
Misha Ahmadian
High Performance Computing Center

Spring 2022

HPCC New User Training
Getting Started on HPCC Resources

(Part 2/2)

Outline

Part 2:
 Resource Allocation and Job Submission with SLURM

 Software builds and installation

 HPCC Policies

 Getting Help

Resource Allocation and
Job Submission with

• Simple Linux Utility for Resource Management (SLURM):

• Primary HPCC scheduler used in RedRaider
• Main entities:

1. Nodes: Physical computing resources
2. Partition: A logical set of nodes
3. Jobs: Allocations of resources assigned

to a user for a specified amount of time
4. Job Steps: sets of (possibly parallel)

tasks within a job
5. Tasks: Implies the requested/allocated

computing resources to process(es) per job
or job step
(By default, each task refers to 1 CPU core) Partition 1 Partition 2

Introduction to Slurm

Job 1

Job Step 1

Job Step 2

Job 2

Job Step

Task

Slurm Commands

• Useful Slurm Commands:
• sinfo:

• View information about nodes and partitions.

• squeue:

• View information about jobs located in partitions.

• Useful options to filter the output:

o -u <user>, --user=<user>: Shows the list of jobs or job steps that belong to a specific user

o --me: Shows the list of jobs or job steps that belongs to you (owner)

o -p <partition>, --partition=<partition>: Filters the jobs within a partition.

• srun:

• submits a job for execution or initiates job steps in real time.

• srun has the same options as sbatch with a few more. (Please see the man page)

• srun works similar to the “mpirun” and it can be replaced with “mpirun” as well.

Job Submission in Slurm

• sbatch:
• submits a job script for later execution.

• The submitted job stays in the queue until the requested resources become available.

• The job submission script is a text file that contains “#SBATCH” hints with sbatch command line
options.

#!/bin/bash
#SBATCH –J MPI_test
#SBATCH –N 2
#SBATCH –ntasks-per-node=128
#SBATCH –o %x.%j.out
#SBATCH –e %x.%j.err
#SBATCH –p nocona

module load gcc/10.1.0 openmpi/3.1.6
mpirun ./my_mpi

Job Submission in Slurm

• Job Submission Script Layout:

Description SLURM

Set the name for job -J , --job-name=<jobname>

The name of the standard output file -o, --output=<filename pattern>

The name of the standard error file -e, --error=<filename pattern>

Define the queue (partition) name -p, --partition=<partition_names>

Type of parallel env for job/task allocation -N, --nodes=<# of nodes>
--ntasks-per-node=<ntasks>

Reserve memory per slot --mem-per-cpu=<size[K|M|G|T]>

Set the maximum job run time -t, --time=<HH:MM:SS>

Specify the cluster policy for this job -A, --account=<account> | -q, --qos

Job Submission in Slurm

• Select a partition:
• Partition in Slurm groups physical nodes into a logical set and allows jobs to request for nodes’

resources from that partitions.
• -p, --partition=<partition_name>

Name # of Nodes Type Nodes #Core/Node #Mem/Node #Mem/Core #GPU/node

nocona 240 AMD ROME CPU cpu-[23-26]-[1-60] 128 503 GB 3.9 GB N/A

matador 20 Intel/Nvidia V100 GPU gpu-[20-21]-[1-10] 40 376 GB 9.4 GB 2

gpu-build 1 Intel/Nvidia V100 GPU gpu-20-11 32 187 GB 5.9 GB 1

toreador 11 AMD/Nvidia A100 gpu-20-[12-15],gpu-21-[11-17] 16 188 GB 11.8 GB 3

quanah 467 Intel Xeon Broadwell cpu-[1-10]-[*] 36 188 GB 5.3 GB N/A

community clusters 18 Various cpu-17-[49-52,57-62],cpu-18-[49-56] Various Various Various N/A

Job Submission in Slurm

• Requesting CPU:
• In Slurm, users must define the following options in their job

submissions in order to request for CPU resources:
1. Number of nodes: How many total nodes for the job?

 -N, --nodes=<number of nodes>

2. Number of tasks per node: (Recommended)
(By default, each task consumes 1x CPU core)

 --ntasks-per-nodes=<number of task per node>

OR Number of total tasks: How many task across the nodes?

