_{ij} & \text{is a weight indexing location of } i \text{ relative to } j & {}^{34} \end{array}$

Moran's I

• Expectation of Moran's I under no spatial autocorrelation

E(I) = -1/(N-1)

- Variance of Moran's is complex and exact equation is given at textbook d&G&L
- [-1, 1]

Moran's I and Correlation Coefficient

- Correlation Coefficient [-1, 1]
 - Relationship between two different variables
- Moran's I [-1, 1]
- Spatial autocorrelation and often involves <u>one</u> (spatially indexed) variable only
- Correlation between observations of a spatial variable at location X and "spatial lag" of X formed by averaging all the observation at neighbors of X

$$\frac{\sum_{i=1}^{n} 1(y_i - \overline{y})(x_i - \overline{x})/n}{\sqrt{\frac{\sum_{i=1}^{n} (y_i - \overline{y})^2}{n}} \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}}$$

Correlation Coefficient

Note the similarity of the numerator (top) to the measures of spatial association discussed earlier if we view Yi as being the Xi for the neighboring polygon

(see next slide)

Spatial auto-correlation

$$\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}W_{ij}(x_{i}-\overline{x})(x_{j}-\overline{x})/\sum_{i=1}^{n}\sum_{j=1}^{n}W_{ij}}{\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}\sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}}}} \sqrt{\frac{\sum_{i=1}^{n}(x_{i}-\overline{x})^{2}}{n}}$$

Source: Ron Briggs of UT Dallas

Statistical Significance Tests for Moran's I

• Based on the normal frequency distribution with

Where: I is the calculated value for Moran's I
from the sample
E(I) is the expected value if random
S is the standard error

- Statistical significance test
 - Monte Carlo test, as we did for spatial pattern analysis
 - Permutation test

 $Z = \frac{I - E(I)}{S_{error(I)}}$

- Non-parametric
- Data-driven, no assumption of the data
- Implemented in GeoDa

Moran Scatter Plots

We can draw a scatter diagram between these two variables (in standardized form): **X** and **lag-X** (or W_X)

The <u>slope</u> of this *regression line* is Moran's I

Moran Scatter Plots

Moran Scatterplot: Example

Moran's I for rate-based data

- Moran's I is often calculated for rates, such as crime rates (e.g. number of crimes per 1,000 population) or infant mortality rates (e.g. number of deaths per 1,000 births)
- An adjustment should be made, especially if the denominator in the rate (population or number of births) varies greatly (as it usually does)
- Adjustment is know as the *EB adjust*ment:
 - see Assuncao-Reis Empirical Bayes Standardization Statistics in Medicine, 1999
- GeoDA software includes an option for this adjustment

Hot Spots and Cold Spots

- What is a *hot spot*?
 A place where <u>high</u> values cluster together
- What is a *cold spot*?
 - A place where <u>low</u> values cluster together

- Moran's I and Geary's C cannot distinguish them
 - They only indicate <u>clustering</u>
 - Cannot tell if these are hot spots, cold spots, or both

Getis-Ord General/Global G-Statistic

- The G statistic distinguishes between hot spots and cold spots. It identifies *spatial concentrations*.
 - G is relatively <u>large</u> if <u>high</u> values cluster together
 - G is relatively <u>low</u> if <u>low</u> values cluster together
- The General G statistic is interpreted <u>relative to</u> its *expected value*
 - The value for which there is no spatial association
 - $G > (larger than) expected value \rightarrow potential "hot spots"$
 - G < (smaller than) *expected value* \rightarrow potential "cold spots"
- A Z *test statistic* is used to test if the difference is statistically significant
- Calculation of G based on a *neighborhood distance* within which cluster is expected to occur

Getis, A. and Ord, J.K. (1992) *The analysis of spatial association by use of distance statistics* <u>Geographical Analysis</u>, 24(3) 189-206

Comments on General G

- General G will <u>not</u> show <u>negative</u> spatial autocorrelation
- Should <u>only</u> be calculated for <u>ratio scale</u> data