 -n, --ntasks=<number of tasks>

• Requesting the right number of cores is key to optimizing throughput

Job Submission in Slurm

• Requesting Memory:
• One can specify the size of the consumable Memory in two ways in Slurm:

1. Memory per core (Recommended):
 --mem-per-cpu=<size[M|G]>

2. Memory per node:
 --mem=<size[M|G]>

• If no memory size was specified, Slurm will assign the default memory per core to your job:

• Make sure you won’t exceed the total memory per node:
• -p nocona -N 1 -n 128 --mem-per-cpu=100G

Nocona: 4027 MB (3.9 GB) per core Matador: 9639 MB (9.4 GB) per core Quanah: 5370 MB (5.3 GB) per core

Job Submission in Slurm

• Requesting Runtime limits:
• Recommended that you set the max runtime you expect a job will take.

• -t, --time=<time>

• <time> can be:
• minute
• minute:seconds
• hours:minutes:seconds
• days-hours
• days-hours:minutes
• days-hours:minutes:seconds

• E.g., --time=24:00:00

• Please note that there is a 48-hour default time limit per job and exceeding this amount will end up
with rejecting your job submission.

Job Submission in Slurm

• Requesting GPU:
• GPUs are available by requesting any node in the matador partition.

• Number of GPUs per node (Recommended):
 --gpus-per-node=[<type>:]<number>

• Total number of GPUs:
 -G, --gpus=<# of gpus> (Currently Unavailable on RedRaider cluster)

• There is only one type of GPU in RedRaider Cluster (v100) and is optional to be
specified.

• It is required to requesting at least one GPU per node when submitting a job to Matador.
• Make sure you do not exceed more than 2 GPUs per node during the job submission.

• --partition=matador --nodes=2 –gpus-per-node=4

• --partition=matador --nodes=2 --gpu-per-node=2

Job Submission in Slurm

• Accounts/QoS on RedRaider Cluster:
• Accounts, in Slurm, assigns the usage/fair-shair policies to each job.

• -A, --account=<account>

• QoS in Slurm defines a set of pre-defined resource limits based on the selected account.
• -q, --qos=<QoS>

Account
-A,

--account

QoS
-q, --qos

Default
Runtime

Maximum
Runtime

Total CPU/Mem
Limits

CPU/Mem
Limit per job

Total # Jobs
Per User

Allowed
Partitions Priority

default *
normal * 48 hours 48 hours No limit No limit 2000 All Partitions normal

xlquanah 72 hours 120 hours 144 cores / 755GB 36 cores /
188GB 2000 quanah normal

Dedicated
resource
users

--* 72 hours No limit
Varies based on the

purchased
resources

Up to the total
available
resources

No limit Nocona/Quanah high

(*) System will assign the default Account/QoS if user does not define them in their job submissions.

Submitting Jobs

• Example of a simple job to submit an MPI program to Slurm:
• Create a job submission script file (e.g., submit.sh):

#!/bin/bash
#SBATCH –J MPI_test
#SBATCH –N 2
#SBATCH –ntasks-per-node=128
#SBATCH –o %x.%j.out
#SBATCH –e %x.%j.err
#SBATCH –p nocona

module load gcc/10.1.0 openmpi/3.1.6
mpirun ./my_mpi

• Submit the job with sbatch:
• sbatch submit.sh

• Monitor the job with squeue:
• squeue --me
• squeue –u <username>

• Cancel the job with scancel:
• scancel job_id

Example: /lustre/work/examples/nocona

Exercise #2

1. Make sure you’re already Logged in to the “login.hpcc.ttu.edu” using your eraider account.
2. Go to your home directory and copy the following directory into your home directory:

$ cp -r /lustre/work/examples/nocona/training ~/

3. Go into the ‘training’ directory on your home directory:
a) List the contents of the directory
b) Print the contents of the ‘makefile’ file
c) Load the proper modules for “GCC 10.1.0” and “OpenMPI 4.0.4”
d) Run the “make” command to compile the “mpi_hello_world.c” code
e) Modify the ‘mpi_slurm.sh’ file as following:

i. Request 1 node from ‘nocona’ partition with 2 tasks (CPU cores) per node
ii. Load the right modules that will work properly with the “mpi_hello_world”

f) Submit the ‘mpi_slurm.sh’ job script
g) Check the current status of your jobs
h) Check the job’s output/error files after it finished.

Interactive Session

• interactive:
• Starts an interactive session/job:

• interactive -c 2 -p nocona

• See the interactive –h for all the
available options.

• Make sure the prompt changes to cpu-#-#.

• Make sure you run “exit” when you’re finished.

• Keep in mind resource/runtime limits apply to
interactive based on the selected account.

• The interactive command will forward the X11
if the SSH session was established with -X or -Y.