- data with a "natural" zero such as crime rates, birth rates

- Although it was defined using a contiguity (0,1) weights matrix, <u>any</u> type of spatial weights matrix can be used
 - ArcGIS gives multiple options
- There are two global versions: G and G^*
 - G does <u>not</u> include the value of X_i itself, only "neighborhood" values
 - G^* includes X_i as well as "neighborhood" values
- Significance test on General G and G* follows the similar procedure as used for Moran's I

Local Measures of Spatial Autocorrelation

Local Indicators of Spatial Association (LISA)

- Local versions of Moran's I, Geary's C, and the Getis-Ord G statistic
- Moran's I is most commonly used, and the local version is often called Anselin's LISA, or just LISA

See:

Luc Anselin 1995 Local Indicators of Spatial Association-LISA Geographical Analysis 27: 93-115

Local Indicators of Spatial Association (LISA)

- The statistic is calculated for <u>each</u> areal unit in the data
- For each polygon, the index is calculated <u>based on neighboring</u> <u>polygons with which it shares a border</u>
- A measure is available for <u>each</u> polygon, these can be mapped to indicate how <u>spatial autocorrelation varies</u> over the study region
- Each index has an associated test statistic, we can also map which of the polygons has a <u>statistically significant relationship</u> with its neighbors, and show <u>type</u> of relationship

Example:

Calculating Anselin's LISA

• The local Moran statistic for areal unit *i* is:

$$I_i = z_i \sum_j w_{ij} z_j$$

where z_i is the original variable x_i in $z_i = \frac{x_i - x}{SD_x}$ "standardized form" or it can be in "deviation form" $x_i - x$ and w_{ii} is the spatial weight The summation \sum_{i}^{j} is across each <u>row</u> *i* of the spatial weights matrix. An example follows

Contiguit	y Matrix	1	2	3	4	5	6	7			
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum	Neighbors	Illiteracy
Anhui	1	0	1	1	1	1	1	0	5	65432	14.49
Zhejiang	2	1	0	1	1	0	0	1	4	7431	9.36
Jiangxi	3	1	1	0	0	0	1	0	3	621	6.49
Jiangsu	4	1	1	0	0	0	0	1	3	721	8.05
Henan	5	1	0	0	0	0	1	0	2	6 1	7.36
Hubei	6	1	0	1	0	1	0	0	3	135	7.69
Shanghai	7	0	1	0	1	0	0	0	2	24	3.97
									,		

Contiguity Matrix and Row Standardized Spatial Weights Matrix

Contiguity	Matrix	1	2	3	4	5	6	7		
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum	
Δορμί	1	0	1	1	1	1	1		Б	
	1	0	1	1	1	1	1	0	5	
Znejiang	2	1	0	1	1	0	0	1	4	
Jiangxi	3	1	1	0	0	0	1	0	3	
Jiangsu	4	1	1	0	0	0	0		3—	
Henan	5	1	0	0	0	0	1	0	2	
Hubei	6	1	0	1	0	1	0	0	3	
Shanghai	7	0	1	0	1	0	0	0	2	(1/3)
Row Standardized Spatial Weights Matrix										
	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	Sum	
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00	1	
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25	1	
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00	1	
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33	1	
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00	1	
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00	1	
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00	1	

Calculating standardized (z) scores

Deviations from Mean and z scores. $\mathcal{X}_i - \mathcal{X}_i$										
	X	X-Xmean	X-Mean2	$z \swarrow z_i$	$=$ $\frac{1}{SD_x}$					
Anhui	14.49	6.29	39.55	2.101						
Zhejiang	9.36	1.16	1.34	0.387						
Jiangxi	6.49	(1.71)	2.93	(0.572)						
Jiangsu	8.05	(0.15)	0.02	(0.051)						
Henan	7.36	(0.84)	0.71	(0.281)						
Hubei	7.69	(0.51)	0.26	(0.171)						
Shanghai	3.97	(4.23)	17.90	(1.414)						
Mean and Standard	Deviation									
Sum	57.41	0.00	62.71							
Mean	57.41	/ 7 =	8.20							
Variance	62.71	/ 7 =	8.96							
SD	√ 8.96	=	2.99							