• Please note that direct SSH to any worker nodes not
part of your job is blocked on the RedRaider cluster.

The ‘gpu-build’ Partition

• Building and Testing GPU applications:
• The gpu-build partition contains one Intel/GPU node with 1x Nvidia V100 GPU device, 32x Intel CPU cores and

192 GB RAM, which allows users to:

• Build their own GPU applications.

• Test GPU applications and the environment setup before submitting a job to Matador partition.

• Accessing the Lmod Module environment for GPU compilers/applications.

• In order to access the ‘gpu-build’ node, you need to establish an interactive session:
• $ interactive -p gpu-build -c 2

• Limitations:

Partition Max Runtime
(per job)

Max CPU per user
(in total)

Max Mem per user
(in total)

Max interactive session
per user

gpu-build 5 hours 6 36006 MB (35 GB) 2

Debugging a Finished Job

• sacct:
• reports accounting information about active or completed jobs or job steps.

• sacct -j <jobid>

• More filter options are available by checking the –e, --helpformat options of sacct
command.
• sacct -j <jobid> --format=partition,jobid,ntasks,nodelist,maxrss,maxvmsize,exitcode

• When debugging:

• Check the output and error files

• Check the output of sacct for:

 Memory usage

 Exit code

 Start and end time.

Current Status of the Job Scheduler

• You can check the current status of the Slurm Job Scheduler at this Link.

https://www.depts.ttu.edu/hpcc/status/slurm_web.php

Exercise #3

1. Make sure you’re already Logged in to the “login.hpcc.ttu.edu” using your eraider
account.
 For this example, please assure your SSH session has the X11 forwarding enabled!

2. Make an interactive session to one of the Nocona nodes:
 Use the‘ interactive’ command.
 Request for 1 CPU core from ‘nocona’ partition.
 You can use the same temporary reservation as you used in the last exercise.

3. Once the worker node was allocated, locate the “MATLAB” module
4. Try to run the MATLAB graphical user interface (GUI) on the cluster:

 cpu-#-#$ matlab

5. Close the MATLAB window to exit the program.
6. Exit the interactive session.

Software builds and
installation

Slurm

HPCC RedRaider Cluster – Overall Look

login.hpcc.ttu.edu quanah.hpcc.ttu.edu

Login-20-25 Login-20-26 quanah

sinfo squeue sbatch scancel sacct interactive

quanah nocona matador gpu-build

cpu-[1-10]-* cpu-[23-26]-[1-60] gpu[20-21]-[1-10] gpu-20-11

quanah
modules

nocona
modules

matador
modules

Toreador

gpu-20-[12-15],gpu-
21-[11-17]

Toreador
modules

HPCC RedRaider Cluster - CPU Architectures

• Multiple partitions – Multiple architectures:

Nocona
AMD EPYC ROME

Matador
Intel Xeon Cascade Lake
Nvidia V100

Quanah
Intel Xeon Broadwell

Toreador
AMD EPYC ROME
Nvidia A100

Software builds on HPCC Clusters

• Modules & compiled code are different on each of the RedRaider partitions!
• Each CPU architecture may bring a different set of features and instructions.
• Compiled programs (C/C++/Fortran) need to be re-compiled to match each CPU architecture.
• E.g., programs that are compiled on Intel nodes may not work properly/efficiently on AMD nodes.
• Different Compilers/Math libraries optimize the programs differently on each architecture.

Compiler AMD ROME Intel Broadwell Intel Ivy Bridge Intel Cascade Lake Nvidia GPU
GNU/GCC GCC 10+ GCC 4+ GCC 4+ GCC 10+ GCC 8+
Intel May work Optimized Optimized Optimized Intel 19+
AOCC Optimized Not Applicable Not Applicable Not Applicable N/A
MKL May work Optimized Optimized Optimized MKL 19+
AOCL Optimized Not Applicable Not Applicable Not Applicable N/A
CUDA N/A N/A N/A N/A CUDA 10+

Software builds on HPCC Clusters

• Tips and Recommendations:
1. Create a separate directory for each CPU architecture, and make a copy from your code/program and

place it under each directory:
 mkdir nocona matador quanah

2. Login to the RedRaider login node, and for each CPU architecture make an interactive session to the
corresponding worker node:
 interactive -p nocona –c 10