Calculating LISA

Row Standardized Spatial Weights Matrix

	Code	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
Anhui	1	0.00	0.20	0.20	0.20	0.20	0.20	0.00
Zhejiang	2	0.25	0.00	0.25	0.25	0.00	0.00	0.25
Jiangxi	3	0.33	0.33	0.00	0.00	0.00	0.33	0.00
Jiangsu	4	0.33	0.33	0.00	0.00	0.00	0.00	0.33
Henan	5	0.50	0.00	0.00	0.00	0.00	0.50	0.00
Hubei	6	0.33	0.00	0.33	0.00	0.33	0.00	0.00
Shanghai	7	0.00	0.50	0.00	0.50	0.00	0.00	0.00

Z-Scores for row Province and its potential neighbors

		Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai
	Zi							
Anhui	2.101	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Zhejiang	0.387	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Jiangxi	(0.572)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Jiangsu	(0.051)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Henan	(0.281)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Hubei	(0.171)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)
Shanghai	(1.414)	2.101	0.387	(0.572)	(0.051)	(0.281)	(0.171)	(1.414)

Spatial Weight Matrix multiplied by Z-Score Matrix (cell by cell multiplication)

Spatial We	Spatial Weight Matrix multiplied by Z-Score Matrix (cell by cell multiplication) $W_{11}Z_1^{\prime\prime}$											
-	-	Anhui	Zhejiang	Jiangxi	Jiangsu	Henan	Hubei	Shanghai	SumWijZ			
	Zi								0.000			
Anhui	2.101	-	0.077	(0.114)	(0.010)	(0.056)	(0.034)	-	(0.137)			
Zhejiang	0.387	0.525	-	(0.143)	(0.013)	-	-	(0.353)	0.016			
Jiangxi	(0.572)	0.700	0.129	-	-	-	(0.057)	-	0.772			
Jiangsu	(0.051)	0.700	0.129	-	-	-	-	(0.471)	0.358			
Henan	(0.281)	1.050	-	-	-	-	(0.085)	-	0.965			
Hubei	(0.171)	0.700	-	(0.191)	-	(0.094)	-	-	0.416			
Shanghai	(1.414)	-	0.194	-	(0.025)	-	-	-	0.168			

Wij

Local Getis-Ord G and G* Statistics

• Local Getis-Ord G

- It is the proportion of all x values in the study area accounted for by the neighbors of location *I*
- G* will include the self value

$$G_i(d) = \frac{\sum_j w_{ij} x_j}{\sum_j x_j}$$

G will be <u>high</u> where <u>high</u> values cluster
G will be <u>low</u> where <u>low</u> values cluster
Interpreted relative to expected value
if randomly distributed.

$$E(G_i(d)) = \frac{\sum_j w_{ij}(d)}{n-1}$$

Bivariate LISA

- Moran's I is the correlation between X and Lag-X--the same variable but in <u>nearby</u> areas
 - Univariate Moran's I
- Bivariate Moran's I is a correlation • between X and a <u>different</u> variable in nearby areas.

Moran Significance Map for GDI vs. AL

BiLISA Significance Ma

= 0.05(12)

= 0.01 (8)

= 0.001 (0)

= 0.0001 (0)

Not Significant (5

01 eri i

Moran <u>Scatter Plot</u> for GDI vs AL

Moran's I: 0.447162

Bivariate LISA and the Correlation Coefficie

- Correlation Coefficient is the relationship between two <u>different</u> variables in the <u>same</u> area
- Bivariate LISA is a correlation between two <u>different</u> variables in an area and in <u>nearby</u> areas.

Bivariate Moran Scatter Plot

59

Summary

- Spatial autocorrelation of areal data
- Spatial weight matrix
- Measures of spatial autocorrelation
- Global Measure
 - Moran's I/General G and G*
- Local
 - LISA: Moran's I/General G and G*
 - Bivariate LISA
- Significance test

• End of this topic