3. Go to the directory of you code that has the same name as the current session’s partition:
 cd nocona

4. Load a proper compiler module and recompile your code:
 module load gcc/10.1.0

5. If applicable, add the -O3 optimization flag to all the CFLAGS, CPPFLAGS, CXXFLAGS, FFLAGS.
 CFLAGS=-O3 FFLAGS=-O3 make –j 10 all

Software builds on HPCC Clusters

• Tips and Recommendations:

5. We recommend mapping the MPI jobs to the L3-cache memory on Nocona (AMD) nodes:
 mpirun -map-by l3cache ./mpi_app

6. HPCC will not support Python v2 on Nocona and Matador nodes with CentOS 8.
(This rule will be applied to Quanah and Ivy in the near future.)
 Users can still get Python v2 from Conda (Anaconda/Miniconda)

 Python 2 is NOT RECEIVING SECURITY UPDATES and should be retired from your workflows
ASAP.

7. Python applications (including the applications from Condo repo) will continue working with
different architectures without recompiling them.

Local Python Package Installation

• Install a Python package into your home folder:

$ module load intel python
$ pip install --user <package name>

• Example: pip install --user matplotlib

• Install a local copy of Python using Conda:

$ /lustre/work/examples/InstallPython.sh
$. $HOME/conda/etc/profile.d/conda.sh
$ conda activate
$ conda install <package name>

• Example: conda install biopython

Local R Package Installation

• Install an R package into your home folder:

 Example (On Quanah Node:)
$ module load intel R

$ R

$ install.packages(‘<package name>’)

Example: install.packages(‘readr’)

 Select a mirror

 The R application will ask if you want to install it locally the
first time you do this.

HPCC Policies

HPCC Policies

• Login nodes (login.hpcc.ttu.edu, quanah.hpcc.ttu.edu):
• No jobs are allowed to run on the login node.

• SSH Access:
• No direct SSH access allowed to a node(s) if you have no job running on the node(s)

• Software Installation:
• Software requests are handled on a case-by-case basis
• Requesting software does not guarantee it will be installed “cluster-wide”.
• May take two or more weeks to complete your request.

• Scratch Purge Policy:
• Scratch will be purged monthly by removing of all files not accessed within the past year, or

sufficient to bring total scratch space usage across all accounts down to 80% of capacity.

Getting Help

Further Assistance

• Visit Our Website:
• Most up-to-date user guide documents

• https://www.depts.ttu.edu/hpcc/userguides/index.php

• Job scheduler and resource allocation status page
• https://www.depts.ttu.edu/hpcc/status/slurm_web.php

• Current status of all HPCC services
• https://www.depts.ttu.edu/hpcc/status/cachet.php

• Read the documentation!
• https://slurm.schedmd.com/documentation.html

• Submit a support ticket:
• Send an email to hpccsupport@ttu.edu

https://www.depts.ttu.edu/hpcc/userguides/index.php
https://www.depts.ttu.edu/hpcc/status/slurm_web.php
https://www.depts.ttu.edu/hpcc/status/cachet.php
https://slurm.schedmd.com/documentation.html
mailto:hpccsupport@ttu.edu

Quick Reminder

 HPCC Training Courses
• Please check the website for upcoming User Training workshops

– http://www.depts.ttu.edu/hpcc/about/training.php

 ShortCourse Survey
• Looking forward to have your feedback on this Training Workshop

– You will receive a survey in your inbox from TTU ShortCourse

 The PowerPoint slides are available online
– http://www.depts.ttu.edu/hpcc/about/training.php

http://www.depts.ttu.edu/hpcc/about/training.php
http://www.depts.ttu.edu/hpcc/about/training.php

	Slide Number 1
	Outline
	Slide Number 3
	Introduction to Slurm
	Slurm Commands
	Job Submission in Slurm
	Job Submission in Slurm
	Job Submission in Slurm
	Job Submission in Slurm
	Job Submission in Slurm
	Job Submission in Slurm
	Job Submission in Slurm
	Job Submission in Slurm
	Submitting Jobs
	Exercise #2
	Interactive Session
	The ‘gpu-build’ Partition
	Debugging a Finished Job
	Current Status of the Job Scheduler
	Exercise #3
	Slide Number 21
	HPCC RedRaider Cluster – Overall Look
	HPCC RedRaider Cluster - CPU Architectures
	Software builds on HPCC Clusters
	Software builds on HPCC Clusters
	Software builds on HPCC Clusters
	Local Python Package Installation
	Local R Package Installation
	Slide Number 29
	HPCC Policies
	Slide Number 31
	Further Assistance
	Quick Reminder
	Slide Number 34

